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Foreword

Dear reader,
Our aim with the series Simula SpringerBriefs on Computing is to provide

compact introductions to selected fields of computing. Entering a new field of
research can be quite demanding for graduate students, postdocs, and experienced
researchers alike: the process often involves reading hundreds of papers, and the
methods, results and notation styles used often vary considerably, which makes for
a time-consuming and potentially frustrating experience. The briefs in this series are
meant to ease the process by introducing and explaining important concepts and
theories in a relatively narrow field, and by posing critical questions on the fun-
damentals of that field. A typical brief in this series should be around 100 pages and
should be well suited as material for a research seminar in a well-defined and
limited area of computing.

We have decided to publish all items in this series under the SpringerOpen
framework, as this will allow authors to use the series to publish an initial version
of their manuscript that could subsequently evolve into a full-scale book on a
broader theme. Since the briefs are freely available online, the authors will not
receive any direct income from the sales; however, remuneration is provided for
every completed manuscript. Briefs are written on the basis of an invitation from a
member of the editorial board. Suggestions for possible topics are most welcome
and can be sent to aslak@simula.no.

January 2016 Prof. Aslak Tveito
CEO

Dr. Martin Peters
Executive Editor Mathematics
Springer Heidelberg, Germany
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Preface

Finding proper values of physical parameters in mathematical models is often
quite a challenge. While many have gotten away with using just the math-
ematical symbols when doing science and engineering with pen and paper,
the modern world of numerical computing requires each physical parameter
to have a numerical value, otherwise one cannot get started with the com-
putations. For example, in the simplest possible transient heat conduction
simulation, a case relevant for a real physical material needs values for the
heat capacity, the density, and the heat conduction coefficient of the ma-
terial. In addition, relevant values must be chosen for initial and boundary
temperatures as well as the size of the material. With a dimensionless math-
ematical model, as explained in Chapter 3.2, no physical quantities need to
be assigned (!). Not only is this a simplification of great convenience, as one
simulation is valid for any type of material, but it also actually increases the
understanding of the physical problem.

Scaling of differential equations is basically a simple mathematical process,
consisting of the chain rule for differentiation and some algebra. The choice
of scales, however, is a non-trivial topic, which may cause confusion among
practitioners without extensive experience with scaling. How to choose scales
is unfortunately not well treated in the literature. Most of the times, authors
just state scales without proper motivation. The choice of scales is highly
problem-dependent and requires knowledge of the characteristic features of
the solution or the physics of the problem. The present notes aim at explaining
“all nuts and bolts” of the scaling technique, including choice of scales, the
algebra, the interpretation of dimensionless parameters in scaled models, and
how scaling impacts software for solving differential equations.

Traditionally, scaling was mainly used to identify small parameters in
mathematical models, such that perturbation methods based on series ex-
pansions in terms of the small parameters could be used as an approximate
solution method for differential equations. Nowadays, the greatest practical
benefit of scaling is related to running numerical simulations, since scaling
greatly simplifies the choice of values for the input data and makes the sim-
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ulations results more widely applicable. The number of parameters in scaled
models may be much less than the number of physical parameters in the
original model. The parameters in scaled models are also dimensionless and
express ratios of physical effects rather than levels of individual effects. Set-
ting meaningful values of a few dimensionless numbers is much easier than
determining physically relevant values for the original physical parameters.

Another great benefit of scaling is the physical insight that follows from
dimensionless parameters. Since physical effects enter the problem through a
few dimensionless groups, one can from these groups see how different effects
compete in their impact on the solution. Ideally, a good physical understand-
ing should provide the same insight, but it is not always easy to “think right”
and realize how spatial and temporal scales interact with physical parame-
ters. This interaction becomes clear through the dimensionless numbers, and
such numbers are therefore a great help, especially for students, in developing
a correct physical understanding.

Since we have a special focus on scaling related to numerical simulations,
the notes contain a lot of examples on how to program with dimensionless
differential equation models. Most numerical models feature quantities with
dimension, so we show in particular how to utilize such existing models to
solve the equations in the associated scaled model.

Scaling is not a universal mathematical technique as the details depend
on the problem at hand. We therefore present scaling in a range of specific
applications, starting with simple ODEs, progressing with basic PDEs, before
attacking more complicated models, especially from fluid mechanics.

Chapter 1 discusses units and how to make programs that can automat-
ically take care of unit conversion (the most frequent mathematical mistake
in industry and science?). Section 2.1 introduces the mathematics of scaling
and the thinking about scales in a simple ODE problem modeling expo-
nential decay. The ideas are generalized to nonlinear ODEs and to systems
of ODEs. Another ODE example, on mechanical vibrations, is treated in
Section 2.2, where we cover many different physical contexts and different
choices of scales. Scaling the standard, linear wave equation is the topic of
Chapter 3.1, with discussion of how boundary and initial conditions influence
the choice of scales. Another PDE example, the diffusion equation, appears
in Chapter 3.2. Here we progress from a simple linear diffusion equation in
1D to a study of how scales are influenced by an oscillatory boundary con-
dition. Nonlinear diffusion models, as well as convection-diffusion PDEs, are
elaborated on. The final Chapter is devoted to many famous PDEs arising
from continuum models: elasticity, viscous fluid flow, thermal convection, etc.

The mathematics is translated into complete computer codes for the ODE
and simpler PDE problems.

Experimental fluid mechanics is a field full of relations involving dimen-
sionless numbers such as the Grashof and Prandtl numbers, but none of the
textbooks the authors have seen explain how these numbers actually relate to
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dimensionless forms of the governing equations. Consequently, this non-trivial
topic is particularly highlighted in the fluid mechanics examples.

The mathematics in the first two chapters is very gentle and requires
no more background than basic one-variable calculus and preferably some
knowledge of differential equation models. The next chapter involves PDEs
and assumes familiarity with basic models for wave phenomena, diffusion,
and combined convection-diffusion. The final chapter is meant for readers
with knowledge of the physics and mathematics of continuum mechanical
models. The mathematical level of the text rises quickly after the first two
chapters.

In the first two chapters, much of the mathematics is accompanied by com-
plete (yet short) computer codes. The programming level requires familiarity
with procedural programming in Python. As the mathematical level rises,
the computer codes get much more comprehensive, and we refer to some files
for computational examples in chapter three.

The pedagogy is to saturate the reader with lots of detailed examples to
provide an understanding for the topic, primarily because the choice of scales
depends on the problem at hand. One can also view the notes as a reference
on how to scale many of the most important differential equation models in
physics. For the simpler differential equations in Chapters 2 and 3, we present
computer code for many computational examples, but the treatment of the
advanced models in Chapter 4 is more superficial to limit the size of that
chapter.

The exercises are named either Exercise or Problem. The latter is a stand-
alone exercise without reference to the rest of the text, while the former
typically extends a topic in the text or refers to sections or formulas in the
text.

What this booklet is and is not
Books containing material on scaling and non-dimensionalization very
often cover topics not treated in the present notes, e.g., the key topic
of dimensional analysis and the famous Buckingham Pi Theorem [1,
8], which we discuss only briefly in section 1.1.3. Similarly, analytical
solution methods like perturbation techniques and similarity solutions,
which represent classical methods closely related to scaling and non-
dimensionalization, are not addressed herein. There are numerous texts
on perturbation techniques, and these methods build on an already
scaled differential equations. Similarity solutions do not fit within the
present scope since these involve non-dimensional combinations of the
unscaled independent variables to derive new differential equations that
are easier to solve.

Our scope is to scale differential equations to simplify the setting of
parameters in numerical simulations, and at the same time understand

ixPreface
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more of the physics through interpretation of the dimensionless numbers
that automatically arise from the scaling procedure.

With these notes, we hope to demystify the thinking involved in scale
determination and encourage numerical simulations to be performed with
dimensionless differential equation models.

All program and data files referred to in this book are available from the
book’s primary web site: URL: http://hplgit.github.io/scaling-book/
doc/web/. This site also features a version of the book with exercises.

Acknowledgments. Professor Svein Linge provided very detailed, construc-
tive comments on the entire manuscript and helped improve the reading qual-
ity significantly. Yapi Donatien Achou assisted with proof reading. Significant
portions of the present text were written when the first author was fed with
FOLFIRINOX (and thereby kept alive) by Linda Falch-Koslung, Dr. Olav
Dajani, and the rest of the OUS team. There would simply be no booklet
without their efforts. It is also a great pleasure to express our sincere thanks to
the Springer and Simula team that handled the prompt editing and produc-
tion of the text: Martin Peters, Ruth Allewelt, Aslak Tveito, and

Oslo, November 2015 Hans Petter Langtangen, Geir K. Pedersen
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Chapter 1
Dimensions and units

A mechanical system undergoing one-dimensional damped vibrations can be
modeled by the equation

mu′′ + bu′ +ku = 0, (1.1)

where m is the mass of the system, b is some damping coefficient, k is a spring
constant, and u(t) is the displacement of the system. This is an equation ex-
pressing the balance of three physical effects: mu′′ (mass times acceleration),
bu′ (damping force), and ku (spring force). The different physical quantities,
such as m, u(t), b, and k, all have different dimensions, measured in different
units, but mu′′, bu′, and ku must all have the same dimension, otherwise it
would not make sense to add them.

1.1 Fundamental concepts

1.1.1 Base units and dimensions

Base units have the important property that all other units derive from them.
In the SI system, there are seven such base units and corresponding physical
quantities: meter (m) for length, kilogram (kg) for mass, second (s) for time,
kelvin (K) for temperature, ampere (A) for electric current, candela (cd) for
luminous intensity, and mole (mol) for the amount of substance.

We need some suitable mathematical notation to calculate with dimensions
like length, mass, time, and so forth. The dimension of length is written as
[L], the dimension of mass as [M], the dimension of time as [T], and the
dimension of temperature as [Θ] (the dimensions of the other base units
are simply omitted as we do not make much use of them in this text). The
dimension of a derived unit like velocity, which is distance (length) divided by
time, then becomes [LT−1] in this notation. The dimension of force, another

© The Author(s) 2016 1
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2 1 Dimensions and units

derived unit, is the same as the dimension of mass times acceleration, and
hence the dimension of force is [MLT−2].

Let us find the dimensions of the terms in (1.1). A displacement u(t) has
dimension [L]. The derivative u′(t) is change of displacement, which has di-
mension [L], divided by a time interval, which has dimension [T], implying
that the dimension of u′ is [LT−1]. This result coincides with the interpre-
tation of u′ as velocity and the fact that velocity is defined as distance ([L])
per time ([T]).

Looking at (1.1), and interpreting u(t) as displacement, we realize that
the term mu′′ (mass times acceleration) has dimension [MLT−2]. The term
bu′ must have the same dimension, and since u′ has dimension [LT−1], b
must have dimension [MT−1]. Finally, ku must also have dimension [MLT−2],
implying that k is a parameter with dimension [MT−2].

The unit of a physical quantity follows from the dimension expression. For
example, since velocity has dimension [LT−1] and length is measured in m
while time is measured in s, the unit for velocity becomes m/s. Similarly,
force has dimension [MLT−2] and unit kg m/s2. The k parameter in (1.1) is
measured in kg s−2.

Dimension of derivatives
The easiest way to realize the dimension of a derivative, is to express
the derivative as a finite difference. For a function u(t) we have

du

dt
≈ u(t+Δt)−u(t)

Δt
,

where Δt is a small time interval. If u denotes a velocity, its dimension
is [LT]−1, and u(t + Δt) − u(t) gets the same dimension. The time in-
terval has dimension [T], and consequently, the finite difference gets the
dimension [LT]−2. In general, the dimension of the derivative du/dt is
the dimension of u divided by the dimension of t.

1.1.2 Dimensions of common physical quantities

Many derived quantities are measured in derived units that have their own
name. Force is one example: Newton (N) is a derived unit for force, equal
to kg m/s2. Another derived unit is Pascal (Pa) for pressure and stress, i.e.,
force per area. The unit of Pa then equals N/m2 or kg/ms2. Below are more
names for derived quantities, listed with their units.

www.dbooks.org
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1.1 Fundamental concepts 3

Name Symbol Physical quantity Unit

radian rad angle 1
hertz Hz frequency s−1

newton N force, weight kg m/s2

pascal Pa pressure, stress N/m2

joule J energy, work, heat Nm
watt W power J/s

Some common physical quantities and their dimensions are listed next.

Quantity Relation Unit Dimension

stress force/area N/m2 = Pa [MT−2L−1]
pressure force/area N/m2 = Pa MT−2L−1]
density mass/volume kg/m3 [ML−3]
strain displacement/length 1 [1]
Young’s modulus stress/strain N/m2 = Pa [MT−2L−1]
Poisson’s ratio transverse strain/axial strain 1 [1]
Lame’ parameters λ and μ stress/strain N/m2 = Pa [MT−2L−1]
moment (of a force) distance × force Nm [ML2T−2]
impulse force × time Ns [MLT−1]
linear momentum mass × velocity kg m/s [MLT−1]
angular momentum distance × mass × velocity kg m2/s [ML2T−1]
work force × distance Nm = J [ML2T−2]
energy work Nm = J [ML2T−2]
power work/time Nm/s = W [ML2T−3]
heat work J [ML2T−2]
heat flux heat rate/area Wm−2 [MT−3]
temperature base unit K [Θ]
heat capacity heat change/temperature change J/K [ML2T−2Θ−1]
specific heat capacity heat capacity/unit mass JK−1kg−1 [L2T−2Θ−1]
thermal conductivity heat flux/temperature gradient Wm−1K−1 [MLT−3Θ−1]
dynamic viscosity shear stress/velocity gradient kgm−1s−1 [ML−1T −1]
kinematic viscosity dynamic viscosity/density m2/s [L2T−1]
surface tension energy/area J/m2 [MT−2]

Prefixes for units. Units often have prefixes1. For example, kilo (k) is a
prefix for 1000, so kg is 1000 g. Similarly, GPa means giga pascal or 109 Pa.

1.1.3 The Buckingham Pi theorem

Almost all texts on scaling has a treatment of the famous Buckingham Pi the-
orem, which can be used to derive physical laws based on unit compatibility

1https://en.wikipedia.org/wiki/Metric_prefix
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rather than the underlying physical mechanisms. This booklet has its focus
on models where the physical mechanisms are already expressed through dif-
ferential equations. Nevertheless, the Pi theorem has a remarkable position
in the literature on scaling, and since we will occasionally make references to
it, the theorem is briefly discussed below.

The theorem itself is simply stated in two parts. First, if a problem in-
volves n physical parameters in which m independent unit-types (such as
length, mass etc.) appear, then the parameters can be combined to exactly
n − m independent dimensionless numbers, referred to as Pi’s. Second, any
unit-free relation between the original n parameters can be transformed into
a relation between the n − m dimensionless numbers. Such relations may be
identities or inequalities stating, for instance, whether or not a given effect is
negligible. Moreover, the transformation of an equation set into dimension-
less form corresponds to expressing the coefficients, as well as the free and
dependent variables, in terms of Pi’s.

As an example, think of a body moving at constant speed v. What is the
distance s traveled in time t? The Pi theorem results in one dimensionless
variable π = vt/s and leads to the formula s = Cvt, where C is an undeter-
mined constant. The result is very close to the well-known formula s = vt
arising from the differential equation s′ = v in physics, but with an extra
constant.

At first glance the Pi theorem may appear as bordering on the trivial.
However, it may produce remarkable progress for selected problems, such as
turbulent jets, nuclear blasts, or similarity solutions, without the detailed
knowledge of mathematical or physical models. Hence, to a novice in scaling
it may stand out as something very profound, if not magical. Anyhow, as
one moves on to more complex problems with many parameters, the use of
the theorem yields comparatively less gain as the number of Pi’s becomes
large. Many Pi’s may also be recombined in many ways. Thus, good physical
insight, and/or information conveyed through an equation set, is required
to pick the useful dimensionless numbers or the appropriate scaling of the
said equation set. Sometimes scrutiny of the equations also reveals that some
Pi’s, obtained by applying the theorem, in fact may be removed from the
problem. As a consequence, when modeling a complex physical problem, the
real assessment of scaling and dimensionless numbers will anyhow be included
in the analysis of the governing equations instead of being a separate issue
left with the Pi theorem. In textbooks and articles alike, the discussion of
scaling in the context of the equations are too often missing or presented in a
half-hearted fashion. Hence, the authors’ focus will be on this process, while
we do not provide much in the way of examples on the Pi theorem. We do
not allude that the Pi theorem is of little value. In a number of contexts,
such as in experiments, it may provide valuable and even crucial guidance,
but in this particular textbook we seek to tell the complementary story on
scaling. Moreover, as will be shown in this booklet, the dimensionless numbers
in a problem also arise, in a very natural way, from scaling the differential
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equations. Provided one has a model based on differential equations, there is
actually no need for classical dimensional analysis.

1.1.4 Absolute errors, relative errors, and units

Mathematically, it does not matter what units we use for a physical quantity.
However, when we deal with approximations and errors, units are important.
Suppose we work with a geophysical problem where the length scale is typ-
ically measured in km and we have an approximation 12.5 km to the exact
value 12.52 km. The error is then 0.02 km. Switching units to mm leads to
an error of 20,000 mm. A program working in mm would report 2 ·105 as the
error, while a program working in km would print 0.02. The absolute error
is therefore sensitive to the choice of units. This fact motivates the use of
relative error : (exact - approximate)/exact, since units then cancel. In the
present example, one gets a relative error of 1.6 · 10−3 regardless of whether
the length is measured in km or mm.

Nevertheless, rather than relying solely on relative errors, it is in general
better to scale the problem such that the quantities entering the computations
are of unit size (or at least moderate) instead of being very large or very small.
The techniques of these notes show how this can be done.

1.1.5 Units and computers

Traditional numerical computing involves numbers only and therefore re-
quires dimensionless mathematical expressions. Usually, an implicit trivial
scaling is used. One can, for example, just scale all length quantities by 1
m, all time quantities by 1 s, and all mass quantities by 1 kg, to obtain
the dimensionless numbers needed for calculations. This is the most common
approach, although it is very seldom explicitly stated.

Symbolic computing packages, such as Mathematica and Maple, allow
computations with quantities that have dimension. This is also possible in
popular computer languages used for numerical computing (Section 1.1.8
provides a specific example in Python).

1.1.6 Unit systems

Confusion arises quickly when some physical quantities are expressed in SI
units while others are in US or British units. Density could, for instance, be
given in unit of ounce per teaspoon. Although unit conversion tables are fre-
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quently met in school, errors in unit conversion probably rank highest among
all errors committed by scientists and engineers (and when a unit conversion
error makes an airplane’s fuel run out2, it is serious!). Having good soft-
ware tools to assist in unit conversion is therefore paramount, motivating the
treatment of this topic in Sections 1.1.8 and 1.2. Readers who are primarily
interested in the mathematical scaling technique may safely skip this material
and jump right to Section 2.1.

1.1.7 Example on challenges arising from unit systems

A slightly elaborated example on scaling in an actual science/engineering
project may stimulate the reader’s motivation. In its full extent, the study
of tsunamis spans geophysics, geology, history, fluid dynamics, statistics,
geodesy, engineering, and civil protection. This complexity reflects in a diver-
sity of practices concerning the use of units, scales, and concepts. If we narrow
the scope to modeling of tsunami propagation, the scaling aspect, at least,
may seem simple as we are mainly concerned with length and time. Still, even
here the non-uniformity concerning physical units is an encumbrance.

A minor issue is the occasional use of non-SI units such as inches, or in old
charts, even fathoms. More important is the non-uniformity in the magnitude
of the different variables, and the differences in the inherent horizontal and
vertical scales in particular. Typically, surface elevations are in meters or
smaller. For far-field deep water propagation, as well as small tsunamis (which
are still of scientific interest) surface elevations are often given in cm or even
mm. In the deep ocean, the characteristic depth is orders of magnitude larger
than this, typically 5000m. Propagation distances, on the other hand, are
hundreds or thousands of kilometers. Often locations and computational grids
are best described in geographical coordinates (longitude/latitude) which are
related to SI units by 1 latitude minute being roughly one nautical mile
(1852m), and 1 longitude minute being this quantity times the cosine of the
latitude. Wave periods of tsunamis mostly range from minutes to an hour,
hopefully sufficiently short to be well separated from the half-daily period of
the tides. Propagation times are typically hours or maybe the better part of
a day when the Pacific Ocean is traversed.

The scientists, engineers, and bureaucrats in the tsunami community tend
to be particular and non-conform concerning formats and units, as well as
the type of data required. To accommodate these demands, a tsunami mod-
eler must produce a diversity of data which are in units and formats which
cannot be used internally in her models. On the other hand, she must also be
prepared to accept the input data in diversified forms. Some data sets may
be large, implying that unnecessary duplication, with different units or scal-

2http://www.nytimes.com/1983/07/30/us/jet-s-fuel-ran-out-after-metric-conversion-errors.html
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ing, should be avoided. In addition, tsunami models are often bench-marked
through comparison with experimental data. The lab scale is generally cm
or m, at most, which implies that measured data are provided in different
units (than used in real earth-scale events), or even in volts, with conversion
information, as obtained from the measuring gauges.

All the unit particulars in various file formats is clearly a nuisance and give
rise to a number of misconceptions and errors that may cause loss of precious
time or efforts. To reduce such problems, developers of computational tools
should combine a reasonable flexibility concerning units in input and output
with a clear and consistent convention for scaling within the tools. In fact,
this also applies to academic tools for in-house use.

The discussion above points to some best practices that these notes pro-
motes. First, always compute with scaled differential equation models. This
booklet tells you how to do that. Second, users of software often want to
specify input data with dimension and get output data with dimension. The
software should then apply tools like PhysicalQuantity (Section 1.1.8) or
the more sophisticated Parampool package (Section 1.2) to allow input with
explicit dimensions and convert the dimensions to the right types if necessary.
It is trivial to apply these tools if the computational software is written in
Python, but it is even straightforward if the software is written in compiled
languages like Fortran, C, or C++. In the latter case one just makes an input
reading module in Python that grabs data from a user interface and feeds
them into the computational software, either through files or function calls
(the relevant functions to be called must be wrapped in Python with tools
like f2py3, Cython4, Weave5, SWIG6, Instant7, or similar, see [7, Appendix
C] for basic examples on f2py and Cython wrapping of C and Fortran code).

1.1.8 PhysicalQuantity: a tool for computing with units

These notes contain quite some computer code to illustrate how the theory
maps in detail to running software. Python is the programming language
used, primarily because it is an easy-to-read, powerful, full-fledged language
that allows MATLAB-like code as well as class-based code typically used in
Java, C#, and C++. The Python ecosystem for scientific computing has in
recent years grown fast in popularity and acts as a replacement for more spe-
cialized tools like MATLAB, R, and IDL. The coding examples in this booklet
requires only familiarity with basic procedural programming in Python.

3http://docs.scipy.org/doc/numpy-dev/f2py/
4http://cython.org/
5http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
6http://www.swig.org/
7https://bitbucket.org/fenics-project/instant
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Readers without knowledge of Python variables, functions, if tests, and
module import should consult, e.g., a brief tutorial on scientific Python8,
the Python Scientific Lecture Notes9, or a full textbook [4] in parallel with
reading about Python code in the present notes.

These notes apply Python 2.7

Python exists in two incompatible versions, numbered 2 and 3. The
differences can be made small, and there are tools to write code that
runs under both versions.

As Python version 2 is still dominating in scientific computing, we
stick to this version, but write code in version 2.7 that is as close as
possible to version 3.4 and later. In most of our programs, only the
print statement differs between version 2 and 3.

Computations with units in Python are well supported by the very use-
ful tool PhysicalQuantity from the ScientificPython package10 by Kon-
rad Hinsen. Unfortunately, ScientificPython does not, at the time of this
writing, work with NumPy version 1.9 or later, so we have isolated the
PhysicalQuantity object in a module PhysicalQuantities11 and made
it publicly available on GitHub. There is also an alternative package Unum12

for computing with numbers with units, but we shall stick to the former
module here.

Let us demonstrate the usage of the PhysicalQuantity object by com-
puting s = vt, where v is a velocity given in the unit yards per minute and t
is time measured in hours. First we need to know what the units are called
in PhysicalQuantities. To this end, run pydoc PhysicalQuantities, or

Terminal

Terminal> pydoc Scientific.Physics.PhysicalQuantities

if you have the entire ScientificPython package installed. The resulting docu-
mentation shows the names of the units. In particular, yards are specified by
yd, minutes by min, and hours by h. We can now compute s = vt as follows:

8http://hplgit.github.io/bumpy/doc/web/index.html
9http://scipy-lectures.github.com/

10https://bitbucket.org/khinsen/scientificpython
11https://github.com/hplgit/physical-quantities
12https://bitbucket.org/kiv/unum/

>>> # With ScientificPython:
>>> from Scientific.Physics.PhysicalQuantities import \
... PhysicalQuantity as PQ
>>> # With PhysicalQuantities as separate/stand-alone module:
>>> from PhysicalQuantities import PhysicalQuantity as PQ
>>>
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The odd unit h*yd/min is better converted to a standard SI unit such as
meter:

Note that s is a PhysicalQuantity object with a value and a unit. For
mathematical computations we need to extract the value as a float object.
We can also extract the unit as a string:

Here is an example on how to convert the odd velocity unit yards per
minute to something more standard:

As another example on unit conversion, say you look up the specific heat
capacity of water to be 1 calg−1K−1. What is the corresponding value in the
standard unit Jg−1K−1 where joule replaces calorie?

1.2 Parampool: user interfaces with automatic
unit conversion

The Parampool13 package allows creation of user interfaces with support
for units and unit conversion. Values of parameters can be set as a number
with a unit. The parameters can be registered beforehand with a preferred

13https://github.com/hplgit/parampool

>>> v = PQ(’120 yd/min’) # velocity
>>> t = PQ(’1 h’) # time
>>> s = v*t # distance
>>> print s # s is string
120.0 h*yd/min

>>> s.convertToUnit(’m’)
>>> print s
6583.68 m

>>> print s.getValue() # float
6583.68
>>> print s.getUnitName() # string
m

>>> v.convertToUnit(’km/h’)
>>> print v
6.58368 km/h
>>> v.convertToUnit(’m/s’)
>>> print v
1.8288 m/s

>>> c = PQ(’1 cal/(g*K)’)
>>> c.convertToUnit(’J/(g*K)’)
>>> print c
4.184 J/K/g
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unit, and whatever the user prescribes, the value and unit are converted so
the unit becomes the registered unit. Parampool supports various type of
user interfaces: command-line arguments (option-value pairs), text files, and
interactive web pages. All of these are described next.

Example application. As case, we want to make software for computing
with the simple formula s = v0t+ 1

2at2. We want v0 to be a velocity with unit
m/s, a to be acceleration with unit m/s2, t to be time measured in s, and
consequently s will be a distance measured in m.

1.2.1 Pool of parameters

First, Parampool requires us to define a pool of all input parameters, which
is here simply represented by list of dictionaries, where each dictionary holds
information about one parameter. It is possible to organize input parameters
in a tree structure with subpools that themselves may have subpools, but
for our simple application we just need a flat structure with three input
parameters: v0, a, and t. These parameters are put in a subpool called “Main”.
The pool is created by the code

For each parameter we can define a logical name, such as initial velocity,
a default value, and a unit. Additional properties are also allowed, see the
Parampool documentation14.

Tip: specify default values of numbers as float objects

Note that we do not just write 1, but 1.0 as default. Had 1 been used,
Parampool would have interpreted our parameter as an integer and
would therefore convert input like 2.5 m/s to 2 m/s. To ensure that a
real-valued parameter becomes a float object inside the pool, we must
specify the default value as a real number: 1. or 1.0. (The type of

14http://hplgit.github.io/parampool/doc/web/index.html

def define_input():
pool = [

’Main’, [
dict(name=’initial velocity’, default=1.0, unit=’m/s’),
dict(name=’acceleration’, default=1.0, unit=’m/s**2’),
dict(name=’time’, default=10.0, unit=’s’)
]

]

from parampool.pool.UI import listtree2Pool
pool = listtree2Pool(pool) # convert list to Pool object
return pool
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an input parameter can alternatively be set explicitly by the str2type
property, e.g., str2type=float.)

1.2.2 Fetching pool data for computing

We can make a little function for fetching values from the pool and computing
s:

The pool.get_value function returns the numerical value of the named pa-
rameter, after the unit has been converted from what the user has specified
to what was registered in the pool. For example, if the user provides the
command-line argument –time ’2 h’, Parampool will convert this quantity
to seconds and pool.get_value(’time’) will return 7200.

