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is nonzero
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column vector of gradient for a differentiable
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Hessian matrix for a twice differentiable function
f:RY >R
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Probability of an event A under probability P
(resp. P)

Expected value of a random variable X under

A

probability P (resp. PP)
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Preface

The story of this book started when I was assigned to teach an introductory financial math-
ematics course at Florida State University. Originally, this course was all measure theory,
integration and stochastic analysis. Then, it evolved to cover theory of measures, some
probability theory, and option pricing in the binomial model. When I took over this course,
I was not sure what I was going to do. However, I had a vision to educate students about
some new topics in financial mathematics, while keeping the classical risk management
material. My vision was to include some fundamental ideas that are shared between all
models in financial mathematics, such as martingale property, Makrovian property, time-
homogeneity, and the like, rather than studying a comprehensive list of models. To start,
I decided to seek advise from a colleague to use a textbook by two authors, a quantitative
financial analysts and a mathematician. The textbook was a little different and covered
various models that quants utilize in practice. The semester started, and as I was going
through the first couple of sections from the textbook, I realized that the book was unus-
able; many grave mistakes and wrong theorems, sloppy format, and coherency issues made
it impossible to learn from this textbook. It was my fault that I only skimmed the book
before the start of semester. A few months later, I learned that another school had had
the same experience with the book as they invited one of the authors to teach a similar
course. Therefore, I urgently needed a plan to save my course. So, I decided to write my
own lecture notes based on my vision, and, over the past three years, these lecture notes
grew and grew to include topics that I consider useful for students to learn. In 2018, the
Florida State University libraries awarded me the “Alternative Textbook Grant” to help
me make my lecture notes into an open access free textbook. This current first edition is
the result of many hours of effort by my library colleagues and myself.

Many successful textbooks on financial mathematics have been developed in the recent
decades. My favorite ones are the two volumes by Steven Shreve, Stochastic Calculus for
Finance I and II; [27, 28]. They cover a large variety of topics in financial mathematics
with emphasis on the option pricing, the classical practice of quantitative financial analysts
(quants). It also covers a great deal of stochastic calculus which is a basis for modeling
almost all financial assets. Option pricing remains a must-know for every quant and stochas-
tic calculus is the language of the quantitative finance. However over time, a variety of
other subjects have been added to the list of what quants need to learn, including efficient
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computer programming, machine learning, data mining, big data, and so on. Many of
these topics were irrelevant in 70s, when the quantitative finance was initially introduced.
Since then, financial markets has changed in the tools that the traders use, and the speed
of transactions. This is a common feature of many disciplines that the amount of data that
can be used to make business decisions is too large to be handled by classical statistical
techniques. Also, financial regulations has been adjusted to the new market environment.
They now require financial institutions to provide structured measurements of some of their
risks that is not included in the classical risk management theory. For instance, after the
financial meltdown in 2007, systemic risk and central clearing became important research
areas for the regulator. In addition, a demand for more robust evaluation of risks led to
researches in the robust risk management and model risk evaluations.

As the financial mathematics career grows to cover the above-mentioned topics, the
prospect of the financial mathematics master’s programs must also become broader in
topics. In the current book, I tried to include some new topics in an introductory level.
Since this is an open access book, it has the ability to include more of the new topics in
financial mathematics.

One of the major challenges in teaching financial mathematics is the diverse background of
students, at least in some institutions such as Florida State University. For example, some
students whom I observed during the last five years, have broad finance background but
lack the necessary mathematical background. They very much want to learn the mathemat-
ical aspects, but with fewer details and stepping more quickly into the implementational
aspects. Other students have majors in mathematics, engineering or computer science who
need more basic knowledge in finance. One thing that both groups need is to develop
their problem-solving abilities. Current job market favors employees who can work inde-
pendently and solve hard problems, rather than those who simply take instructions and
implement them. Therefore, I designed this book to serve as an introductory course in
financial mathematics with focus on conceptual understanding of the models and problem
solving, in contrast to textbooks that include more details of the specific models. It includes
the mathematical background needed for risk management, such as probability theory, op-
timization, and the like. The goal of the book is to expose the reader to a wide range
of basic problems, some of which emphasize analytic ability, some requiring programming
techniques and others focusing on statistical data analysis. In addition, it covers some
areas which are outside the scope of mainstream financial mathematics textbooks. For
example, it presents marginal account setting by the CCP and systemic risk, and a brief
overview of the model risk.

One of the main drawbacks of commercial textbooks in financial mathematics is the lack
of flexibility to keep up with changes of the discipline. New editions often come far apart
and with few changes. Also, it is not possible to modify them into the course needed for
a specific program. The current book is a free, open textbook under a creative common
license with attribution. This allows instructors to use parts of this book to design their
own course in their own program, while adding new parts to keep up with the changes and
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the institutional goals of their program.

The first two chapters of this book only require calculus and introductory probability
and can be taught to senior undergraduate students. There is also a brief review of these
topics in Sections A.1 and B of the appendix. I tried to be as brief as possible in the
appendix; many books, including Stochastic Calculus for Finance I ([27, 28]) and Convex
Optimization ([8]), cover these topics extensively. My goal to include these topics is only
to make the current book self-sufficient. The main goal of Chapter 1 is to familiarize
the reader with the basic concepts of risk management in financial mathematics. All
these concepts are first introduced in a relatively nontechnical framework of one-period
such as Markowitz portfolio diversification or the Arrow-Debreu market model. Chapter
2 generalizes the crucial results of the Arrow-Debreu market model to the multiperiod
case and introduces the multiperiod binomial model and the numerical methods based on
it. Chapter 3 discusses more advanced subjects in probability, which are presented in the
remainder of Section B and Section C of the appendix. This chapter is more appropriate
for graduate students. In Section 3.2, we first build important concepts and computational
methods in continuous-time through the Bachelier model. Then, we provide the outline
for the more realistic Black-Scholes model in Section 3.3. Chapter 4 deals with pricing a
specific type of financial derivative: American options. Sections 4.0.1 and 4.1 can be studied
directly after finishing Chapter 2. The rest of this section requires an understanding of
Section 3.3 as a prerequisite. The inline exercises and various examples can help students
to prepare for the exams on this book. Many of the exercises and the examples are brand
new and are specifically created for the assignments and exams during the three last years
of teaching the course.
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1. PRELIMINARIES

Preliminaries of finance and risk
management

A risky asset is an asset with an uncertain future price, e.g. the stock of a company in an
exchange market. Unlike a risky asset, a bank account with a fixed interest rate has an ab-
solutely predictable value, and is called a risk-free asset. Risky assets are classified in many
different categories. Among them, financial securities, which constitute the largest body of
risky assets, are traded in the exchange markets and are divided into three subcategories:
equity, debt, and derivatives.

An equity is a claim of ownership of a company. If it is issued by a corporation, it is called
common stock, stock, or share. Debt, sometimes referred to as a fized-income instrument,
promises a fixed cash flow until a time called maturity and is issued by an entity as a means
of borrowing through its sale. The cash flow from a fixed-income security is the return of
the borrowed cash plus interest and is subject to default of the issuer, i.e., if the issuer is
not able to pay the cash flow at any of the promised dates. A derivative is an asset whose
price depends on a certain event. For example, a derivative can promise a payment (payoff)
dependent on the price of a stock, the price of a fixed-income instrument, the default of a
company, or a climate event.

An important class of assets that are not financial securities are described as commodities.
Broadly speaking, a commodity is an asset which is not a financial security but is still
traded in a market, for example crops, energy, metals, and the like. Commodities are in
particular important because our daily life depends on them. Some of them are storable
such as crops, which some others, such as electricity, are not. Some of them are subject
to seasonality, such as crops or oil. The other have a constant demand throughout the
year, for instance aluminum or copper. These various features of commodities introduce
challenges in modeling commodity markets. There are other assets that are not usually
included in any of the above classes, for instance real estate.

If the asset is easily traded in an exchange market, it is called liquid. Equities are the
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most liquid of assets; fixed-income instruments and derivatives are less liquid. Commodities
have become very liquid, partly due to the introduction of emerging economies in the global
marketplace. Real estate is one of the most illiquid of assets.

Asset
Risky Risk free: Government bond
Securities Commodities| | Real estate
el
Equity Debt Derivatives

Figure 1.0.1: Classification of assets

1.1 Basic financial derivatives

Financial risk is defined as the risk of loss of investment in financial markets. Two of the
main categories of financial risk are market risk, causes by the changes in the price of
market equities, and credit risk, caused by the default of a party in meeting its obligations.
Financial derivatives are designed to cover the loss caused by the market risk and the credit
risk. There are other important forms of financial risk such as operational risk and systemic
risk. However, these are irrelevant to the study of financial derivatives. Therefore, in this
section, we cover the basics of some simple financial derivatives on the market risk, bonds
and some credit derivatives. In practice, bonds are not considered as derivative. However,
theoretically, a bond is a derivative on the interest rate.

1.1.1 Futures and forward contracts

Forward and futures contracts are the same in principle, but they differ in operational
aspects. In both contracts, the two parties are obliged to exchange a specific asset at a
specific date in the future at a fair price that they have agreed upon. The asset subject
to exchange is called the underlying asset; the date of exchange is called the maturity
date; and the price is called the forward/futures price. In other words, futures and forward
contracts lock the price at the moment of a deal in the future.

Forward contracts are simpler than futures. They are nontradable contracts between two
specific parties, one of whom is the buyer of the underlying asset, or the long position, and
the other is the seller of the underlying asset, or the short position. The buyer (seller) is
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Risk

; A Non-
Financial .
financial
Market | | Credit Operational Systemic Insurance

Figure 1.1.1: A classification of risks

obliged to buy (sell) a determined number of units of the underlying asset from the seller
(to the buyer) at a price specified in the forward contract, called the forward price. The
forward price is usually agreed upon between two parties at the initiation of the contract.
The forward contract price is not universal and depend upon what the two parties agree
upon. Two forward contracts with the same maturity on the same underlying asset can
have two different forward prices. Usually, one party is the issuer of the forward contract
and quotes the forward price to the other party, or the holder, who faces a decision to
agree or decline to enter the deal. Generally, the issuer is a financial firm and the holder
is a financial or industrial firm. Unlike forward contracts, futures contracts are tradable

Short position

Pz
h 4

Over-the-counter: Long position

Central clearing: Long position Short position

Figure 1.1.2: Forward (top) versus futures (bottom). In futures markets, the CCP
regulates the contracts to eliminate the counterparty risk.

in specialized markets. Therefore, given a fixed underlying asset and a fixed maturity 7,
across the market there is only one futures price, a price listed in the futures market. In
other words, the futures price at time ¢ for delivery date (maturity) 7' is not agreed upon
between two parties only; rather, it reflects the cumulative attitude of all investors toward
the price of the underlying asset at maturity 7. The futures price is different from the
current price of the underlying, the spot price. For a specific underlying asset, we denote
by F;(T) the futures price at time ¢ for delivery at T" and by S; the spot price at time ¢ .

3
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F,(T) and S; are related through

To avoid counterparty risk, i.e., the risk that either of the parties might be unable to meet
their obligation on the futures, the market has a central counterparty clearinghouse (CCP).
When a trader enters the futures market, per the CCP regulation, he or she is required
to open a marginal account that is managed by the CCP. The marginal account works as
collateral; if the holder cannot meet her obligation, the CCP closes the account to cover
the failure of the party. A holder of a futures contract is supposed to keep the amount
of money in the marginal account above a level variable with changes in the futures price.
To understand the operation of a marginal account, consider a long position, the party
who is obliged to buy the underlying at time 7" at price Fy(T"). The financial gain/loss
from a derivative is called the payoff of the derivative. Her financial payoff at time T is
St — Fo(T), because she is obliged to buy the underlying at price Fy(7T) while the market
price is Sp. See Figure 1.1.3. While Fy(T) is fixed and remains unchanged over the term
of the contract, the underlying price Sp is unknown. If at time T', F(T) > Sp, then she
loses the amount of Fy(T") — S7. The aim of the CCP is to make sure that the long position

St — K K — St

AN AN

>ST > ST

Figure 1.1.3: The payoff of forward/futures at maturity 7" as a function of the price of
underlying Sp. K is the forward/futures price, i.e., K = Fy(T). Left: long position. Right:
short position.

holds at least Fy(7T') — S in her marginal account when is in the loosing position, i.e.,
Fo(T) > Sp. To do this, the CCP asks her to always rebalance her marginal account to

4
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keep it above (Fo(T) — S;)+! at any day t = 0,...,T to cover the possible future loss. An
example of marginal account rebalancing is shown in Table 1.1.

| Time ¢ [ o | 1 ] 2 [ 3] 4 |
Underlying asset price S; 87.80 | 87.85 | 88.01 | 88.5 | 87.90
Marginal account .20 15 0 0 .10
Changes to the marginal account - -.05 -.15 0 +.10

Table 1.1: Rebalancing the marginal account of a long position in futures with Fy(7)=%88
in four days.