1.2.3 Reading command-line options

To run the computations, we define the pool, load values from the command
line, and call distance:

Parameter names with whitespace must use an underscore for whitespace
in the command-line option, such as in --Initial_velocity. We can now
run

Terminal

Terminal> python distance.py --initial_velocity ’10 km/h’ \
--acceleration 0 --time ’1 h

s=10000

Notice from the answer (s) that 10 km/h gets converted to m/s and 1 h to s.
It is also possible to fetch parameter values as PhysicalQuantity objects

from the pool by calling

def distance(pool):
v_0 = pool.get_value(’initial velocity’)
a = pool.get_value(’acceleration’)
t = pool.get_value(’time’)
s = v_0*t + 0.5*a*t**2
return s

pool = define_input()
from parampool.menu.UI import set_values_from_command_line
pool = set_values_from_command_line(pool)

s = distance(pool)
print ’s=%g’ % s
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The following variant of the distance function computes with values and
units:

We can then do

and get output with the right unit as well.

1.2.4 Setting default values in a file

In large applications with lots of input parameters one will often like to define
a (huge) set of default values specific for a case and then override a few of
them on the command-line. Such sets of default values can be set in a file
using syntax like

The unit can be given after the ! symbol (and before the comment symbol
#).

To read such files we have to add the lines

before the call to set_defaults_from_command_line.
If the above commands are stored in a file distance.dat, we give this file

information to the program through the option –poolfile distance.dat.
Running just

Terminal

Terminal> python distance.py --poolfile distance.dat
s=15.25 m

v_0 = pool.get_value_unit(’Initial velocity’)

def distance_unit(pool):
# Compute with units
from parampool.PhysicalQuantities import PhysicalQuantity as PQ
v_0 = pool.get_value_unit(’initial velocity’)
a = pool.get_value_unit(’acceleration’)
t = pool.get_value_unit(’time’)
s = v_0*t + 0.5*a*t**2
return s.getValue(), s.getUnitName()

s, s_unit = distance_unit(pool)
print ’s=%g’ % s, s_unit

subpool Main
initial velocity = 100 ! yd/min
acceleration = 0 ! m/s**2 # drop acceleration
end

from parampool.pool.UI import set_defaults_from_file
pool = set_defaults_from_file(pool)
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first loads the velocity 100 yd/min converted to 1.524 m/s and zero accel-
eration into the pool system and, and then we call distance_unit, which
loads these values from the pool along with the default value for time, set as
10 s. The calculation is then s = 1.524 · 10 + 0 = 15.24 with unit m. We can
override the time and/or the other two parameters on the command line:

Terminal

Terminal> python distance.py --poolfile distance.dat --time ’2 h’
s=10972.8 m

The resulting calculations are s = 1.524 ·7200+0 = 10972.8. You are encour-
aged to play around with the distance.py program.

1.2.5 Specifying multiple values of input parameters

Parampool has an interesting feature: multiple values can be assigned to an
input parameter, thereby making it easy for an application to run through all
combinations of all parameters. We can demonstrate this feature by making
a table of v0, a, t, and s values. In the compute function, we need to call
pool.get_values instead of pool.get_value to get a list of all the values
that were specified for the parameter in question. By nesting loops over all
parameters, we visit all combinations of all parameters as specified by the
user:

In case just a single value was specified for a parameter, pool.get_values
returns this value only and there will be only one pass in the associated loop.

After loading command-line arguments into our pool object, we can call
distance_table instead of distance or distance_unit and write out a
nicely formatted table of results:

Here is a sample run,

def distance_table(pool):
"""Grab multiple values of parameters from the pool."""
table = []
for v_0 in pool.get_values(’initial velocity’):

for a in pool.get_values(’acceleration’):
for t in pool.get_values(’time’):

s = v_0*t + 0.5*a*t**2
table.append((v_0, a, t, s))

return table

table = distance_table(pool)
print ’|-----------------------------------------------------|’
print ’| v_0 | a | t | s |’
print ’|-----------------------------------------------------|’
for v_0, a, t, s in table:

print ’|%11.3f | %10.3f | %10.3f | %12.3f |’ % (v_0, a, t, s)
print ’|-----------------------------------------------------|’
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Terminal

Terminal> python distance.py --time ’1 h & 2 h & 3 h’ \
--acceleration ’0 m/s**2 & 1 m/s**2 & 1 yd/s**2’ \
--initial_velocity ’1 & 5’

|-----------------------------------------------------|
| v_0 | a | t | s |
|-----------------------------------------------------|
| 1.000 | 0.000 | 3600.000 | 3600.000 |
| 1.000 | 0.000 | 7200.000 | 7200.000 |
| 1.000 | 0.000 | 10800.000 | 10800.000 |
| 1.000 | 1.000 | 3600.000 | 6483600.000 |
| 1.000 | 1.000 | 7200.000 | 25927200.000 |
| 1.000 | 1.000 | 10800.000 | 58330800.000 |
| 1.000 | 0.914 | 3600.000 | 5928912.000 |
| 1.000 | 0.914 | 7200.000 | 23708448.000 |
| 1.000 | 0.914 | 10800.000 | 53338608.000 |
| 5.000 | 0.000 | 3600.000 | 18000.000 |
| 5.000 | 0.000 | 7200.000 | 36000.000 |
| 5.000 | 0.000 | 10800.000 | 54000.000 |
| 5.000 | 1.000 | 3600.000 | 6498000.000 |
| 5.000 | 1.000 | 7200.000 | 25956000.000 |
| 5.000 | 1.000 | 10800.000 | 58374000.000 |
| 5.000 | 0.914 | 3600.000 | 5943312.000 |
| 5.000 | 0.914 | 7200.000 | 23737248.000 |
| 5.000 | 0.914 | 10800.000 | 53381808.000 |
|-----------------------------------------------------|

Notice that some of the multiple values have dimensions different from the
registered dimension for that parameter, and the table shows that conversion
to the right dimension has taken place.

1.2.6 Generating a graphical user interface

For the fun of it, we can easily generate a graphical user interface via Param-
pool. We wrap the distance_unit function in a function that returns the
result in some nice-looking HTML code:

In addition, we must make a file generate_distance_GUI.py with the simple
content

def distance_unit2(pool):
# Wrap result from distance_unit in HTML
s, s_unit = distance_unit(pool)
return ’<b>Distance:</b> %.2f %s’ % (s, s_unit)

from parampool.generator.flask import generate
from distance import distance_unit2, define_input

generate(distance_unit2, pool_function=define_input, MathJax=True)
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Running generate_distance_GUI.py creates a Flask-based web interface15

to our distance_unit function, see Figure 1.1. The text fields in this GUI
allow specification of parameters with numbers and units, e.g., acceleration
with unit yards per minute squared, as shown in the figure. Hovering the
mouse slightly to the left of the text field causes a little black window to pop
up with the registered unit of that parameter.

Fig. 1.1 Web GUI where parameters can be specified with units.

With examples shown above, the reader should be able to make use of
the PhysicalQuantity object and the Parampool package in programs and
thereby work safely with units. For the coming text, where we discuss the
craft of scaling in detail, we shall just work in standard SI units and avoid unit
conversion so there will be no more use of PhysicalQuantity and Parampool.

15You need to have Flask and additional packages installed. This is easy to do with
a few pip install commands, see [5] or [6].
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Chapter 2
Ordinary differential equation models

This chapter introduces the basic techniques of scaling and the ways to reason
about scales. The first class of examples targets exponential decay models,
starting with the simple ordinary differential equation (ODE) for exponential
decay processes: u′ = −au, with constant a > 0. Then we progress to vari-
ous generalizations of this ODE, including nonlinear versions and systems of
ODEs. The next class of examples concerns second-order ODEs for oscilla-
tory systems, where the simplest ODE reads mu′′ + ku = 0, with m and k
as positive constants. Various extensions with damping and force terms are
discussed in detail.

2.1 Exponential decay problems

2.1.1 Fundamental ideas of scaling

Scaling is an extremely useful technique in mathematical modeling and nu-
merical simulation. The purpose of the technique is three-fold:

1. Make independent and dependent variables dimensionless.
2. Make the size of independent and dependent variables about unity.
3. Reduce the number of independent physical parameters in the model.

The first two items mean that for any variable, denote it by q, we introduce
a corresponding dimensionless variable

q̄ = q − q0
qc

,
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where q0 is a reference value of q (q0 = 0 is a common choice) and qc is a
characteristic size of |q|, often referred to as “a scale”. Since the numerator and
denominator have the same dimension, q̄ becomes a dimensionless number.

If qc is the maximum value of |q −q0|, we see that 0 < |q̄| ≤ 1. How to find
qc is sometimes the big challenge of scaling. Examples will illustrate various
approaches to meet this challenge.

The many coming examples on scaling differential equations contain the
following pedagogical ingredients to meet the desired learning outcomes.

• Teach the technical steps of making a mathematical model, based on dif-
ferential equations, dimensionless.

• Describe various techniques for reasoning about the scales, i.e., finding the
characteristic sizes of quantities.

• Teach how to identify and interpret dimensionless numbers arising from
the scaling process.

• Provide a lot of different examples on making models dimensionless with
physically correct scales.

• Show how symbolic software (SymPy) can be used to derive exact solutions
of differential equations.

• Explain how to run a dimensionless model with software developed for the
problem with dimensions.

2.1.2 The basic model problem

Processes undergoing exponential reduction can be modeled by the ODE
problem

u′(t) = −au(t), u(0) = I, (2.1)

where a,I > 0 are prescribed parameters, and u(t) is the unknown function.
For the particular model with a constant a, we can easily derive the exact
solution, u(t) = Ie−at, which is helpful to have in mind during the scaling
process.

Example: Population dynamics. The evolution of a population of hu-
mans, animals, cells, etc., under unlimited access to resources, can be mod-
eled by (2.1). Then u is the number of individuals in the population, strictly
speaking an integer, but well modeled by a real number in large populations.
The parameter a is the increase in the number of individuals per time and
per individual.

Example: Decay of pressure with altitude. The simple model (2.1) also
governs the pressure in the atmosphere (under many assumptions, such air is
an ideal gas in equilibrium). In this case u is the pressure, measured in Nm−2;



2.1 Exponential decay problems 19

t is the height in meters; and a = M/(R∗T ), where M is the molar mass of the
Earth’s air (0.029 kg/mol), R∗ is the universal gas constant (8.314 Nm

mol K),
and T is the temperature in Kelvin (K). The temperature depends on the
height so we have a = a(t).

2.1.3 The technical steps of the scaling procedure

Step 1: Identify independent and dependent variables. There is one
independent variable, t, and one dependent variable, u.

Step 2: Make independent and dependent variables dimensionless.
We introduce a new dimensionless t, called t̄, defined by

t̄ = t

tc
, (2.2)

where tc is a characteristic value of t. Similarly, we introduce a dimensionless
u, named ū, according to

ū = u

uc
, (2.3)

where uc is a constant characteristic size of u. When u has a specific inter-
pretation, say when (2.1) models pressure in an atmospheric layer, uc would
be referred to as characteristic pressure. For a decaying population, uc may
be a characteristic number of members in the population, e.g., the initial
population I.

Step 3: Derive the model involving only dimensionless variables.
The next task is to insert the new dimensionless variables in the governing
mathematical model. That is, we replace t by tct̄ and u by ucū in (2.1). The
derivative with respect to t̄ is derived through the chain rule as

du

dt
= d(ucū)

dt̄

dt̄

dt
= uc

dū

dt̄

1
tc

= uc

tc

dū

dt̄
.

The model (2.1) now becomes

uc

tc

dū

dt̄
= −aucū, ucū(0) = I . (2.4)

Step 4: Make each term dimensionless. Equation (2.4) still has terms
with dimensions. To make each term dimensionless, we usually divide by the
coefficient in front of the term with the highest time derivative (but dividing
by any coefficient in any term will do). The result is

dū

dt̄
= −atcū, ū(0) = u−1

c I . (2.5)
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Step 5: Estimate the scales. A characteristic quantity like tc reflects the
time scale in the problem. Estimating such a time scale is certainly the most
challenging part of the scaling procedure. There are different ways to reason.
The first approach is to aim at a size of ū and its derivatives that is of order
unity. If uc is chosen such that |ū| is of size unity, we see from (2.5) that
dū/dt̄ is of the size of ū (i.e., unity) if we choose tc = 1/a.

Alternatively, we may look at a special case of the model where we have
analytical insight that can guide the choice of scales. In the present problem
we are lucky to know the exact solution for any value of the input data as
long as a is a constant. For exponential decay, u(t) ∼ e−at, it is common to
define a characteristic time scale tc as the time it takes to reduce the initial
value of u by a factor of 1/e (also called the e-folding time):

e−atc = 1
e

e−a·0 ⇒ e−atc = e−1,

from which it follows that tc = 1/a. Note that using an exact solution of the
problem to determine scales is not a requirement, just a useful help in the
few cases where we actually have access to an exact solution.

In this example, two different, yet common ways of reasoning, lead to the
same value of tc. However, instead of using the e-folding time we could use
the half-time of the exponential decay as characteristic time, which is also a
very common measure of the time scale in such processes. The half time is
defined as the time it takes to halve u:

e−atc = 1
2e−a·0 ⇒ tc = a−1 ln2 .

There is a factor ln2 = 0.69 difference from the other tc value. As long as the
factor is not an order of magnitude or more different, we do not pay attention
factors like ln2 and skip them, simply to make formulas look nicer. Using
tc = a−1 ln2 as time scale leads to a scaled differential equation u′ = −(ln2)u,
which is fine, but an unusual form. People tend to prefer the simpler ODE
u′ = −u, which arises from tc = 1/a, and we shall therefore use this time scale.

Regarding uc, we may look at the initial condition and realize that the
choice uc = I makes ū(0) = 1. For t > 0, the differential equation expresses
explicitly that u decreases, so uc = I gives ū ∈ (0,1]. Scaling a variable q such
that |q̄| ∈ [0,1] is always the ultimate goal, and this goal is in fact obtained
here! Next best result is to ensure that the magnitude of |q| is not “big” or
“small”, in the sense that the size is neither as large as 10 or 100, nor as small
as 0.1 or 0.01. (In the present problem, where we are lucky to have an exact
solution u(t) = Ie−at, we may look at this to explicitly see that u ∈ (0, I] such
that uc = I gives ū ∈ (0,1]).

With tc = 1/a and uc = I, we have the final dimensionless model

dū

dt̄
= −ū, ū(0) = 1 . (2.6)
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This is a remarkable result in the sense that all physical parameters (a and I)
are removed from the model! Or more precisely, there are no physical input
parameters to assign before using the model. In particular, numerical inves-
tigations of the original model (2.1) would need experiments with different a
and I values, while numerical investigations of (2.6) can be limited to a single
run! As soon as we have computed the curve ū(t̄), we can find the solution
u(t) of (2.1) by

u(t) = ucū(t/tc) = Iū(at) . (2.7)

This particular transformation actually means stretching the t̄ and ū axes in
a plot of ū(t̄) by the factors a and I, respectively.

It is very common to drop the bars when the scaled problem has been
derived and work further with (2.6) simply written as

du

dt
= −u, u(0) = 1 .

Nevertheless, in this booklet we have decided to stick to bars for all dimen-
sionless quantities.

2.1.4 Making software for utilizing the scaled model

Software for solving (2.1) could take advantage of the fact that only one
simulation of (2.6) is necessary. As soon as we have ū(t̄) accessible, a simple
scaling (2.7) computes the real u(t) for any given input data a and I. Although
the numerical computation of u(t) from (2.1) is very fast in this simple model
problem, using (2.7) is very much faster. In general, a simple rescaling of a
scaled solution is extremely more computationally efficient than solving a
differential equation problem.

We can compute with the dimensionless model (2.6) in two ways, either
make a solver for (2.6), or reuse a solver for (2.1) with I = 1 and a = 1. We will
choose the latter approach since it has the advantage of giving us software
that works both with a dimensionless model and a model with dimensions
(and all the original physical parameters).
Software for the original unscaled problem. Assume that we have some
module decay.py that offers the following functions:

• solver(I, a, T, dt, theta=0.5) for returning the solution arrays u
and t, over a time interval [0,T ], for (2.1) solved by the so-called θ rule.
This rule includes the Forward Euler scheme (θ = 0), the Backward Euler
scheme (θ = 1), or the Crank-Nicolson (centered midpoint) scheme (θ = 1

2 ).
• read_command_line_argparse() for reading parameters in the problem

from the command line and returning them: I, a, T, theta (θ), and a list
of Δt values for time steps. (We shall only make use of the first Δt value.)
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The basic statements for solving (2.1) are then

The module decay.py is developed and explained in Section 5.1.7 in [3].
To solve the dimensionless problem, just fix I = 1 and a = 1, and choose

T̄ and Δt̄:

The first two variables returned from read_command_line_argparse are I
and a, which are ignored here. To indicate that these variables are not to be
used, we use a “dummy name”, often taken to be the underscore symbol in
Python. The user can set –I and –a on the command line, since the decay
module allows this, but we hope the code above has a form that reminds the
user that these options are not to be used. Also note that T and dt_values[0]
set on the command line are the desired parameters for solving the scaled
problem.

Software for the scaled problem. Turning now to the scaled problem,
the solver function (originally designed for the unscaled problem) will be
reused, but it will only be run if it is strictly necessary. That is, when the
user requests a solution, our code should first check whether that solution can
be provided by simply scaling a solution already computed and available in a
file. If not, we will compute an appropriate scaled solution, find the requested
unscaled solution for the user, and also save the new scaled solution to file
for possible later use.

A very plain solution to the problem is found in the file decay_scaled_
v1.py. The np.savetxt function saves a two-dimensional array (“table”) to
a text file, and the np.loadtxt function can load the data back into the
program. A better solution to this problem is obtained by using the joblib
package as described next.

Implementation with joblib. The Python package joblib has function-
ality that is very convenient for implementing the solver_scaled function.
The first time a function is called with a set of arguments, the statements in
the function are executed and the return value is saved to file. If the function
is called again with the same set of arguments, the statements in the func-
tion are not executed, but the return value is read from file (of course, many
files may be stored, one for each combination of parameter values). In com-
puter science, one would say that joblib in this way provides memorization
functionality for Python functions. This functionality is particularly aimed at

from decay import solver, read_command_line_argparse
I, a, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I, a, T, dt_values[0], theta)

from matplotlib.pyplot import plot, show
plot(t, u)
show()

_, _, T, theta, dt_values = read_command_line_argparse()
u, t = solver(I=1, a=1, T=T, dt=dt_values[0], theta=theta)
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large-scale computations with arrays that one would hesitate to recompute.
We illustrate the technique here in a very simple mathematical context.

First we make a solver_scaled function for the scaled model that just
calls up a solver_unscaled (with I = a = 1) for the problem with dimensions:

Then we create some “computer memory on disk”, i.e., some disk space to
store the result of a call to the solver_scaled function. Thereafter, we rede-
fine the name solver_scaled to a new function, created by joblib, which
calls our original solver_scaled function if necessary and otherwise loads
data from file:

The solutions are actually stored in files in the cache directory temp.
A typical use case is to read values from the command line, solve the scaled

problem (if necessary), unscale the solution, and visualize the solution with
dimension:

from decay import solver as solver_unscaled
import numpy as np
import matplotlib.pyplot as plt

def solver_scaled(T, dt, theta):
"""
Solve u’=-u, u(0)=1 for (0,T] with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(I=1, a=1, T=T, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def unscale(u_scaled, t_scaled, I, a):
return I*u_scaled, a*t_scaled

from decay import read_command_line_argparse

def main():
# Read unscaled parameters, solve and plot
I, a, T, theta, dt_values = read_command_line_argparse()
dt = dt_values[0] # use only the first dt value
T_bar = a*T
dt_bar = a*dt
u_scaled, t_scaled = solver_scaled(T_bar, dt_bar, theta)
u, t = unscale(u_scaled, t_scaled, I, a)

plt.figure()
plt.plot(t_scaled, u_scaled)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.title(’Universial solution of scaled problem’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

plt.figure()
plt.plot(t, u)
plt.xlabel(’t’); plt.ylabel(’u’)
plt.title(’I=%g, a=%g, theta=%g’ % (I, a, theta))
plt.savefig(’tmp2.png’); plt.savefig(’tmp2.pdf’)
plt.show()
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The complete code resides in the file decay_scaled.py. Note from the code
above that read_command_line_argparse is supposed to read parameters
with dimensions (but technically, we solve the scaled problem, if strictly nec-
essary, and unscale the solution). Let us run

Terminal

Terminal> python decay_scaled.py --I 8 --a 0.1 --dt 0.01 --T 50

A plot of the scaled and unscaled solution appears in Figure 2.1.

Fig. 2.1 Scaled (left) and unscaled (right) exponential decay.

Note that we write a message Computing the numerical solution in-
side the solver_scaled function. We can then easily detect when the solu-
tion is actually computed from scratch and when it is simply read from file
(followed by the unscaling procedure). Here is a demo:

Terminal

Terminal> # Very first run
Terminal> python decay_scaled.py --T 7 --a 1 --I 0.5 --dt 0.2
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.2, 0.5)
Computing the numerical solution

Terminal> # No change of T, dt, theta - can reuse solution in file
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.5 --dt 0.2

Terminal> # Change of dt, must recompute
Terminal> python decay_scaled.py --T 7 --a 4 --I 2.0 --dt 0.5
[Memory] Calling __main__--home-hpl...
solver_scaled-alias(7.0, 0.5, 0.5)
Computing the numerical solution

Terminal> # Change of dt again, but dt=0.2 is already in a file
Terminal> python decay_scaled.py --T 7 --a 0.5 --I 1 --dt 0.2

We realize that joblib has access to all previous runs and does not re-
compute unless it is strictly required. Our previous implementation without
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joblib (in decay_scaled_v1.py) used only one file (for one numerical case)
and will therefore perform many more calls to solver_unscaled.

On the implementation of a simple memoize function

A memoized function recalls previous results when the same set of argu-
ments is encountered. That is, the function caches its results. A simple
implementation stores the arguments in a function call and the returned
results in a dictionary, and if the arguments are seen again, one looks
up in the dictionary and returns previously computed results:

The memoize functionality in joblib.Memory is more sophisticated and
can work very efficiently with large array data structures as arguments.
Note that the simple version above can only be used when all arguments
to the function f are immutable (since the key in a dictionary has to
be immutable).

2.1.5 Scaling a generalized problem

Now we consider an extension of the exponential decay ODE to the form

u′(t) = −au(t)+ b, u(0) = I . (2.8)

One particular model, with constant a and b, is a spherical small-sized or-
ganism falling in air,

u′ = −3πdμ

�bV
u+g

(
�

�b
−1

)
, (2.9)

where d, μ, �b, �, V , and g are physical parameters. The function u(t) rep-
resents the vertical velocity, being positive upwards. We shall use this model
in the following.

class Memoize:
def __init__(self, f):

self.f = f
self.memo = {} # map arguments to results

def __call__(self, *args):
if not args in self.memo:

self.memo[args] = self.f(*args)
return self.memo[args]

# Wrap my_compute_function(arg1, arg2, ...)
my_compute_function = Memoize(my_compute_function)
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Exact solution. It can be handy to have the exact solution for reference,
in case of constant a and b:

ue(t) = e−at

a

(
b(eat −1)+aI

)
.

Solving differential equations in SymPy

It can be very useful to use a symbolic computation tool such as SymPy
to aid us in solving differential equations. Let us therefore demonstrate
how SymPy can be used to find this solution. First we define the pa-
rameters in the problem as symbols and u(t) as a function:

The next task is to define the differential equation, either as a symbolic
expression that is to equal zero, or as an equation Eq(lhs, rhs) with
lhs and rhs as expressions for the left- and right-hand side):

The differential equation can be solved by the dsolve function, yielding
an equation of the form u(t) == expression. We want to grab the
expression on the right-hand side as our solution:

The solution contains the unknown integration constant C1, which must
be determined by the initial condition. We form the equation arising
from the initial condition u(0) = I:

The one solution that was found (stored in a list!) must then be sub-
stituted back in the expression u to yield the final solution:

>>> from sympy import *
>>> t, a, b, I = symbols(’t a b I’, real=True, positive=True)
>>> u = symbols(’u’, cls=Function)

>>> # Define differential equation
>>> eq = diff(u(t), t) + a*u(t) - b
>>> # or
>>> eq = Eq(diff(u(t), t), -a*u(t) + b)

>>> sol = dsolve(eq, u(t))
>>> print sol
u(t) == (b + exp(a*(C1 - t)))/a
>>> u = sol.rhs # grab solution
>>> print u
(b + exp(a*(C1 - t)))/a

>>> C1 = symbols(’C1’)
>>> eq = Eq(u.subs(t, 0), I) # substitute t by 0 in u
>>> sol = solve(eq, C1)
>>> print sol
[log(I*a - b)/a]
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As in mathematics with pen and paper, we strive to simplify expressions
also in symbolic computing software. This frequently requires some trial
and error process with SymPy’s simplification functions. A very stan-
dard first try is to expand everything and run simplification algorithms:

Doing latex(u) automatically converts the expression to LATEX syntax
for inclusion in reports.

The reader may wonder why we bother with scaling of differential equa-
tions if SymPy can solved the problem in a nice, closed formula. This is true in
the present introductory problem, but in a more general problem setting, we
have some differential equation where SymPy perhaps can help with finding
an exact solution only in a special case. We can use this special-case solution
to control our reasoning about scales in the more general setting.

Theory. The challenges in our scaling is to find the right uc and tc scales.
From (2.8) we see that if u′ → 0 as t → ∞, u approaches the constant value
b/a. It can be convenient to let the scaled ū → 1 as we approach the dū/dt̄ = 0
state. This idea points to choosing

uc = b

a
= g

(
�

�b
−1

)(
3πdμ

�bV

)−1
. (2.10)

On the sign of the scaled velocity

A little note on the sign of uc is necessary here. With �b < �, the buoy-
ancy force upwards wins over the gravity force downwards, and the body
will move upwards. In this case, the terminal velocity uc > 0. When
�b > �, we get a motion downwards, and uc < 0. The corresponding u
is then also negative, but the scaled velocity u/uc, becomes positive.

Inserting u = ucū = bū/a and t = tct̄ in (2.8) leads to

dū

dt̄
= −tcaū+ tc

uc
b, ū(0) = I

a

b
.

>>> u = u.subs(C1, sol[0])
>>> print u
(b + exp(a*(-t + log(I*a - b)/a)))/a

>>> u = simplify(expand(u))
>>> print u
(I*a + b*exp(a*t) - b)*exp(-a*t)/a
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We want the scales such that dū/dt̄ and ū are about unity. To balance the
size of ū and dū/dt̄ we must therefore choose tc = 1/a, resulting in the scaled
ODE problem

dū

dt̄
= −ū+1, ū(0) = β, (2.11)

where β is a dimensionless number,

β = I

uc
= I

a

b
, (2.12)

reflecting the ratio of the initial velocity and the terminal (t → ∞) velocity
b/a. Scaled equations normally end up with one or more dimensionless param-
eters, such as β here, containing ratios of physical effects in the model. Many
more examples on dimensionless parameters will appear in later sections.

The analytical solution of the scaled model (2.11) reads

ūe(t) = e−t
(
et −1+β

)
= 1+(β −1)e−t . (2.13)

The result (2.11) with the solution (2.13) is actually astonishing if a and
b are as in (2.9): the six parameters d, μ, �b, �, V , and g are conjured to one:

β = I
3πdμ

�bV

1
g

(
�

�b
−1

)−1
,

which is an enormous simplification of the problem if our aim is to investigate
how u varies with the physical input parameters in the model. In particular,
if the motion starts from rest, β = 0, and there are no physical parameters
in the scaled model! We can then perform a single simulation and recover all
physical cases by the unscaling procedure. More precisely, having computed
ū(t̄) from (2.11), we can use

u(t) = b

a
ū(at), (2.14)

to scale back to the original problem again. We observe that (2.11) can utilize
a solver for (2.8) by setting a = 1, b = 1, and I = β. Given some implementa-
tion of a solver for (2.8), say solver(I, a, b, T, dt, theta), the scaled
model is run by solver(beta, 1, 1, T, dt, theta).