The marginal account can be subject to several regulations, including minimum cash
holdings. In this case, the marginal account holds the amount of (Fy(T') — S¢)+ plus the
minimum cash requirement. For more information of the mechanism of futures markets,
see [16, Chapter 2].

The existence of the marginal account creates an opportunity cost; the fund in the
marginal account can alternatively be invested somewhere else for profit, at least in a
risk-free account with a fixed interest rate. The following example illustrates the opportu-
nity cost.

Example 1.1.1 (Futures opportunity cost). Consider a futures contract with maturity T
of 2 days, a futures price equal to $99.95, and a forward contract with the same maturity
but a forward price of $100. Both contracts are written on the same risky asset with spot
price Sy = $99.94. The marginal account for the futures contract has a $10 minimum cash
requirement and should be rebalanced daily thereafter according to the closing price. We
denote the day-end price by S1 and So for day one and day two, respectively. Given that
the risk-free daily compound interest rate is 0.2%, we want to find out for which values
of the spot price of the underlying asset, (S1,S2), the forward contract is more interesting
than the futures contract for long position.

| Time t [ o | 1 | 2 ]
Underlying asset price Sy || 99.94 S1 S
Marginal account 10.01 | 10+(99.95 — S1)+ | closed

The payoff of the forward contract for the long position is ST—100, while the same quantity
for the futures is St — 99.95. Therefore, the payoff of futures is worth .05 more than the
payoff of the forward on the maturity date T = 2.

However, there is an opportunity cost associated with futures contract. On day one, the
marginal account must have $10.01; the opportunity cost of holding $10.01 in the marginal

2)+ := max{z, 0}
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account for day one is
(10.01)(1 + .002) — 10.01 = (10.01)(.002) = .02002,

which is equivalent to (.02002)(1.002) = .02006004 at the end of day two. On day two, we
have to keep $10 plus (99.95 — S1)+ in the marginal account which creates an opportunity
cost of (.002)(10 + (99.95 — S1)4). Therefore, the actual payoff of the futures contract is
calculated at maturity as

Sr—99.95— (1.002)  (.002)(10.01)  —(.002) (10 + (99.95 — Sy),)
| — _— 5

Opportunity cost of day 1 Opportunity cost of day 2

— S —99.99006004 — (.002)(99.95 — Sy

The total gain/loss of futures minus forward is

£(S1) :=S7 — 99.99006004 — (.002)(99.95 — S1)4 — S + 100
—.00993996 — (.002)(99.95 — S;)~

shown in Figure 1.1.4,
f(S1)
100993996 I
)Sl

90.05
—u18996004‘ 94.98002

Figure 1.1.4: The difference between the gain of the futures and forward in Example
1.1.1.

Exercise 1.1.1. Consider a futures contract with maturity T = 2 days and futures price
equal to $100, and a forward contract with the same maturity and forward price of $99;
both are written on a risky asset with price So = $99. The marginal account for the
futures contract needs at least $20 upon entering the contract and should be rebalanced
thereafter according to the spot price at the beginning of the day. Given that the risk-free
daily compound interest rate is 0.2%, for which values of the spot price of the underlying
asset, (S1,52), is the forward contract is more interesting than the futures contract for the
short position?

A futures market provides easy access to futures contracts for a variety of products and
for different maturities. In addition, it makes termination of a contract possible. A long
position in a futures can even out his position by entering a short position of the same
contract.
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One of the practices in the futures market is rolling over. Imagine a trader who needs
to have a contract on a product at a maturity 7" far in the future, such that there is no
contract in the futures market with such maturities. However, there is one with maturity
Ty < T. The trader can enter the futures with maturity 77 and later close it when a
maturity 7o > T} become available. Then, he can continue thereafter until he reaches
certain maturity 7.

It is well known that in an ideal situation, the spot price S; of the underlying is less than or
equal to the forward/futures price F;(T') which is referred to as contango; see Proposition
1.3.1 for a logical explanation of this phenomena. In reality, this result can no longer be true;
especially for futures and forwards on commodities which typically incur storage cost or
may not even be storable. A situation in which the futures price of a commodity is less than
the spot price is called normal backwardation or simply backwardation. Backwardation is
more common in commodities with relatively high storage cost; therefore, a low futures
price provides an incentive to go into a futures contract. In contrast, when the storage cost
is negligible, then contango occurs. We close the discussion on futures and forward with

S e N

—  Forward price (Contango)

— Spot price

Forward price (Backwardation)

0 T

Figure 1.1.5: Contango vs backwardation. Recall that lim; 7 F;(T') = St implies that
the forward price and spot price must converge at maturity.

a model for CCP to determine the marginal account. Notice that the material in 1.1.2 is
not restricted to futures market CCP and can be generalized to any market monitored by
the CCP.

1.1.2 Eisenberg-Noe model CCP

The CCP can be a useful tool to control and manage systemic risk by setting capital
requirements for the entities in a network of liabilities. Because if the marginal account

7
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is not set properly, default of one entity can lead directly to a cascade of defaults. Legal
action against a defaulted entity is the last thing the CCP wants to do.

Assume that there are IV entities in a market and that L;; represents the amount that
entity ¢ owes to entity j. Entity ¢ has an equity (cash) balance of ¢; = 0 in a marginal
account with the CCP. The CCP wants to mediate by billing entity ¢ amount p; as a
clearing payment and use it to pay the debt of entity ¢ to other entities. We introduce the
liability matrix L consisting of all mutual liabilities L;;. It is obvious that L; = 0, since
there is no self-liability.

0 Lip -+ Lina1 Lin
Laa 0o ... Lon
L=| :
LN_11 -+ - 0 LN_1N
| Lng Ly -+ LynNn-— 0 |

We define L; := vazl Lj; to be the total liability of entity j and define the weights m;; := %
as the portion of total liability of entity j that is due to entity . If a clearing payment p]j
is made by entity j to the CCP, then entity 7 receives m;;p; from the CCP. Therefore, after
all clearing payments p1, ..., py are made, the entity ¢ receives total of Z;V:1 mjipj. In [11],
the authors argue that a clearing payment p; must not exceed either the total liability L;
or the total amount of cash available by entity 3.

First, the Eisenberg-Noe model assume that the payment vector cannot increase the lia-
bility, i.e., p; < L; for all 7. Secondly, if the equity (cash) of entity i is given by ¢;, then
after the clearing payment, the balance of the entity i, i.e., ¢; + ] j—1 TjiPj — Pi must remain
nonnegative. Therefore, the model suggests that the clearing payment p satisfies

N
p; = min {Li , Ci + Z Wjipj} for all 1.
j=1

In other word, the clearing payment vector p = (p1,...,pn) is therefore a fized point of
the map ®(p) = (®1(p), ..., Pn(pn)), where the function ® : [0,L;] x --- x [0,Ly] —
[0, L1] x -+ x [0, L] is given by

N
®;(p) := min {Li , G+ Z Wjipj} for ¢=1,.,N.
j=1
In general, the clearing payment vector p = (p1,...,pn) is not unique. The following

theorem characterizes important properties of the clearing vector.

Theorem 1.1.1 ([11]). There are two clearing payment vectors p™® and p™" such that

for any clearing payment p, we have p™™ < p; < p™®® for all i =1,...,N.

8
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In addition, the value of the equity of each entity remains unaffected by the choice of clearing
vector payment; i.e., for alli = 1,..., N and for all clearing vector payments p,

N N N
max max min min
Cz‘+27rjz'pj—pi=cz‘+27fjipj —Di =Ci+Z7sz‘pj —DPi
j=1 j=1 j=1

Remark 1.1.1. The above theorem asserts that if by changing the clearing payment, entity
i pays more to other entities, it is going to receive more so the total balance of the equity
remasins the same.

If an entity cannot clear all its liability with a payment vector, i.e., L; > p;, then we say
that the entity has defaulted. Obviously, the equity of a defaulted entity vanishes. The
vanishing of an equity can also happen without default when ¢; + Zf;l mipj = pi = L.

A condition for the uniqueness of the clearing payment vector is provided in the original
work of Eisenberg-Noe,[11]. However, the condition is restrictive and often hard to check
in a massive network of liabilities. On the other hand, the equity of each entity does not
depend on the choice of the payment vector. In a massive network, the problem of finding
at least one payment vector can also be challenging. One of the ways to find a payment
vector is through solving a linear programming problem.

Theorem 1.1.2 ([11]). Let f : RN — R be a strictly increasing function. Then, the
minimizer of the following linear programming problem is a clearing payment vector.

max f(p) subject to p=0,p <L and p < c+ pll, (1.1.1)

where ¢ = (c1,...,cN) is the vector of the equities of the entities, L = (L1, ..., Ly) is the
vector of the total liability of the entities, and 11 is given by

0 T2 *°° TI,N-1 TN
7'['271 0 o« .. o« .. 7-[-27N
I =
7TN—1,1 0 7TN—1,N
| ™N1 N2 o TN,N-1 0 |

Exercise 1.1.2. Consider the liability matriz below by solving the linear programming
problem (1.1.1) with f(p) = Zfilpi. Each row/column is an entity.

oNn OO
T O O
S O NN O
O = O =

The initial equities are given by ¢y =1, co =2, ¢3 =0, and ¢4 = 0.

9



1.1. FINANCIAL DERIVATIVES 1. PRELIMINARIES

a) By using a linear programming package such as linprog in MatLab, find a clearing
payment vector.

b) Mark the entities that default after applying the clearing payment vector found in part
(a).

¢) Increase the value of the equity of the defaulted entities just as much as they do not
default anymore.

1.1.3 Vanilla call and put options

A call option gives the holder the right but not the obligation to buy a certain asset at
a specified time in the future at a predetermined price. The specified time is called the
maturityoption!maturity and often is denoted by T', and the predetermined price is called
the strike price and is denoted by K. Therefore, a call option protects its owner against
any increase in the price of the underlying asset above the strike price at maturity. The
asset price at time t is denoted by S and at the maturity by Sr. Call options are available
in the specialized options markets at a price that depends, among other factors, on time
t, T, K, and spot price at current time S; = S. To simplify, we denote the price of a
call option by C(T, K, S,t)? to emphasize the main factors, i.e., t, T, K, and spot price at
current time S. Another type of vanilla option, the put option, protects its owner against
any increase in the price of the underlying asset above the strike price at the maturity; i.e.,
it promises the seller of the underlying asset at least the strike price at maturity. The price
of put option is denoted by P(T, K, S,t), or simply P when appropriate.

The payoff of an option is the owner’s gain in a dollar amount. For instance, the payoff
of a call option is (Sp — K)4. This is because, when the market price at maturity is St
and the strike price is K, the holder of the option is buying the underlying asset at lower
price K and gains St — K, provided St > K. Otherwise, when S < K, the holder does
not exercise the option and buys the asset from the market directly. Similarly, the payoff
of a put option is (K — S7).

Similar to futures, options are also traded in specialized markets. You can see option
chain for Tesla in Figure 1.1.7. The columns“bid” and “ask” indicate the best buy and sell
prices in the outstanding orders, and column“Open Int” (open interest) shows the total
volume of outstanding orders.

When the spot price S of the underlying asset is greater than K, we say that the call
options are in-the-money and the puts options are outof-the-money . Otherwise, when
S; < K, the put options are in-the-money and the call options are out-of-the-money. If the
strike price K is (approximately) the same as spot price S, we call the option at-the-money
(or ATM).

Far in-the-money call or put options are behave like forward contracts but with a wrong
forward price! Similarly, far out-of-the-money call or put options have negligible worth.

2We will see later that C' only depends on T — ¢ in many models.
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I7d >ST K >ST

Figure 1.1.6: Left: the payoff (Sp— K); of a call option with strike K. Right: the payoff
(K — St)+ of a put option with strike K.