Software. We may develop a solver for the scaled problem that uses joblib
to cache solutions with the same β, Δt, and T . For now we fix θ = 0.5.
The module decay_vc.py (see Section 3.1.3 in [3] for details) has a function
solver(I, a, b, T, dt, theta) for solving u′(t) = −a(t)u(t)+b(t) for t ∈
(0,T ], u(0) = I, with time step dt. We reuse this function and call it with
a = b = 1 and I = β to solve the scaled problem:



2.1 Exponential decay problems 29

If we want to plot the physical solution, we need an unscale function,

Looking at droplets of water in air, we can fix some of the parameters
and let the size parameter d be the one for experimentation. The following
function sets physical parameters, computes β, runs the solver for the scaled
problem (joblib detects if it is necessary), and finally plots the scaled curve
ū(t̄) and the unscaled curve u(t).

from decay_vc import solver as solver_unscaled

def solver_scaled(beta, T, dt, theta=0.5):
"""
Solve u’=-u+1, u(0)=beta for (0,T]
with step dt and theta method.
"""
print ’Computing the numerical solution’
return solver_unscaled(

I=beta, a=lambda t: 1, b=lambda t: 1,
T=T, dt=dt, theta=theta)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)

def unscale(u_scaled, t_scaled, d, mu, rho, rho_b, V):
a, b = ab(d, mu, rho, rho_b, V)
return (b/a)*u_scaled, a*t_scaled

def ab(d, mu, rho, rho_b, V):
g = 9.81
a = 3*pi*d*mu/(rho_b*V)
b = g*(rho/rho_b - 1)
return a, b

def main(dt=0.075, # Time step, scaled problem
T=7.5, # Final time, scaled problem
d=0.001, # Diameter (unscaled problem)
I=0, # Initial velocity (unscaled problem)
):

# Set parameters, solve and plot
rho = 0.00129E+3 # air
rho_b = 1E+3 # density of water
mu = 0.001 # viscosity of water
# Asumme we have list or similar for d
if not isinstance(d, (list,tuple,np.ndarray)):

d = [d]

legends1 = []
legends2 = []
plt.figure(1)
plt.figure(2)
betas = [] # beta values already computed (for plot)
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The most complicated part of the code is related to plotting, but this part

can be skipped when trying to understand how we work with a scaled model
to perform the computations. The complete program is found in the file
falling_body.py.

Since I = 0 implies β = 0, we can run different d values without any need
to recompute ū(t̄) as long as we assume the particle starts from rest.

From the scaling, we see that uc = b/a ∼ d−2 and also that tc = 1/a ∼ d−2,
so plotting of u(t) with dimensions for various d values will involve significant
variations in the time and velocity scales. Figure 2.2 has an example with
d = 1,2,3 mm, where we clearly see the different time and velocity scales in
the figure with unscaled variables. Note that the scaled velocity is positive
because of the sign of uc (see the box above).

Fig. 2.2 Velocity of falling body: scaled (left) and with dimensions (right).

for d_ in d:
V = 4*pi/3*(d_/2.)**3 # volume
a, b = ab(d_, mu, rho, rho_b, V)
beta = I*a/b
# Restrict to 3 digits in beta
beta = abs(round(beta, 3))

print ’beta=%.3f’ % beta
u_scaled, t_scaled = solver_scaled(beta, T, dt)

# Avoid plotting curves with the same beta value
if not beta in betas:

plt.figure(1)
plt.plot(t_scaled, u_scaled)
plt.hold(’on’)
legends1.append(’beta=%g’ % beta)

betas.append(beta)

plt.figure(2)
u, t = unscale(u_scaled, t_scaled, d_, mu, rho, rho_b, V)
plt.plot(t, u)
plt.hold(’on’)
legends2.append(’d=%g [mm]’ % (d_*1000))

plt.figure(1)
plt.xlabel(’scaled time’); plt.ylabel(’scaled velocity’)
plt.legend(legends1, loc=’lower right’)
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2.1.6 Variable coefficients

When a prescribed coefficient like a(t) in u′(t) = −a(t)u(t) varies with time
one usually also performs a scaling of this a,

ā(t̄) = a(t)−a0
ac

,

where the goal is to have the scaled ā of size unity: |ā| ≤ 1. This property
is obtained by choosing ac as the maximum value of |a(t)−a0| for t ∈ [0,T ],
which is usually a quantity that can be estimated since a(t) is known as a
function of t. The a0 parameter can be chosen as 0 here. (It could be tempting
to choose a0 = mint a(t) so that 0 ≤ ā ≤ 1, but then there is at least one point
where ā = 0 and the differential equation collapses to u′ = 0.)

As an example, imagine a decaying cell culture where we at time t1 change
the environment (typically the nutrition) such that the death rate increases
by a factor 5. Mathematically, a(t) = d for t < t1 and a(t) = 5d for t ≥ t1. The
model reads u′ = −a(t)u, u(0) = I.

The a(t) function is scaled by letting the characteristic size be ac = d and
a0 = 0:

ā(t̄) =
{

1, t̄ < t1/tc

5, t̄ ≥ t1/tc

The scaled equation becomes

uc

tc

dū

dt̄
= acā(t̄)ucū, ucū(0) = I .

The natural choice of uc is I. The characteristic time, previously taken as
tc = 1/a, can now be chosen as tc = t1 or tc = 1/d. With tc = 1/d we get

ū′(t̄) = −āū, ū(0) = 1, ā =
{

1, t̄ < γ
5, t̄ ≥ γ

(2.15)

where

γ = t1d

is a dimensionless number in the problem. With tc = t1, we get

ū′(t̄) = −γāū, ū(0) = 1, ā =
{

1, t̄ < 1
5, t̄ ≥ 1

The dimensionless parameter γ is now in the equation rather than in the
definition of ā. Both problems involve γ, which is the ratio between the time
when the environmental change happens and the typical time for the decay
(1/d).
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A computation with the scaled model (2.15) and the original model with
dimensions appears in Figure 2.3.

Fig. 2.3 Exponential decay with jump: scaled model (left) and unscaled model (right).

2.1.7 Scaling a cooling problem with constant
temperature in the surroundings

The heat exchange between a body at temperature T (t) and the surroundings
at constant temperature Ts can be modeled by Newton’s law of cooling:

T ′(t) = −k(T −Ts), T (0) = T0, (2.16)

where k is a prescribed heat transfer coefficient.

Exact solution. An analytical solution is always handy to have as a control
of the choice of scales. The solution of (2.16) is by standard methods for
ODEs found to be T (t) = Ts +(T0 −Ts)e−kt.

Scaling. Physically, we expect the temperature to start at T0 and then to
move toward the temperature of the surroundings (Ts). We therefore expect
that T lies between T0 and Ts. This is mathematically demonstrated by the
analytical solution as well. A proper scaling is therefore to scale and translate
T according to

T̄ = T −T0
Ts −T0

. (2.17)

Now, 0 ≤ T̄ ≤ 1.
Scaling time by t̄ = t/tc and inserting T = T0 + (Ts − T0)T̄ and t = tct̄ in

the problem (2.16) gives
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dT̄

dt̄
= −tck(T̄ −1), T̄ (0) = 0 .

A natural choice, as argued in other exponential decay problems, is to choose
tck = 1, which leaves us with the scaled problem

dT̄

dt̄
= −(T̄ −1), T̄ (0) = 0 . (2.18)

No physical parameter enters this problem! Our scaling implies that T̄ starts
at 0 and approaches 1 as t̄ → ∞, also in the case Ts < T0. The physical
temperature is always recovered as

T (t) = T0 +(Ts −T0)T̄ (kt̄) . (2.19)

Software. An implementation for (2.16) works for (2.18) by setting k = 1,
Ts = 1, and T0 = 0.

Alternative scaling. An alternative temperature scaling is to choose

T̄ = T −Ts

T0 −Ts
. (2.20)

Now T̄ = 1 initially and approaches zero as t → ∞. The resulting scaled ODE
problem then becomes

dT̄

dt̄
= −T̄ , T̄ (0) = 1, . (2.21)

with solution T̄ = e−t̄.

2.1.8 Scaling a cooling problem with time-dependent
surroundings

Let us apply the model (2.16) to the case when the surrounding temperature
varies in time. Say we have an oscillating temperature environment according
to

Ts(t) = Tm +asin(ωt), (2.22)

where Tm is the mean temperature in the surroundings, a is the amplitude
of the variations around Tm, and 2π/ω is the period of the temperature
oscillations.

Exact solution. Also in this relatively simple problem it is possible to solve
the differential equation problem analytically. Such a solution may be a good
help to see what the scales are, and especially to control other forms for
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reasoning about the scales. Using the method of integrating factors for the
original differential equation, we have

T (t) = T0e−kt +e−ktk

∫ t

0
ekτ Ts(τ)dτ .

With Ts(t) = Tm + asin(ωt) we can use SymPy to help us with integrations
(note that we use w for ω in the computer code):

Reordering the result, we get

T (t) = T0e−kt +Tm(1−e−kt)+(k2 +ω2)−1(akωe−kt +ak sin(ωt)−akw cos(ωt)) .

Scaling. The scaling (2.17) brings in a time-dependent characteristic tem-
perature scale Ts − T0. Let us start with a fixed scale, where we take the
characteristic temperature variation to be Tm −T0:

T̄ = T −T0
Tm −T0

.

We realize by physical reasoning that T sets out at T0, but with time, it
will oscillate around Tm. (This reasoning can be controlled by looking at the
exact solution we produced above.) The typical average temperature span is
therefore |Tm −T0|, unless a is much larger than |Tm −T0| or T0 is very close
to Tm.

We get from the differential equation, with tc = 1/k as in the former case,

k(Tm −T0)dT̄

dt̄
= −k((Tm −T0)T̄ +T0 −Tm −asin(ωt),

resulting in

dT̄

dt̄
= −T̄ +1+αsin(βt̄), T̄ (0) = 0, (2.23)

where we have two dimensionless numbers:

α = a

Tm −T0
, β = ω

k
.

>>> from sympy import *
>>> t, k, T_m, a, w = symbols(’t k T_m a w’, real=True, positive=True)
>>> T_s = T_m + a*sin(w*t)
>>> I = exp(k*t)*T_s
>>> I = integrate(I, (t, 0, t))
>>> Q = k*exp(-k*t)*I
>>> Q = simplify(expand(Q))
>>> print Q
(-T_m*k**2 - T_m*w**2 + a*k*w +
(T_m*k**2 + T_m*w**2 + a*k**2*sin(t*w) -
a*k*w*cos(t*w))*exp(k*t))*exp(-k*t)/((k**2 + w**2))
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The α quantity measures the ratio of temperatures: amplitude of oscillations
versus distance from initial temperature to the average temperature for large
times. The β number is the ratio of the two time scales: the frequency of the
oscillations in Ts and the inverse e-folding time of the heat transfer. For clear
interpretation of β we may introduce the period P = 2π/ω of the oscillations
in Ts and the e-folding time e = 1/k. Then β = 2πe/P and measures the
e-folding time versus the period.

Remark
The original problem features five physical parameters: k, T0, Tm, a,
and ω, but only two dimensionless numbers appear in the scaled model
(2.23). In fact, this is an example where application of the Pi theorem
(see Section 1.1.3) falls short. Since, only time and temperature are
involved as unit types, the theorem predicts that the five parameters
yields three dimensionless numbers, not two. Scaling of the differential
equations, on the other hand, shows us that the two parameters Tm and
T0 affect the nature of the problem only through their difference.

Software. Implementations of the unscaled problem (2.16) can be reused for
the scaled model by setting k = 1, T0 = 0, and Ts(t) = 1+αsin(βt̄) (Tm = 1,
a = α, ω = β). The file osc_cooling.py contains solvers for the problem with
dimensions and for the scaled problem. The figure below shows three cases
of β values: small, medium, and large.

For the small β value, the oscillations in the surrounding temperature are
slow enough compared to k for the heating and cooling process to follow the
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surrounding temperature, with a small time lag. For larger β, the heating
and cooling require more time, and the oscillations get smaller.

Discussion of the time scale. There are two time variations of importance
in the present problem: heat is transferred to the surroundings at a rate k,
and the surroundings have a temperature variation with a period that goes
like 1/ω. (We can, when we are so lucky that we have an analytical solution
at hand, inspect this solution to see that k impacts the problem through a
decay factor e−kt, and ω impacts the problem through oscillations sin(ωt).)
The k parameter related to temperature decay points to a time scale tc = 1/k,
while the temperature oscillations of the surroundings point to a time scale
tc = 1/ω. Which one should be chosen?

Bringing the temperature from T0 to the level of the surroundings, Tm,
goes like e−kt, so in this process tc = 1/k is the characteristic time. Thereafter,
the body’s temperature just responds to the oscillations and the sin(ωt) (and
cos(ωt)) term dominates. For these large times, tc = 1/ω is the appropriate
time scale. Choosing tc = 1/ω results in

dT̄

dt̄
= −β−1(T̄ − (1+αsin(t̄))), T̄ (0) = 0 . (2.24)

Let us illustrate another, less effective, scaling. The temperature scale
in (2.17) looks natural, so we apply this choice of scale. The characteristic
temperature T0 −Ts now involves a time-dependent term Ts(t). The mathe-
matical steps become a bit more technically involved:

T (t) = T0 +(Ts(t)−T0)T̄ ,

dT

dt
= dTs

dt
T̄ +(Ts −T0)dT̄

dt̄

dt̄

dt
.

With t̄ = t/tc = kt we get from the differential equation

dTs

dt
T̄ +(Ts −T0)dT̄

dt̄
k = −k(T̄ −1)(Ts −T0),

which after dividing by k(Ts −T0) results in

dT̄

dt̄
= −(T̄ −1)− dTs

dt

T̄

k(Ts −T0
,

or

dT̄

dt̄
= −(T̄ −1)− aω cos(ωt̄/k)

k(Tm +asin(ωt̄/k)−T0)
T̄ .

The last term is complicated and becomes more tractable if we factor out
dimensionless numbers. To this end, we scale Ts by (e.g.) Tm, which means
to factor out Tm in the denominator. We are then left with
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dT̄

dt̄
= −(T̄ −1)−αβ

cos(βt̄)
1+αsin(βt̄)−γ

T̄ , (2.25)

where α, β, and γ are dimensionless numbers characterizing the relative im-
portance of parameters in the problem:

α = a/Tm, β = ω/k, γ = T0/Tm . (2.26)

We notice that (2.25) is not a special case of the original problem (2.16).
Furthermore, the original five parameters k, Tm, a, ω, and T0 are reduced
to three dimensionless parameters. We conclude that this scaling is inferior,
because using the temperature scale T0 − Tm enables reuse of the software
for the unscaled problem and only two dimensionless parameters appear in
the scaled model.

Let us briefly mention another possible temperature scaling: T̄ = T/Tm,
motivated by the fact that as t → ∞, T will oscillate around Tm, so this T̄
will oscillate around unity. We get the dimensionless ODE

dT̄

dt̄
= −(T̄ − (1+ δ sin(βt̄))),

with a new dimensionless parameter δ = a/Tm. However, the initial condi-
tion becomes T̄ (0) = T0/Tm, and the ratio T0/Tm is a third dimensionless
parameter, so this scaling is also inferior to the one above with only two
parameters.

2.1.9 Scaling a nonlinear ODE

Exponential growth models, u′ = au, are not realistic in environments with
limited resources. However, by letting a depend on u, the effect of limited
resources can well be captured by such a simple differential equation model:

u′ = a(u)u, u(0) = I . (2.27)

If the maximum value of u is denoted by M , we have that a(M) = 0. A
simple choice fulfilling this requirement is a(u) = �(1−u/M). The parameter
� can be interpreted as the initial exponential growth rate if we assume that
I/M � 1, since at t = 0 the model then approximates u′ = �u.

The choice a(u) = �(1−u/M) is known as the logistic model for population
growth:

u′ = �u(1−u/M), u(0) = I . (2.28)

A more complicated choice of a may be a(u) = �(1−u/M)p for some exponent
p (this function also fulfills a(M) = 0 and a ≈ � for t = 0).
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Scaling. Let us scale (2.27) with a(u) = �(1 − u/M)p. The natural scale
for u is M (uc = M), since we know that 0 < u ≤ M , and this makes the
dimensionless ū = u/M ∈ (0,1]. The function a(u) is typically varying between
0 and �, so it can be scaled as

ā(ū) = a(u)
�

= (1− u

M
)p = (1− ū)p .

Time is scaled as t̄ = t/tc for some suitable characteristic time tc. Inserted in
(2.27), we get

uc

tc

dū

dt̄
= �āucū, ucū(0) = I,

resulting in

dū

dt̄
= tc�(1− ū)pū, ū(0) = I

M
.

A natural choice is tc = 1/� as in other exponential growth models since
it leads to the term on the right-hand side to be about unity, just as the
left-hand side. (If the scaling is correct, ū and its derivatives are of order
unity, so the coefficients must also be of order unity.) Introducing also the
dimensionless parameter

α = I

M
,

measuring the fraction of the initial population compared to the maximum
one, we get the dimensionless model

dū

dt̄
= (1− ū)pū, ū(0) = α. (2.29)

Here, we have two dimensionless parameters: α and p. A classical logistic
model with p = 1 has only one dimensionless variable.
Alternative scaling. We could try another scaling of u where we also trans-
late ū:

ū = u− I

M
.

This choice of ū results in

dū

dt̄
= (1−α − ū)pū, ū(0) = 0 . (2.30)

The essential difference between (2.29) and (2.30) is that ū ∈ [α,1] in the
former and ū ∈ [0,1−α] in the latter. Both models involve the dimensionless
numbers α and p. An advantage of (2.29) is that software for the unscaled
model can easily be used for the scaled model by choosing I = α, M = 1, and
� = 1.
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2.1.10 SIR ODE system for spreading of diseases

The field of epidemiology frequently applies ODE systems to describe the
spreading of diseases, such as smallpox, measles, plague, ordinary flu, swine
flu, and HIV. Different models include different effects, which are reflected in
dimensionless numbers. Most of the effects are modeled as exponential decay
or growth of the dependent variables.

The simplest model has three categories of people: susceptibles (S) who can
get the disease, infectious (I) who are infected and may infect susceptibles,
and recovered (R) who have recovered from the disease and gained immunity.
We introduce S(t), I(t), and R(t) as the number of people in the categories
S, I, and R, respectively. The model, naturally known as the SIR model1, can
be expressed as a system of three ODEs:

dS

dt
= −βSI, (2.31)

dI

dt
= βSI −νI, (2.32)

dR

dt
= νI, (2.33)

where β and ν are empirical constants. The average time for recovering from
the disease can be shown to be ν−1, but β is much harder to estimate, so
working with a scaled model where β is “scaled away” is advantageous.

Scaling. It is natural to scale S, I, and R by, e.g., S(0):

S̄ = S

S(0) , Ī = I

S(0) , R̄ = R

S(0) .

Introducing t̄ = t/tc, we arrive at the equations

dS̄

dt̄
= −tcS(0)βS̄Ī,

dĪ

dt̄
= tcS(0)βS̄Ī − tcνĪ,

dR̄

dt̄
= tcνĪ,

with initial conditions S̄(0) = 1, Ī(0) = I0/S(0) = α, and R̄(0) = R(0)/S(0).
Normally, R(0) = 0.

Taking tc = 1/ν, corresponding to a time unit equal to the time it takes
to recover from the disease, we end up with the scaled model

1https://en.wikipedia.org/wiki/Epidemic_model
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dS̄

dt̄
= −R0S̄Ī, (2.34)

dĪ

dt̄
= R0S̄Ī − Ī , (2.35)

dR̄

dt̄
= Ī , (2.36)

with S̄(0) = 1, Ī(0) = α, R̄(0) = 0, and R0 as the dimensionless number

R0 = S(0)β
ν

. (2.37)

We see from (2.35) that to make the disease spreading, dĪ/dt̄ > 0, and there-
fore R0S̄(0) − 1 > 0 or R0 > 1 since S̄(0) = 1. Therefore, R0 reflects the
disease’s ability to spread and is consequently an important dimensionless
quantity, known as the basic reproduction number2. This number reflects the
number of infected people caused by one infectious individual during the time
period of the disease.

Looking at (2.32), we see that to increase I initially, we must have dI/dt > 0
at t = 0, which implies βI(0)S(0)−νI(0) > 0, i.e., R0 > 1.

Software. Any implementation of the SIR model with dimensions can be
reused for the scaled model by setting β = R0, ν = 1, S(0) = 1 − α, and
I(0) = α. Below is a plot with two cases: R0 = 2 and R0 = 5, both with
α = 0.02.

Alternative scaling. Adding (2.31)-(2.33) shows that

dS

dt
+ dI

dt
+ dR

dt
= 0 ⇒ S + I +R = const = N,

2https://en.wikipedia.org/wiki/Basic_reproduction_number
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where N is the size of the population. We can therefore scale S, I, and R by
the total population N = S(0)+ I(0)+R(0):

S̄ = S

N
, Ī = I

N
, R̄ = R

N
.

With the same time scale, one gets the system (2.34)-(2.36), but with R0
replaced by the dimensionless number:

R̃0 = Nβ

ν
. (2.38)

The initial conditions become S̄(0) = 1−α, Ī(0) = α, and R̄(0) = 0.
For the disease to spread at t = 0, we must have R̃0S̄(0) > 1, but R̃0S̄(0) =

Nβ/ν ·S(0)/N = R0, so the criterion is still R0 > 1. Since R0 is a more famous
number than R̃0, we can write the ODEs with R0/S(0) = R0/(1−α) instead
of R̃0.

Choosing tc to make the SI terms balance the time derivatives, tc =
(Nβ)−1, moves R̃0 (or R0 if we scale S, I, and R by S(0)) to the I terms:

dS̄

dt̄
= −S̄Ī,

dĪ

dt̄
= S̄Ī − R̃−1

0 Ī ,

dR̄

dt̄
= R̃−1

0 I .

2.1.11 SIRV model with finite immunity

A common extension of the SIR model involves finite immunity: after some
period of time, recovered individuals lose their immunity and become suscep-
tibles again. This is modeled as a leakage −μR from the R to the S category,
where μ−1 is the average time it takes to lose immunity. Vaccination is an-
other extension: a fraction pS is removed from the S category by successful
vaccination and brought to a new category V (the vaccinated). The ODE
model reads
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dS

dt
= −βSI −pS +μR, (2.39)

dI

dt
= βSI −νI, (2.40)

dR

dt
= νI −μR, (2.41)

dV

dt
= pS . (2.42)

Using tc = 1/ν and scaling the unknowns by S(0), we arrive at the dimen-
sionless model

dS̄

dt̄
= −R0S̄Ī − δS̄ +γR̄, (2.43)

dĪ

dt̄
= R0S̄Ī − Ī , (2.44)

dR̄

dt̄
= Ī −γR̄, (2.45)

dV̄

dt̄
= δS̄, (2.46)

with two new dimensionless parameters:

γ = μ

ν
, δ = p

ν
.

The quantity p−1 can be interpreted as the average time it takes to vaccinate
a susceptible successfully. Writing γ = ν−1/μ−1 and δ = ν−1/p−1 gives the
interpretation that γ is the ratio of the average time to recover and the
average time to lose immunity, while δ is the ratio of the average time to
recover and the average time to successfully vaccinate a susceptible.

The plot in Figure 2.4 has γ = 0.05, i.e., loss of immunity takes 20 weeks
if it takes one week to recover from the disease. The left plot corresponds to
no vaccination, while the right has δ = 0.5 for a vaccination campaign that
lasts from day 7 to day 15. The value δ = 0.5 reflects that it takes two weeks
to successfully vaccinate a susceptible, but the effect of vaccination is still
dramatic.

2.1.12 Michaelis-Menten kinetics for biochemical
reactions

A classical reaction model in biochemistry describes how a substrate S is
turned into a product P with aid of an enzyme E. S and E react to form
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Fig. 2.4 Spreading of a disease with loss of immunity (left) and added vaccination
(right).

a complex ES in the first stage of the reaction. In the second stage, ES is
turned into E and P. Introducing the amount of S, E, ES, and P by [S], [E],
[ES], and [P ], the mathematical model can be written as

d[ES]
dt

= k+[E][S]−kv[ES]−k−[ES], (2.47)

d[P ]
dt

= kv[ES], (2.48)

d[S]
dt

= −k+[E][S]+k−[ES], (2.49)

d[E]
dt

= −k+[E][S]+k−[ES]+kv[ES] . (2.50)

The initial conditions are [ES](0) = [P ](0) = 0, and [S] = S0, [E] = E0. Three
rate constants are involved: k+, k−, and kv. The above mathematical model
is known as Michaelis-Menten kinetics3.

The amount of substance is measured in the unit mole4 (mol). From the
equations we can see that k+ is measured in s−1mol−1, while k− and kv are
measured in s−1. It is convenient to get rid of the mole unit for the amount
of a substance. When working with dimensionless quantities, only ratios of
the rate constants and not their specific values are needed.

Classical analysis. A common assumption is that the formation of [ES] is
very fast and that it quickly reaches an equilibrium state, [ES]′ = 0. Equation
(2.47) then reduces to the algebraic equation

k+[E][S]−kv[ES]−k−[ES] = 0,

which leads to

3https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
4https://en.wikipedia.org/wiki/Mole_(unit)
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[E][S]
[ES] = k− +kv

k+
= K, (2.51)

where K is the famous Michaelis constant - the equilibrium constant between
[E][S] and [ES].

Another important observation is that the ODE system implies two con-
servation equations, arising from simply adding the ODEs:

d[ES]
dt

+ d[E]
dt

= 0, (2.52)

d[ES]
dt

+ d[S]
dt

+ d[P ]
dt

= 0, (2.53)

from which it follows that

[ES]+ [E] = E0, (2.54)
[ES]+ [S]+ [P ] = S0 . (2.55)

We can use (2.54) and (2.51) to express [E] by [S]:

[E] = E0 − [ES] = E0 − [E][S]
K

⇒ [E] = KE0
K +[S] .

Now (2.49) can be developed to an equation involving [S] only:

d[S]
dt

= −k+[E][S]+k−[ES]

= (−k+ + k−
K

)[E][S]

= (−k+ + k−
K

)[S] KE0
K +[S]

= − k−E0
[S]+K

. (2.56)

We see that the parameter K is central.
From above expression for [E] and (2.54) it now follows

[E] = KE0
K +[S] , [ES] = E0[S]

K +[S] .

If K is comparable to S0 these indicate

[E] ∼ E0, [ES] ∼ E0S0
K

,
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as is used for scaling [E] and Qc, subsequently. Provided we exclude the case
[S] � K, we may infer that [E] will be of magnitude E0, while [ES] will be
of magnitude E0S0/K.

Dimensionless ODE system. Let us reason how to make the original ODE
system (2.47)-(2.50) dimensionless. Aiming at [S] and [E] of unit size, two
obvious dimensionless unknowns are

S̄ = [S]
S0

, Ē = [E]
E0

.

For the other two unknowns we just introduce scales to be determined later:

P̄ = [P ]
Pc

, Q̄ = [ES]
Qc

.

With t̄ = t/tc the equations become

dQ̄

dt̄
= tck+

E0S0
Qc

ĒS̄ − tc(kv +k−)Q̄,

dP̄

dt̄
= tckv

Qc

Pc
Q̄,

dS̄

dt̄
= −tck+E0ĒS̄ + tck−

Qc

S0
Q̄,

dĒ

dt̄
= −tck+S0ĒS̄ + tc(k− +kv)Qc

E0
Q̄ .

Determining scales. Choosing the scales is actually a quite complicated
matter that requires extensive analysis of the equations to determine the
characteristics of the solutions. Much literature is written about this, but
here we shall take a simplistic and pragmatic approach. Besides the Michaelis
constant K, there is another important parameter,

ε = E0
S0

,

because most applications will involve a small ε. We shall have K and ε in
mind while choosing scales such that these symbols appear naturally in the
scaled equations.

Looking at the equations, we see that the K parameter will appear if
tc ∼ 1/k+. However, 1/k+ does not have the dimension [T]−1 as required, so
we need to add a factor with dimension mol. A natural choice is t−1

c = k+S0
or t−1

c = k+E0. Since often S0 � E0, the former tc is a short time scale and
the latter is a long time scale. If the interest is in the long time scale, we set

tc = 1
k+E0

.
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The equations then take the form

dQ̄

dt̄
= S0

Qc
ĒS̄ −KE−1

0 Q̄,

dP̄

dt̄
= kv

k+E0

Qc

Pc
Q̄,

dS̄

dt̄
= −ĒS̄ + k−

k+E0

Qc

S0
Q̄,

dĒ

dt̄
= −ε−1ĒS̄ +K

Qc

E2
0

Q̄ .

The [ES] variable starts and ends at zero, and its maximum value can be
roughly estimated from the equation for [ES]′ by setting [ES]′ = 0, which
gives

[ES] = [E][S]
K

∼ E0S0
K

,

where we have replaced [E][S] by E0S0 as an identification of magnitude.
This magnitude of [ES] at its maximum can be used as the characteristic
size Qc:

Qc = E0S0
K

.

The equation for P̄ simplifies if we choose Pc = Qc. With these assumptions
one gets

dQ̄

dt̄
= KE−1

0 (ĒS̄ − Q̄),

dP̄

dt̄
= kv

k+E0
Q̄,

dS̄

dt̄
= −ĒS̄ + k−

k+E0

E0
K

Q̄,

dĒ

dt̄
= −ε−1ĒS̄ + ε−1Q̄ .