Tesla Motors Inc  (NASDAQ:TSLA) Add to portfolio

View options by expiration (Jan 15,2016 +

Calls Puts

Price Change Bid Ask Volume Open Int Strike Price Change Bid Ask Volume Open Int
209.40 0.00 - - - 5 12.50 0.01 0.00 - 0.01 - 2061
242.68 0.00 19415  197.70 - 9 15.00 0.05 0.00 - 0.01 - 1762
196.00 0.00 191.65  195.15 - 1 17.50 0.03 0.00 0.02 0.10 - 215
210.68 0.00 - - - 16 20.00 0.01 0.00 - - - 12525
203.70 0.00 186.60 190.55 - 0 22.50 0.05 0.00 - 0.14 - 860
202.00 0.00 184.15  187.65 - 1 25.00 0.01 0.00 - - - 1941
196.00 0.00 - - - 91 30.00 0.01 0.00 - - - 1641

Figure 1.1.7: Call and put option quotes on Tesla stocks on January 11, 2016. The first
column is the price of the underlying asset (NASDAQ:TSLA). The bid price is the price at
which trades are willing to buy the options and the ask price is the price at which trades
are willing to sell. The spot price at the time was $206.11. Source: Google Finance.

The holder of an option is called a long position, and the issuer of the option is called a
short position. While the holder has the privilege of exercising the option when profitable,
the issuer has the obligation to pay the holder the amount of payoff upon exercise.

A FEuropean option is an option whose payoff is a function g(St) of the asset price at
maturity S7. The function g : Ry — R is called a European payoff function. Call and
put options are particularly important because any piecewise linear continuous European
payoff can be written as a linear combination (possibly infinite!) of call option payoffs
with possibly different strikes but the same maturity and a constant cash amount; or,
equivalently, a linear combination of call option payoffs and a put option payoff. Therefore,
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International Business Machines Corp. (NYSE:(BM) Add to portfolio n
View options by expiration  Jan 19,2018 [ Layout: Stacked |
Calls Puts 1BM
Price Change Bid Ask Volume Opennt Strike Price Change Bid Ask Volume Opentnt 13414 4124 (0.03%) 10:64AM EST
6300 000 6175 6640 s 4 7000 198 000 161 238 - o7 -
6530 000 5680 6140 5 o 7500 181 000 200 255 - 156
5540 0.00 5185 56.40 - 7 8000 299 000 267 350 - 186 [/ 1
- - 47.00 51.50 - o 85.00 365 0.00 335 425 - 128 d 133
70 000 4225 4680 - 103 9000 450 000 415 500 - 5 i,
- - 37.75 41.80 - 0 95.00 521 0.00 5.15 5.65 - 55 L s
3450 000 3350 3740 5 204 10000 720 000 630 730 - 125 Advertsement
3831 000 3070 325 5 9 10500 840 000 760 870 - 7
2155 000 2700 2045 s o 110.00 1060 000 810 1015 - o
2280 000 2380 2595 5 a 115,00 1150 000 1080 1225 - 108
2027 000 2045 2240 5 489 12000 1385 000 1275 1430 - 208
1741 000 1760 1950 5 £ 12500 1538 000 1510 1665 - 26
1475 000 1495 1695 5 467 12000 1870 000 1725 1030 - 956
1265 000 1275 1465 - 1110 13500 2150 000 1090 210 5 1184
140 080 1065 1200 5 619 14000 2.1 000 275 220 5 459
920 000 890 95 - o7 14500 2695 000 2585 2720 - 523
761 000 735 875 - 1231 15000 3093 000 2025 3115 - aas
625 000 610 745 - 23 165,00 3461 000 275 3570 s 126
530 000 500 610 - 580 16000 3570 000 3645 3060 5 183
450 000 410 515 - o 165.00 3048 000 4045 4350 5 13
350 000 335 440 - 365 17000 4095 000 4445 410 5 1201
300 000 274 a7s - 263 17500 5080 000 4855 5200 5 2
199 000 220 201 - 17 18000 4835 000 5285 5640 5 o
257 000 175 245 - 2 185.00 5245 000 57.20 6090 5 E)
172 000 150 21 - o 19000 6450 000 6165 6375 5 122
175 000 1.0 182 - 7 195.00 67.09 000 6635 6990 5 15
122 000 110 150 - 2 20000 7425 000 7050 7500 5 21
079 000 043 118 - 153 21000 8250 000 8000 8450 - 4
X3 000 018 081 - i 22000 87.00 000 8080 9450 - 3

Figure 1.1.8: Call and put option quotes on IBM stocks on January 13, 2016. In-the-
money options are highlighted. Source: Google Finance.

the price of payoff g(St) = ag + >, ai(ST — K;)4+ is given by

By(T)ao + Y, a;C(T, K;, Si, 1),

In the above, ag is the constant cash amount, and for each i, (S7 — K;)+ is the payoff of a
call option with the strike price K; and the maturity 7'

Remark 1.1.2. The underlying asset St at time T is a call option with strike K = 0.

Example 1.1.2. Put-call parity suggests that the payoff (K — St)+ of a put option can be
written as the summation of payoffs of a long position in K amount of cash, a long position
in a call option with payoff (ST — K), and a short position in an underlying asset. By
Remark 1.1.2, a long position in the underlying asset is a call option with strike 0. See
Figure 1.1.9.

N A A~ A~

Figure 1.1.9: (K — S7)y = K+ (Sp — K)+ — Sr.
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Example 1.1.3. An option that promises the payoff g(St) := |S7— K|, as shown in Figure
1.1.10, is made of a long position in a call option with strike K, and long position in a
put with strike K, both with the same maturity. Equivalently, this payoff can be written as
K amount of cash, a short position in underlying, and two long positions in a call option
with strike K, all with the same maturity.

A

K

K )ST

Figure 1.1.10: Payoff ¢(S7) = |Sr — K| from Example 1.1.3

Example 1.1.4. A put option with payoff (K — St)+ can be written as K amount of cash,
a short position in a call option with strike 0, and a long position on a call option with
strike K.

Exercise 1.1.3. Consider the payoff g(St) shown in Figure 1.1.6.

9(57)

Ko—K;
2

K,y Ki+Ko Ky
2

Figure 1.1.11: Payoff for Exercise 1.1.3

a) Write this payoff as a linear combination of the payoffs of some call options and a
put option with different strikes and the same maturity.

b) Repeat part (a) with call options and cash. (No put option is allowed.)

13
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1.1.4 American options

European options can only be exercised at a maturity for the payoff g(S7). An American
option gives its owner the right but not the obligation to exercise at any date before or
at maturity. Therefore, at the time of exercise 7 € [0,T], an American call option has an
exercise value equal to (S; — K).. We use the notation Can, (T, K, S, t) and Pan (T, K, S, t)
to denote the price of an American call and an American put, respectively.

The exercise time 7 is not necessarily deterministic. More precisely, it can be a random
time that depends upon the occurrence of certain events in the market. An optimal exercise
time can be found among those of threshold type; the option is exercised before maturity
the first time the market price of option becomes equal to the exercise value, whereas the
option usually has a higher market value than the exercise value. Notice that both of these
quantities behave randomly over time.

1.1.5 Bond and forward rate agreements

A zero-coupon bond (or simply zero bond) is a fized-income security that promises a fixed
amount of cash in a specified currency at a certain time in the future, e.g., $100 on January
30. The promised cash is called the principle, face value or bond!face value and the time
of delivery is called the maturity. All bonds are traded in specialized markets at a price
often lower than the principle?.

For simplicity, throughout this book, a zero bond means a zero bond with principle of $1,
unless the principle is specified; for example, a zero bond with principle of $10 is ten zero
bond s. At a time ¢, we denote the price of a zero bond maturing at 7" by B(T).

We can use the price of a zero bond to calculate the present value of a future payment

or cashflow. For example, if an amount of $x at time T is worth % at an earlier time

t. This is because, if we invest $% in a zero bond with maturity 7', at the maturity we
receive a dollar amount of %Bt(T) = .

The price of the zero bond is the main indicator of the interest rate. While the term
“interest rate” is used frequently in news and daily conversations, the precise definition
of the interest rate depends on the time horizon and the frequency of compounding. An

interest rate compounded yearly is simply related to the zero bond price by 1+ R0 = #(1),

while for an interest rate compounded monthly, we have (1 + R(lr;o))12 = #(1). Therefore,

R(mo) ) 12.

1+ RO = (1+ 5

Generally, an n-times compounded interest rate during the time interval [¢t,T], denoted

(n) n
by Rg'”) (T), satisfies (1 + RtT(T)> = Bt%T)' When the frequency of compounding n

3There have been instances when this has not held, e.g., the financial crisis of 2007.
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approaches infinity, we obtain
By(T) = e B (@),

This motivates the definition of the zero-bond yield. The yield (or yield curve) R;(T") of
the zero bond B(T) is defined by

1

By(T) = e~ T=ORD) o R(T):= — -

In By(T). (1.1.2)

The yield is a bivariate function R : (¢,7) € D — Rx( where D is given by {(¢,T) : T >
0 and ¢ < T'}. Yield is sometimes referred to as the term structure of the interest rate since
both variables ¢ and 1" are time.

If the yield curve is a constant, i.e., Ry(T) = r for all (t,T) € D, then, By(T) = e "I,
In this case, r is called the continuously compounded, instantaneous, spot, or short rate.
However, the short rate does not need to be constant. A time-dependent short interest
rate is a function r : [0,7] — Ry such that for any T" > 0, and ¢t € [0,7] we have

B(T) =e~ i rsds. ; or equivalently, short rate can be defined as

8lnBt( ) &lnBt( )

ST e T ot

The short rate r or rg is an abstract concept; it exists because it is easier to model the
short rate than the yield curve. In practice, the interest rate is usually given by the yield
curve.

Besides zero bonds, there are other bonds that pay coupons on a regular basis, for example
a bond that pays the principle of $100 in 12 months and $20 every quarter. A coupon-
carrying bond, or simply, a coupon bond, can often be described as a linear combination
of zero bonds; i.e., a bond with coupon payments of § ¢; at date T; with 77 < ... < T,_1
and principle payment P at maturity 7,, = T is the same as a portfolio of zero bonds with
principle ¢; and maturity 7; for ¢ = 1, ...,n and is worth

2 + PBt 2 —(Ti—t)R:(T3) + Pe™ (Tn*t)Rt(Tn)

Therefore, zero bonds are the building blocks of all bonds, and the yield curve is the main
factor in determining the price of all bonds.

Example 1.1.5. A risk-free 1-year zero bond with $20 principle is priced By(1) = $19 and
a risk-free 2-year zero bond with $20 principle is priced Bo(2) = $17. Then, the yield R1(2)
s given by

Ri1(2) =InBp(1) —In By(2)In Bp(1) =In19 —In 17 ~ 0.1112,
and the price of a risk-free zero bond that start in one year and ends at in two years with
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principle $20 is given by

1
Bi(2) = 100e~ 1) — %80 ~ 89.47.
The price of a bond that pays a 330 coupon at the end of the current year and $100 as the

principle in two years equals to

By(1) n 10030(2)

30 100 100

=59+ 17 =22.9.

Exercise 1.1.4.  a) If a risk-free 1-year zero bond with $100 principle is priced By(1) =
$96 and a risk-free 2-year zero bond with $100 principle is priced By(2) = $92, find
the price of a risk-free zero bond B1(2) and yield curve Ry(2).

b) What is the price of a bond that pays a $30 coupon at the end of the current year and
$100 as the principle in two years?

In the above discussion, we implicitly assumed that the issuer of the bond is not subject
to default on payment of coupons or principle. This type of bonds are called sovereign
bonds and are often issued by the Federal Reserve or central bank of a given country in
that country’s own currency. For example, sovereign bonds in the United States are T-bills,
T-notes, and T-bonds. T-bills are bonds that have a maturity of less than a year, T-notes
have a maturity of more than a year up to ten years, and T-bonds have maturity more than
ten years. Bonds issued by other entities or governments in a foreign currency are usually
called corporate bonds. The word “corporate” emphasizes the default risk of the issuer
on the payments. In addition, sovereign bonds in a foreign currency are subject to the
market risk that is caused by fluctuating exchange rates in the foreign exchange market?.
Therefore, what is considered a risk-free bond in the United States is not risk-free in the
European Union.

The zero bond price Bi(T) can directly be used to discount a payment or a cashflow at
time T without appealing to a specific short rate model. For example, a cashflow of $10 at
time 7' = 1 is worth $ 10By(1) now.

Similar to the yield curve, the forward rate Fy(T) of a zero bond is defined by

Il By(T)

_ — {7 Fy(u)du o
B(T)=¢" or Fy(T): a7

The forward rate reflects the current perception among traders about the future fluctuations
of the interest rates. More precisely, at time ¢, we foresee the continuously compounded

4The foreign exchange market is a decentralized over-the-counter market where traders across the world
use to trade currencies.