We can now identify the dimensionless numbers

α = K

E0
, β = kv

k+E0
, γ = k−

k+E0
,

where we see that α = β +γ, so γ can be eliminated. Moreover,
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α = k−
k+E0

+β,

implying that α > β.
We arrive at the final set of scaled differential equations:

dQ̄

dt̄
= α(ĒS̄ − Q̄), (2.57)

dP̄

dt̄
= βQ̄, (2.58)

dS̄

dt̄
= −ĒS̄ +(1−βα−1)Q̄, (2.59)

ε
dĒ

dt̄
= −ĒS̄ + Q̄ . (2.60)

The initial conditions are S̄ = Ē = 1 and Q̄ = P̄ = 0.
The five initial parameters (S0, E0, k+, k−, and kv) are reduced to three

dimensionless constants:

• α is the dimensionless Michaelis constant, reflecting the ratio of the pro-
duction of P and E (kv + k−) versus the production of the complex (k+),
made dimensionless by E0,

• ε is the initial fraction of enzyme relative to the substrate,
• β measures the relative importance of production of P (kv) versus produc-

tion of the complex (k+), made dimensionless by E0.

Observe that software developed for solving (2.47)-(2.50) cannot be reused for
solving (2.57)-(2.60) since the latter system has a slightly different structure.
Conservation equations. The counterpart to the conservation equations
(2.54)-(2.55) is obtained by adding (2.57) and α times (2.60), and adding
(2.57), (2.58), and α times (2.59):

ε−1α−1Q̄+ Ē = 1, (2.61)
αS̄ + Q̄+ P̄ = α. (2.62)

The scaled quantities, as well as the original concentrations, must be pos-
itive variables, and Ē ∈ [0,1], S̄ ∈ [0,1]. Such checks along with the conserved
quantities above should be performed at every time step in a simulation.
Analysis of the scaled system. In the scaled system, we may assume ε
small, which from (2.60) gives rise to the simplification εĒ′ = 0, and thereby
the relation Q̄ = ĒS̄. The conservation equation [ES]+[E] = E0 reads QcQ̄+
E0Ē = E0 such that Ē = 1 − QcQ̄/E0 = 1 − Q̄S0/K = 1 − ε−1α−1Q̄. The
relation Q̄ = ĒS̄ then becomes

www.dbooks.org

https://www.dbooks.org/


48 2 Ordinary differential equation models

Q̄ = (1− ε−1α−1Q̄)S̄,

which can be solved for Q̄:

Q̄ = S̄

1+ ε−1α−1S̄
.

The equation (2.59) for S̄ becomes

dS̄

dt̄
= −βα−1Q̄ = − βS̄

α + ε−1S̄
. (2.63)

This is a more precise analysis than the one leading to (2.56) since we now
realize that the mathematical assumption for the simplification is ε → 0.

Is (2.63) consistent with (2.56)? It is easy to make algebraic mistakes when
deriving scaled equations, so it is always wise to carry out consistency checks.
Introducing dimensions in (2.63) leads to

tc

S0

dS

dt
= dS̄

dt̄
= − βS̄

α + ε−1S̄
= − kv

k+E0

S

KE−1
0 +E−1

0 S0S̄
= − kv

k+

S̄

K +S
,

and hence with t−1
c = k+E0,

dS

dt
= −kvE0S

K +S
,

which is (2.56).
Figure 2.5 shows the impact of ε: with a moderately small value (0.1) we

see that Q̄ ≈ 0, which justifies the simplifications performed above. We also
observe that all the unknowns vary between 0 and about 1, indicating that the
scaling is successful for the chosen dimensionless numbers. The simulations
made use of a time step Δt̄ = 0.01 with a 4th-order Runge-Kutta method,
using α = 1.5, β = 1 (relevant code is in the simulate_biochemical_process
function in session.py).

Fig. 2.5 Simulation of a biochemical process.
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However, it is of interest to investigate the limit ε → 0. Initially, the equa-
tion for dĒ/dt̄ reads dĒ/dt̄ = −ε−1, which implies a very fast reduction of
Ē. Using ε = 0.005 and Δt̄ = 10−3, simulation results show that Ē decays to
approximately zero at t = 0.03 while S̄ ≈ 1 and Q̄ ≈ P̄ ≈ 0. This is reasonable
since with very little enzyme in comparison with the substrate (ε → 0) very
little will happen.

2.2 Vibration problems

We shall in this section address a range of different second-order ODEs for
mechanical vibrations and demonstrate how to reason about the scaling in
different physical scenarios.

2.2.1 Undamped vibrations without forcing

The simplest differential equation model for mechanical vibrations reads

mu′′ +ku = 0, u(0) = I, u′(0) = V, (2.64)

where unknown u(t) measures the displacement of the body, This is a common
model for a vibrating body with mass m attached to a linear spring with
spring constant k (and force −ku). Figure 2.6 shows a typical mechanical
sketch of such a system: some mass can move horizontally without friction
and is connected to a spring that exerts a force −ku on the body.

Fig. 2.6 Oscillating body attached to a spring.

The first technical steps of scaling. The problem (2.64) has one inde-
pendent variable t and one dependent variable u. We introduce dimensionless
versions of these variables:

ku

u(t)

m
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ū = u

uc
, t̄ = t

tc
,

where uc and tc are characteristic values of u and t. Inserted in (2.64), we
get

m
uc

t2
c

d2ū

dt̄2 +kucū = 0, ucū(0) = I,
uc

tc

dū

dt̄
(0) = V,

resulting in

d2ū

dt̄2 + t2
ck

m
ū = 0, ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.65)

What is an appropriate displacement scale uc? The initial condition u(0) =
I is a candidate, i.e., uc = I. But how to choose the time scale? Making the
coefficient in front of the ū unity, such that both terms balance and are of
size unity, is a candidate.
The exact solution. To better see what the proper scales of u and t are,
we can look into the analytical solution of this problem. Although the exact
solution of (2.64) is quite straightforward to calculate by hand, we take the
opportunity to make use of SymPy to find u(t). The use of SymPy can later
be generalized to vibration ODEs that are harder to solve by hand.

SymPy requires all mathematical symbols to be explicitly created:

To specify the ODE to be solved, we can make a Python function returning
all the terms in the ODE:

The diffeq variable, defining the ODE, can be passed to the SymPy function
dsolve to find the symbolic solution of the ODE:

The solution that gets printed is C1*sin(t*w) + C2*cos(t*w), indicating
that there are two integration constants C1 and C2 to be determined by the
initial conditions. The result of applying these conditions is a 2 × 2 linear
system of algebraic equations that SymPy can solve by the solve function.
The code goes as follows:

from sympy import *
u = symbols(’u’, cls=Function)
w = symbols(’w’, real=True, positive=True)
I, V, C1, C2 = symbols(’I V C1 C2’, real=True)

# Define differential equation: u’’ + w**2*u = 0
def ode(u):

return diff(u, t, t) + w**2*u

diffeq = ode(u(t))

s = dsolve(diffeq, u(t))
# s is an u(t) == expression (Eq obj.), s.rhs grabs the expression
u_sol = s.rhs
print u_sol
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The u_sol variable is now I*cos(t*w) + V*sin(t*w)/w. Since symbolic
software is far from bug-free and can give wrong results, we should always
check the answer. Here, we insert the solution in the ODE to see if the result
is zero, and we insert the solution in the initial conditions to see that these
are fulfilled:

There will be many more examples on using SymPy to find exact solutions
of differential equation problems.

The solution of the ODE in mathematical notation is

u(t) = I cos(ωt)+ V

ω
sin(ωt), ω =

√
k

m
.

More insight arises from rewriting such an expression in the form Acos(wt−
φ):

u(t) =
√

I2 + V 2

ω2 cos(wt−φ), φ = tan−1(V/(ωI)) .

Now we see that the u corresponds to cosine oscillations with a frequency
shift φ and amplitude

√
I2 +(V/ω)2.

Discussion of the displacement scale. The amplitude of u is
√

I2 +V 2/ω2,
and this expression is obviously a candidate for uc. However, the simpler
choice uc = max(I,V/ω) is also relevant and more attractive than the square
root expression (but potentially a factor 1.4 wrong compared to the exact
amplitude). It is not very important to have |u| ≤ 1, the point is to avoid |u|
very small or large.

Discussion of the time scale. What is an appropriate time scale? Looking
at (2.65) and arguing that ū′′ and ū both should be around unity in size, the
coefficient t2

ck/m must equal unity, implying that tc =
√

m/k. Also from the
analytical solution we see that the solution goes like the sine or cosine of ωt,
so 1/ω =

√
m/k can be a characteristic time scale. Likewise, one period of the

oscillations, P = 2π/ω, can be the characteristic time, leading to tc = 2π/ω.

# The solution u_sol contains integration constants C1 and C2
# but these are not symbols, substitute them by symbols
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)

# Determine C1 and C2 from the initial conditions
ic = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
print ic # 2x2 algebraic system for C1 and C2
s = solve(ic, [C1, C2])
# s is now a dictionary: {C2: I, C1: V/w}
# substitute solution back in u_sol
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])
print u_sol

# Check that the solution fulfills the ODE and init.cond.
print simplify(ode(u_sol)),
print u_sol.subs(t, 0) - I, diff(u_sol, t).subs(t, 0) - V
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The dimensionless solution. With uc = I and tc =
√

m/k we get the
scaled model

d2ū

dt̄2 + ū = 0, ū(0) = 1, ū′(0) = α, (2.66)

where α is a dimensionless parameter:

α = V

I

√
m

k
.

Note that in case V = 0, we have “scaled away” all physical parameters. The
universal solution without physical parameters is then ū(t̄) = cos t̄.

The unscaled solution is recovered as

u(t) = Iū(
√

k/mt̄) . (2.67)

This expressions shows that the scaling is simply a matter of stretching or
shrinking the axes.

Alternative displacement scale. Using uc = V/ω, the equation is not
changed, but the initial conditions become

ū(0) = I

uc
= Iω

V
= I

V

√
k

m
= α−1, ū′(0) = 1 .

With uc = V/ω and one period as time scale, tc = 2π
√

m/k, we get the
alternative model

d2ū

dt̄2 +4π2ū = 0, ū(0) = α−1, ū′(0) = 2π . (2.68)

The unscaled solution is in this case recovered by

u(t) = V

√
m

k
ū(2π

√
k/mt̄) . (2.69)

About frequency and dimensions. The solution goes like cosωt, where
ω =

√
m/k must have dimension 1/s. Actually, ω has dimension radians per

second: rad/s. A radian is dimensionless since it is arc (length) divided by
radius (length), but still regarded as a unit. The period P of vibrations is a
more intuitive quantity than the frequency ω. The relation between P and
ω is P = 2π/ω. The number of oscillation cycles per period, f , is a more
intuitive measurement of frequency and also known as frequency. Therefore,
to be precise, ω should be named angular frequency. The relation between f
and T is f = 1/T , so f = 2πω and measured in Hz (1/s), which is the unit
for counts per unit time.
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2.2.2 Undamped vibrations with constant forcing

For vertical vibrations in the gravity field, the model (2.64) must also take
the gravity force −mg into account:

mu′′ +ku = −mg .

How does the new term −mg influence the scaling? We observe that if there
is no movement of the body, u′′ = 0, and the spring elongation matches the
gravity force: ku = −mg, leading to a steady displacement u = −mg/k. We
can then have oscillations around this equilibrium point. A natural scaling
for u is therefore

ū = u− (−mg/k)
uc

= uk +mg

kuc
.

The scaled differential equation with the same time scale as before reads

d2ū

dt̄2 + ū− t2
c

uc
g = − t2

c

uc
g,

leading to

d2ū

dt̄2 + ū = 0 .

The initial conditions u(0) = I and u′(0) = V become, with uc = I,

ū(0) = 1+ mg

kI
,

dū

dt̄
(0) =

√
m

k

V

I
.

We see that the oscillations around the equilibrium point in the gravity field
are identical to the horizontal oscillations without gravity, except for an offset
mg/(kI) in the displacement.

2.2.3 Undamped vibrations with time-dependent forcing

Now we add a transient forcing term F (t) to the model (2.64):

mu′′ +ku = F (t), u(0) = I, u′(0) = V . (2.70)

Take the forcing to be oscillating:

F (t) = Acos(ψt) .

The technical steps of the scaling are still the same, with the intermediate
result
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d2ū

dt̄2 + t2
ck

m
ū = t2

c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.71)

What are typical displacement and time scales? This is not so obvious without
knowing the details of the solution, because there are three parameters (I, V ,
and A) that influence the magnitude of u. Moreover, there are two time scales,
one for the free vibrations of the systems and one for the forced vibrations
F (t).

Investigating scales via analytical solutions. As we have seen already
several times, having access to an exact solution is very fortunate as it allows
us to directly examine the scales. Also in the present problem it is possible to
derive an exact solution. We continue the SymPy session from the previous
section and perform much of the same steps. Note that we use w for ω =

√
k/m

in the computer code (to obtain a more direct visual counterpart to ω).
SymPy may get confused when coefficients in differential equations contain
several symbols. We therefore rewrite the equation with at most one symbol
in each coefficient (i.e., symbolic software is in general more successful when
applied to scaled differential equations than the unscaled counterparts, but
right now our task is to solve the unscaled version). The amplitude A/m in
the forcing term is of this reason replaced by the symbol A1.

The output from the last line is

With a bit of rewrite this expression becomes

A, A1, m, psi = symbols(’A A1 m psi’, positive=True, real=True)
def ode(u):

return diff(u, t, t) + w**2*u - A1*cos(psi*t)

diffeq = ode(u(t))
u_sol = dsolve(diffeq, u(t))
u_sol = u_sol.rhs

# Determine the constants C1 and C2 in u_sol
# (first substitute our own declared C1 and C2 symbols,
# then use the initial conditions)
u_sol = u_sol.subs(’C1’, C1).subs(’C2’, C2)
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

# Check that the solution fulfills the equation and init.cond.
print simplify(ode(u_sol))
print simplify(u_sol.subs(t, 0) - I)
print simplify(diff(u_sol, t).subs(t, 0) - V)

u_sol = simplify(expand(u_sol.subs(A1, A/m)))
print u_sol

A/m*cos(psi*t)/(-psi**2 + w**2) + V*sin(t*w)/w +
(A/m + I*psi**2 - I*w**2)*cos(t*w)/(psi**2 - w**2)
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u(t) = A/m

ω2 −ψ2 cos(ψt)+ V

ω
sin(ωt)+

(
A/m

ψ2 −ω2 + I

)
cos(ωt) .

Obviously, this expression is only meaningful for ψ 
= ω. The case ψ = ω gives
an infinite amplitude in this model, a phenomenon known as resonance. The
amplitude becomes finite when damping is included, see Section 2.2.4.

When the system starts from rest, I = V = 0, and the forcing is the only
driving mechanism, we can simplify:

u(t) = A

m(ω2 −ψ2) cos(ψt)+ A

m(ψ2 −ω2) cos(ωt)

= A

m(ω2 −ψ2) (cos(ψt)− cos(ωt)) .

To gain more insight, cos(ψt)−cos(ωt) can be rewritten in terms of the mean
frequency (ψ +ω)/2 and the difference in frequency (ψ −ω)/2:

u(t) = A

m(ω2 −ψ2)2sin
(

ψ −ω

2 t

)
sin

(
ψ +ω

2 t

)
, (2.72)

showing that there is a signal with frequency (ψ +ω)/2 whose amplitude has
a (much) slower frequency (ψ − ω)/2. Figure 2.7 shows an example on such
a signal.

Fig. 2.7 Signal with frequency 3.1 and envelope frequency 0.2.
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The displacement and time scales. A characteristic displacement can
in the latter special case be taken as uc = A/(m(ω2 − ψ2)). This is also a
relevant choice in the more general case I 
= 0,V 
= 0, unless I or V is so
large that it dominates over the amplitude caused by the forcing. With uc =
A/(m(ω2 −ψ2)) we also have three special cases: ω � ψ, ω � ψ, and ψ ∼ ω.
In the latter case we need uc = A/(m(ω2 − ψ2)) if we want |u| ≤ 1. When ω
and ψ are significantly different, we may choose one of them and neglect the
smaller. Choosing ω means uc = A/k, which is the relevant scale if ω � ψ. In
the opposite case, ω � ψ, uc = A/(mψ2).

The time scale is dominated by the fastest oscillations, which are of fre-
quency ψ or ω when these are close and the largest of them when they are
distant. In any case, we set tc = 1/max(ψ,ω).
Finding the displacement scale from the differential equation. Going
back to (2.71), we may demand that all the three terms in the differential
equation are of size unity. This leads to tc =

√
m/k and uc = At2

c/m = A/k.
The formula for uc is a kind of measure of the ratio of the forcing and the
spring force (the dimensionless number A/(kuc) would be this ratio).

Looking at (2.72), we see that if ψ � ω, the amplitude can be approxi-
mated by A/(mω2) = A/k, showing that the scale uc = A/k is relevant for an
excitation frequency ψ that is small compared to the free vibration frequency
ω.
Scaling with free vibrations as time scale. The next step is to work out
the dimensionless ODE for the chosen scales. We first select the time scale
based on the free oscillations with frequency ω, i.e., tc = 1/ω. Inserting the
expression in (2.71) results in

d2ū

dt̄2 + ū = γ cos(δt̄), ū(0) = α, ū′(0) = β . (2.73)

Here we have four dimensionless variables

α = I

uc
, (2.74)

β = V tc

uc
= V

ωuc
, (2.75)

γ = t2
cA

muc
= A

kuc
, (2.76)

δ = tc

ψ−1 = ψ

ω
. (2.77)

We remark that the choice of uc has so far not been made. Several different
cases will be considered below, and we will see that certain choices reduce
the number of independent dimensionless variables to three.

The four dimensionless variables above have interpretations as ratios of
physical effects:
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• α: ratio of the initial displacement and the characteristic response uc,
• β: ratio of the initial velocity and the typical velocity measure uc/tc,
• γ: ratio of the forcing A and the mass times acceleration muc/t2

c or the
ratio of the forcing and the spring force kuc

• δ: ratio of the frequencies or the time scales of the forcing and the free
vibrations.

Software. Any solver for (2.71) can be used for (2.73). More details are
provided at the end of Section 2.2.4.

Choice of uc close to resonance. Now we shall discuss various choices of
uc. Close to resonance, when ψ ∼ ω, we may set uc = A/(m(ω2 − ψ2)). The
dimensionless numbers become in this case

α = I

uc
= I

A/k
(1− δ2),

β = V

ωuc
= V

√
km

A
(1− δ2),

γ = A

kuc
= 1− δ2,

δ = ψ

ω
.

With ψ = 0.99ω, δ = 0.99, V = 0, α = γ = 1−δ2 = 0.02, we have the problem

d2ū

dt̄2 + ū = 0.02cos(0.99t̄), ū(0) = 0.02, ū′(0) = 0 .

This is a problem with a very small initial condition and a very small forcing,
but the state close to resonance brings the amplitude up to about unity, see
the result of numerical simulations with δ = 0.99 in Figure 2.8. Neglecting α,
the solution is given by (2.72), which here means A = 1 − δ2, m = 1, ω = 1,
ψ = δ:

ū(t̄) = 2sin(−0.005t̄)sin(0.995t̄) .

Note that this is a problem which demands very high accuracy in the numer-
ical calculations. Using 20 time steps per period gives a significant angular
frequency error and an amplitude of about 1.4. We used 160 steps per period
for the results in Figure 2.8.

Unit size of all terms in the ODE. Using the displacement scale uc = A/k
leads to (2.73) with
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Fig. 2.8 Forced undamped vibrations close to resonance.

α = I

uc
= I

A/k
,

β = V

ωuc
= V k

Aω
,

γ = A

kuc
= 1,

δ = ψ

ω
.

Simulating a case with δ = 0.5, α = 1, and β = 0 gives the oscillations in
Figure 2.9, which is a case away from resonance, and the amplitude is about
unity. However, choosing δ = 0.99 (close to resonance) results in a figure
similar to Figure 2.8, except that the amplitude is about 102 because of the
moderate size of uc. The present scaling is therefore most suitable away from
resonance, and when the terms containing cosωt and sinωt are important
(e.g., ω � ψ).
Choice of uc when ψ � ω. Finally, we may look at the case where ψ � ω
such that uc = A/(mψ2) is a relevant scale (i.e., omitting ω2 compared to ψ2

in the denominator), but in this case we should use tc = 1/ψ since the force
varies much faster than the free vibrations of the system. This choice of tc

changes the scaled ODE to
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Fig. 2.9 Forced undamped vibrations away from resonance.

d2ū

dt̄2 + δ−2ū = γ cos(t̄), ū(0) = α, ū′(0) = β, (2.78)

where

α = I

uc
= I

A/k
δ2,

β = V tc

uc
= V

√
km

A
δ,

γ = t2
cA

muc
= 1,

δ = tc

ψ−1 = ψ

ω
.

In the regime ψ � ω, δ � 1, thus making α and β large. However, if α and/or
β is large, the initial condition dominates over the forcing, and will also
dominate the amplitude of u, thereby making the scaling of u inappropriate.
In case I = V = 0 so that α = β = 0, (2.72) predicts (A = m = 1, ω = δ−1,
ψ = 1)
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ū(t̄) = (δ−2 −1)−12sin
(

1
2(1− δ−1)t̄

)
sin

(
1
2(1+ δ−1)t̄

)
,

which has an amplitude about 2 for δ � 1. Figure 2.10 shows a case.

Fig. 2.10 Forced undamped vibrations with rapid forcing.

With α = 0.05δ2 = 5, we get a significant contribution from the free vibra-
tions (the homogeneous solution of the ODE) as shown in Figure 2.11. For
larger α values, one must base uc on I instead. (The graphs in Figure 2.10
and 2.11 were produced by numerical simulations with 160 time steps per
period of the forcing.)

Displacement scale based on I. Choosing uc = I gives

d2ū

dt̄2 + ū = γ cos(δt̄), ū(0) = 1, ū′(0) = β, (2.79)

with
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Fig. 2.11 Forced undamped vibrations with rapid forcing and initial displacement of
5.

β = V tc

uc
= V

I

√
m

k
, (2.80)

γ = tc2A

muc
= A

kuc
= A

kI
. (2.81)

This scaling is not relevant close to resonance since then uc � I.

2.2.4 Damped vibrations with forcing

We now introduce a linear damping force bu′(t) in the equation of motion:

mu′′ + bu′ +ku = Acos(ψt), u(0) = I, u′(0) = V . (2.82)

Figure 2.12 shows a typical one-degree-of-freedom mechanical system with a
linear dashpot, representing the damper (bu′), a linear spring (ku), and an
external force (F ).

The standard scaling procedure results in
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Fig. 2.12 Oscillating body with external force, attached to a spring and damper.

d2ū

dt̄2 + tcb

m

dū

dt̄
+ t2

ck

m
ū = t2

c

muc
Acos(ψtct̄), ū(0) = I

uc
, ū′(0) = V tc

uc
. (2.83)

The exact solution. As always, it is a great advantage to look into exact
solutions for controlling our choice of scales. Using SymPy to solve (2.82) is,
in principle, very straightforward:

This is indeed the correct solution, but it is on a complex exponential func-
tion form, valid for all b, m, and ω. We are interested in the case with
small damping, b < 2mω, where the solution is an exponentially damped
sinusoidal function. Rewriting the expression in the right form is tricky with
SymPy commands. Instead, we demonstrate a common technique when doing
symbolic computing: general procedures like dsolve are replaced by manual
steps. That is, we solve the ODE “by hand”, but use SymPy to assist the
calculations.

The solution is composed of a homogeneous solution uh of mu′′ + bu′ +
ku = 0 and one particular solution up of the nonhomogeneous equation
mu′′ + bu′ + ku = Acos(ψt). The homogeneous solution with damped oscil-
lations (requiring b < 2

√
mk) can be found by the following code. We have

divided the differential equation by m and introduced B = 1
2b/m and let A1

represent A/m to simplify expressions and help SymPy with less symbols
in the equation. Without these simplifications, SymPy stalls in the compu-
tations due to too many symbols in the equation. The problem is actually
a solid argument for scaling differential equations before asking SymPy to
solve them since scaling effectively reduces the number of parameters in the
equations!

The following SymPy steps derives the solution of the homogeneous ODE:

m

u(t)

bu′

ku

>>> diffeq = diff(u(t), t, t) + b/m*diff(u(t), t) + w**2*u(t)
>>> s = dsolve(diffeq, u(t))
>>> s.rhs
C1*exp(t*(-b - sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m)) +
C2*exp(t*(-b + sqrt(b - 2*m*w)*sqrt(b + 2*m*w))/(2*m))
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The print out shows

uh = e−Bt
(

C1 cos(
√

ω2 −B2t)+C2 sin(
√

ω2 −B2t)
)

,

where C1 and C2 must be determined by the initial conditions later. It is
wise to check that uh is indeed a solution of the homogeneous differential
equation:

We have previously just printed the residuals of the ODE and initial condi-
tions after inserting the solution, but it is better in a code to let the program-
ming language test that the residuals are symbolically zero. This is achieved
using the assert statement in Python. The argument is a boolean expres-
sion, and if the expression evaluates to False, an AssertionError is raised
and the program aborts (otherwise assert runs silently for a True boolean
expression). Hereafter, we will use assert for consistency checks in computer
code.

The ansatz for the particular solution up is

up = C3 cos(ψt)+C4 sin(ψt),

u = symbols(’u’, cls=Function)
t, w, B, A, A1, m, psi = symbols(’t w B A A1 m psi’,

positive=True, real=True)

def ode(u, homogeneous=True):
h = diff(u, t, t) + 2*B*diff(u, t) + w**2*u
f = A1*cos(psi*t)
return h if homogeneous else h - f

# Find coefficients in polynomial (in r) for exp(r*t) ansatz
r = symbols(’r’)
ansatz = exp(r*t)
poly = simplify(ode(ansatz)/ansatz)

# Convert to polynomial to extract coefficients
poly = Poly(poly, r)
# Extract coefficients in poly: a_*t**2 + b_*t + c_
a_, b_, c_ = poly.coeffs()
# Assume b_**2 - 4*a_*c_ < 0
d = -b_/(2*a_)
if a_ == 1:

omega = sqrt(c_ - (b_/2)**2) # nicer formula
else:

omega = sqrt(4*a_*c_ - b_**2)/(2*a_)

# The homogeneous solution is a linear combination of a
# cos term (u1) and a sin term (u2)
u1 = exp(d*t)*cos(omega*t)
u2 = exp(d*t)*sin(omega*t)
C1, C2, V, I = symbols(’C1 C2 V I’, real=True)
u_h = simplify(C1*u1 + C2*u2)
print ’u_h:’, u_h

assert simplify(ode(u_h)) == 0
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which inserted in the ODE gives two equations for C3 and C4. The relevant
SymPy statements are

Using the initial conditions for the complete solution u = uh +up determines
C1 and C2:

Finally, we should check that u_sol is indeed the correct solution:

Finally, we may take u_sol = u_sol.subs(A, A/m) to get the right expres-
sion for the solution. Using latex(u_sol) results in a huge expression, which
should be manually ordered to something like the following:

u = Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))+

e−Bt

(
C1 cos

(
t
√

ω2 −B2
)

+C2 sin
(

t
√

ω2 −B2
))

C1 = Am−1Ω +4IB2ψ2 + IΩ2

4B2ψ2 +Ω2

C2 = −Am−1BΩ +4IB3ψ2 + IBΩ2 +4V B2ψ2 +V Ω2
√

ω2 −B2 (4B2ψ2 +Ω2)
,

Ω = ψ2 −ω2 .

# Particular solution
C3, C4 = symbols(’C3 C4’)
u_p = C3*cos(psi*t) + C4*sin(psi*t)
eqs = simplify(ode(u_p, homogeneous=False))

# Collect cos(omega*t) terms
print ’eqs:’, eqs
eq_cos = simplify(eqs.subs(sin(psi*t), 0).subs(cos(psi*t), 1))
eq_sin = simplify(eqs.subs(cos(psi*t), 0).subs(sin(psi*t), 1))
s = solve([eq_cos, eq_sin], [C3, C4])
u_p = simplify(u_p.subs(C3, s[C3]).subs(C4, s[C4]))

# Check that the solution is correct
assert simplify(ode(u_p, homogeneous=False)) == 0

u_sol = u_h + u_p # total solution
# Initial conditions
eqs = [u_sol.subs(t, 0) - I, u_sol.diff(t).subs(t, 0) - V]
# Determine C1 and C2 from the initial conditions
s = solve(eqs, [C1, C2])
u_sol = u_sol.subs(C1, s[C1]).subs(C2, s[C2])

checks = dict(
ODE=simplify(expand(ode(u_sol, homogeneous=False))),
IC1=simplify(u_sol.subs(t, 0) - I),
IC2=simplify(diff(u_sol, t).subs(t, 0) - V))

for check in checks:
msg = ’%s residual: %s’ % (check, checks[check])
assert checks[check] == sympify(0), msg
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The most important feature of this solution is that there are two time
scales with frequencies ψ and

√
ω2 −B2, respectively, but the latter appears

in terms that decay as e−Bt in time. The attention is usually on longer periods
of time, so in that case the solution simplifies to

u = Am−1

4B2ψ2 +Ω2 (2Bψ sin(ψt)−Ω cos(ψt))

= A

m

1√
4B2ψ2 +Ω2

cos(ψt+φ) (ψω)−1

(ψω)−1

= A

k
Qδ−1 (

1+Q2(δ − δ−1)
)− 1

2 cos(ψt+φ), (2.84)

where we have introduced the dimensionless numbers

Q = ω

2B
, δ = ψ

ω
,

and

φ = tan−1
(

− 2B

ω2 −ψ2

)
= tan−1

(
Q−1

δ2 −1

)
.

Q is commonly called quality factor and φ is the phase shift. Dividing (2.84)
by A/k, which is a common scale for u, gives the dimensionless relation

u

A/k
= Q

δ
R(Q,δ)

1
2 cos(ψt+φ), R(Q,δ) =

(
1+Q2(δ − δ−1)

)−1
. (2.85)

Choosing scales. Much of the discussion about scales in the previous sec-
tions are relevant also when damping is included. Although the oscillations
with frequency

√
ω2 −B2 die out for t � B−1, we start with using this fre-

quency for the time scale. A highly relevant assumption for engineering ap-
plications of (2.82) is that the damping is small. Therefore,

√
ω2 −B2 is close

to ω and we simply apply tc = 1/ω as before (if not the interest in large t for
which the oscillations with frequency ω has died out).

The coefficient in front of the ū′ term then becomes

b

mω
= 2B

ω
= Q−1 .

The rest of the ODE is given in the previous section, and the particular
formulas depend on the choices of tc and uc.

Choice of uc at resonance. The relevant scale for uc at or nearby resonance
(ψ = ω) becomes different from the previous section, since with damping, the
maximum amplitude is a finite value. For t � B−1, when the sinψt term is
dominating, we have for ψ = ω:

www.dbooks.org

https://www.dbooks.org/


66 2 Ordinary differential equation models

u = Am−12Bψ

4B2ψ2 sin(ψt) = A

2Bmψ
sin(ψt) = A

bψ
sin(ψt) .

This motivates the choice

uc = A

bψ
= A

bω
.

(It is wise during computations like this to stop and check the dimensions:
A must be [MLT−2] from the original equation (F (t) must have the same
dimension as mu′′), bu′ must also have dimension [MLT−2], implying that
b has dimension [MT−1]. A/b then has dimension LT −1, and A/(bψ) gets
dimension [L], which matches what we want for uc.)

The differential equation on dimensionless form becomes

d2ū

dt̄2 +Q−1 dū

dt̄
+ ū = γ cos(δt̄), ū(0) = α, ū′(0) = β, (2.86)

with

α = I

uc
= Ib

A

√
k

m
, (2.87)

β = V tc

uc
= V b

A
, (2.88)

γ = t2
cA

muc
= bω

k
, (2.89)

δ = tc

ψ−1 = ψ

ω
= 1 . (2.90)

Choice of uc when ω � ψ. In the limit ω � ψ and t � B−1,

u ≈ A

mω2 cosψt = A

k
cosψt,

showing that uc = A/k is an appropriate displacement scale. (Alternatively,
we get this scale also from demanding γ = 1 in the ODE.) The dimensionless
numbers α, β, and δ are as for the forced vibrations without damping.

Choice of uc when ω � ψ. In the limit ω � ψ, we should base tc on the
rapid variations in the excitation: tc = 1/ψ.

Software. It is easy to reuse a solver for a general vibration problem also
in the dimensionless case. In particular, we may use the solver function in
the file vib.py:

for solving the ODE problem

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
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mu′′ +f(u′)+s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0,T ],

with time steps dt. With damping=’linear’, we have f(u′) = bu′, while the
other value is ’quadratic’, meaning f(u′) = b|u′|u′. Given the dimensionless
numbers α, β, γ, δ, and Q, an appropriate call for solving (2.73) is

where n is the number of intervals per period and P is the number of periods
to be simulated. We way wrap this call in a solver_scaled function and
wrap it furthermore with joblib to avoid repeated calls, as we explained in
Section 2.1.4:

This code is found in vib_scaled.py and features an application for running
the scaled problem with options on the command-line for α, β, γ, δ, Q, num-
ber of time steps per period, and number of periods (see the main function).
It is an ideal application for exploring scaled vibration models.

2.2.5 Oscillating electric circuits

The differential equation for an oscillating electric circuit is very similar to the
equation for forced, damped, mechanical vibrations, and their dimensionless
form is identical. This fact will now be demonstrated.

The current I(t) in a circuit having an inductor with inductance L, a
capacitor with capacitance C, and overall resistance R, obeys the equation

Ï + R

L
İ + 1

LC
I = V (t), (2.91)

where V (t) is the voltage source powering the circuit. We introduce

u, t = solver(I=alpha, V=beta, m=1, b=1.0/Q,
s=lambda u: u, F=lambda t: gamma*cos(delta*t),

dt=2*pi/n, T=2*pi*P)

from vib import solver as solver_unscaled

def solver_scaled(alpha, beta, gamma, delta, Q, T, dt):
"""
Solve u’’ + (1/Q)*u’ + u = gamma*cos(delta*t),
u(0)=alpha, u’(1)=beta, for (0,T] with step dt.
"""
print ’Computing the numerical solution’
from math import cos
return solver_unscaled(I=alpha, V=beta, m=1, b=1./Q,

s=lambda u: u,
F=lambda t: gamma*cos(delta*t),
dt=dt, T=T, damping=’linear’)

import joblib
disk_memory = joblib.Memory(cachedir=’temp’)
solver_scaled = disk_memory.cache(solver_scaled)
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Ī = I

Ic
, t̄ = t

tc
,

and get

d2Ī

dt̄2 + tcR

L

dĪ

dt̄
+ t2

c

LC
Ī = t2

cVc

Ic
V̄ (t) .

Here, we have scaled V (t) according to

V̄ (t̄) = V (tct̄)
maxt V (t) .

The time scale tc is chosen to make Ï and I/(LC) balance, tc =
√

LC.
Choosing Ic to make the coefficient in the source term of unit size, means
Ic = LCVc. With

Q−1 = R

√
C

L
,

we get the scaled equation

d2Ī

dt̄2 +Q−1 dĪ

dt̄
+ Ī = V̄ (t), (2.92)

which is basically the same as we derived for mechanical vibrations. (Two
additional dimensionless variables will arise from the initial conditions for I,
just as in the mechanics cases.)
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Chapter 3
Basic partial differential equation
models

This chapter extends the scaling technique to well-known partial differential
equation (PDE) models for waves, diffusion, and transport. We start out with
the simplest 1D models of the PDEs and then progress with additional terms,
different types of boundary and initial conditions, and generalizations to 2D
and 3D.

3.1 The wave equation

A standard, linear, one-dimensional wave equation problem in a homogeneous
medium may be written as

∂2u

∂t2 = c2 ∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T ], (3.1)

where c is the constant wave velocity of the medium. With a briefer notation,
where subscripts indicate derivatives, the PDE (3.1) can be written utt =
c2uxx. This subscript notation will occasionally be used later.

For any number of dimensions in heterogeneous media we have the gener-
alization

∂2u

∂t2 = ∇· (c2∇u
)

+f, x,y,z ∈ Ω, t ∈ (0,T ], (3.2)

where f represents a forcing.

3.1.1 Homogeneous Dirichlet conditions in 1D

Let us first start with (3.1), homogeneous Dirichlet conditions in space, and
no initial velocity ut:

© The Author(s) 2016
H.P. Langtangen and G.K. Pedersen, Scaling of Differential Equations,
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u(x,0) = I(x), x ∈ [0,L], (3.3)
∂

∂t
u(x,0) = 0, x ∈ [0,L], (3.4)

u(0, t) = 0, t ∈ (0,T ], (3.5)
u(L,t) = 0, t ∈ (0,T ]. (3.6)

The independent variables are x and t, while u is the dependent variable.
The rest of the parameters, c, L, T , and I(x), are given data.

We start with introducing dimensionless versions of the independent and
dependent variables:

x̄ = x

xc
, t̄ = t

tc
, ū = u

uc
.

Inserting the x = xcx̄, etc., in (3.1) and (3.3)-(3.6) gives

∂2ū

∂t̄2 = t2
cc2

x2
c

∂2ū

∂x2 , x̄ ∈ (0,L/xc), t̄ ∈ (0,T/tc],

ū(x̄,0) = I(xcx̄)
uc

, x̄ ∈ [0,L/xc],

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,L/xc],

ū(0, t̄) = 0, t̄ ∈ (0,T/tc],
ū(L/xc, t̄) = 0, t̄ ∈ (0,T/tc].

The key question is how to define the scales. A natural choice is xc = L
since this makes x̄ ∈ [0,1]. For the spatial scale and the problem governed by
(3.1) we have some analytical insight that can help. The solution behaves like

u(x,t) = fR(x− ct)+fR(x+ ct), (3.7)

i.e., a right- and left-going wave with velocity c. The initial conditions con-
strain the choices of fR and fL to fL + fR = I and −cf ′

L + cf ′
R = 0. The

solution is fR = fL = 1
2 , and consequently

u(x,t) = 1
2I(x− ct)+ 1

2I(x+ ct),

which tells that the initial condition splits in two, half of it moves to the
left and half to the right. This means in particular that we can choose
uc = maxx |I(x)| and get |ū| ≤ 1, which is a goal. It must be added that
boundary conditions may result in reflected waves, and the solution is then
more complicated than indicated in the formula above.
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Regarding the time scale, we may look at the two terms in the scaled PDE
and argue that if |u| and its derivatives are to be of order unity, then the size
of the second-order derivatives should be the same, and tc can be chosen to
make the coefficient t2

cc2/x2
c unity, i.e., tc = L/c. Another reasoning may set

tc as the time it takes the wave to travel through the domain [0,L]. Since the
wave has constant speed c, tc = L/c.

With the described choices of scales, we end up with the dimensionless
initial-boundary value problem

∂2ū

∂t̄2 = ∂2ū

∂x2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ ], (3.8)

ū(x̄,0) = I(x̄L)
maxx∈(0,L) |I(x)| , x̄ ∈ [0,1], (3.9)

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1], (3.10)

ū(0, t̄) = 0, t̄ ∈ (0, T̄ ], (3.11)
ū(1, t̄) = 0, t̄ ∈ (0, T̄ ]. (3.12)

Here, T̄ = Tc/L.
The striking feature of (3.8)-(3.12) is that there are no physical parameters

involved! Everything we need to specify is the shape of the initial condition
and then scale it such that it is less than or equal to 1.

The physical solution with dimension is recovered from ū(x̄, t̄) through

u(x,t) = max
x∈(0,L)

I(x) ū(x̄L, t̄L/c) (3.13)

3.1.2 Implementation of the scaled wave equation

How do we implement (3.8)-(3.12)? As for the simpler mathematical models,
we suggest to implement the model with dimensions and observe how to set
parameters to obtain the scaled model. In the present case, one must choose
L = 1, c = 1, and scale I by its maximum value. That’s all!

Several implementations of 1D wave equation models with different degree
of mathematical and software complexity come along with these notes. The
simplest version is wave1D_u0.py that implements (3.1) and (3.3)-(3.6). This
is the code to be used in the following. It is described in Section 2.3 in [7].
Waves on a string. As an example, we may let the original initial-boundary
value problem (3.1)-(3.6) model vibrations of a string on a string instrument
(e.g., a guitar). With u as the displacement of the string, the boundary con-
ditions u = 0 at the ends are relevant, as well as the zero velocity condition
∂u/∂t = 0 at t = 0. The initial condition I(x) typically has a triangular shape
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for a picked guitar string. The physical problem needs parameters for the am-
plitude of I(x), the length L of the string, and the value of c for the string.
Only the latter is challenging as it involves relating c to the pitch (i.e., time
frequency) of the string. In the scaled problem, we can forget about all this.
We simply set L = 1, c = 1, and let I(x) have a peak of unity at x = x0 ∈ (0,1):

I(x)
maxx I(x) =

{
x/x0, x < x0,
(1−x)/(1−x0), otherwise

The dimensionless coordinate of the peak, x0, is the only dimensionless pa-
rameter in the problem. For fixed x0, one single simulation will capture all
possible solutions with such an initial triangular shape.

Detecting an already computed case. The file wave1D_u0_scaled.py
has functionality for detecting whether a simulation corresponds to a previ-
ously run scaled case, and if so, the solution is retrieved from file. The im-
plementation technique makes use of joblib, but is more complicated than
shown previously in these notes since some of the arguments to the function
that computes the solution are functions, and one must recognized if the
function has been used as argument before or not. There is documentation
in the wave1D_u0_scaled.py file explaining how this is done.

3.1.3 Time-dependent Dirichlet condition

A generalization of (3.1)-(3.6) is to allow for a time-dependent Dirichlet con-
dition at one end, say u(0, t) = UL(t). At the other end we may still have
u = 0. This new condition at x = 0 may model a specified wave that enters
the domain. For example, if we feed in a monochromatic wave Asin(k(x−ct))
from the left end, UL(t) = Asin(kct). This forcing of the wave motion has its
own amplitude and time scale that could affect the choice of uc and tc.

The main difference from the previous initial-boundary value problem is
the condition at x = 0, which now reads

ū(0, t̄) = UL(t̄tc)
uc

in scaled form.

Scaling. Regarding the characteristic time scale, it is natural to base this
scale on the wave propagation velocity, together with the length scale, and not
on the time scale of UL(t), because the time scale of UL basically determines
whether short or long waves are fed in at the boundary. All waves, long
or short, propagate with the same velocity c. We therefore continue to use
tc = L/c.

The solution u will have one wave contribution from the initial condition I
and one from the feeding of waves at x = 0. This gives us three choices of uc:
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maxx |I| + maxt |UL|, maxx |I|, or maxt |UL|. The first seems relevant if the
size of I and UL are about the same, but then we can choose either maxx |I|
or maxt |UL| as characteristic size of u since a factor of 2 is not important. If
I is much less than UL, uc = maxt |uL| is relevant, while uc = maxx |I| is the
choice when I has much bigger impact than UL on u.

With uc = maxt |UL(t)|, we get the scaled problem

∂2ū

∂t̄2 = ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ ], (3.14)

ū(x̄,0) = I(xcx̄)
maxt |UL(t)| , x̄ ∈ [0,1], (3.15)

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1], (3.16)

ū(0, t̄) = UL(t̄tc)
maxt |UL(t)| , t̄ ∈ (0, T̄ ], (3.17)

ū(1, t̄) = 0, t̄ ∈ (0, T̄ ]. (3.18)

Also this problem is free of physical parameters like c and L. The input is
completely specified by the shape of I(x) and UL(t).

Software. Software for the original problem with dimensions can be reused
for (3.14)-(3.18) by setting L = 1, c = 1, and scaling UL(t) and I(x) by
maxt |UL(t)|.
Specific case. As an example, consider

UL(t) = asin(ωt) for 0 ≤ t ≤ 2 ω

2π
, else 0,

I(x) = Ae−(x−L/2)2/σ2
.

That is, we start with a Gaussian peak-shaped wave in the center of the
domain and feed in a sinusoidal wave at the left end for two periods. The
solution will be the sum of three waves: two parts from the initial condition,
plus the wave fed in from the left.

Since maxt |UL| = a we get

ū(x̄,0) = A

a
e−(L/σ)2(x̄− 1

2 )2
, (3.19)

ū(0, t̄) = sin(t̄ωL/c) . (3.20)

Here, UL models an incoming wave asin(k(x − ct), with k specified. The re-
sult is incoming waves of length λ = 2π/k. Since ω = kc, ū(0, t̄) = sin(kLt̄) =
sin(2πt̄L/λ). (This formula demonstrates the previous assertion that the time
scale of UL, i.e., 1/ω, determines the wave length 1/ω = λ/(2π) in space.) We
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realize from the formulas (3.19) and (3.20) that there are three key dimen-
sionless parameters related to these specific choices of initial and boundary
conditions:

α = A

a
, β = L

σ
, γ = kL = 2π

L

λ
.

With α, β, and γ we can write the dimensionless initial and boundary con-
ditions as

ū(x̄,0) = αe−β2(x̄− 1
2 )2

,

ū(0, t̄) = sin(γt̄) .

The dimensionless parameters have the following interpretations:

• α: ratio of initial condition amplitude and amplitude of incoming wave at
x = 0

• β: ratio of length of domain and width of initial condition
• γ: ratio of length of domain and wave length of incoming wave

Again, these dimensionless parameters tell a lot about the interplay of the
physical effects in the problem. And only some ratios count!

We can simulate two special cases:

1. α = 10 (large) where the incoming wave is small and the solution is dom-
inated by the two waves arising from I(x),

2. α = 0.1 (small) where the incoming waves dominate and the solution has
the initial condition just as a small perturbation of the wave shape.

We may choose a peak-shaped initial condition: β = 10, and also a relatively
short incoming wave compared to the domain size: γ = 6π (i.e., wave length of
incoming wave is L/6). A function simulate_Gaussian_and_incoming_wave
in the file session.py applies the general unscaled solver in wave1D_dn.
py for solving the wave equation with constant c, and any time-dependent
function or ∂u/∂x = 0 at the end points. This solver is trivially adapted to
the present case. Figures 3.1 and 3.2 shows snapshots of how ū(x̄, t̄) evolves
due to a large/small initial condition and small/large incoming wave at the
left boundary.

Movie 1: α = 10. https://github.com/hplgit/scaling-book/raw/master/doc/
pub/book/html/mov-scaling/gaussian_plus_incoming/alpha10.mp4

Movie 2: α = 0.1. https://github.com/hplgit/scaling-book/raw/master/doc/
pub/book/html/mov-scaling/gaussian_plus_incoming/alpha01.mp4
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Fig. 3.1 Snapshots of solution with large initial condition and small incoming wave
(α = 10).

3.1.4 Velocity initial condition

Now we change the initial condition from u = I and ∂u/∂t = 0 to

u(x,0) = 0, (3.21)
∂

∂t
u(x,0) = V (x) . (3.22)

Impact problems are often of this kind. The scaled version of ut(x,0) = V (x)
becomes

∂

∂t̄
ū(x̄,0) = tc

uc
V (x̄xc) .

Analytical insight. From (3.7) we now get fL +fR = 0 and cf ′
L −cf ′

R = V .
Introducing W (x) such that W ′(x) = V (x), a solution is fL = 1

2W/c and
−fR = 1

2W/c. We can express this solution through the formula
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Fig. 3.2 Snapshots of solution with small initial condition and large incoming wave
(α = 0.1).

u(x,t) = 1
2c

∫ x+ct

x−ct
V (ξ)dξ = 1

2c
(W (x+ ct)−W (x− ct)) . (3.23)

Scaling. Since V is the time-derivative of u, the characteristic size of V , call
it Vc, is typically uc/tc. If we, as usual, base tc on the wave speed, tc = L/c,
we get uc = VcL/c. Looking at the solution (3.23), we see that uc has size
mean(V )L/(2c), where mean(V ) is the mean value of V (W ∼ mean(V )L).
This result suggests Vc = mean(V ) and uc = mean(V )L/(2c). One may argue
that the factor 2 is not important, but if we want |ū| ∈ [0,1] it is convenient
to keep it.

The scaled initial condition becomes

∂

∂t̄
ū(x̄,0) = tc

uc
V (x̄xc) = V (x̄xc)

1
2mean(V )

.

Nonzero initial shape. Suppose we change the initial condition u(x,0) = 0
to u(x,0) = I(x). The scaled version of this condition with the above uc based
on V becomes

ū(x̄,0) = 2cI(x̄xc)
Lmean(V ) . (3.24)
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Check that dimensionless numbers are dimensionless!
Is a dimensionless number really dimensionless? It is easy to make er-
rors when scaling equations, so checking that such fractions are dimen-
sionless is wise. The dimension of I is the same as u, here taken to be
displacement: [L]. Since V is ∂u/∂t, its dimension is [LT−1]. The dimen-
sions of c and L are [LT−1] and [L]. The dimension of the right-hand
side of (3.24) is then

[LT−1][L]
[L][LT−1]

= 1,

demonstrating that the fraction is indeed dimensionless.

One may introduce a dimensionless initial shape, Ī(x̄) = I(x̄L)/maxx |I|.
Then

ū(x̄,0) = αĪ(x̄),

where α the dimensionless number

α = 2c

L

maxx |I(x)|
mean(V ) .

If V is much larger than I, one expects that the influence of I is small.
However, it takes time for the initial velocity V to influence the wave motion,
so the speed of the waves c and the length of the domain L also play a
role. This is reflected in α, which is the important parameter. Again, the
scaling and the resulting dimensionless parameter(s) teach us much about
the interaction of the various physical effects.

3.1.5 Variable wave velocity and forcing

The next generalization regards wave propagation in a non-homogeneous
medium where the wave velocity c depends on the spatial position: c = c(x).
To simplify the notation we introduce λ(x) = c2(x). We introduce homoge-
neous Neumann conditions at x = 0 and x = L. In addition, we add a force
term f(x,t) to the PDE, modeling wave generation in the interior of the
domain. For example, a moving slide at the bottom of a fjord will generate
surface waves and is modeled by such an f(x,t) term (provided the length of
the waves is much larger than the depth so that a simple wave equation like
(3.25) applies). The initial-boundary value problem can be then expressed as
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∂2u

∂t2 = ∂

∂x

(
λ(x)∂u

∂x

)
+f(x,t), x ∈ (0,L), t ∈ (0,T ], (3.25)

u(x,0) = I(x), x ∈ [0,L], (3.26)
∂

∂t
u(x,0) = 0, x ∈ [0,L], (3.27)

∂

∂x
u(0, t) = 0, t ∈ (0,T ], (3.28)

∂

∂x
u(L,t) = 0, t ∈ (0,T ]. (3.29)

Non-dimensionalization. We make the coefficient λ non-dimensional by

λ̄(x̄) = λ(x̄xc)
λc

, (3.30)

where one normally chooses the characteristic size of λ, λc, to be the maxi-
mum value such that |λ| ≤ 1:

λc = max
x∈(0,L)

λ(x) .

Similarly, f has a scaled version

f̄(x̄, t̄) = f(x̄xc, t̄tc)
fc

,

where normally we choose

fc = max
x,t

|f(x,t)| .

Inserting dependent and independent variables expressed by their non-
dimensional counterparts yields

∂2ū

∂t̄2 = t2
cλc

L2
∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ t2

cfc

uc
f̄(x̄, t̄), x̄ ∈ (0,1), t̄ ∈ (0, T̄ ],

ū(x̄,0) = I(x)
uc

, x̄ ∈ [0,1],

∂

∂t̄
ū(x̄,0) = 0, x̄ ∈ [0,1],

∂

∂x̄
ū(0, t̄) = 0, t̄ ∈ (0, T̄ ],

∂

∂x̄
ū(1, t̄) = 0, t̄ ∈ (0, T̄ ],

with T̄ = Tc/L.



3.1 The wave equation 79

Choosing the time scale. The time scale is, as before, chosen as tc =
L/

√
λc. Note that the previous (constant) wave velocity c now corresponds

to
√

λ(x). Therefore,
√

λc is a characteristic wave velocity.
One could wonder if the time scale of the force term, f(x,t), should influ-

ence tc, but as we reasoned for the boundary condition u(0, t) = UL(t), we let
the characteristic time be governed by the signal speed in the medium, i.e.,
by

√
λc here and not by the time scale of the excitation f , which dictates the

length of the generated waves and not their propagation speed.
Choosing the spatial scale. We may choose uc as maxx |I(x)|, as before,
or we may fit uc such that the coefficient in the source term is unity, i.e., all
terms balance each other. This latter idea leads to

uc = L2fc

λc

and a PDE without parameters,

∂2ū

∂t̄2 = ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ f̄(x̄, t̄) .

The initial condition u(x,0) = I(x) becomes in dimensionless form

ū(x̄,0) = u−1
c max

x
|I(x)|Ī(x̄) = β−1Ī(x̄),

where

β = L2

λc

maxx,t |f(x,t)|
maxx |I(x)| .

In the case uc = maxx |I(x)|, ū(x̄,0) = Ī(x̄) and the β parameter appears
in the PDE instead:

∂2ū

∂t̄2 = ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+βf̄(x̄, t̄) .

With V = 0, and u = 0 or ux = 0 on the boundaries x = 0,L, this scaling
normally gives |ū| ≤ 1, since initially |I| ≤ 1, and no boundary condition can
increase the amplitude. However, the forcing, f̄ , may inherit spatial and tem-
poral scales of its own that may complicate the matter. The forcing may, for
instance, be some disturbance moving with a velocity close to the propaga-
tion velocity of the free waves. This will have an effect akin to the resonance
for the vibration problem discussed in section 2.2.2 and the waves produced
by the forcing may be much larger than indicated by β. On the other hand,
the forcing may also consist of alternating positive and negative parts (ret-
rogressive slides constitute an example). These may interfere to reduce the
wave generation by an order of magnitude.
Scaling the velocity initial condition. The initial condition ut(x,0) =
V (x) has its dimensionless variant as
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V̄ (x̄) = tc

uc

V (Lx̄)
maxx |V (x)| ,

which becomes

∂ū

∂t̄
(x̄,0) = L√

λc

maxx |V (x)|
maxx |I(x)| V̄ (x̄), if uc = max

x
|I(x)|,

or

∂ū

∂t̄
(x̄,0) =

√
λc

L

maxx |V (x)|
maxx,t |f(x,t)| V̄ (x̄), if uc = t2

cfc = L2

λc
max
x,t

|f(x,t)| .

Introducing the dimensionless number α (cf. Section 3.1.4),

α−1 =
√

λc

L

maxx |V (x)|
maxx,t |f(x,t)| ,

we can write

∂ū

∂t̄
(x̄,0) =

{
α−1V̄ (x̄), uc = maxx |I|
α−1β−1V̄ (x̄), uc = t2

cfc

3.1.6 Damped wave equation

A linear damping term b∂u/∂t is often added to the wave equation to model
energy dissipation and amplitude reduction. Our PDE then reads

∂2u

∂t2 + b
∂u

∂t
= ∂

∂x

(
λ(x)∂u

∂x

)
+f(x,t) . (3.31)

The scaled equation becomes

∂2ū

∂t̄2 + tc

b

∂ū

∂t̄
= t2

cλc

L2
∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ t2

cfc

uc
f̄(x̄, t̄) .

The damping term is usually much smaller than the two other terms involv-
ing ū. The time scale is therefore chosen as in the undamped case, tc = L/

√
λc.

As in Section 3.1.5, we have two choices of uc: uc = maxx |I| or uc = t2
cfc.

The former choice of uc gives a PDE with two dimensionless numbers,

∂2ū

∂t̄2 +γ
∂ū

∂t̄
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+βf̄(x̄, t̄), (3.32)

where
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γ = bL√
λc

,

measures the size of the damping, and β is as given in Section 3.1.5. With
uc = t2

cfc we get a PDE where only γ enters,

∂2ū

∂t̄2 +γ
∂ū

∂t̄
= ∂

∂x̄

(
λ̄(x̄)∂ū

∂x̄

)
+ f̄(x̄, t̄) . (3.33)

The scaled initial conditions are as in Section 3.1.5, so in this latter case β
appears in the initial condition for u.

To summarize, the effects of V , f , and damping are reflected in the di-
mensionless numbers α, β, and γ, respectively.

3.1.7 A three-dimensional wave equation problem

To demonstrate how the scaling extends to in three spatial dimensions, we
consider

∂2ū

∂t̄2 = ∂

∂x

(
λ

∂u

∂x

)
+ ∂

∂y

(
λ

∂u

∂y

)
+ ∂

∂z

(
λ

∂u

∂z

)
. (3.34)

Introducing

x̄ = x

xc
, ȳ = y

yc
, z̄ = z

zc
, t̄ = t

tc
, ū = u

uc
,

and scaling λ as λ̄ = λ(x̄xc, ȳyc, z̄zc)/λc, we get

∂2ū

∂t̄2 = t2
cλc

x2
c

∂

∂x̄

(
λ̄

∂ū

∂x̄

)
+ t2

cλc

y2
c

∂

∂ȳ

(
λ̄

∂ū

∂ȳ

)
+ t2

cλc

z2
c

∂

∂z̄

(
λ̄

∂ū

∂z̄

)
.

Often, we will set xc = yc = zc = L where L is some characteristic size of the
domain. As before, tc = L/

√
λc, and these choices lead to a dimensionless

wave equation without physical parameters:

∂2ū

∂t̄2 = ∂

∂x̄

(
λ̄

∂ū

∂x̄

)
+ ∂

∂ȳ

(
λ̄

∂ū

∂ȳ

)
+ ∂

∂z̄

(
λ̄

∂ū

∂z̄

)
. (3.35)

The initial conditions remain the same as in the previous one-dimensional
examples.