5The notation for forward rate is the same as the notation for futures price or forward price in Section
1.1.1.
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interest rates for N time intervals [to,t1], [t1,t2], ..., [tn—1,T] in the future as Fi(t),
Fy(t1), ..., Fiy(tn—1), respectively. Here, for n = 0,....N, t, = t +nd and § = T_t
Then, $1 at time 7' is worth e~ Ftltn-1)9) at time tN—1, e~ (Frtn—1)+F(tn-2))0 4t time tN_o,
e~ (Fltn—)++F(tn))d gt time t,,, and e~ (FrlEv-D) T+ F(E)+F 1) gt time t. As n goes to
infinity, the value B(T') of the zero bond converges to

N Fy(tn)d

lim e~ Zn—0
n—o0

— e ST Fy (u)du

The forward rates are related to so-called forward rate agreements. A forward rate agree-
ment is a contract between two parties both committed to exchanging a specific loan (a
zero bond with a specified principle and a specific maturity) in a future time (called the
delivery date) with a specific interest rate. We can denote the agreed rate by f(to,t,T)
where tg is the current time, ¢ is the delivery date, and T is the maturity of the bond. As

always, we take principle to be $1. Then, the price of the underlying bond at time ¢ should
By (T)
equal By(T) = FNOR

x

time ¢. Then, at time ¢, we reinvest this amount in B(T). At time T, we have VINOLAGE
0

This is because, if we invest $ = in By, (t) at time to, we have B at
0

Alternatively, if we invest in By, (T") from the beginning, we obtain B)SL(T), which must be
0

the same as the value of the two-step investment described above®. Therefore, the fair
forward rate in a forward rate agreement must satisfy

In Bto (T) —In Bto (t)
T—t '

Jto (t,T) =
If we let T' | t, we obtain limy; fi, (t,T) = Fy,(t). In terms of yield, we have

(T = to) Bty (T) — (t = to) Rty (t)

fu (6. T) = o .

F;,(t) is the instantaneous forward rate. However, f;,(¢,T) is the forward rate at time #g
for time interval [¢,T'] and is related to the instantaneous forward rate by

T
Jeo(t,T) = J; Fy, (u)du.

Unlike the forward rate and short rate r, yield curve R¢(T") is accessible through market
data. For example, LIBOR” is the rate at which banks worldwide agree to lend to each other
and is considered more or less a benchmark interest rate for international trade. Or, the
United States treasury yield curve is considered a risk-free rate for domestic transactions
within the United States. The quotes of yield curve R (T) for LIBOR and the United

5A more rigorous argument is provided in Section 1.3 Example 1.3.2
"London Interbank Offered Rate
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States treasuries at different maturities are given in Tables 1.2 and 1.3, respectively.

Time-to-maturity T — ¢ Current date ¢

02-19-2016 | 02-18-2016 | 02-17-2016 | 02-16-2016 | 02-15-2016
USD LIBOR - overnight || 0.37090 % | 0.37140 % | 0.37000% | 0.37100 % -
USD LIBOR - 1 week 0.39305 % | 0.39200 % | 0.39160% | 0.39050 % | 0.39340 %
USD LIBOR - 1 month || 0.43350 % | 0.43200 % | 0.43005 % | 0.42950 % | 0.42925 %
USD LIBOR - 2 months || 0.51720 % | 0.51895 % | 0.51675 % | 0.51605 % | 0.51580 %
USD LIBOR - 3 months || 0.61820 % | 0.61820 % | 0.61940 % | 0.61820 % | 0.61820 %
USD LIBOR - 6 months || 0.86790 % | 0.87040 % | 0.86660 % | 0.86585 % | 0.86360 %
USD LIBOR - 12 months [| 1.13975 % [ 1.14200 % | 1.13465 % | 1.13215 % | 1.12825 %

Table 1.2: LIBOR yield curve for US dollars. Source: www.global-rates.com. The the
date format in the table is DD-MM-YYYY, contrary to the date format MM/DD/YYYY

in the United States.

Time-to-maturity T'— ¢

Date ¢t

1Mo [ 3Mo | 6Mo [ 1Yr | 5¥r [ 10Yr [ 20 Yr | 30 Yr

02/22/16 | 0.28%

0.33%

0.46%

0.55%

1.25%

1.77%

2.18%

2.62%

02/23/16 | 0.28%

0.32%

0.47%

0.55%

1.23%

1.74%

2.16%

2.60%

02/24/16 | 0.28%

0.33%

0.46%

0.55%

1.21%

1.75%

2.16%

2.61%

Table 1.3: Treasury yield curve for US dollar. Source

: https://www.treasury.gov.

The forward rates fi, (¢, 1) can also be obtained from the data on forward rate agreements,
but this data is not publicly available.
We should clarify that there is a slight difference between the yield curve defined by (1.1.2)
and the yield curve data in Tables 1.2 and 1.3. The recorded data on the yield curve comes

from

By(T) = (1+ R(T))Tt, or Ry(T) := <1> Y

By(T)

where the time-to-maturity 7" — ¢ measured in years. Therefore,

R(T) = (exp (RUT)(T - 1)) g~ e (RT)) =1~ R(T),

(1.1.3)

when Ry(T) is small. For example, in Table 1.3, the yield of a zero bond that expires in one
month is given by 0.28% = .0028 and the price of such a bond is equal to (1.0028)~ /12 =

0.9996.
It is also important to know that an interpolation method is used to generate some of

the yield curve data in Tables 1.2 and 1.3. This is because a bond that expires exactly
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in one month, three months, six months, or some other time does not necessarily always
exist. A bond that expires in a month will be a three-week maturity bond after a week.
Therefore, after calculating the yield for the available maturities, an interpolation gives
us the interpolated yields of the standard maturities in the yield charts. For example, in
Table 1.3, The Treasury Department uses the cubic Hermite spline method to generate
daily yield curve quotes.

Remark 1.1.3. While the market data on the yield of bonds with different maturity is
provided in the discrete-time sense, i.e., (1.1.3), the task of modeling a yield curve in
financial mathematics is often performed in continuous-time. Therefore, it is important to
learn both frameworks and the relation between them.

Sensitivity analysis of the bond price

We measure the sensitivity of the zero bond price with respect to changes in the yield
or errors in the estimation of the yields by dBtgg = —(T — t)By(T). As expected, the
sensitivity is negative, which means that the increase (decrease) in yield is detrimental
(beneﬁcial) to the bond price. It is also proportional to the time-to-maturity of the bond;
dB:(T )/;{Rt( )

, the duration of the zero bond is equal to — For a coupon bond, the
sensmVlty is measured after defining the yield of the bond; the yield of a coupon bond
with coupons payments of § ¢; at date T; with T} ... < T,,—1 and principle payment
P = ¢, at maturity T,, = T is a number ¢ such that p(gj) equals the price of the bond, and
p(y) is the function defined below:

n

p(y) = Z cie”Timty,

i=1

Therefore, the yield of a bond is the number y that satisfies
i Tty _ i

The function p(y) is a strictly decreasing function with p(—o0) = oo, p(0) = 377! ¢; + P,
and p(o0) = 0. Therefore, for a bond with a positive price, the yield of the bond exists as
a real number. In addition, if the price of the bond is in the range (0,p(0)), the yield of
the bond is a positive number.

Therefore, the yield § depends on all parameters t, ¢;, T;, and Ri(T;), for i = 1,...,n.
Motivated from the zero bond, the duration the coupon bond is given by

—(Ti=t)

dp d ) ce
D := / y (9) = Z ) —————,
p ~ p(9)
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a naturally weighted average of the duration of payments, with weights %, for

1=1,.

The com;exzty of a zero bond is defined by using the second derivative C' := LBUT)/AR(T) _

Bi(T) -
(T —t)2, and for a coupon bond is expressed as

d?*p/d - i
C: p/y Z _tQC

Recall that a function f is convex if and only if f(Az + (1 — \)y) <
AM(z) + (1 = XN f(y) for all A € (0,1). If the function is twice dif-
ferentiable, convexity is equivalent to f” > 0. For more details on
convexity, see Section A.1.

While the duration indicates a negative relation between changes in yield § and price of
the bond p(7), the convexity tells more about the magnitude of this change. For example,
considering two bonds with the same duration, the one with higher convexity is more
sensitive to changes in the yield. See Figure 1.1.12.

p(y) |--- Bond 1 N p(y) |--- Bond 1

—— Bond 2 \\ —— Bond 2
N Ay Ay

Figure 1.1.12: The relative price change of the bond Ang@(};)/) =E (y;(_g’)’(@) with change in the
yield Ay = y — 9. Left: Bond 1 is longer in duration and therefore less sensitive than bond

2. Right: Both bonds are the same duration, but bond 1 is less convex and more sensitive.

Remark 1.1.4. While in practice bonds are not considered derivatives, they are bets on
the interest rate and therefore can mathematically be considered as derivatives. Forward
interest agreements are derivatives on bond.

1.1.6 Credit derivatives

Financial instruments are issued by financial companies such as banks. There is always a
risk that the issuer will go bankrupt or at least default on some payments and be unable to
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’ Rating \ Moody’s \ S&P \ Fitch
Prime Aaa AAA AAA
Subprime | Bal and lower | BB+ and lower | BB+ and lower
Default C D D

Table 1.4: A brief table of rating by Moody, S&P and Fitch.

meet its obligation. The same situation holds when a debt such as a mortgage is issued. In
such cases, the beneficiary of the issued security is exposed to credit risk. Therefore, it is
important to know about the creditworthiness of individual and corporate loan applicants.
There are three major credit rating companies for corporations and other institutions,
including governments: Moody’s, Standard and Poor’s (S&P), and Fitch. The rates are
usually shown by letters similar to letter grading of a university course. Regardless of
the notation used, the highest level of creditworthiness is called prime rating and the
lowest is given to a defaulted entity. Lower-half rates are usually referred to subprime
which indicates higher exposure to credit risk. See Table 1.4 for a sample of a ratings
table and its notations. To cover credit risk, financial institutes issue credit derivatives.
There are two well-known credit derivatives in the market: credit default swap (CDS) and
collateralized debt obligation (CDO). Both derivatives are written on defaultable loans
(such as bonds). For simplicity, we only consider CDOs and CDSs on defaultable zero
bonds, i.e., the simplest of all defaultable assets. First, we introduce defaultable zero
bonds and explain how the yield of a defaultable zero bond is calculated.

Defaultable zero bond

Consider a zero bond with a face value $1. If the bond is sovereign with the yield R (T),
then the value of the bond is
By(T) = e~ Be(T)(T—t)

We assume that in case of default, the value of the bond vanishes instantly. The default
of a company and the time of default are random. If we denote the (random) time of the
default by 7 and assume that the default has not occurred yet, i.e., 7 > t, we define the
survival rate of the defaultable bond by A;(7"), which satisfies

Pr>T|r>t)=1-Pr<T|r>t)=1—¢ DT,

In the above P(- | 7 > t) represents the probability measure (function) conditional on
T > t, i.e., the default has not occurred until time ¢. Notice that \(7") always exists as a
nonnegative number, or 400, and is given by

1
At(T)sz_tlnP(T<T|T>t).

21



1.1. FINANCIAL DERIVATIVES 1. PRELIMINARIES

If \(T) = 0, the bond is sovereign and never defaults. Otherwise, if A\;(T") = +o0, the
probability of default is 1 and the default is a certain event. The payoff of a defaultable
bond is given by the indicator random variable below:

1 __J1 when 7>T,
tr>13 0 when 7<T.

A common formalism in pricing financial securities with a random payoff is to take expecta-
tion from the discounted payoff. More precisely, the value of the defaultable bond is given
by the expected value of the discounted payoff, i.e.,

BNT) = E[ByT)ljpoary | 7> t] = B(T)P(r > T | 7> t) = ¢ R(DIT D) (1—e*At(T XT*”).
The risk-adjusted yield of a defaultable bond is defined by the value R} (T') such that

o B DN(T—1) _ B?(T) _ o Re(D)(T-1) (1 o e—At(T)(T—t))'

Equivalently,

R?(T) = Ry(T) — - In (1 _ e—)\t(T)(T—t))

For a defaultable bond, we always have R}(T) > R;(T). Notice that when A\ (T) 1 oo,
RNT) | Ry(T), and when \(T) | 0, RNT) 1 0. .

The higher the probability of default, the higher the adjusted yield of
the bond.

Exercise 1.1.5. Consider a defaultable zero bond with T = 1, face value $1, and survival
rate 0.5. If the current risk-free yield for maturity T =1 is 0.2, find the adjusted yield of
this bond.