3.2 The diffusion equation

The diffusion equation in a one-dimensional homogeneous medium reads

www.dbooks.org

https://www.dbooks.org/


82 3 Basic partial differential equation models

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T ], (3.36)

where α is the diffusion coefficient. The multi-dimensional generalization to
a heterogeneous medium and a source term takes the form

∂u

∂t
= ∇· (α∇u)+f, x,y,z ∈ Ω, t ∈ (0,T ] . (3.37)

We first look at scaling of the PDE itself, and thereafter we discuss some
types of boundary conditions and how to scale the complete initial-boundary
value problem.

3.2.1 Homogeneous 1D diffusion equation

Choosing the time scale. To make (3.36) dimensionless, we introduce, as
usual, dimensionless dependent and independent variables:

x̄ = x

xc
, t̄ = t

tc
, ū = u

uc
.

Inserting the dimensionless quantities in the one-dimensional PDE (3.36)
results in

∂ū

∂t̄
= tcα

L2
∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ = T/tc] .

Arguing, as for the wave equation, that the scaling should result in

∂ū

∂t̄
and ∂2ū

∂x̄2

of the same size (about unity), implies tcα/L2 = 1 and therefore tc = L2/α.

Analytical insight. The best way to obtain the scales inherent in a problem
is to obtain an exact analytic solution, as we have done in many of the ODE
examples in this booklet. However, as a rule this is not possible. Still, often
highly simplified analytic solutions can be found for parts of the problem, or
for some closely related problem. Such solutions may provide crucial guidance
to the nature of the complete solution and to the appropriate scaling of the
full problem. We will employ such solutions now to learn about scales in
diffusion problems.

One can show that u = Ae−pt sin(kx) is a solution of (3.36) if p = αk2, for
any k. This is the typical solution arising from separation of variables and
reflects the dynamics of the space and time in the PDE. Exponential decay
in time is a characteristic feature of diffusion processes, and the e-folding
time can then be taken as a time scale. This means tc = 1/p ∼ k−2. Since k
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is related to the spatial wave length λ through k = 2π/λ, it means that tc

depends strongly on the wave length of the sine term sin(kx). In particular,
short waves (as found in noisy signals) with large k decay very rapidly. For
the overall solution we are interested in how the longest meaningful wave
decays and use that time scale for tc. The longest wave typically has half a
wave length over the domain [0,L]: u = Ae−pt sin(πx/L) (k = π/L), provided
u(0, t) = u(L,t) = 0 (with ux(L,t) = 0, the longest wave is L/4, but we look
at the case with the wave length L/2). Then tc = L2/απ−2, but the factor
π−2 is not important and we simply choose tc = L2/α, which equals the time
scale we arrived at above. We may say that tc is the time it takes for the
diffusion to significantly change the solution in the entire domain.

Another fundamental solution of the diffusion equation is the diffusion of a
Gaussian function: u(x,t) = K(4παt)−1/2 exp(−x2/(4αt)), for some constant
K with the same dimension as u. For the diffusion to be significant at a
distance x = L, we may demand the exponential factor to have a value of
e−1 ≈ 0.37, which implies t = L2/(4α), but the factor 4 is not of importance,
so again, a relevant time scale is tc = L2/α.

Choosing other scales. The scale uc is chosen according to the initial
condition: uc = maxx∈(0,L) |I(x)|. For a diffusion equation ut = αuxx with u =
0 at the boundaries x = 0,L, the solution is bounded by the initial condition
I(x). Therefore, the listed choice of uc implies that |u| ≤ 1. (The solution
u = Ae−pt sin(kx) is such an example if k = nπ/L for integer n such that
u = 0 for x = 0 and x = L.)

The resulting dimensionless PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ ], (3.38)

with initial condition

ū(x̄,0) = Ī(x̄) = I(xcx̄)
maxx |I(x)| .

Notice that (3.38) is without physical parameters, but there may be param-
eters in I(x).

3.2.2 Generalized diffusion PDE

Turning the attention to (3.37), we introduce the dimensionless diffusion
coefficient

ᾱ(x̄, ȳ, z̄) = α−1
c α(xcx̄,ycȳ, zcz̄),

typically with
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αc = max
x,y,z

α(x,y,z) .

The length scales are

x̄ = x

xc
, ȳ = y

yc
, z̄ = z

zc
.

We scale f in a similar fashion:

f̄(x̄, ȳ, z̄, t̄) = f−1
c f(x̄xc, ȳycz̄zc, t̄tc),

with

fc = max
x,y,z,t

|f(x,y,z, t)| .

Also assuming that xc = yc = zc = L, and uc = maxx,y,z(I(x,y,z), we end up
with the scaled PDE

∂ū

∂t̄
=

(
ᾱ∇̄ū

)
+βf̄ , x̄, ȳ, z̄ ∈ Ω̄, t̄ ∈ (0, T̄ ] . (3.39)

Here, ∇̄ means differentiation with respect to dimensionless coordinates x̄,
ȳ, and z̄. The dimensionless parameter β takes the form

β = tcfc

uc
= L2

α

maxx,y,z,t |f(x,y,z, t)|
maxx,y,z |I(x,y,z)| .

The scaled initial condition is ū = Ī as in the 1D case.
An alternative choice of uc is to make the coefficient tcfc/uc in the source

term unity. The scaled PDE now becomes

∂ū

∂t̄
=

(
ᾱ∇̄ū

)
+f, (3.40)

but the initial condition features the β parameter:

ū(x̄, ȳ, z̄,0) = I

tcfc
= β−1Ī(x̄, ȳ, z̄) .

The β parameter can be interpreted as the ratio of the source term and
the terms with u:

β = fc

uc/tc
∼ |f |

|ut| , β = fc

uc/tc
= fc

L2/tcuc/L2 ∼ |fc|
|α∇2u| .

We may check that β is really non-dimensional. From the PDE, f must
have the same dimensions as ∂u/∂t, i.e., [ΘT−1]. The dimension of α is more
intricate, but from the term αuxx we know that uxx has dimensions [ΘL−2],
and then α must have dimension [L2T−1] to match the target [ΘT−1]. In the
expression for β we get [L2ΘT−1(L2T−1Θ)−1], which equals 1 as it should.

∇̄ ·

∇̄ ·
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3.2.3 Jump boundary condition

A classical one-dimensional heat conduction problem goes as follows. An
insulated rod at some constant temperature U0 is suddenly heated from one
end (x = 0), modeled as a constant Dirichlet condition u(0, t) = U1 
= U0 at
that end. That is, the boundary temperature jumps from U0 to U1 at t = 0. All
the other surfaces of the rod are insulated such that a one-dimensional model
is appropriate, but we must explicitly demand ux(L,t) = 0 to incorporate the
insulation condition in the one-dimensional model at the end of the domain
x = L. Heat cannot escape, and since we supply heat at x = 0, all of the
material will eventually be warmed up to the temperature U1: u → U1 as
t → ∞.

The initial-boundary value problem reads

�c
∂u

∂t
= k

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T ], (3.41)

u(x,0) = U0, x ∈ [0,L], (3.42)
u(0, t) = U1, t ∈ (0,T ], (3.43)

∂

∂x
u(L,t) = 0, t ∈ (0,T ]. (3.44)

The PDE (3.41) arises from the energy equation in solids and involves three
physical parameters: the density �, the specific heat capacity parameter c,

�c and
introducing α = k/(�c) brings (3.41) on the standard form (3.36). We just
use the α parameter in the following.

The natural dimensionless temperature for this problem is

ū = u−U0
U1 −U0

,

since this choice makes ū ∈ [0,1]. The reason is that u is bounded by the initial
and boundary conditions (in the absence of a source term in the PDE), and
we have ū(x̄,0) = 0, ū(x̄,∞) = 1, and ū(0, t̄) = 1.

The choice of tc is as in the previous cases. We arrive at the dimensionless
initial-boundary value problem

∂ū

∂t̄
= ∂2ū

∂x̄2 , x̄ ∈ (0,1), t̄ ∈ (0, T̄ ], (3.45)

ū(x̄,0) = 0, x̄ ∈ [0,1], (3.46)
ū(0, t̄) = 1, t̄ ∈ (0, T̄ ], (3.47)

∂

∂x̄
(1, t̄) = 0, t̄ ∈ (0, T̄ ]. (3.48)

and the heat conduction coefficient (from Fourier’s law). Dividing by

ū

www.dbooks.org

https://www.dbooks.org/


86 3 Basic partial differential equation models

The striking feature is that there are no physical parameters left in this
problem. One simulation can be carried out for ū(x̄, t̄), see Figure 3.3, and the
temperature in a rod of any material and any constant initial and boundary
temperature can be retrieved by

u(x,t) = U0 +(U1 −U0)ū(x/L,tα/L2) .

Fig. 3.3 Scaled temperature in an isolated rod suddenly heated from the end.

3.2.4 Oscillating Dirichlet condition

Now we address a heat equation problem where the temperature is oscillating
on the boundary x = 0:

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0,L), t ∈ (0,T ], (3.49)

u(x,0) = U0, x ∈ [0,L], (3.50)
u(0, t) = U0 +Asin(ωt), t ∈ (0,T ], (3.51)

∂

∂x
u(L,t) = 0, t ∈ (0,T ]. (3.52)
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One important physical application is temperature oscillations in the ground,
either day and night variations at a short temporal and spatial scale, or
seasonal variations in the Earth’s crust. An important modeling assumption
is (3.52), which means that the boundary x = L is placed sufficiently far from
x = 0 such that the solution is much damped and basically constant so ux = 0
is a reasonable condition.

Scaling issues. Since the boundary temperature is oscillating around the
initial condition, we expect u ∈ [U0 − A,U0 + A]. The dimensionless temper-
ature is therefore taken as

ū = u−U0
A

,

such that ū ∈ [−1,1].
What is an appropriate time scale? There will be two time scales in-

volved, the oscillations sin(ωt) with period P = 2π/ω at the boundary and
the “speed of diffusion”, or more specifically the “speed of heat conduction”
in the present context, where tc = x2

c/α is the appropriate scale, xc being
the length scale. Choosing the right length scale is not obvious. As we shall
see, the standard choice xc = L is not a good candidate, but to understand
why, we need to examine the solution, either through simulations or through
a closed-form formula. We are so lucky in this relatively simple pedagogical
problem that one can find an exact solution of a related problem.

Exact solution. As usual, investigating the exact solution of the model
problem can illuminate the involved scales. For this particular initial-boundary
value problem the exact solution as t → ∞ (such that the initial condition
u(x,0) = U0 is forgotten) and L → ∞ (such that (3.52) is certainly valid) can
be shown to be

u(x,t) = U0 −Ae−bx sin(bx−ωt), b =
√

ω

2α
. (3.53)

This solution is of the form e−bxg(x − ct), i.e., a damped wave that moves
to the right with velocity c and a damped amplitude e−bx. This is perhaps
more easily seen if we make a rewrite

u(x,t) = U0 −Ae−bx sin(b(x− ct)) , c = ω/b =
√

2αω, b =
√

ω

2α
.

Time and length scales. The boundary oscillations lead to the time scale
tc = 1/ω. The speed of the wave suggests another time scale: the time it
takes to propagate through the domain, which is L/c, and hence tc = L/c =
L/

√
2αω.

One can argue that L is not the appropriate length scale, because u is
damped by e−bx. So, for x > 4/b, u is close to zero. We may instead use
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1/b as length scale, which is the e-folding distance of the damping factor,
and base tc on the time it takes a signal to propagate one length scale,
t−1
c = bc = ω. Similarly, the time scale based on the “speed of diffusion”

changes to t−1
c = b2α = 1

2ω if we employ 1/b as length scale.
To summarize, we have three candidates for the time scale: tc = L2/α

(diffusion through the entire domain), tc = 2/ω (diffusion through a distance
1/b where u is significantly different from zero), and tc = 1/ω (wave movement
over a distance 1/b).

Let us look at the dimensionless exact solution to see if it can help with
the choice of scales. We introduce the dimensionless parameters

β = bxc = xc

√
ω

2α
, γ = ωtc .

The scaled solution becomes

ū(x̄, t̄;β,γ) = e−βx̄ sin(γt̄−βx̄) .

The three choices of γ, implied by the three choices of tc, are

γ =

⎧⎨
⎩

1, tc = 1/ω,
2, tc = 2/ω,
2β2, tc = L2/α, xc = L

(3.54)

The former two choices leave only β as parameter in ū, and with xc = 1/b
as length scale, β becomes unity, and there are no parameters in the dimen-
sionless solution:

ū(x̄, t̄) = e−x̄ sin(t̄− x̄) . (3.55)

Therefore, xc = 1/b and tc = 1/ω (or tc = 2/ω, but the factor 2 is of no
importance) are the most appropriate scales.

To further argue why (3.55) demonstrates that these scales are preferred,
think of ω as large. Then the wave is damped over a short distance and there
will be a thin boundary layer of temperature oscillations near x = 0 and
little changes in u in the rest of the domain. The scaling (3.55) resolves this
problem by using 1/b ∼ ω−1/2 as length scale, because then the boundary
layer thickness is independent of ω. The length of the domain can be chosen
as, e.g., 4/b such that ū ≈ 0 at the end x = L. The length scale 1/b helps us
to zoom in on the part of u where significant changes take place.

In the other limit, ω small, b becomes small, and the wave is hardly damped
in the domain [0,L] unless L is large enough. The imposed boundary condition
on x = L in fact requires u to be approximately constant so its derivative
vanishes, and this property can only be obtained if L is large enough to
ensure that the wave becomes significantly damped. Therefore, the length
scale is dictated by b, not L, and L should be adapted to b, typically L ≥ 4/b if
e−4 ≈ 0.018 is considered enough damping to consider ū ≈ 0 for the boundary
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condition. This means that x ∈ [0,4/b] and then x̄ ∈ [0,4]. Increasing the
spatial domain to [0,6] implies a damping e−6 ≈ 0.0025, if more accuracy is
desired in the boundary condition.
The scaled problem. Based on the discussion of scales above, we arrive at
the following scaled initial-boundary value problem:

∂ū

∂t̄
= 1

2
∂2ū

∂x2 , x̄ ∈ (0,4), t̄ ∈ (0, T̄ ], (3.56)

ū(x̄,0) = 0, x̄ ∈ [0,1], (3.57)
ū(0, t̄) = sin(t̄), t̄ ∈ (0, T̄ ], (3.58)

∂

∂x̄
ū(L̄, t̄) = 0, t̄ ∈ (0, T̄ ]. (3.59)

The coefficient in front of the second-derivative is 1
2 because

tcα

1/b2 = b2α

ω
= 1

2 .

We may, of course, choose tc = 2/ω and get rid of the 1
2 factor, if desired, but

then it turns up in (3.58) instead, as sin(2t̄).
The boundary condition at x̄ = L̄ is only an approximation and relies on

sufficient damping of ū to consider it constant (∂/∂x̄ = 0) in space. We could,
therefore, assign the condition ū = 0 instead at x̄ = L̄.
Simulations. The file session.py contains a function solver_diffusion_FE
for solving a diffusion equation in one dimension. This function can be used
to solve the system (3.56)-(3.59), see diffusion_oscillatory_BC.

Movie 3: Diffusion wave. https://github.com/hplgit/scaling-book/raw/master/
doc/pub/book/html/mov-scaling/diffusion_osc_BC/movie.mp4

3.3 Reaction-diffusion equations

3.3.1 Fisher’s equation

Fisher’s equation is essentially the logistic equation at each point for popula-
tion dynamics (see Section 2.1.9) combined with spatial movement through
ordinary diffusion:

∂u

∂t
= α

∂2u

∂x2 +�u(1−u/M) . (3.60)

This PDE is also known as the KPP equation after Kolmogorov, Petrovsky,
and Piskunov (who introduced the equation independently of Fisher).
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Setting

x̄ = x

xc
, t̄ = t

tc
, ū = u

uc
,

results in

∂ū

∂t̄
= tcα

x2
c

∂2ū

∂x̄2 + tc�ū(1−ucū/M) .

Balance of all terms. If all terms are equally important, the scales can be
determined from demanding the coefficients to be unity. Reasoning as for the
logistic ODE in Section 2.1.9, we may choose tc = 1/�. Then the coefficient
in the diffusion term dictates the length scale xc =

√
tcα. A natural scale for

u is M , since M is the upper limit of u in the model (cf. the logistic term).
Summarizing,

uc = M, tc = 1
�

, xc =
√

α

�
,

and the scaled PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 + ū(1− ū) . (3.61)

With this scaling, the length scale xc =
√

α/� is not related to the domain
size, so the scale is particularly relevant for infinite domains.

An open question is whether the time scale should be based on the diffusion
process rather than the initial exponential growth in the logistic term. The
diffusion time scale means tc = x2

c/α, but demanding the logistic term then
to have a unit coefficient forces x2

c�/α = 1, which implies xc =
√

α/� and
tc = 1/�. That is, equal balance of the three terms gives a unique choice of
the time and length scale.

Fixed length scale. Assume now that we fix the length scale to be L, either
the domain size or some other naturally given length. With xc = L, tc = �−1,
uc = M , we get

∂ū

∂t̄
= β

∂2ū

∂x̄2 + ū(1− ū), (3.62)

where β is a dimensionless number

β = α

�L2 = �−1

L2/α
.

The last equality demonstrates that β measures the ratio of the time scale for
exponential growth in the beginning of the logistic process and the time scale
of diffusion L2/α (i.e., the time it takes to transport a signal by diffusion
through the domain). For small β we can neglect the diffusion and spatial
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movements, and the PDE is essentially a logistic ODE at each point, while
for large β, diffusion dominates, and tc should in that case be based on the
diffusion time scale L2/α. This leads to the scaled PDE

(3.63)

showing that a large β encourages omission of the logistic term, because
the point-wise growth takes place over long time intervals while diffusion is
rapid. The effect of diffusion is then more prominent and it suffices to solve
ūt̄ = ūx̄x̄. The observant reader will in this latter case notice that uc = M is an
irrelevant scale for u, since logistic growth with its limit is not of importance,
so we implicitly assume that another scale uc has been used, but that scale
cancels anyway in the simplified PDE ūt̄ = ūx̄x̄.

3.3.2 Nonlinear reaction-diffusion PDE

A general, nonlinear reaction-diffusion equation in 1D looks like

∂u

∂t
= α

∂2u

∂x2 +f(u) . (3.64)

By scaling the nonlinear reaction term f(u) as fcf̄(ucū), where fc is a charac-
teristic size of f(u), typically the maximum value, one gets a non-dimensional
PDE like

∂ū

∂t̄
= tcα

x2
c

∂2ū

∂x̄2 + tcfc

uc
f̄(ucū) .

The characteristic size of u can often be derived from boundary or initial
conditions, so we first assume that uc is given. This fact uniquely determines
the space and time scales by demanding that all three terms are equally
important and of unit size:

tc = uc

fc
, xc =

√
αuc

fc
.

The corresponding PDE reads

∂ū

∂t̄
= ∂2ū

∂x̄2 + f̄(ucū) . (3.65)

If xc is based on some known length scale L, balance of all three terms
can be used to determine uc and tc:

tc = L2

α
, uc = L2fc

α
.

∂ū

∂t̄
= ∂2ū

∂x̄2 +β−1ū(1− ū),
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This scaling only works if f is nonlinear, otherwise uc cancels and there is no
freedom to constrain this scale.

With given L and uc, there are two choices of tc since it can be based on
the diffusion or the reaction time scales. With the reaction scale, tc = uc/fc,
one arrives a the PDE

∂ū

∂t̄
= β

∂2ū

∂x̄2 + f̄(ucū), (3.66)

where

β = αuc

L2fc
= uc/fc

L2/α

is a dimensionless number reflecting the ratio of the reaction time scale and
the diffusion time scale. On the contrary, with the diffusion time scale, tc =
L2/α, the scaled PDE becomes

∂ū

∂t̄
= ∂2ū

∂x̄2 +β−1f̄(ucū) . (3.67)

The size of β in an application will determine which of the scalings that is
most appropriate.

3.4 The convection-diffusion equation

3.4.1 Convection-diffusion without a force term

We now add a convection term v ·∇u to the diffusion equation to obtain the
well-known convection-diffusion equation:

∂u

∂t
+v ·∇u = α∇2u, x,y,z ∈ Ω, t ∈ (0,T ] . (3.68)

The velocity field v is prescribed, and its characteristic size V is normally
clear from the problem description. In the sketch below, we have some given
flow over a bump, and u may be the concentration of some substance in the
fluid. Here, V is typically maxy v(y). The characteristic length L could be
the entire domain, L = c + �, or the height of the bump, L = D. (The latter
is the important length scale for the flow.)
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v(y)
D

�c

Inserting

x̄ = x

xc
, ȳ = y

yc
, z̄ = z

zc
, t̄ = t

tc
, v̄ = v

V
, ū = u

uc

in (3.68) yields

uc

tc

∂ū

∂t̄
+ ucV

L
v̄ · ∇̄ū = αuc

L2 ∇̄2ū, x̄, ȳ, z̄ ∈ Ω, t̄ ∈ (0, T̄ ] .

For uc we simply introduce the symbol U , which we may estimate from an
initial condition. It is not critical here, since it vanishes from the scaled equa-
tion anyway, as long as there is no source term present. With some velocity
measure V and length measure L, it is tempting to just let tc = L/V . This is
the characteristic time it takes to transport a signal by convection through
the domain. The alternative is to use the diffusion length scale tc = L2/α. A
common physical scenario in convection-diffusion problems is that the con-
vection term v · ∇u dominates over the diffusion term α∇2u. Therefore, the
time scale for convection (L/V ) is most appropriate of the two. Only when the
diffusion term is very much larger than the convection term (corresponding
to very small Peclet numbers, see below) tc = L2/α is the right time scale.

The non-dimensional form of the PDE with tc = L/V becomes

∂ū

∂t̄
+ v̄ · ∇̄ū = Pe−1∇̄2ū, x̄, ȳ, z̄ ∈ Ω, t̄ ∈ (0, T̄ ], (3.69)

where Pe is the Peclet number,

Pe = LV

α
.

Estimating the size of the convection term v ·∇u as V U/L and the diffusion
term α∇2u as αU/L2, we see that the Peclet number measures the ratio of
the convection and the diffusion terms:

Pe = convection
diffusion = V U/L

αU/L2 = LV

α
.
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In case we use the diffusion time scale tc = L2/α, we get the non-
dimensional PDE

∂ū

∂t̄
+Pe v̄ · ∇̄ū = ∇̄2ū, x̄, ȳ, z̄ ∈ Ω, t̄ ∈ (0, T̄ ] . (3.70)

Discussion of scales and balance of terms in the PDE

We see that (3.69) and (3.70) are not equal, and they are based on two
different time scales. For moderate Peclet numbers around 1, all terms
have the same size in (3.69), i.e., a size around unity. For large Peclet
numbers, (3.69) expresses a balance between the time derivative term
and the convection term, both of size unity, and then there is a very
small Pe−1∇̄2ū term because Pe is large and ∇̄2ū should be of size
unity. That the convection term dominates over the diffusion term is
consistent with the time scale tc = L/V based on convection transport.
In this case, we can neglect the diffusion term as Pe goes to infinity and
work with a pure convection (or advection) equation

∂ū

∂t̄
+ v̄ · ∇̄ū = 0 .

For small Peclet numbers, Pe−1∇̄2ū becomes very large and can only
be balanced by two terms that are supposed to be unity of size. The
time-derivative and/or the convection term must be much larger than
unity, but that means we use suboptimal scales, since right scales imply
that ∂ū/∂t̄ and v̄ ·∇̄ū are of order unity. Switching to a time scale based
on diffusion as the dominating physical effect gives (3.70). For very small
Peclet numbers this equation tells that the time-derivative balances
the diffusion. The convection term v̄ · ∇̄ū is around unity in size, but
multiplied by a very small coefficient Pe, so this term is negligible in
the PDE. An approximate PDE for small Peclet numbers is therefore

∂ū

∂t̄
= ∇̄2ū .

Scaling can, with the above type of reasoning, be used to neglect
terms from a differential equation under precise mathematical condi-
tions.
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3.4.2 Stationary PDE

Suppose the problem is stationary and that there is no need for any time
scale. How is this type of convection-diffusion problem scaled? We get

V U

L
v̄ · ∇̄ū = αU

L2 ∇̄2ū,

or

v̄ · ∇̄ū = Pe−1∇̄2ū . (3.71)

This scaling only “works” for moderate Peclet numbers. For very small or
very large Pe, either the convection term v̄ · ∇̄ū or the diffusion term ∇̄2ū
must deviate significantly from unity.

Consider the following 1D example to illustrate the point: v = vi, v > 0
constant, a domain [0,L], with boundary conditions u(0) = 0 and u(L) = UL.
(The vector i is a unit vector in x direction.) The problem with dimensions
is now

vu′ = αu′′, u(0) = 0, u(L) = UL .

Scaling results in

dū

dx̄
= Pe−1 d2ū

dx̄2 , x̄ ∈ (0,1), ū(0) = 0, ū(1) = 1,

if we choose U = UL. The solution of the scaled problem is

ū(x̄) = 1−ex̄Pe

1−ePe .

Figure 3.4 indicates how ū depends on Pe: small Pe values give approximately
a straight line while large Pe values lead to a boundary layer close to x = 1,
where the solution changes very rapidly.

We realize that for large Pe,

max
x̄

dū

dx̄
≈ Pe, max

x̄

d2ū

dx̄2 ≈ Pe2,

which are consistent results with the PDE, since the double derivative term
is multiplied by Pe−1. For small Pe,

max
x̄

dū

dx̄
≈ 1, max

x̄

d2ū

dx̄2 ≈ 0,

which is also consistent with the PDE, since an almost vanishing second-order
derivative is multiplied by a very large coefficient Pe−1. However, we have a
problem with very large derivatives of ū when Pe is large.
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Fig. 3.4 Solution of scaled problem for 1D convection-diffusion.

To arrive at a proper scaling for large Peclet numbers, we need to remove
the Pe coefficient from the differential equation. There are only two scales at
our disposals: uc and xc for u and x, respectively. The natural value for uc is
the boundary value UL at x = L. The scaling of V ux = αuxx then results in

dū

dx̄
= α

V xc

d2ū

dx̄2 , x̄ ∈ (0, L̄), ū(0) = 0, ū(L̄) = 1,

where L̄ = L/xc. Choosing the coefficient α/(V xc) to be unity results in the
scale xc = α/V , and L̄ becomes Pe. The final, scaled boundary-value problem
is now

dū

dx̄
= d2ū

dx̄2 , x̄ ∈ (0,Pe), ū(0) = 0, ū(Pe) = 1,

with solution

ū(x̄) = 1−ex̄

1−ePe .

Figure 3.5 displays ū for some Peclet numbers, and we see that the shape
of the graphs are the same with this scaling. For large Peclet numbers we
realize that ū and its derivatives are around unity (1 − ePe ≈ −ePe), but for
small Peclet numbers dū/dx̄ ∼ Pe−1.
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Fig. 3.5 Solution of scaled problem where the length scale depends on the Peclet
number.

The conclusion is that for small Peclet numbers, xc = L is an appropriate
length scale. The scaled equation Pe ū′ = ū′′ indicates that ū′′ ≈ 0, and the
solution is close to a straight line. For large Pe values, xc = α/V is an appro-
priate length scale, and the scaled equation ū′ = ū′′ expresses that the terms
ū′ and ū′′ are equal and of size around unity.

3.4.3 Convection-diffusion with a source term

Let us add a force term f(x, t) to the convection-diffusion equation:

∂u

∂t
+v ·∇u = α∇2u+f . (3.72)

The scaled version reads

∂ū

∂t̄
+ tcV

L
v̄ · ∇̄ū = tcα

L2 ∇̄2ū+ tcfc

uc
f̄ .

We can base tc on convective transport: tc = L/V . Now, uc could be chosen
to make the coefficient in the source term unity: uc = tcfc = Lfc/V . This
leaves us with
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∂ū

∂t̄
+ v̄ · ∇̄ū = Pe−1∇̄2ū+ f̄ .

In the diffusion limit, we base tc on the diffusion time scale: tc = L2/α,
and the coefficient of the source term set to unity determines uc according to

L2fc

αuc
= 1 ⇒ uc = L2fc

α
.

The corresponding PDE reads

∂ū

∂t̄
+Pe v̄ · ∇̄ū = ∇̄2ū+ f̄ ,

so for small Peclet numbers, which we have, the convective term can be
neglected and we get a pure diffusion equation with a source term.

What if the problem is stationary? Then there is no time scale and we get

V uc

L
v̄ · ∇̄ū = ucα

L2 ∇̄2ū+fcf̄ ,

or

v̄ · ∇̄ū = Pe−1∇̄2ū+ fcL

V uc
f̄ .