Credit default swap (CDS)

A CDS is a swap that protects the holder of a defaultable asset against default before a
certain maturity time 7' by recovering a percentage of the nominal value specified in the
contract in case the default happens before maturity. Usually, some percentage of the
loss can be covered by collateral or other assets of the defaulted party, i.e., a recovery
rate denoted by R. The recovery rate R is normally a percentage of the face value of the
defaultable bond and is evaluated prior to the time of issue. Therefore, the CDS covers
1 — R percent of the value of the asset at the time of default. In return, the holder makes
regular, constant premium payments s until the time of default or maturity, whichever
happens first. The maturity of a CDS is often the same as the maturity of the defaultable
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asset, if there is any. For example, a CDS on a bond with maturity 7" also expires at time
T.

To find out the fair premium payments x for the CDS, let’s denote the time of the default
by 7 and the face value of the defaultable bond by P. If the default happens at 7 < T, the
CDS pays the holder an amount of (1 — R)P. The present value of this amount is obtained
by discounting it with a sovereign zero bond, i.e., (1 — R)PBy(T A 7). If the issuer of the
bond defaults after time 7', the CDS does not pay any amount. Thus, the payment of the
CDS is a random variable expressed as

(1 - R)PB()(T A T)l{.,.gT}.

The holder of the CDS makes regular payments of amount & at points 0 =Ty <711 < --- <
T, in time with T;, < T. Then, the present value of payment of amount «, paid at time T;
is

k11, <ry Bo(Th).

The total number of premium payments is N := max{i + 1 : T; < 7 A T}, which is also
a random variable with values 1,...,n + 1. Therefore, the present value of all premium
payments is given by

N
k> Bo(T)).
=1

The discounted payoff of the CDS starting at time ¢ is given by

N
(1= R)PBy(T A 7)1ty — £ Y, Bo(Ty) (1.1.4)
=1

The only source of randomness in the above payoff is the default time, i.e., 7. This makes
the terms Bo(T A 7)1{,<7} and Zf\; 1 Bo(T;) random variables. Notice that, although each

individual term in the summation le\i 1 Bo(T;) is not random, the number of terms N in
the summation is.

Because of the presence of randomness, we follow the formalism that evaluates the price
of an asset with random payoff by taking the expected value of the discounted payoff. In
case of a CDS, the price is known to be zero; either party in a CDS does not pay or receive
any amount by entering a CDS contract. Therefore, the premium payments « should be
such that the expected value of the payoff (1.1.4) vanishes. To do so, first we need to know
the probability distribution of the time of default. The task of finding the distribution of
default can be performed through modeling the survival rate, which is defined in Section
1.1.6. Provided that the distribution of default is known, x can be determined by taking
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the expected value as follows:

E [BO(T N T)l{rgT}]
E [ZogTi« BO(TZ')] '

Exercise 1.1.6. Consider a CDS on a defaultable bond with maturity T = 1 year and
recovery rate R at 90%. Let the default time T be a random wvariable with the Poisson
distribution with mean 6 months. Assume that the yield of a risk-free zero bond is a constant
1 for all maturities within a year. Find the monthly premium payments of the CDS in terms
of the principle of the defaultable bond P = $1.

k=(1-R)P (1.1.5)

Collateralized debt obligation (CDO)

A CDO is a complicated financial instrument. For illustrative purposes, we present a sim-
plified structure of a CDO in this section. One leg of CDO is a special-purpose entity (SPE)
that holds a portfolio of defaultable assets such as mortgage-backed securities, commercial
real estate bonds, and corporate loans. These defaultable assets serve as collateral; there-
fore we call the portfolio of these assets a collateral portfolio. Then, SPE issues bonds,
which pay the cashflow of the assets to investors in these bonds. The holders of these
special bonds do not uniformly receive the cashflow. There are four types of bonds in
four trenches: senior, mezzanine, junior, and equity. The cashflow is distributed among
investors first to the holders of senior bonds, then mezzanine bond holders, then junior
bond holders, and finally equity bond holders. In case of default of some of the collateral
assets in the portfolio, equity holders are the first to lose income. Therefore, a senior trench
bond is the most expensive and an equity trench bond is the cheapest. CDOs are traded
in specialized debt markets, derivative markets, or over-the-counter (OTC).

A CDO can be structurally very complicated. For illustration purpose, in the next example
we focus on a CDO that is written only on zero bonds.

Example 1.1.6. Consider a collateral portfolio of 100 different defaultable zero bonds
with the same maturity. Let’s trenchize the CDO in four equally sized trenches as shown
in Figure 1.1.13. If none of the bonds in the collateral portfolio default, the total $100
cashflow will be evenly distributed among CDO bond holders. However, if ten bonds default,
then total cashflow is $90; an amount of $75 to be evenly distributed among the junior,
mezzanine, and senior holders, and the remaining amount of $15 dollars will be evenly
distributed among equity holders. If 30 bonds default, then total cashflow is $70; an amount
of $50 to be evenly distributed among the mezzanine and senior holders, and the remaining
amount of 35 dollars will be evenly distributed among mezzanine holders. Equity holders
receive $0. If there are at least 50 defaults, equity and junior holders receive nothing. The
mezzanine trench loses cashflow, if and only if the number of defaults exceed 50. The senior
trench receives full payment, if and only if the number of defaults remains at 75 or below.
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Figure 1.1.13: Simplification of CDO structure

Above 75 defaults, equity, junior, and mezzanine trenches totally lose their cashflow, and
sentor trench experiences a partial loss.

Exercise 1.1.7. Consider a credit derivative on two independently defaultable zero bonds
with the same face value at the same maturity, which pays the face value of either bond in
case of default of that bond. A credit derivative of this type is written on two independently
bonds: one of the bonds has a risk-adjusted yield of 5% and the other has a risk-adjusted
yield of 15%. Another credit derivative of this type is written on two other independently
defaulted bonds, both with a risk-adjusted yield of 10%. If both credit derivatives are offered
at the same price, which one is better? Hint: The probability of default isP(r < T |7 > t) =

e MDT=Y) and the risk-adjusted yield satisfies RNT) = Ry(T) — 7 In <1 - e_)‘f(T)(T_t)>
Therefore, the probability of default satisfies P(r < T |7 >t)=1— e~ (BHD)=Ru(D)(T—t),

Loss distribution and systemic risk

We learned from the 2007 financial crisis that even a senior trench bond of a CDO can yield
yield an unexpectedly low cashflow caused by an unexpectedly large number of defaults in
the collateral portfolio, especially when the structure of the collateral portfolio creates a
systemic risk. To explain the systemic risk, consider a collateral portfolio, which is made
up of mortgages and mortgage-based securities. These assets are linked through several
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common risk factors, some are related to the real estate market, and the others are related
to the overall situation of the economy. These risk factors create a correlation between
defaults of these assets. Most of the risk factor that were known before the 2007 financial
crisis can only cause a relatively small group of assets within the collateral portfolio to
default. If risk factor can significantly increase the chance of default of a large group of
assets within the collateral portfolio, then it is a systemic risk factor. If we only look at the
correlation between the defaults of the assets in the collateral portfolio, we can handle the
nonsystemic risk factors. However, a systemic risk factor can only be found by studying
the structure of the collateral portfolio beyond the correlation between the defaults.

A difference between systemic and nonsystemic risk can be illustrated by the severity of
loss. In Figure 1.1.14, we show the distribution of loss in three different cases: independent
defaultable assets, dependent defaultable assets without a systemic factor, and dependent
defaultable assets with systemic factor. The loss distribution, when a systemic risk factor
exists has at least one spike at a large loss level. It is important to emphasize that the
empirical distribution of loss does not show the above-mentioned spike and the systemic
risk factor does not leave a trace in a calm situation of a market. Relying on only a period of
market data, in which systemic losses have not occurred, leads us into a dangerous territory,
such as the financial meltdown of 2007-2008. Even having the data from a systemic event
may not help predict the next systemic event, unless we have a sound understanding of the
financial environment. Therefore, we can only find systemic risk factors through studying
the structure of a market.

Take the following example, as extreme and hypothetical as it is, as an illustration of
systemic risk. Consider a CDO made up of a thousand derivatives on a single defaultable
asset. If the asset does not default, all trenches collect even shares of the payoff of the
derivatives. However, in case of default, all trenches become worthless. Even if you increase
the number of assets to, ten, it only takes a few simultaneously defaulted assets to blow up
the CDO. Even when the number of assets becomes large, their default may only depend
on few factors; i.e., when a few things go wrong, the CDO can become worthless.

Exercise 1.1.8. Consider a portfolio of 1000 defaultable asset with the same future value
$1. Let Z; represent the loss from asset i which is 1 when asset i defaults and 0 otherwise.
Therefore, the total loss of the portfolio is equal to L := 2112010 Z;. Plot the probability
density function (pdf) of L in the following three cases.

a) Zi,..., Ziooo are i.i.d. Bernoulli random variables with probability p = .01.

b) Z1,..., Z1o00 are correlated in the following way. Given the number of defaults N = 0,
the defaulted assets can with equal likelihood be any combination of N out of 100
assets, and N is distributed as a negative binomial with parameters (r,p) = (90,.1).
When N = 1000, all assets have defaulted. See Example B.14. Plot the pdf of L.

¢) Now let X be a Bernoulli random variable with probability p = .005. Given X = 0,
the new set of random wvariables Z1, ..., Z1gp9 are i.i.d. Bernoulli random variables
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Figure 1.1.14: Distribution of loss: Correlation increases the probability at the tail of the
distribution of loss. Systemic risk adds a spike to the loss distribution. All distributions
have the same mean. The fat-tailed loss distribution and the systemic risk loss distribution
have the same correlation of default.

with probability p = .01, and given X = 1, random wvariables Z1, ..., Z1poo are i.7.d.
Bernoulli random variables with probability p = .3. The structure is illustrated in
Figure 1.1.15.

Plot the distribution of the loss.

Figure 1.1.15: Variable X represents a systemic factor for variables Z1, ..., Z190. When
X =1, the chance of Z; = 1 increases drastically. Since Z; = 1 represents the loss from
asset ¢, when the systemic factor X is passive, i.e., X = 0, the loss distribution is similar
to one for a portfolio of independent defaultable assets.

There are two main approaches to modeling a financial environment. Some studies, such
as (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Cont, Moussa, and Santos 2011; Amini,
Filipovi¢, and Minca 2015), model a complex financial network of loans by a random
graph. Others, such as (Garnier, Papanicolaou, and Yang 2013), use the theory of mean
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field games to model the structure of a financial environment. While the former emphasizes
the contribution of the heterogeneity of the network in systemic risk, the latter shows that
systemic risk can also happen in a homogeneous environment. An example of such a
network method, that most central banks and central clearinghouses use to assess systemic
risk to the financial networks they oversee is the Eisenberg-Noe model, which is discussed
in Section 1.1.2.

1.2 Optimization in finance

Optimization is a regular practice in finance: a hedge fund wants to increase its profit,
a retirement fund wants to increase its long-term capital gain, a public company wants
to increase its share value, and so on. One of the early applications of optimization in
finance is the Markowitz mean-variance analysis on diversification; [20]. This leads to
quadratic programming and linear optimization with quadratic constraint. Once we define
the condition for the optimality of a portfolio in a reasonable sense, we can build an optimal
portfolio, or an efficient portfolio. Then, the efficient portfolio can be used to analyze
other investment strategies or price new assets. For example, in the capital asset pricing
model (CAPM), we evaluate an asset based on its correlation with the efficient market. In
this section, we present a mean-variance portfolio selection problem as a classical use of
optimization methods in finance.
Consider a market with N assets. Assume that we measure the profit of the asset over a
period [0, 1] by its return:
Sﬁi) . S(()i)

R, .
sy’

Here, S(()i) and SY‘) are the current price and the future price of the asset i, respectively.
The return on an asset is the relative gain of the asset. For instance, if the price of an asset
increases by 10%, the return is 0.1. Since the future price is unknown, we take return as a
random variable and define the expected return by the expected value of the return, i.e.,

The risk of an asset is defined as the standard deviation of the return o;, where

ol = var(R;).

)

Expected return and risk are two important factors in investment decisions. An investor
with a fixed amount of money wants to distribute her wealth over different assets to make
an investment portfolio. In other words, she wants to choose weights (61, ..., ) € RY such
that ZZJ\L 1 0; = 1 and invest §; fraction of her wealth on asset 7. Then, her expected return
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on this portfolio choice is given by

N
R9 = Z Qsz
=1

However, the risk of her portfolio is a little more complicated and depends on the correlation

between the assets N

of = Y0707 +2 > 00,0000

i=1 1<i<j<N

Here p;; is the correlation between the returns of assets ¢ and j.