Again, choosing uc such that the source term coefficient is unity leads to
uc = fcL/V . Alternatively, uc can be based on the initial condition, with
similar results as found in the sections on the wave and diffusion PDEs.
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Chapter 4
Advanced partial differential
equation models

This final chapter addresses more complicated PDE models, including linear
elasticity, viscous flow, heat transfer, porous media flow, gas dynamics, and
electrophysiology. A range of classical dimensionless numbers are discussed
in terms of the scaling.

4.1 The equations of linear elasticity

To the best of the authors’ knowledge, it seems that mathematical models in
elasticity and structural analysis are almost never non-dimensionalized. This
is probably due to tradition, but the following sections will demonstrate the
usefulness of scaling also in this scientific field.

We start out with the general, time-dependent elasticity PDE with variable
material properties. Analysis based on scaling is used to determine under
what circumstances the acceleration term can be neglected and we end up
with the widely used stationary elasticity PDE. Scaling of different types
of boundary conditions is also treated. At the end, we scale the equations
of coupled thermo-elasticity. All the models make the assumption of small
displacement gradients and Hooke’s generalized constitutive law such that
linear elasticity theory applies.

4.1.1 The general time-dependent elasticity problem

The following vector PDE governs deformation and stress in purely elastic
materials, under the assumption of small displacement gradients:

�
∂2u

∂t2 = ∇((λ+μ)∇·u)+∇· (μ∇u)+�f . (4.1)

© The Author(s) 2016
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Here, u is the displacement vector, � is the density of the material, λ and μ
are the Lame elasticity parameters, and f is a body force (gravity, centrifugal
force, or similar).

We introduce dimensionless variables:

ū = u−1
c u, x̄ = x

L
ȳ = y

L
z̄ = z

L
, t̄ = f

tc
.

Also the elasticity parameters and the density can be scaled, if they are not
constants,

λ̄ = λ

λc
, μ̄ = μ

μc
, �̄ = �

�c
,

where the characteristic quantities are typically spatial maximum values of
the functions:

λc = max
x,y,z

λ, μc = max
x,y,z

μ, �c = max
x,y,z

�.

Finally, we scale f too (if not constant):

f̄ = f−1
c f , fc = max

x,y,z,t
||f || .

Inserting the dimensionless quantities in the governing vector PDE results
in

�cuc

t2
c

∂2ū

∂t̄2 = L−2uc∇̄((λcλ̄+μcμ̄)∇̄ · ū)+L−2ucμc∇̄ · (μ̄∇̄ū)+�cfc�̄f̄ .

Making the terms non-dimensional gives the equation

�̄
∂2ū

∂t̄2 = t2
cλc

L2�c
∇̄(λ̄∇̄ · ū)+ t2

cμc

L2�c
∇̄(μ̄∇̄ · ū)+ t2

cμc

L2�c
∇̄ · (μ̄∇̄ū)+ t2

cfc

uc
�̄f̄ . (4.2)

We may choose tc to make the coefficient in front of any of the spatial deriva-
tive terms equal unity. Here we choose the μ term, which implies

tc = L

√
�c

μc
.

The scale for u can be chosen from an initial displacement or by making the
coefficient in front of the f̄ term unity. The latter means

uc = μ−1
c �cfcL2 .

As discussed later, in Section 4.1.4, this might not be the desired uc in
applications.
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�̄
∂2ū

∂t̄2 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ . (4.3)

The only dimensionless parameter is

β = λc

μc
.

If the source term is absent, we must use the initial condition or a known
boundary displacement to determine uc.
Software. Given software for (4.1), we can simulate the dimensionless prob-
lem by setting � = �̄, λ = βλ̄, and μ = μ̄.

4.1.2 Dimensionless stress tensor

The stress tensor σ is a key quantity in elasticity and is given by

σ = λ∇·uI +μ(∇u+(∇u)T ) .

This σ can be computed as soon as the PDE problem for u has been solved.
Inserting dimensionless variables on the right-hand side of the above relation
gives

σ = λcucL−2λ̄∇̄ · ū+μcucL−1μ̄(∇̄ū+(∇̄ū)T )

= μcucL−1
(

βλ̄∇̄ · ū+ μ̄(∇̄ū+(∇̄ū)T )
)

.

The coefficient on the right-hand side, μcucL−1, has dimension of stress,
since (according to the second table in Section 1.1.2) [MT−2L−1)(L)(L−1)] =
[MT−2L−1], which is the dimension of stress. The quantity μcucL−1 is there-
fore the natural scale of the stress tensor:

σ̄ = σ

σc
, σc = μcucL−1,

and we have the dimensionless stress-displacement relation

σ̄ = βλ̄∇̄ · ū+ μ̄(∇̄ū+(∇̄ū)T ) . (4.4)

4.1.3 When can the acceleration term be neglected?

A lot of applications of the elasticity equation involve static or quasi-static
deformations where the acceleration term �utt is neglected. Now we shall see
under which conditions the quasi-static approximation holds.

The resulting dimensionless PDE becomes
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The further discussion will need to look into the time scales of elastic
waves, because it turns out that the chosen tc above is closely linked to the
propagation speed of elastic waves in a homogeneous body without body
forces. A relevant model for such waves has constant �, λ, and μ, and no
force term:

�
∂2u

∂t2 = (λ+μ)∇∇·u+μ∇2u . (4.5)

S waves. Let us take the curl of this PDE and notice that the curl of a
gradient vanishes. The result is

∂2

∂t2 ∇×u = c2
S∇2∇×u,

i.e., a wave equation for ∇×u. The wave velocity is

cS =
√

μ

�
.

The corresponding waves are called S waves1. The curl of a displacement field
is closely related to rotation of continuum elements. S waves are therefore
rotation waves, also sometimes referred to as shear waves.

The divergence of a displacement field can be interpreted as the volume
change of continuum elements. Suppose this volume change vanishes, ∇·u =
0, which means that the material is incompressible. The elasticity equation
then simplifies to

∂2u

∂t2 = c2
S∇2u,

so each component of the displacement field in this case also propagates as
a wave with speed c2

S . The time it takes for such a wave to travel one charac-
teristic length L is L/cS , i.e., L

√
�/μ, which is nothing but our characteristic

time tc.

P waves. We may take the divergence of the PDE instead and notice that
∇·∇ = ∇2 so

∂2

∂t2 ∇·u = c2
P ∇2∇·u,

with wave velocity

cP =

√
λ+2μ

�
.

1https://en.wikipedia.org/wiki/S-wave
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That is, the volume change (expansion/compression) propagates as a wave
with speed cP . These types of waves are called P waves2. Other names are
pressure and expansion/compression waves.

Suppose now that ∇×u = 0, i.e., there is no rotation (“shear”) of contin-
uum elements. Mathematically this condition implies that ∇2u = ∇(∇ · u)
(see any book on vector calculus or Wikipedia3). Our model equation (4.5)
then reduces to

∂2u

∂t2 = c2
P ∇2u,

which is nothing but a wave equation for the expansion component of the
displacement field, just as (4.1.3) is for the shear component.
Time-varying load. Suppose we have some time-varying boundary con-
dition on u or the stress vector (traction), with a time scale 1/ω (some
oscillating movement that goes like sinωt, for instance). We choose tc = 1/ω.
The scaling now leads to

γ
∂2ū

∂t̄2 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ .

where we have set

uc = μ−1
c fcL2�c,

as before, and γ is a new dimensionless number,

γ = �cL2ω2

μc
=

(
L

√
�c/μc

1/ω

)2

.

The last rewrite shows that √
γ is the ratio of the time scale for S waves and

the time scale for the forced movement on the boundary. The acceleration
term can therefore be neglected when γ � 1, i.e., when the time scale for
movement on the boundary is much larger than the time it takes for the S
waves to travel through the domain. Since the velocity of S waves in solids is
very large and the time scale correspondingly small, γ � 1 is very often the
case in applications involving structural analysis.

4.1.4 The stationary elasticity problem

Scaling of the PDE. We now look at the stationary version of (4.1) where
the �utt term is removed. The first step in the scaling is just inserting the
dimensionless variables:

2https://en.wikipedia.org/wiki/P-wave
3https://en.wikipedia.org/wiki/Vector_calculus_identities

www.dbooks.org

https://www.dbooks.org/


104 4 Advanced partial differential equation models

0 = L−2uc∇̄((λcλ̄+μcμ̄)∇̄ · ū)+L−2ucμc∇̄ · (μ̄∇̄ū)+�cfc�̄f̄ .

Dividing by L2ucμc gives

0 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ L2�cfc

ucμc
�̄f̄ .

Choosing uc = �L f /μ2
c c leads to

∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ = 0 . (4.6)

A homogeneous material with constant λ, μ, and � is an interesting case
(this corresponds to μc = μ, λc = λ, �c = �, �̄ = λ̄ = μ̄ = 1):

(1+β)∇̄(∇̄ · ū)+ ∇̄2ū)+ f̄ = 0 . (4.7)

Now β is defined as

β = λ

μ
=

(
cp

cs

)2
−2 .

It shows that in standard, stationary elasticity, λ/μ is the only significant
physical parameter.

Scaling of displacement boundary conditions. A typical boundary con-
dition on some part of the boundary is a prescribed displacement. For sim-
plicity, we set u = U0 for a constant vector U0 as boundary condition. With
uc = �L2fc/μ, we get the dimensionless condition

ū = U0
uc

= μU0
�L2fc

.

In the absence of body forces, the expression for uc has no meaning (fc = 0),
so then uc = |U0| is a better choice. This gives the dimensionless boundary
condition

ū = U0
|U0| ,

which is the unit vector in the direction of U0. The new uc changes the

Remark on the characteristic displacement.

The presented scaling may not be valid for problems where the geometry
involves some dimensions that are much smaller than others, such as for
beams, shells, or plates. Then one more length scale must be defined which
gives us non-dimensional geometrical numbers. Global balances of moments
and loads then determine how characteristic displacements depend on these
numbers. As an example, consider a cantilever beam of length L and square-
shaped cross section of width W , deformed under its own weight. From beam
theory one can derive uc = 3

2�gL2δ2/E, where δ = L/W (g is the acceleration
of gravity). If we consider E to be of the same size as λ, this implies that
γ ∼ δ−2. So, it may be wise to prescribe a uc in elasticity problems, perhaps
from formulas as shown, and keep γ in the PDE.
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σ ·n = T0,

where, to make it simple, we take T0 as a constant vector. From Section 4.1.2
we have a stress scale σc = μuc/L, but we may alternatively use |T0| as stress
scale. In that case,

σ̄ ·n = T0
|T0| ,

which is a unit vector in the direction of T0. Many applications involve large
traction free areas on the boundary, on which we simply have σ̄ ·n = 0.

4.1.5 Quasi-static thermo-elasticity

if displacements are constrained. The time scale of temperature changes are
usually much larger than the time scales of elastic waves, so the stationary
equations of elasticity can be used, but a term depends on the temperature,
so the equations must be coupled to a PDE for heat transfer in solids. The
resulting system of PDEs is known as the equations of thermo-elasticity and
reads

∇((λ+μ)∇·u)+∇· (μ∇u) = α∇T −�f , (4.8)

�c
∂T

∂t
= ∇· (κ∇T )+�fT , (4.9)

where T is the temperature, α is a coefficient of thermal expansion, c is a heat
capacity, κ is the heat conduction coefficient, and fT is some heat source.
The density � is strictly speaking a function of T and the stress state, but
a widely used approximation is to consider � as a constant. Most thermo-
elasticity applications have fT = 0, so we drop this term. Most applications
also involve some heating from a temperature level T0 to some level T0 +ΔT .
A suitable scaling for T is therefore

T̄ = T −T0
ΔT

,

so that T̄ ∈ [0,1]. The elasticity equation has already been scaled and so has
the diffusion equation for T . We base the time scale on the diffusion, i.e., the
thermal conduction process:

tc = �cL2/κc .

δ = L2�fc

μ|U0| .

Scaling of traction boundary conditions. The other type of common
boundary condition in elasticity is a prescribed traction (stress vector) on
some part of the boundary:

coefficient in front of the body force term, if that term is present, to the
dimensionless number

Heating solids gives rise to expansion, i.e., strains, which may cause stress

www.dbooks.org

https://www.dbooks.org/


106 4 Advanced partial differential equation models

We imagine that κ is scaled as κ̄ = κ/κc. The dimensionless PDE system then
becomes

∇̄((1+β)μ̄∇̄ · ū)+ ∇̄ · (μ̄∇̄ū) = ∇̄T̄ − ε�̄f̄ , (4.10)
∂T̄

∂t̄
= ∇̄ · (κ̄∇̄T̄ ) . (4.11)

Here we have chosen uc such that the “heating source term” has a unit
coefficient, acknowledging that this thermal expansion balances the stress
terms with ū. The corresponding displacement scale is

uc = αLΔT

μc
.

The dimensionless number in the body force term is therefore

ε = L�cfc

αΔT
,

which measures the ratio of the body force term and the “heating source
term”.

A homogeneous body with constant �, λ, μ, c, and κ is common. The PDE
system reduces in this case to

∇̄((1+β)∇̄ · ū)+ ∇̄2ū) = ∇̄T̄ − εf̄ , (4.12)
∂T̄

∂t̄
= ∇̄2T̄ . (4.13)

In the absence of body forces, β is again the key parameter.
The boundary conditions for thermo-elasticity consist of the conditions

for elasticity and the conditions for diffusion. Scaling of such conditions are
discussed in Section 3.2 and 4.1.4.

4.2 The Navier-Stokes equations

This section shows how to scale various versions of the equations governing
incompressible viscous fluid flow. We start with the plain Navier-Stokes equa-
tions without body forces and progress with adding the gravity force and a
free surface. We also look at scaling low Reynolds number flow and oscillating
flows.
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4.2.1 The momentum equation without body forces

The Navier-Stokes equations for incompressible viscous fluid flow, without
body forces, take the form

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u, (4.14)

∇·u = 0 . (4.15)

The primary unknowns are the velocity u and the pressure p. Moreover, � is
the fluid density, and μ is the dynamic viscosity.

Scaling. We start, as usual, by introducing a notation for dimensionless
independent and dependent variables:

x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
, ū = u

uc
, p̄ = p

pc
,

where L is some characteristic distance, tc is some characteristic time, uc is
a characteristic velocity, while pc is a characteristic pressure. Inserted in the
equations,

�

(
uc

tc

∂ū

∂t̄
+ u2

c

L
ū · ∇̄ū

)
= −pc

L
∇̄p̄+ uc

L2 μ∇̄2ū, (4.16)

uc

L
∇̄ · ū = 0 . (4.17)

For the velocity it is common to just introduce some U for uc. This U is
normally implied by the problem description. For example, in the flow con-
figuration below, with flow over a bump, we have some incoming flow with
a profile v(y) and U can typically be chosen as U = maxy v(y). The height
of the bump influences the wake behind the bump, and is the length scale
that really impacts the flow, so it is natural to set L = D. For numerical
simulations in a domain of finite extent, [0, c + �], c must be large enough
to avoid feedback on the inlet profile, and � must be large enough for the
type of outflow boundary condition used. Ideally, c,� → ∞, so none of these
parameters are useful as length scales.
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v(y)
D

�c

For flow in a channel or tube, we also have some inlet profile, e.g., v(r)
in a tube, where r is the radial coordinate. A natural choice of characteristic
velocity is U = v(0) or to let U be the average flow, i.e.,

U = 1
πR2

∫ R

0
2πv(r)rdr,

if R is the radius of the tube. Other examples may be flow around a body,
where there is some distant constant inlet flow u = U0i, for instance, and
U = U0 is an obvious choice. We therefore assume that the flow problem
itself brings a natural candidate for U .

Having a characteristic distance L and velocity U , an obvious time measure
is L/U so we set tc = L/U . Dividing by the coefficient in front of the time
derivative term, creates a pressure term

pc

�U2 ∇̄p̄ .

The coefficient suggest a choice pc = �U2 if the pressure gradient term is
to have the same size as the acceleration terms. This pc is a very common
pressure scale in fluid mechanics, arising from Bernoulli’s equation

p+ 1
2�u ·u = const

for stationary flow.

Dimensionless PDEs and the Reynolds number. The discussions so far
result in the following dimensionless form of (4.14) and (4.15):

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū, (4.18)

∇̄ · ū = 0, (4.19)

where Re is the famous Reynolds number,

Re = �UL

μ
= UL

ν
.
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The latter expression makes use of the kinematic viscosity ν = μ/�. For vis-
cous fluid flows without body forces there is hence only one dimensionless
number, Re.

The Reynolds number can be interpreted as the ratio of convection and
viscosity:

convection
viscosity = |�u ·∇u|

|μ∇2u| ∼ �U2/L

μU/L2 = UL

ν
= Re .

(We have here used that ∇u goes like U/L and ∇2u goes like U/L2.)

4.2.2 Scaling of time for low Reynolds numbers

As we discussed in Section 3.4 for the convection-diffusion equation, there is
not just one scaling that fits all problems. Above, we used tc = L/U , which
is appropriate if convection is a dominating physical effect. In case the con-
vection term �u · ∇u is much smaller than the viscosity term μ∇2u, i.e.,
the Reynolds number is small, the viscosity term is dominating. However, if
the scaling is right, the other terms are of order unity, and Re−1∇2ū must
then also be of unit size. This fact implies that ∇2ū must be small, but then
the scaling is not right (since a right scaling will lead to ū and its derivatives
around unity). Such reasoning around inconsistent size of terms clearly points
to the need for other scales.

In the low-Reynolds number regime, the diffusion effect of ∇2ū is dominat-
ing, and we should use a time scale based on diffusion rather than convection.
Such a time scale is tc = L2/(μ/�) = L2/ν. With this time scale, the dimen-
sionless Navier-Stokes equations look like

∂ū

∂t̄
+Re ū · ∇̄ū = −∇̄p+ ∇̄2ū, (4.20)

∇̄ · ū = 0 . (4.21)

As stated in the box in Section 3.4, (4.20) is the appropriate PDE for very
low Reynolds number flow and suggests neglecting the convection term. If
the flow is also steady, the time derivative term can be neglected, and we end
up with the so-called Stokes problem for steady, slow, viscous flow:

−∇̄p+ ∇̄2ū = 0, (4.22)
∇̄ · ū = 0 . (4.23)

This flow regime is also known as Stokes’ flow or creeping flow.

www.dbooks.org

https://www.dbooks.org/


110 4 Advanced partial differential equation models

4.2.3 Shear stress as pressure scale

Instead of using the kinetic energy �U2 as pressure scale, one can use the
shear stress μU/L (U/L reflects the spatial derivative of the velocity, which
enters the shear stress expression μ∂u/∂y). Using U as velocity scale, L/U
as time scale, and μU/L as pressure scale, results in

Re
(

∂ū

∂t̄
+ ū · ∇̄ū

)
= −∇̄p̄+ ∇̄2ū . (4.24)

Low Reynolds number flow now suggests neglecting both acceleration terms.

4.2.4 Gravity force and the Froude number

We now add a gravity force to the momentum equation (4.14):

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.25)

where g is the acceleration of gravity, and k is a unit vector in the oppo-
site direction of gravity. The new term takes the following form after non-
dimensionalization:

tc

�uc
�gk = Lg

U2 k = Fr−2k,

where Fr is the dimensionless Froude number,

Fr = U√
Lg

.

This quantity reflects the ratio of inertia and gravity forces:

|u ·∇u|
|�g| ∼ �U2/L

�g
= Fr2 .

4.2.5 Oscillating boundary conditions and the Strouhal
number

Many flows have an oscillating nature, often arising from some oscillating
boundary condition. Suppose such a condition, at some boundary x = const,
takes the specific form

u = U sin(ωt)i .
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The dimensionless counterpart becomes

U ū = U sin(ω L

U
t̄)i,

if tc = L/U is the appropriate time scale. This condition can be written

ū = sin(St t̄), (4.26)

where St is the Strouhal number,

St = ωL

U
. (4.27)

The two important dimensionless parameters in oscillating flows are then the
Reynolds and Strouhal numbers.

Even if the boundary conditions are of steady type, as for flow around a
sphere or cylinder, the flow may at certain Reynolds numbers get unsteady
and oscillating. For 102 < Re < 107, steady inflow towards a cylinder will
cause vortex shedding: an array of vortices are periodically shedded from the
cylinder, producing an oscillating flow pattern and force on the cylinder. The
Strouhal number is used to characterize the frequency of oscillations. The
phenomenon, known as von Karman vortex street, is particularly important
if the frequency of the force on the cylinder hits the free vibration frequency of
the cylinder such that resonance occurs. The result can be large displacements
of the cylinder and structural failure. A famous case in engineering is the
failure of the Tacoma Narrows suspension bridge4 in 1940, when wind-induced
vortex shedding caused resonance with the free torsional vibrations of the
bridge.

4.2.6 Cavitation and the Euler number

The dimensionless pressure in (4.18) made use of the pressure scale pc = �U2.
This is an appropriate scale if the pressure level is not of importance, which is
very often the case since only the pressure gradient enters the flow equation
and drives the flow. However, there are circumstances where the pressure
level is of importance. For example, in some flows the pressure may become
so low that the vapor pressure of the liquid is reached and that vapor cavities
form (a phenomenon known as cavitation). A more appropriate pressure scale
is then pc = p∞ − pv, where p∞ is a characteristic pressure level far from
vapor cavities and pv is the vapor pressure. The coefficient in front of the
dimensionless pressure gradient is then

4https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
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p∞ −pv

�U2 .

Inspired by Bernoulli’s equation p+ 1
2�u ·u = const in fluid mechanics, a fac-

tor 1
2 is often inserted in the denominator. The corresponding dimensionless

number,

Eu = p∞ −pv
1
2�U2 , (4.28)

is called the Euler number. The pressure gradient term now reads 1
2Eu∇̄p̄.

The Euler number expresses the ratio of pressure differences and the kinetic
energy of the flow.

4.2.7 Free surface conditions and the Weber number

At a free surface, z = η(x,y, t), the boundary conditions are

w = ∂η

∂t
+u ·∇η, (4.29)

p−p0 ≈ −σ

(
∂2η

∂x2 + ∂2η

∂y2

)
, (4.30)

where w is the velocity component in the z direction, p0 is the atmospheric
air pressure at the surface, and σ represents the surface tension. The approx-
imation in (4.30) is valid under small deformations of the surface.

The dimensionless form of these conditions starts with inserting the di-
mensionless quantities in the equations:

ucw̄ = L

tc

∂η̄

∂t̄
+ucū · ∇̄η̄,

pcp̄ ≈ − 1
L

σ

(
∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
.

The characteristic length L is usually taken as the depth of the fluid when
the surface is flat. We have used p̄ = (p − p0)/pc for making the pressure
dimensionless. Using uc = U , tc = L/U , and pc = �U2, results in

w̄ = ∂η̄

∂t̄
+ ū · ∇̄η̄, (4.31)

p̄ ≈ −We−1
(

∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
, (4.32)
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where We is the Weber number,

We = �U2L

σ
. (4.33)

The Weber number measures the importance of surface tension effects and
is the ratio of the pressure scale �U2 and the surface tension force per area,
typically σ/Rx in a 2D problem, which has size σ/L.

4.3 Thermal convection

Temperature differences in fluid flow cause density differences, and since cold
fluid is heavier than hot fluid, the gravity force will induce flow due to den-
sity differences. This effect is called free thermal convection and is key to our
weather and heating of rooms. Forced convection refers to the case where
there is no feedback from the temperature field to the motion, i.e., tempera-
ture differences do not create motion. This fact decouples the energy equation
from the mass and momentum equations.

4.3.1 Forced convection

The model governing forced convection consists of the Navier-Stokes equa-
tions and the energy equation for the temperature:

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.34)

∇·u = 0, (4.35)

�c

(
∂T

∂t
+u ·∇T

)
= κ∇2T . (4.36)

The symbol T is the temperature, c is a heat capacity, and κ is the heat
conduction coefficient for the fluid. The PDE system applies primarily for
liquids. For gases one may need a term −p∇ · u for the pressure work in
(4.36) as well as a modified equation of continuity (4.35).

Despite the fact that � depends on T , we treat � as a constant �0. The ma-
jor effect of the �(T ) dependence is through the buoyancy effect caused by the
gravity term −�(T )gk. It is common to drop this term in forced convection,
and assume the momentum and continuity equations to be independent of
the temperature. The flow is driven by boundary conditions (rather than den-
sity variations as in free convection), from which we can find a characteristic
velocity U .
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Dimensionless parameters are introduced as follows:

x̄ = x

L
, tc = L

U
, ū = u

U
, p̄ = p

�0U2 , T̄ = T −T0
Tc

.

Other coordinates are also scaled by L. The characteristic temperature Tc is
chosen as some range ΔT , which depends on the problem and is often given by
the thermal initial and/or boundary conditions. The reference temperature
T0 is also implied by prescribed conditions. Inserted in the equations, we get

�0
U2

L

∂ū

∂t̄
+�0

U2

L
ū · ∇̄ū = −�0U2

L
∇̄p̄+ μU

L2 ∇̄2ū,

U

L
∇̄ · ū = 0,

�0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄2T̄ .

Making each term in each equation dimensionless reduces the system to

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū, (4.37)

∇̄ · ū = 0, (4.38)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ . (4.39)

The two dimensionless numbers in this system are given by

Pe = �0cUL

κ
, Re = UL

ν
(ν = μ

�0
) .

The Peclet number is here defined as the ratio of the convection term for
heat �0cUΔT/L and the heat conduction term κU/L2. The fraction κ/(�0c)
is known as the thermal diffusivity, and if this quantity is given a symbol α,
we realize the relation to the Peclet number defined in Section 3.4.

4.3.2 Free convection

Governing equations. The mathematical model for free thermal convec-
tion consists of the Navier-Stokes equations coupled to an energy equation
governing the temperature:
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�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.40)

∂ρ

∂t
+∇· (�u) = 0, (4.41)

�c

(
∂T

∂t
+u ·∇T

)
= κ∇2T +2μεijεij , (4.42)

symbol T is the temperature, c is a heat capacity, κ is the heat conduction
coefficient for the fluid. In free convection, the gravity term −�(T )gk is es-
sential since the flow is driven by temperature differences and the fact that
hot fluid rises while cold fluid falls.

For slightly compressible gas flow a term −p∇·u may be needed in (4.42).

Heating by viscous effects. We have also included heating of the fluid
due to the work of viscous forces, represented by the term 2μεijεij , where
εij is the strain-rate tensor in the flow, defined by

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
= 1

2(∇u+(∇u)T ),

where ui is the velocity in direction of xi (i = 1,2,3 measures the space
directions). The term 2μεijεij is actually much more relevant for forced con-
vection, but was left out in Section 4.3.2 for mathematical simplicity. Heating
by the work of viscous forces is often a very small effect and can be neglected,
although it plays a major role in forging and extrusion of metals where the
viscosity is very large (such processes require large external forces to drive
the flow). The reason for including the work by viscous forces under the
heading of free convection, is that we want to scale a more complete, gen-
eral mathematical model for mixed force and free convection, and arrive at
dimensionless numbers that can tell if this extra term is important or not.

Relation between density and temperature.
been made dimensionless in the previous section. The major difference is now
that � is no longer a constant, but a function of T . The relationship between
� and T is often taken as linear,

� = �0 −�0β(T −T0),

where

β = −1
�

(
∂�

∂t

)
p

,

is known as the thermal expansion coefficient of the fluid, and �0 is a reference
density when the temperature is at T0.

where Einstein’s summation convention is implied for the εijεij term. The

Equations (4.40) has already
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The Boussinesq approximation. A very common approximation, called
the Boussinesq approximation, is to neglect the density variations in all terms
except the gravity term. This is a good approximation unless the change in
� is large. With the linear �(T ) formula and the Boussinesq approximation,
(4.40)-(4.42) take the form

�0

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u− (�0 −�0β(T −T0))gk, (4.43)

∇·u = 0, (4.44)

�0c

(
∂T

∂t
+u ·∇T

)
= κ∇2T +2μεijεij . (4.45)

A good justification of the Boussinesq approximation is provided by Tritton
[9, Ch. 13].

Scaling. Dimensionless variables are introduced as

x̄ = x

L
, tc = L

U
, ū = u

U
, p̄ = p

�U2 , T̄ = T −T0
ΔT

.

The dimensionless y and z coordinates also make use of L as scale. As in
forced convection, we assume the characteristic temperature level T0 and the
scale ΔT are given by thermal boundary and/or initial conditions. Contrary
to Sections 4.2 and 4.3.2, U is now not given by the problem description, but
implied by ΔT .

Replacing quantities with dimensions by their dimensionless counterparts
results in

�0
U2

L

∂ū

∂t̄
+�0

U2

L
ū · ∇̄ū = −pc

L
∇̄p̄+ μU

L2 ∇̄2ū−�0gk +�0βTcT̄ gk,

U

L
∇̄ · ū = 0,

�0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄2T̄ +2μU

L
ε̄ij ε̄ij .