Example 1.2.1 (Two assets). Assume that N = 2 and Ry and Ry are assets with correlated
returns, and that correlation is given by 012. Thus, for 0 € [0,1], we invest 6 portion of
the wealth in asset 1 and the rest in asset 2. Then, the expected return and the risk of the
portfolio as a function of 0 are given by

Rop=0Ry + (1 —0)Ry and of = 6%03 + (1 — 0)%03 + 20(1 — 0) 01201 09.

Therefore, by eliminating 0, ag becomes a quadratic function of Ry; see the red parabola in
Figure 1.2.1.

2
Exercise 1.2.1. Show that when 0 = %, the portfolio with two uncorrelated assets in
1 2

Ezxzample 1.2.1 takes the minimum risk 03. Find the minimum value. Repeat the result for
the positively and negatively correlated assets.

As seen in Figure 1.2.1 and shown in Exercise 1.2.1, there is a portfolio with minimum
risk omin and return R* that is higher than the minimum return between the two assets. If
the goal is to minimize risk regardless of the return of the portfolio, there is a better option
than fully investing in the lower-risk asset. Even if the assets are correlated, negatively or
positively, the minimum risk portfolio exists. The only exception is when the two assets
are positively correlated with 912 = 1, where the least risky option is to invest fully in
the asset with lower risk. Notice that in the dotted parts of the red and green curves, all
portfolios are worse than the minimum risk portfolio. In other words, the minimum risk
portfolio has higher return than all dotted portfolios while it maintains the lowest risk. By
choosing a portfolio in the solid part of the curve, we accept to take higher risk than the
minimum risk portfolio. In return, the return of the chosen portfolio also is higher than
the return of the minimum risk portfolio. The solid part of the curve is called the efficient
frontier.

The collection of all portfolios made up of more than two assets is not represented simply
by a one-dimensional curve; such a portfolio is represented by a point in a two-dimensional
region that is not always easy to find. However, Robert Merton in [21] shows that the
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Figure 1.2.1: The risk of a portfolio with two assets as a function of expected return.
O'g as a function of Ry is a quadratic curve. The green curve indicates when the returns
of assets are negatively correlated with correlation —1, the green curve indicates when the
returns of assets are negatively correlated with correlation less than —1, the red curve
indicates uncorrelated assets, the gray curve indicates when they are positively correlated,
and the black curve indicates when the returns of assets are positively correlated with
correlation 1.
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Figure 1.2.2: Left: the risk vs return of all portfolios on three assets. The assets are
marked by blue dots. The bi-asset risk-return curves are plotted with blue, green and red
colors. Right: The efficient frontier for three assets is shown in orange.

efficient frontier always exists regardless of the number of assets. In Figure 1.2.2, we
sketched the risk-return region for three assets and marked the efficient frontier for them.

To define the efficient frontier, we impose a natural partial order among all portfolios
based on their risk and return: 6 > 6 if and only if Ry > R; and 09 < 0p, or Ry > R and
o9 < 0. In other words, one portfolio is better than another if it has either a lower risk
with at least the same return, or a higher return with at most the same risk. The efficient
frontier is the set of all maximal portfolios under this order; i.e., there is no portfolio that
is better.

Minimum risk portfolio

The portfolio with the least risk oy is located in the lowest end of the efficient frontier.
To find the lowest-risk portfolio, we solve the following problem.

min oy subject to € > 0 and Zé’i =1.
i

Notice that the above optimization problem is equivalent to solving the quadratic program-
ming problem.

minoj subject to # >0 and ZGi =1 (1.2.1)
i
Recall that
N
of = Z 0207 42 Z 0i0;0ij0:02
i=1 1<i<j<N

which can be written in matrix form by #TC6. Here, the matrix C is the variance-covariance
matrix between assets given by
Cij = QijO'iO'j.
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If all assets are linearly uncorrelated, then C' is positive-definite. Therefore, problem (1.2.1)
is similar to those studied in Section A.2.

Minimizing risk subject to return constraint

If we want to have a return higher than the return from the portfolio, we have to take more
risk than oni,. This can be achieved by adding the constraint of a minimum return.

min oy subject to 6 =0 Z@i =1 and Ry = Ry. (1.2.2)

The constant Ry is the desired return from the portfolio.
Exercise 1.2.2. Consider a portfolio of ten assets with the expected return given by
[1 2 3 5 2 1 05 .1 2 1]

and the variance-covariance matriz by

|

= e Rl B e Bl e Bl e Wi e Bl e SO R Y
[ R e Bl Bl e Bl e Bl Wi e B R SR
[ Ml R B e Bl e O R S )
[ R e Bl Bl B e B O S S i )
CoOO0OOo LN O OO
CoOo0o LN OO0 OO
cCo LN ELmLOoOOoO OO
=B RN e Rl e i o Bl e Bl e B )
A R i e Bl e Sl e Bl e Bl e i )
[ RN i i e Bl e S e Bl e Rl e i )

Use CVX under MatLab or CVXOPT under Python, introduced in Section A.2, to numerically
solve problems (1.2.1) and (1.2.2).

Maximizing return subject to risk constraint

It is obvious that the highest return comes from the asset with the highest return. However,
it may be too risky to invest all one’s resources in one risky asset. Therefore, there is usually
a risk constraint:

max Ry subject to 6 >0 291' =1 and o} < 0. (1.2.3)
i

The constant og is the maximum risk of the portfolio.
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Exercise 1.2.3. Assume that all assets are uncorrelated. Use the Cauchy-Schwartz in-

equality to show that an optimal solution for problem (1.2.3) is obtained when 0; = aﬁg

where a = ), %

Now consider the general case where the assets are correlated with a positive-definite
variance-covariance matrix. Use the Cholesky decomposition for the positive-definite ma-
trices to find an optimal solution to the problem. Is the optimal solution unique?

1.3 No-dominance principle and model-independent arbitrage

In this section, we focus on the market properties that hold true objectively regardless
of the choice of the model. Therefore, here we do not make any assumption about the
dynamics of the assets, the yield of zero bonds, and the like. Instead, we only impose two
basic assumptions and ignore any friction in the market such as transaction cost, liquidity
restriction, and nontradability of assets. Some of the contents of this section can be found
in [30, Section 1.2].

We consider a sample space €2 that includes the collection of all possible events in the
market at future time 7', and let x be given set of portfolios (a collection of assets and
strategies on how to trade them dynamically) in the market. For any portfolio in x, the
payoff of the portfolio is what it is worth at time 7', and is a random variable from €2 to R.
We assume that there exists a pricing function II : y — R; i.e., the price of portfolio P is
given by II(P). We denote the payoff of portfolio P at the event w € 2 by P(w).

The first assumption that we impose is the following:

Assumption 1.3.1 (No-dominance). If P € x has a nonnegative payoff, i.e., P(w) = 0
for all w € Q, then the price II(P) of portfolio P is nonnegative.

Remark 1.3.1. No-dominance principle implies that two portfolios Py and Py with Py(w) =
Py (w) for all w € Q have the same price.

The second assumption is the linearity of the pricing function. For any two portfolios
P; and P, define P, @ P» is the portfolio made by combining the two. We impose the
following natural assumption of linearity.

Assumption 1.3.2. For Py, P, € x, we have
H(Pl @PQ) = H(Pl) + H(PQ)

Let’s first fix some terminology that we’ll be using. By “being in a long position” in an
asset, a bond, or the like, we mean that we hold the asset, bond, etc. Similarly, by “being
in a short position” in an asset, a bond, or the like, we mean that we owe the asset, bond,
etc. For a bond or an option, the issuer is in the short position. Having a short position
in an asset means borrowing that asset and then selling it for cash or keeping it for other
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reasons. This is often referred to as short selling, which is a common practice in the market.
Usually, the borrower is obliged to pay the short-sold security back upon the request of the
lender or in an agreed time.

Example 1.3.1. The forward price K satisfies

St

Ft(T) = Bt(T)

To see this, consider a portfolio made of a long position in the underlying asset and a
short position in a = Fy(T') zero bonds at time t. The value of this portfolio at time T is
St — Fy(T). This value is the same as the payoff of a long position in forward contract.
Therefore, by the no-dominance principle (Remark 1.3.1), we obtain that the value of the
portfolio is the same as the price of the forward contract, which is zero; Sy— By (T)Fy(T) = 0.
On the other hand, the price of the forward is zero and therefore we have the result.

Remark 1.3.2. Proposition 1.3.1 explains a market condition called contango in the fu-
tures markets; the futures price is larger than the spot price. If holding an underlying
asset incurs storage cost, then the result of Proposition 1.5.1 may be violated and we have
F,(T) < S;. This market condition is called backwardation. Backwardation can also occur
if the underlying of the futures contract is not even storable, for instance electricity.

Example 1.3.2. Forward rate fo(t,T) for delivery at time t of a zero bond with maturity
T satisfies
In BO (t) —In BO (T)

T—t '
To see this, consider a portfolio made of a zero bond with a principle of $1 at time T. The
price of this portfolio is By(T). On the other hand, consider another portfolio made of a for-
ward rate agreement on a bond with the principle of $1 starting at time t, maturing at time
T, and with a forward rate fo(t,T); and a bond with a principle of $e—fot.T)(T—1) maturing
at time t. The price of such a portfolio is $By(t)e foETNT=)  Since both portfolios have
the same payoff of $1, they must have the same price. Thus, Bo(t)e~fo&T)(T=t) — By (T).

fO(th) =

Exercise 1.3.1. Consider a zero bond B{(T) in the domestic currency and another zero
bond Bg(T) in a foreign currency. At the current time t = 0, the domestic-to-foreign
/f

exchange rate is denoted by rg , and the forward domestic-to-foreign exchange rate® for
time T is denoted by f(‘)i/f(T). Show that

BTy = BY(T) £3/(T).

Proposition 1.3.1. The price of an American option is always greater than or equal to
the price of a FEuropean option with the same payoff.

8The forward exchange rate is guaranteed at maturity.
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Proof. An American option can always be exercised, but not necessarily optimally, at
maturity, and generates the same payoff as a European option. ]

Proposition 1.3.2. The price of vanilla options satisfies
C(T,Ky,S,t) < C(T,Ko,S,t) and P(T,K;,S,t) > P(T, K, S,t),
where K1 = K.

Proof. Consider a portfolio that consists of a long position in a call option with strike price
K5 and a short position in a call option with strike K7, both maturing at 7. Then, the
terminal value of the portfolio is (S — K2)4+ — (ST — K1)+, which is nonnegative. By the
no-dominance principle, we have C(T, K», S,t) — C(T, K1, S,t) = 0. For a put options, a
similar argument works. O

Exercise 1.3.2. Show that the price of an American call or put option is an increasing
function of maturity T.

Exercise 1.3.3. Let A€ (0,1). Then,
C(T, AKq + (1 — )\)KQ, S, t) < )\C(T, Ky, S,t) + (1 — )\)C(T, Ko, S, t).

In other words, the price of a call option is convex in K.
Show the same claim for the price of a put option, an American call option, and an Amer-
ican put option.

Exercise 1.3.4. It is well known that a convex function has right and left derivatives at
all points. From the above exercise it follows that the right and the left derivatives of a
call option price with respect to strike price, Ox+C(T, K, S,t), exists. Use no-dominance
to show that

—Bt(T) < 8KiC(T, K, S, t) <0

Hint: Consider a portfolio made of a long position in a call with strike Ko, a long position
in Ko — K1 bonds, and a short position in a call option with strike K.

Proposition 1.3.3 (Put-call parity). The price of a call option and the price of a put
option with the same strike and maturity satisfy

C(T,K,S,t)+ KB,(T) =S+ P(T,K, S, ).
Proof. Since (Sp — K);+ + K = Sp + (K — S7) 4, according to no-dominance principle, a

portfolio consisting of a call option and K units of zero bond By(T') is worth as much as a
portfolio made of a put option and one unit of underlying asset. O
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Exercise 1.3.5. A portfolio of long positions in call options with the same maturity and
strikes on different assets is worth more than a call option on a portfolio of the same assets
with the same weight; i.e.,

Y INC(T, K, 89 1) = C(T, K, 8, 1), (1.3.1)
=1

where A\; = 0 is the number of units invested in the call option on the ith underlying asset,
K; > 0 is the strike of the call option on the ith underlying asset , S® denotes the current
price of the ith asset, K= S NKG, and S = Dy XiSW s the value of a portfolio that
has \; units of ith asset fori=1,...,n.

Remark 1.3.3. Ezxercise 1.3.5 demonstrates an important implication about the risk of
a portfolio. A portfolio made of different assets can be insured against the risk of price
increase in two ways: by purchasing a call option for each unit of each asset or by purchasing
a call option on the whole portfolio. It follows from (1.3.1) that the latter choice is cheaper
than the former. An option on a portfolio is called a basket option.

Proposition 1.3.4 (Arbitrage bounds for the price of a call option). The price of a call

option should satisfy
(S—B/(T)K): <C(T,K,S,t) <S.

Proof. Since (St — K); < Sp, no-dominance implies that C(T, K, S,t) < S. To see the
right-hand side inequality, first notice that since 0 < (S — K)4, 0 < C(T, K, S,t). On the
other hand, a portfolio of along position in the underlying asset and a short position in K
units of zero bond has a payoff St — K which is less than or equal to the payoff of call
option (S7 — K)4. Therefore, S — KBy(T) < C(T, K, S,t). Asaresult, (S—B(T)K)4+ =
max{0,S — By(T)K} < C(T, K, S, t). O

The notion of model-specific arbitrage will later be explored in Section 2.1. However, in
this section, we present model-independent arbitrage, which is in the same context as the
no-dominance principle.

Definition 1.3.1. A portfolio P with a positive payoff and a zero price is called a model-
independent arbitrage. In other words, a portfolio P is called model-independent arbitrage
if P(w) >0 for allwe Q, and II(P) = 0.

By Definition 1.3.1, a portfolio with y(w’) = 0 for some w’ € Q and P(w) > 0 w # w' is
not a model-independent arbitrage. This leads to a weaker notion of arbitrage.

Definition 1.3.2. A portfolio P with a nonnegative payoff such that for some w €
P(w) > 0 and zero price is called a weak arbitrage. In other words, a portfolio P is called
a weak arbitrage if P(w) = 0 for allw € Q, P(w') > 0 for some w’' € Q and II(P) = 0.
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Example 1.3.3. Let K1 > K9 and C(T, K1, S,t) > C(T, K2, S,t). A portfolio that consists
of a short position in a call with strike K1, a long position in a call with strike Ko, and the
difference ofC(T, K1,S,t) — C(T, K2, 5,t) in cash is a model-independent arbitrage. This
is because, the value of such a portfolio is zero. However, the payoff is (S — K2) — (ST —
Ky +C(T,Ky,S,t) — C(T, K, S,t), which is strictly positive, and therefore we have a
model-independent arbitrage.

On the other hand, if C(T, K1, S,t) = C(T, Ko, S,t), the same portfolio described in the
previous paragraph has a positive value whenever St > Ka, and a zero value otherwise.
Therefore, it is only a weak arbitrage.

Example 1.3.4. As a result of Fxercise 1.3.4, if the price of the option is smaller that
(S—=B(T)K)4, orlarger than the asset price S, then there is a model-independent arbitrage.
For example, if C(T,K,S,t) > S, one can have a portfolio of a short position in a call
and a long position in the underlying asset, and the difference C(T, K, S,t) — S in cash.
The value of this portfolio is zero. However, the payoff is strictly positive, i.e., Sp — (S —
K); +C(T,K,S,t)— S >0.

Remark 1.3.4. When C(T,K,S,t) = S and K > 0, Ezxample 1.5.] suggests that we
still have a model-independent arbitrage, unless the event St = 0 is legitimate. Therefore,
choice between the model-independent arbitrage or weak arbitrage depends on whether the
event St = 0 is included in Q or not.

Proposition 1.3.5. If there is no model-independent arbitrage, then the no-dominance
principle holds.

Proof. Assume that no-dominance does not hold; i.e., there is a portfolio P with nonneg-
ative payoff with a negative price II(P). Then, consider a new portfolio made of a long
position in the old portfolio P and holding a zero bond with face value —II(P). The new
portfolio has a positive payoff of P(w) — II(P) for each w € Q and a zero price. Therefore,
it is a model-independent arbitrage. O

Exercise 1.3.6. For 0 <t < T, show that if Bo(t)Bi(T) > Bo(T) (equiv. By(t)Bi(T) <
By(T')), there is a model-independent arbitrage.

Exercise 1.3.7. Consider a zero bond B(T) on the domestic currency and another zero

bond Bg(T) on a foreign currency. At the current time t = 0, the domestic-to-foreign
/f

exchange rate is denoted by rg and the forward domestic-to-foreign exchange rate for time

T is denoted by féi/f(T). Show that if
d d
BTy > BY(D) 1y (1),

then there exists a model-independent arbitrage.
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2. DISCRETE-TIME MARKETS

2

Modeling financial assets in
discrete-time markets

Section 2.1 deals with a single-period market in which there are only two trading dates,
one at the beginning of the period and one at maturity. In this section, an introductory
knowledge of probability theory is required; more specifically, the reader needs the theory
of probability on discrete sample spaces that is provided in Section B.1. A few times in
Section 2.2, we mention concepts form the general theory of probability. However, these
cases are not crucial for understanding of the content of this sections and can simply be
skipped. In Section 2.3, we extend the results of Section 2.1 to a multiperiod market with
a focus on the binomial model. This is also important in our later study of continuous-time
markets, which can be seen as the limit of discrete-time markets. A key concept from the
appendix is the notion of martingales that is explained in Section B.3. The last section,
Section 2.4, deals with the problem of tuning the parameters of a model to match the data
in the specific context of binomial model.

2.1 Arrow-Debreu market model

The ideas and concepts behind pricing derivatives are easier to explain in a single-period
framework with finite number of outcomes, i.e., Arrow-Debreu market model. According
to the Arrow-Debreu market model, an asset has a given price and a set of possible values.
There are N assets with prices arranged in a column vector p = (p1,...,pn)"". For each
i =1,...,N, the possible future values or payoff of asset i is given by {P;; : j = 1,..., M'}.
P; ; is the jth state of future value of asset ¢ and M is a universal number for all assets.

L AT is the transpose of matrix A.
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Then, one can encode the payoffs of all assets into a N-by-M matrix

Py, - Py
P = [Pi,j]z‘=1,...,N,j=1,...,M = .

Pyi -+ Pnwm

)

In the Arrow-Debreu market model, row P;. of the matrix P represents all future prices
of asset 7 for different states of the market, and column P.; represents prices of all assets
in future state j of the market.

P

’

i, M—1

P;o
Pi / :

\P

P; v

Figure 2.1.1: Arrow-Debreu market model

Example 2.1.1 (Game of chance). Let N =1, M = 2 and Pi; = —Pi12 = 1. In other
words, there is a fee p1 to enter a game of chance in which the player either gains or loses
a dollar based on the outcome of flipping a coin. Notice that for now we do not specify
the heads-tails probability for the coin. This probability determines whether the price of the
game p1 is a fair price or not.

Pi=1

—
N

Po=—-1

b1

Figure 2.1.2: Game of chance described in the Arrow-Debreu market model
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2.1.1 Arbitrage portfolio and the fundamental theorem of asset pricing

A portfolio is a row vector 6§ = (61,--- ,6xy) where §; € R which represents the number of
units of asset ¢ in the portfolio. The total price of the portfolio is then given by

N
Op = Z Oip;.
izl

Here, the notation of product is simply the matrix product. Notice that if 6; > 0, the
position of the portfolio in asset ¢ is called long, and otherwise if 6; < 0, it is called short.

Arbitrage is a portfolio that costs no money but gives a nonnegative future value and for
some states positive values. More precisely, we have the following definition.

Definition 2.1.1. 0 is called a weak arbitrage portfolio or weak arbitrage opportunity if
a) bp=0
b) 6P.; >0 forall j=1,... M
c) 0P.; > 0 for at least one j.

Notice that for a given § = (61,--- ,60x), the portfolio represented by @ is itself an asset
with value 0P.; at the state j of the market.

We say that a market model is free of weak arbitrage or that it satisfies no weak arbitrage
condition (NWA for short), if there is no weak arbitrage opportunity in this model.

Sometimes, an arbitrage opportunity starts with a zero-valued portfolio and ends up with
positive values at all states of the market. This defined an strong arbitrage:

Definition 2.1.2. 0 is called a strong arbitrage portfolio or arbitrage opportunity if
a) 0p <0
b) OP.; >0 forallj=1,...,M

Remark 2.1.1. Notice that if we remove some of the states of the market, then weak
arbitrage can disappear. However, strong arbitrage does not.

Notice that model-independent arbitrage as defined in Definition 1.3.1 is even stronger
than strong arbitrage.

The following theorem is the most important in financial mathematics that characterizes
the notion of arbitrage in a simple way. Basically, it presents a simple criterion to determine
if a market model is free of weak or strong arbitrage.

Theorem 2.1.1 (Fundamental theorem of asset pricing (FTAP)). The Arrow-Debreu mar-
ket model is free of weak (respectively strong) arbitrage opportunity if and only if there exist
a column vector of positive (respectively nonnegative) numbers ™ = (my,...,mar)" such that

p = Pm. (2.1.1)
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Notice that Theorem 2.1.1 does not claim that the vector 7 is unique, and therefore there
can be several solutions 7 such that (2.1.1) holds.

Proof. The proof for the strong arbitrage case is the result of the so-called Farkas’ lemma
which asserts that

Given an n X m matrix A and a vector b € R™. Then, exactly one of
the following two statements is true:

1) There exists a m € R" such that Ar =b and 7 > 0.

2) There exists a § € R™ such that A > 0 and 6b < 0.

We apply Farkas’ lemma for A = P and b = p. Strong arbitrage is equivalent to (2) in
Farkas’ lemma. Therefore, lack of strong arbitrage is equivalent to (1).

To show the result for weak arbitrage, we consider the following extension of Farkas’s
lemma.

Given an n x m matrix A and a vector b € R™. Then, exactly one of
the following two statements is true:

1’) There exists a m € R" such that Am = b and 7 > 0.

2’) There exists a §# € R™ such that A > 0, A # 0 and 6b < 0.

For A = P and b = p, weak arbitrage is equivalent to (2’). Therefore, lack of weak
arbitrage is equivalent to (17). O

Remark 2.1.2. The Farkas’ lemma and its extension that are used in the proof of Theorem
2.1.1 are corollaries of the separating hyperplane theorem. For more details about separating
hyperplane theorem and Farkas’ lemma see [8, Section 5.8.3, Section 2.5.1 and Exercise

2.20].

Lack of strong arbitrage does not imply that the vector m in Theorem 2.1.1 has some
positive entities. For instance, when p = 0, i.e., all the assets in the market have zero
price, there is no strong arbitrage. In such a case, a trivila solution to equation (2.1.1) is
m = 0. If p # 0, then no-arbitrage condition implies that 7 has at least a positive entity.
Therefore, one can normalize it by

7 is a probability. The probability vector & = (71, ..., er)T is referred to as a risk-neutral

or risk-adjusted probability.
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Example 2.1.2. Consider a game in which you pay a fee of $.20 to enter. Then, a coin flip
determines whether you win or lose a dollar. We also include a zero bond with a face value
of 81 and a price $.80. See Figure 2.1.3. It follows from the FTAP that the no-arbitrage
condition is equivalent to the existence of a positive vector (my, )" satisfying

T, — T = .2,
T + Mg = .8.
In fact, such a vector (uniquely) exists and is given by (5/8,3/8). If we exclude the zero

P171 =1 P2’1:1
/

p]. g 2 \ p2 —= 8 \
P1,2 = -1 P272 =1

Figure 2.1.3: An Arrow-Debreu market model with two assets and two states representing
a coin game and a zero bond

bond from the market, the FTAP criterion for no-arbitrage is reduced to the existence of a
positive solution to my — mo = .2. There are obviously infinitely many positive solutions.

Example 2.1.3. Consider a game of chance using two coins; to enter the game, you pay
a 31 fee. If both coins turn heads (tails), you win (lose) a dollar. Otherwise, the gain is
zero. There is also a zero bond with a face value of 31 and a price of $.80. It follows from
FTAP that there is an arbitrage opportunity. Notice that the system of equation

T — Ty =1
T+ T+ M3+ My =.8
implies w3 = —mo—.2—274, which excludes the possibility of a positive solution. Therefore,

there is an arbitrage in this game.

FTAP predicts the existence of arbitrage but does not provide any. Knowing an arbitrage
opportunity exists, finding one is sometimes a challenging problem, even in the toy Arrow-
Debreu market model.