These equations reduce to

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū−Fr−2k +γT̄k, (4.46)

∇̄ · ū = 0, (4.47)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ +2δε̄ij ε̄ij . (4.48)

The dimensionless numbers, in addition to Re and Fr, are
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γ = gβLΔT

U2 , Pe−1 = κ

�0cUL
, δ = μU

L�0cΔT
.

γ = �0gβΔT

�0U2/L
= gβLΔT

U2 .

The Pe parameter is the fraction of the convection term and the thermal
diffusion term:

|�0u ·∇T |
|κ∇2T | ∼ �0cUΔTL−1

κL−2ΔT
= �cUL

κ
= Pe .

The δ parameter is the ratio of the viscous dissipation term and the convection
term:

|μ∇2u|
|�0cu ·∇T | ∼ μU2/L2

�0cUΔT/L
= μU

L�0cΔT
= δ .

4.3.3 The Grashof, Prandtl, and Eckert numbers

The problem with the above dimensionless numbers is that they involve U ,
but U is implied by ΔT . Assuming that the convection term is much bigger
than the viscous diffusion term, the momentum equation features a balance
between the buoyancy term and the convection term:

|�0u ·∇u| ∼ �0gβΔT .

Translating this similarity to scales,

�0U2/L ∼ �0gβΔT,

gives an U in terms of ΔT :

U =
√

βLΔT .

The Reynolds number with this U now becomes

ReT = UL

ν
=

√
gβL3ΔT

ν2 = Gr1/2,

where Gr is the Grashof number in free thermal convection:

Gr = Re2
T = gβL3ΔT

ν2 .

The γ number measures the ratio of thermal buoyancy and the convection
term:
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The Grashof number replaces the Reynolds number in the scaled equations
of free thermal convection. We shall soon look at its interpretations, which
are not as straightforward as for the Reynolds and Peclet numbers.

The above choice of U in terms of ΔT results in γ equal to unity:

γ = gβLΔT

U2 = gβLΔT

gβLΔT
= 1 .

The Peclet number can also be rewritten as

Pe = �cUL

κ
= μc

κ

�UL

μ
= PrRe−1 = PrRe−1

T ,

where Pr is the Prandtl number, defined as

Pr = μc

κ
.

The Prandtl number is the ratio of the momentum diffusivity (kinematic
viscosity) and the thermal diffusivity. Actually, more detailed analysis shows
that Pr reflects the ratio of the thickness of the thermal and velocity boundary
layers: when Pr = 1, these layers coincide, while Pr � 1 implies that the
thermal layer is much thicker than the velocity boundary layer, and vice
versa for Pr � 1.

The δ parameter is in free convection replaced by a combination of the
Eckert number (Ec) and the Reynolds number. We have that

Ec = U2

cΔT
= δReT ,

and consequently

δ = EcRe−1
T = EcGr−1/2 .

Writing

Ec = �0U2

�0cΔT
,

shows that the Eckert number can be interpreted as the ratio of the kinetic
energy of the flow and the thermal energy.

We use Gr instead of ReT in the momentum equations and also instead
of Pe in the energy equation (recall that Pe = PrRe = PrReT = PrGr−1/2).
The resulting scaled system becomes
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∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Gr−1/2∇̄2ū−Fr−2k + T̄k, (4.49)

∇̄ · ū = 0, (4.50)

Gr1/2
(

∂T̄

∂t̄
+ ū · ∇̄T̄

)
= Pr−1∇̄2T̄ +2EcGr−1/2ε̄ij ε̄ij . (4.51)

The Grashof number plays the same role as the Reynolds number in the
momentum equation in free convection. In particular, it turns out that Gr
governs the transition between laminar and turbulent flow. For example, the
transition to turbulence occurs in the range 108 < Gr < 109 for free convection
from vertical flat plates. Gr is normally interpreted as a dimensionless number
expressing the ratio of buoyancy forces and viscous forces.

Interpretations of the Grashof number. Recall that the scaling leading
to the Grashof number is based on an estimate of U from a balance of the
convective and the buoyancy terms. When the viscous term dominates over
convection, we need a different estimate of U , since in this case, the viscous
force balances the buoyancy force:

μ∇2u ∼ �0gβΔT ⇒ μU/L2 ∼ �0gβΔT,

This similarity suggests the scale

U = gβL2ΔT

ν
.

Now,

|�0u ·∇u|
|μ∇2u| ∼ UL

ν
= gβL3ΔT

ν
= Gr .

The result means that Gr1/2 measures the ratio of convection and viscous
forces when convection dominates, whereas Gr measures this ratio when vis-
cous forces dominate.

The product of Gr and Pr is the Rayleigh number,

Ra = gβL3ΔT�0c

νκ
,

since

GrPr = Re2
T Pr = gβL3ΔT

ν2
μc

κ
= gβL3ΔT�0c

νκ
= Ra .

The Rayleigh number is the preferred dimensionless number when studying
free convection in horizontal layers [2, 9]. Otherwise, Gr and Pr are used.
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4.3.4 Heat transfer at boundaries and the Nusselt and
Biot numbers

A common boundary condition, modeling heat transfer to/from the surround-
ings, is

−κ
∂T

∂n
= h(T −Ts), (4.52)

where ∂/∂n means the derivative in the normal direction (n · ∇), h is an
experimentally determined heat transfer coefficient, and Ts is the temperature
of the surroundings. Scaling (4.52) leads to

−κΔt

L

∂T̄

∂n̄
= h(ΔTT̄ +T0 −Ts),

and further to

∂T̄

∂n̄
= hL

κ
(T̄ + Ts −T0

ΔT
) = δ(T̄ − T̄s),

where the dimensionless number δ is defined by

δ = hL

κ
,

and T̄s is simply the dimensionless surrounding temperature,

T̄s = Ts −T0
ΔT

.

When studying heat transfer in a fluid, with solid surroundings, δ is known
as the Nusselt number5 Nu. The left-hand side of (4.52) represents in this case
heat conduction, while the right-hand side models convective heat transfer
at a boundary. The Nusselt number can then be interpreted as the ratio of
convective and conductive heat transfer at a solid boundary:

|h(T −Ts)|
κT/L

∼ h

κ/L
= Nu .

The case with heat transfer in a solid with a fluid as surroundings gives the
same dimensionless δ, but the number is now known as the Biot number6. It
describes the ratio of heat loss/gain with the surroundings at the solid body’s
boundary and conduction inside the body. A small Biot number indicates
that conduction is a fast process and one can use Newton’s law of cooling
(see Section 2.1.7) instead of a detailed calculation of the spatio-temporal
temperature variation in the body.

5https://en.wikipedia.org/wiki/Nusselt_number
6https://en.wikipedia.org/wiki/Biot_number
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Heat transfer is a huge engineering field with lots of experimental investiga-
tions that are summarized by curves relating various dimensionless numbers
such as Gr, Pr, Nu, and Bi.

4.4 Compressible gas dynamics

4.4.1 The Euler equations of gas dynamics

The fundamental equations for a compressible fluid are based on balance of
mass, momentum, and energy. When molecular diffusion effects are negligible,
the PDE system, known as the Euler equations of gas dynamics, can be
written as

∂�

∂t
+∇· (�u) = 0, (4.53)

∂(�u)
∂t

+∇· (�uuT ) = −∇p+�f , (4.54)

∂E

∂t
+∇· (u(E +p)) = 0, (4.55)

with E being

E = �e+ 1
2�u ·u . (4.56)

In these equations, u is the fluid velocity, � is the density, p is the pressure,
E is the total energy per unit volume, composed of the kinetic energy per
unit volume, 1

2�u ·u, and the internal energy per unit volume, �e.
Assuming the fluid to be an ideal gas implies the following additional

relations:

e = cvT, (4.57)

p = �RT = R

cv
(E − 1

2�u ·u), (4.58)

where cv is the specific heat capacity at constant volume (for dry air cv =
717.5Jkg−1K−1), R is the specific ideal gas constant (R = 287.14Jkg−1K−1),
and T is the temperature.

The common way to solve these equations is to propagate �, �u, and E
by an explicit numerical method in time for (4.53)-(4.55), using (4.58) for p.

We introduce dimensionless independent variables,
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x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
,

and dimensionless dependent variables,

ū = u

U
, �̄ = �

�c
, p̄ = p

pc
, Ē = E

Ec
.

Inserting these expressions in the governing equations gives

∂�̄

∂t̄
+ tcU

L
∇̄ · (�̄ū) = 0,

∂(�̄ū)
∂t̄

+ tcU

L
∇̄ · (�̄ūūT ) = − tcpc

UL�c
∇p̄+ tcfc

U
�̄f̄ ,

∂Ē

∂t̄
+ tcU

LEc
∇̄ · (ū(EcĒ +pcp̄)) = 0,

p̄ = R

cvpc
(EcĒ − 1

2�cuc�̄ū · ū) .

A natural choice of time scale is tc = L/U . A common choice of pressure scale
is pc = �cU2. The energy equation simplifies if we choose Ec = pc = �cU2.
With these scales we get

∂�̄

∂t̄
+ ∇̄ · (�̄ū) = 0,

∂(�̄ū)
∂t̄

+ ∇̄ · (�̄ūūT ) = −∇p̄+α�̄f̄ ,

∂Ē

∂t̄
+ ∇̄ · (ū(Ē + p̄)) = 0,

p̄ = R

cv
(Ē − 1

2 �̄ū · ū),

where α is a dimensionless number:

α = Lfc

U2 .

We realize that the scaled Euler equations look like the ones with dimension,
apart from the α coefficient.
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4.4.2 General isentropic flow

Heat transfer can be neglected in isentropic flow7, and there is hence an
equation of state involving only � and p:

p = F (�) .

The energy equation is now not needed and the Euler equations simplify to

∂�

∂t
+∇· (u�) = 0, (4.59)

�
∂u

∂t
+�u ·∇u+∇p = 0 . (4.60)

Elimination of the pressure. A common equation of state is

F (�) = p0

(
�

�0

)γ

,

where γ = 5/3 for air. The first step is to eliminate p in favor of � so we get
a system for � and u. To this end, we must calculate ∇p:

∇p = F ′(�)∇�, F ′(�) = c2
0

(
�

�0

)γ−1
,

where

c0 =
√

γp0
�0

is the speed of sound within the fluid in the equilibrium state (see the sub-
sequent section). Equation (4.60) with eliminated pressure p reads

�
∂u

∂t
+�u ·∇u+ c2

0

(
�

�0

)γ−1
∇� = 0 . (4.61)

The governing equations are now (4.59) and (4.61). Space and time are
scaled in the usual way as

x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
.

The scaled dependent variables are

�̄ = �

�c
, ū = u

U
.

Then F ′(�) = c2
0�̄γ−1.

7https://en.wikipedia.org/wiki/Isentropic_process
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Inserting the dimensionless variables in the two governing PDEs leads to

�c

tc

∂�̄

∂t̄
+ �cU

L
∇̄ · (�̄ū) = 0,

�cU

tc
�̄

∂ū

∂t̄
+ �cU2

L
�̄ū · ∇̄ū+ �c

L

(
�c

�0

)γ−1
c2

0�̄γ−1∇̄�̄ = 0 .

The characteristic flow velocity is U so a natural time scale is tc = L/U . This
choice leads to the scaled PDEs

∂�̄

∂t̄
+ ∇̄ · (�̄ū) = 0, (4.62)

�̄
∂ū

∂t̄
+ �̄ū · ∇̄ū+M−2

(
�c

�0

)γ−1
�̄γ−1∇̄�̄ = 0, (4.63)

where the dimensionless number

M = U

c0
,

is known as the Mach number. The boundary conditions specify the character-
istic velocity U and thereby the Mach number. Observe that (4.63) simplifies
if �c = �0 is an appropriate choice.

4.4.3 The acoustic approximation for sound waves

Wave nature of isentropic flow with small perturbations. A model
for sound waves can be based on (4.59) and (4.61), but in this case there
are small pressure, velocity, and density perturbations from a ground state at
rest where u = 0, � = �0, and p = p0 = F (�0). Introducing the perturbations
�̂ = �−�0 and û, (4.59) and (4.61) take the form

∂�̂

∂t
+∇· (û(�0 + �̂) = 0,

(�0 + �̂)∂û

∂t
+(�0 + �̂)û ·∇û+ c2

0

(
1+ �̂

�0

)γ−1
∇�̂ = 0 .

For small perturbations we can linearize this PDE system by neglecting all
products of �̂ and û. Also, 1 + �̂/�0 ≈ 1. This leaves us with the simplified
system
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∂�̂

∂t
+�0∇· û = 0,

�0
∂û

∂t
+ c2

0∇�̂ = 0 .

Eliminating û by differentiating the first PDE with respect to t and taking
the divergence of the second PDE gives a standard wave equation for the
density perturbations:

∂2�̂

∂t2 = c2
0∇2�̂ .

Similarly, �̂ can be eliminated and one gets a wave equation for û, also with
wave velocity c0. This means that the sound perturbations travel with velocity
c0.

Basic scaling for small wave perturbations. Let �c and uc be charac-
teristic sizes of the perturbations in density and velocity. The density will
then vary in [�0 −�c,�0 +�c]. An appropriate scaling is

�̄ = �−�0
�c

such that �̄ ∈ [−1,1]. Consequently,

� = �0 +�c�̄ = �0(1+α�̄), α = �c

�0
.

Note that the dimensionless α is expected to be a very small number since
�c � �0. The velocity, space, and time are scaled as in the previous section.
Also note that �0 and p0 are known values, but the scales �c and U are
not known. Usually these can be estimated from perturbations (i.e., sound
generation) applied at the boundary.

Inserting the scaled variables in (4.59) and (4.61) results in

α
�0
tc

∂�̄

∂t̄
+ �0U

L
∇̄ · ((1+α�̄)ū) = 0,

�0U

tc
(1+α�̄)∂ū

∂t̄
+ �0U2

L
(1+α�̄)ū · ∇̄ū+α

�0
L

c2
0 (1+α�̄)γ−1 ∇̄�̄ = 0 .

Since we now model sound waves, the relevant time scale is not L/U but
the time it takes a wave to travel through the domain: tc = L/c0. This is a
much smaller time scale than in the previous section because c0 � U (think
of humans speaking: the sound travels very fast but one cannot feel the
corresponding very small flow perturbation in the air!). Using tc = L/u0 we
get
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α
∂�̄

∂t̄
+M∇̄ · ((1+α�̄)ū) = 0,

(1+α�̄)∂ū

∂t̄
+M(1+α�̄)ū · ∇̄ū+αM−1 (1+α�̄)γ−1 ∇̄�̄ = 0 .

For small perturbations the linear terms in these equations must balance.
This points to M and α being of the same order and we may choose α = M
(implying �c = �0M) to obtain

∂�̄

∂t̄
+ ∇̄ · ((1+M�̄)ū) = 0,

∂ū

∂t̄
+Mū · ∇̄ū+(1+M�̄)γ−2 ∇̄�̄ = 0 .

Now the Mach number, M, appears in the nonlinear terms only. Letting
M → 0 we arrive at the following linearized system of PDEs

∂�̄

∂t̄
+ ∇̄ · ū = 0, (4.64)

∂ū

∂t̄
+ ∇̄�̄ = 0, (4.65)

The velocity u can be eliminated by taking the time derivative of (4.64)

∂2�̄

∂t̄2 = ∇̄2�̄, (4.66)

which is nothing but a standard dimensionless wave equation with unit wave
velocity. Similarly, we can eliminate � by taking the divergence of (4.64) and
the time derivative of (4.65):

∂2ū

∂t̄2 = ∇̄2ū . (4.67)

We also observe that there are no physical parameters in the scaled wave
equations.

4.5 Water surface waves driven by gravity

4.5.1 The mathematical model

Provided the Weber number (see section 4.2.7) is sufficiently small, capillary
effects may be omitted and water surface waves are governed by gravity.

and the divergence of (4.65):
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For large Reynolds numbers, viscous effects may also be ignored (except in
boundary layers close to the bottom or the surface of the fluid). The flow of
an incompressible homogeneous fluid under these assumptions is governed by
the Euler equations of motion on the form

∇·u = 0, (4.68)
∂u

∂t
+u ·∇u+ 1

ρ
∇p+gk = 0 . (4.69)

When the free surface position is described as z = η(x,y, t), with z as the
vertical coordinate, the boundary conditions at the surface read

p = ps, (4.70)
∂η

∂t
+u ·∇η = w, (4.71)

where ps is the external pressure applied to the surface. At the bottom,
z = −h(x,y), there is the no-flux condition

∂h

∂x
u+ ∂h

∂y
v = −w.

In addition to ρ and g we assume that a typical depth hc, a typical wavelength
λc, and a typical surface elevation A, which then by definition is a scale
for η, are the given parameters. From these we must derive scales for the
coordinates, the velocity components, and the pressure.

4.5.2 Scaling

First, it is instructive to define a typical wave celerity, cc, which must be linked
to the length and time scale according to cc = λc/tc. Since there is no other
given parameter that matches the mass dimension of ρ, we express cc in terms
of A, λc, hc, and g. Most of the work on waves in any discipline of physics is
devoted to linear or weakly nonlinear waves, and the wave celerity must be
presumed to remain finite as A goes to zero (see, for instance, Section 4.4.3).
Hence, we may assume that cc must depend on g and either hc or λc. Next,
the two horizontal directions are equivalent with regard to scaling, implying
that we have a common velocity scale, U , for u and v, a common length scale
L for x and y. The obvious choice for L is λc, while the “vertical quantities” w
and z have scales W and Z, respectively, which may differ from the horizontal
counterparts. However, we assume that also the length scale Z remains finite
as A → 0 and hence is independent of A. This is less obvious for Z than for cc
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and tc, but may eventually be confirmed by the existence of linear solutions
when solving the equation set. From the linear part of (4.71) and (4.68) we
obtain two relations between velocity and coordinate scales by demanding
the non-dimensionalized terms to be of order unity

A

tc
= W,

U

L
= W

Z
. (4.72)

These relations are indeed useful, but they do not suffice to establish the
scaling.

The pressure may be regarded as the sum of a large equilibrium part, bal-
ancing gravity, and a much smaller dynamic part associated with the presence
of waves. To make the latter appear in the equations we define the dynamic
pressure, pd, according to

p = ps −ρgz +pd,

and the pressure scale pc = ρgA for pd then follows directly from the surface
condition (4.70).

The equation set will be scaled according to

t̄ = t

tc
, x̄ = x

L
, ȳ = y

L
, z̄ = z

Z
, η̄ = η

A
, ū = u

U
, v̄ = v

U
, w̄ = w

W
, p̄d = pd

pc
.

In the further development of the scaling we focus on two limiting cases,
namely deep and shallow water.

4.5.3 Waves in deep water

Deep water means that hc � λc. Presumably the waves will not feel the
bottom, and h as well as hc are removed from our equations. The bottom
boundary condition is replaced by a requirement of vanishing velocity as
z → −∞. Consequently, cc must depend upon λc and g, leaving us with
cc =

√
gλc and Z = λc = L as the only options. Then, tc =

√
λc/g and (4.72)

implies U = W = c0
A
λc

= εc0, where we have introduced the non-dimensional
number

ε = A

λc
,

which is the wave steepness. The equality of the horizontal and the vertical
scale is consistent with the common knowledge that the particle orbits in
deep water surface waves are circular.

The scaled equations are now expressed with ε as sole dimensionless num-
ber
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∇̄ · ū = 0, (4.73)
∂ū

∂t̄
+ εū · ∇̄ū+ ∇̄p̄d = 0 . (4.74)

The surface conditions, at z = εη, become

p̄d = η̄, (4.75)
∂η̄

∂t̄
+ εū · ∇̄η̄ = w̄, (4.76)

while the bottom condition is replaced by

ū → 0, (4.77)

as z̄ → −∞.

4.5.4 Long waves in shallow water

Long waves imply that the wavelength is large compared to the depth: λc �
hc. In analogy with the reasoning above, we presume that the speed of the
waves remains finite as λc → ∞. Then, cc must be based on g and hc, which
leads to cc =

√
ghc and tc = λc/

√
ghc. The natural choice for the vertical

length scale is now the depth; Z = hc. Application of (4.72) then leads to
W = ccA/λc and U = ccA/hc.

Introducing the dimensionless numbers

α = A

hc
, μ = hc

λc
,

we rewrite the velocity scales as

W = μαcc, U = αcc .

We observe that W � U for shallow water and that particle orbits must be
elongated in the horizontal direction.

The equation set is now most transparently written by introducing the
horizontal velocity ūh = ūi+ v̄j and the corresponding horizontal components
of the gradient operator, ∇̄h:
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∇̄ · ūh + ∂w̄

∂z̄
= 0, (4.78)

∂ūh

∂t̄
+αūh · ∇̄hūh +αw̄

∂ūh

∂z̄
+ ∇̄hp̄d = 0, (4.79)

μ2
(

∂w̄

∂t̄
+αūh · ∇̄hw̄ +αw̄

∂w̄

∂z̄

)
+ ∂p̄d

∂z̄
= 0. . (4.80)

Surface conditions, at z = αη, now become

p̄d = η̄, (4.81)
∂η̄

∂t̄
+αūh · ∇̄hη̄ = w̄, (4.82)

while the bottom condition is invariant with respect to the present scaling

∇̄h · h = −w̄ . (4.83)

An immediate consequence is that p̄d remains equal to η̄ throughout the water
column when μ2 → 0, which implies that the pressure is hydrostatic. The
above set of equations is a common starting point for perturbation expansions
in ε and μ2 that lead to shallow water, KdV, and Boussinesq type equations.

4.6 Two-phase porous media flow

We consider the flow of two incompressible, immiscible fluids in a porous
medium with porosity φ(x). The two fluids are referred to as the wetting8

and non-wetting fluid. In an oil-water mixture, water is usually the wetting
fluid. The fraction of the pore volume occupied by the wetting fluid is denoted
by S(x, t). The non-wetting fluid then occupies 1−S of the pore volume (or
(1 − S)φ of the total volume). The variable P (x, t) represents the pressure
in the non-wetting fluid. It is related to the pressure Pn in the non-wetting
fluid through the capillary pressure pc = Pn − P , which is an empirically
determined function of S.

From mass conservation of the two fluids and from Darcy’s law for each
fluid, one can derive the following system of PDEs and algebraic relations
that govern the two primary unknowns S and P :

8https://en.wikipedia.org/wiki/Wetting

ū
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∇·v = −(Qn +Qw), (4.84)
v = −λt∇P +λwp′

c(S)∇S +(λw�w +λn�n)gk, (4.85)

φ
∂S

∂t
+f ′

w(S)v ·∇S = ∇· (hw(S)p′
c(S)∇S)+

g
∂Gw

∂z
+fw(Qn +Qw)−Qw, (4.86)

Qw = qw

�w
, (4.87)

Qn = qn

�n
, (4.88)

λw(S) = K

μw
krw(S), (4.89)

λn(S) = K

μn
krn(S), (4.90)

λt(S) = λw(S)+λn(S), (4.91)

krw(S) = Kwm

[
S −Swr

1−Snr −Swr

]a

, (4.92)

krn(S) = Knm

[
1−S −Snr

1−Snr −Swr

]b

, (4.93)

fw(S) = λw

λt
, (4.94)

Gw(S) = hw(S)(�n −�w), (4.95)
hw(S) = −λn(S)fw(S) . (4.96)

The permeability of the porous medium is K (usually a tensor, but here
taken as a scalar for simplicity); μw and μn are the dynamic viscosities of the
wetting and non-wetting fluid, respectively; �w and �n are the densities of
the wetting and non-wetting fluid, respectively; qw and qn are the injection
rates of the wetting and non-wetting fluid through wells, respectively; Swr

is the irreducible saturation of the wetting fluid (i.e., S ≥ Swr); Snr is the
corresponding irreducible saturation of the non-wetting fluid (i.e., (1− S) ≥
Snr), Kwn and Knr are the maximum values of the relative permeabilities
krw and krn, respectively, and a and b are given (Corey) exponents in the
expressions for the relative permeabilities.

The two PDEs are of elliptic and hyperbolic/parabolic nature: (4.84) is
elliptic since it is the divergence of a vector field, while (4.86) is parabolic
(hw ≥ 0 because p′

c(S) ≥ 0 and λn as well as fw are positive since krn > 0
and krw > 0). Very often, p′

c is small so (4.86) is of hyperbolic nature, and
S features very steep gradients that become shocks in the limit p′

c → 0 and
(4.86) is purely hyperbolic. A popular solution technique is based on operator
splitting at each time level in a numerical scheme: (4.84) is solved with respect
to P , given S, and (4.86) is solved with respect to S, given P .
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The saturation S is a non-dimensional quantity, and so are φ, krw, krn,
Kwm, Knm, fw, and f ′

w. The quantity v is the total filtration velocity, i.e.,
the sum of the velocities of the wetting and non-wetting fluid. An associated
velocity scale vc is convenient to define. It is also convenient to introduce
dimensionless fractions of wetting and non-wetting fluid properties:

� ≡ �w,

�n = �α, α = �n

�w
,

μ ≡ μw,

μn = μβ, β = μn

μw
,

Q ≡ Qw = qw

�
,

Qn = Q
γ

α
, γ = qn

qw
.

We will benefit from making λw, λn, and λt dimensionless:

λw(S) = K

μ
krw(S) = λcλ̄w, λc = K

μ
, λ̄w = krw,

λn(S) = K

μ
β−1krn(S) = λcβ−1λ̄n, λ̄n = krn,

λt(S) = λw(S)+λn(S) = λcλ̄t, λ̄t = λ̄w +β−1λ̄n .

As we see, λc is the characteristic size of any “lambda” quantity, and a bar
indicates as always a dimensionless variable. The above formulas imply

hw(S) = −λcβ−1λ̄n(S)fw(S), Gw(S) = hw(S)�(α −1) .

Furthermore, we introduce dimensionless quantities by

x̄ = x

L
, v̄ = v

vc
, P̄ = P

Pc
, p̄c = pc

Pc
.

Inserting the above scaled quantities in the governing PDEs results in
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∇̄ · v̄ = −LQ

vc
(1+α−1γ), (4.97)

v̄ = −Pcλc

vcL
λ̄t∇̄P̄ + λcPc

vcL
λ̄wp̄′

c(S)∇̄S+

gλc�

vc
(λ̄w +αβ−1λ̄n)k, (4.98)

φ
∂S

∂t̄
+ tcvc

L
f ′

w(S)v̄ · ∇̄S = tcPcλc

L2 ∇̄ · (−β−1λ̄n(S)fw(S)p̄′
c(S)∇̄S)+

tcg

L

∂Gw

∂z̄
+ tcfwQ(1+α−1γ)− tcQ. (4.99)

As usual, L is taken as the characteristic length of the spatial domain. Since
vc is a velocity scale, a natural time scale is the time it takes to transport a
signal with velocity vc through the domain: tc = L/vc. The diffusion term in
the equation (4.102) then gets a dimensionless fraction

LPcλc

vcL2 .

Forcing this fraction to be unity gives

vc = λc
Pc

L
.

We realize that this is indeed a natural velocity scale if the velocity is given
by the pressure term in Darcy’s law. This term is K/μ times the pressure
gradient:

K

μ
|∇P | ∼ K

μ

Pc

L
= λc

Pc

L
= vc .

We have here dropped the impact of the relative permeabilities λ̄w or λ̄n

since these are quantities that are less than or equal to unity.
The other term in Darcy’s law is the gravity term that goes like λc�g

(again dropping relative permeabilities). The ratio of the gravity term and
the pressure gradient term in Darcy’s law is an interesting dimensionless
number:

δ = λc�g

λcPc/L
= L�g

Pc
.

This number naturally arises when we discuss the term

tcg

L

∂Gw

∂z̄
= −(α −1)β−1δ(λ̄′

n(S)fw(S)+ λ̄n(S)f ′
w(S))∂S

∂z̄

Introducing another dimensionless variable,

ε = tcQ = L2Q

λcPc
,
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we can write (4.97)-(4.99) in the final dimensionless form as

∇̄ · v̄ = −ε(1+α−1γ), (4.100)
v̄ = −λ̄t∇̄P̄ + λ̄wp̄′

c(S)∇̄S + δ(λ̄w +αβ−1λ̄n)k, (4.101)

φ
∂S

∂t̄
+f ′

w(S)v̄ · ∇̄S = −∇̄ · (−β−1λ̄n(S)fw(S)p̄′
c(S)∇̄S)−

(α −1)β−1δ(λ̄′
n(S)fw(S)+ λ̄n(S)f ′

w(S))∂S

∂z̄
+

εfw(1+α−1γ)− ε . (4.102)

The eight input parameters L, qw, qn, μw, μn, �w, �n, and K are reduced
to five dimensionless parameters α, β, γ, δ, and ε. There are six remaining
dimensionless numbers to be set: Kwm, Knm, Swr, Snr, a, and b.
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