Exercise 2.1.1. Find an arbitrage opportunity in Example 2.1.3.
Remark 2.1.3. The weak and strong arbitrage are model specific. If we change the model,
the arbitrage opportunity can disappear. However, model-independent arbitrage remains a

strong arbitrage opportunity in any possible model.
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P=1 P1=1

/P —0 /P =1
Pl—l/ - p2:.8/ .

sﬂ,g:(} spz,?,:l

Py y=-1 Py=1

Figure 2.1.4: An Arrow-Debreu market model with two assets and four states represent-
ing a coin game and a zero bond

2.1.2 Arrow-Debreu market model with a risk-free bond

If we intend to add a new asset with price p’ and values Pj, ..., P}, to the current Arrow-
Debreu market model, the new asset does not create an arbitrage opportunity if and only
if at least one of the existing positive solutions 7 of (2.1.1) satisfies

M
p/ = Z Pj{ﬂ'j.
7j=1

More specifically, assume that the new asset is a zero bond with yield (interest rate) R

and face value 1. Therefore, its price is given by pg = ﬁ. See Figure 2.1.5. For no-

Po 1
/P0,2 =1
REC
1+R — :
\P/(‘),M—l =1

Po,m =1

Po =

Figure 2.1.5: Risk-free asset in Arrow-Debreu market model

arbitrage condition to hold for the market with the new bond, at least one of the positive
solutions of (2.1.1) implies that py = IJ%R = Z]]Vi 1 ;. Therefore, no-arbitrage condition for
an Arrow-Debreu market model with a zero bond is equivalent to existence of a positive
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vector 7 such that (2.1.1) holds and

e T T
7j=1

holds for all such 7. Therefore, any positive vector 7 can be normalized to a risk-neutral

probability through
7T

Zj:l T
Then, the price p; of each asset is given by
M 1 X
pi = Z Pm"iTj = 71 n R Z Pi,jﬁ'j' (2.1.2)
j=1 J=1

The right-hand side above has an important interpretation: provided that the no-arbitrage
condition holds, the price of the asset is equal to the discounted expected payoff with respect

to risk-neutral probability, i.e.,
1 -
= ——E[P;].
1+ R [Pi]

7 P; ; is the expected payoff of asset 7 with respect to the risk-neutral

Dbi

“ M
Here, E[P; ] :=>);";
probability . Factor IJ%R is the discount factor.

By rearranging (2.1.2), one obtains

M

P ; — pi
R= R TP
jzll pi ’

The term h — 1 in RHS is the realized return of asset ¢ if the state j of the market occurs.

Therefore, the interpretation of the above equality is that the expected return of each asset
under the risk-neutral probability 7 is equal to the risk-free interest rate R.

Example 2.1.4. Consider an Arrow-Debreu market model with a risky asset shown below
and a risk-free asset with interest rate R = .5. To see if there is no arbitrage in this model,

/1
~

5

3
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we should investigate the solutions to the system

1=m1+ 7
3= (f1 + 5fo)

The first equation accounts for that & is a probability vector, and the second equation comes
from (2.1.2). However, the only solution is # = (—.1,1.1)7, which is not a probability.

Example 2.1.5. Consider an Arrow-Debreu market model with a risky asset shown below
and a risk-free asset with interest rate R = .5. To see if there is no arbitrage in this model,

we should investigate the solutions to the system

1 =71+ 7o+ 73
1

1= _—
1.5

(277’1 + 7AT2 + .577‘3)
One of the infinitely many solutions to the above system is & = (.6,.2,.2)T, which implies
no-arbitrage condition.

If a second risky asset, shown below, is added to the market, we still do not have arbitrage
because vector © = (.6,.2,.2)T works for the new market.

Exercise 2.1.2. Consider an Arrow-Debreu market model with two risky assets shown
below and a risk-free asset with interest rate R = .5. Find all the values for p such that the
market is arbitrage free.

Remark 2.1.4. A zero bond is a risk-free asset in the currency of reference. For example,
a zero bond that pays 31 is risk-free under the dollar. However, it is not risk-free if the
currency of reference is the euro. In the latter case, a euro zero bond is subject to the risk
caused by the foreign exchange rate and is a risky asset. See Ezercise (2.1.3) below.
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Exercise 2.1.3. Consider an Arrow-Debreu market model with two assets and two states;
one is a zero bond in the domestic currency with interest rate Ry under the domestic
currency, and the other is a zero bond in a foreign currency with interest rate Ry under
foreign currency.

a) Given that the domestic-to-foreign exchange rate at time 0 is Fy?, and at time 1 takes
nonnegative values Fy and Fy, what is the Arrow-Debreu market model description
of a foreign zero bond in the domestic currency?

b) A currency swap is a contract that guarantees a fized domestic-to-foreign exchange
rate, or a forward exchange rate for maturity. The forward exchange rate is
agreed upon between two parties such that the value of the contract is zero. Express
the forward exchange rate of a currency swap maturing at 1 in terms of Fy, Rg, F1,
Ry, and F>.

Remark 2.1.5. The risk-neutral probability © has little to do with the actual probability
(or physical probability) with which each state of the market happens. The probabilities
fj = P( state j occurs) can be obtained through statistical analysis on historical market
data. However, the risk-neutral probability & depends only on the matriz P and vector p
and not on historical market data. The one and only genuine relevance between physical
probability f = (f1,..., fm)" and risk-neutral probability & = (#y,...,7ar)7 is that they both
assign nonzero probability to each of the states of the market; i.e., f; > 0 if and only if
;> 0 for at least one risk-neutral probabilities 7.

One can interpret T as an investor’s preference toward the different states of the market.
To see this, let’s rewrite (2.1.2) as the following

1 & 7 1 7
pi = 1+RJZ1 (fj)fjpi,j = ﬂE[(f)PZ] (2.1.3)

Here, E is the expectation with respect to the physical probability. The quotient 7}—3 is the
risk preference of the investor toward the state j of the market, which is also refjer?“ed to
as the state-price deflator. The state-price deflator shows that, apart from the physical
probability of a certain state, an investor may be keen or averse toward the appearance of

that state. For instance, f; can be a very high probability, but state-price deflator % can be

21 unit of domestic is worth Fy units of foreign.
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small, which means that the probable event of appearance of state j has little value to the
tnvestor.

One can analyze the Arrow-Debreu market model by introducing M new elementary
securities to the market; for i = N +1,..., N + M, asset N + j pays $1 if market state j
happens and pays $0 otherwise. See Figure 2.1.6. Then, it is straightforward to see that 7;
is the arbitrage free price of asset N + j. Therefore, the cashflow from asset 7 is equivalent
to the cashflow of a basket of P; units of asset N + 1, P; 2 units of asset N + 2, ..., and
P; yr asset syyar. Recall from (2.1.2) that

PN+j,1 = 0

Py =1
Pijo =0
Figure 2.1.6: Elementary asset sy

Example 2.1.6. Consider an Arrow-Debreu market model with a risky asset shown below
and a zero bond with interest rate R = .5.

a) A risk-neutral probability & = (1, fro, 73, 74) T must satisfy

1A 3

{ﬁ1+ﬁ2+ﬁ3+ﬁ4=1
A A 1 _3
2 + o+ 573 — 574 = 5

Notice that we have two equations and four unknown; there are two more vari-
ables than equations. Therefore, we shall represent all risk-neutral probabilities as
a parametrized surface with two parameters. For example, we take 1 = s and 7o = t.
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t t } S

1 s} 1

Figure 2.1.7: The hatched region represents the values for ¢ and s which gener-
ate all risk-neutral probabilities in Example 2.1.6. The specific risk-neutral probability
(0.7,0.1, 0.1,0.1)T is shown as a black dot. Each orange line corresponds to a arbitrage-
free price for the new asset that is described in Part (b) of the example.

Then, we write w3 and 74 is terms of t and s as follows:

T3+a4=1—t—s
3 — 7y =3 — 4t — 2s.

You also have to specify the suitable range for the parameters t and s such that vector
7 1is nonnegative. More specifically, we must have the following four inequalities

0<t

0<s
5 3 )
3 1

which specify the region plotted in Figure 2.1.7. The region can also be specified in
the following simpler way:

0<s<i
s 1 S 4 a (2.1.4)
g—gsétég—gs

b) We introduce the new asset below.
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We shall find the range for the price p of the new asset such that the market remains
free of arbitrage; strong or weak. By FTAP, Theorem 2.1.1, p must satisfy
_ (t+ USRI R )— 2<2t+2 1)
P=q50T"3 2" T 9° 2" 7 2%) 73 A
for at least one value of (t, s) in the interior of the region found in Part (a). Therefore,
valid range for p is (A, B), where

2
A :=min 3 (275 +2s — 1) subject to constraints (2.1.4)

and
2
B := max 3 <2t + 25 — 1) subject to constraints (2.1.4).

Both of the above values are the values of linear programming problems which can
be solved by comparing the values of (2/3)(2t + 2s — 1) at the three nodes of the
hatched triangle that represents all risk-neutral probabilities, i.e., (.5,.5), (0,.7), and
(0,2/3). The smallest value is 2/9 which is attained at (0,2/3), and the greatest value
is 2/3 which is attained at (.5,.5). Therefore, (weak) no-arbitrage for the new asset
is equivalent to p € (2/9,2/3).

¢) Lack of strong arbitrage is when the asset price is such that all the risk-neutral prob-
abilities have some zero component. In this case, price p should be such that the
risk-neutral probabilities are only on one of the edges of the hatched triangle and does

not include any interior point. In Figure 2.1.7, the orange lines are p = %(275—1—28—1)

for different values of p. The only values of p which does not have an intersection
with the interior of the triangle are p = 2/9 and p = 2/3. Therefore, the lack of
strong arbitrage implies that p € [2/9,2/3].

Exercise 2.1.4. Consider an Arrow-Debreu market model with N = 3 and M = 4 shown
in Figure 2.1.8 and take the bond yield R = 0, where vy and vy are two (distinct) real
numbers.

a) Find all risk-neutral probabilities.

b) Recall the notion of independent random variables. Find a risk-neutral probability
that makes the random variables of the prices of two assets independent.
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Pr1=uv Py1 =
/P12 " /P22 N
e — e ——
pp = utv2 - pp = wtv2 -
\PLS —u \P273 = V2
P174 = Vg P2,4 = V2

Figure 2.1.8: Exercise 2.1.4

2.1.3 One-period binomial model

Let M = 2 and N = 2 with one risk-free zero bond and a risky asset with price Sy := p1,
and future cash flow given by P 1 = Sou and P; 2 = Sof where Sy and £ < u are all positive
real numbers. By Theorem 2.1.1, in a one-period binomial model, no-arbitrage condition

S()’u

So

Sol
Figure 2.1.9: One-period binomial model

is equivalent to ¢ < 1+ R < w and 7 = (7, 7,)" with m, = % and 7y = %.

The risk-neutral probability is then given by 7, = ”TM and 7ty = %.

Exercise 2.1.5. Show the above claims.

From FTAP, we know that £ < 1+ R < u is equivalent to the no-arbitrage condition. But,
it is often insightful to construct an arbitrage portfolio when ¢ < 1 + R < u is violated.
For example, consider the case when u < 1 + R. Then, consider a portfolio with a short
position in one unit of the asset and a long position in Sy units of bonds. To construct
this portfolio, no cash is needed, and it is worth zero. However, the two possible future
outcomes are either Sy(1 + R) — Sou = 0 or Sp(1 + R) — Sp¢ > 0, which matches with
the definition of (weak) arbitrage in Definition 2.1.1. If we assume the strict inequality
u < 1+ R, then the arbitrage is strong.
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Next, we consider the addition of a new asset into the market with payoff P, and P; in
states 1 and 2, respectively. Then, no-arbitrage condition implies that the price p of this

asset is must be given by
1

T 1+R

In particular, if the new asset is an option with payoff function g(Sj), the no arbitrage
price V(Sp) of the option is given by

D (T P1 + T Pa) .

1 .

(Fug(Sou) + 7eg(500)) = 1 HEl(S1)]. (2.1.5)

V(o) := 1+ R

Here, | is the expectation under probability 7, and S is a random variable of the price
of asset at time ¢ = 1 that takes the values Sypf and Spu. For instance, a call option with
payoff (S — K)4 with £S5y < K < uSp, shown in figure 2.1.10, has a “no-arbitrage price”:

C(K) = M(uso K.
Sou— K
/
C(K)
\ 0

Figure 2.1.10: Cashflow of a call option in a one-period binomial model

We shall now see why any price other than %ﬁu for the call option causes arbitrage

in the binomial market with a zero bond, a risky asset and a call option on the risky asset.
For this reason, we need to first introduce the notion of a replicating portfolio. Consider a
portfolio with 8y investment in a zero bond and 8, units of risky asset. Then, this portfolio
generates the cashflow shown in Figure 2.1.11. We want to choose (fp,6;) such that the
payoff of this portfolio matches the payoff of the call option, i.e.

= Sou—K
{90+0150u Sou 216

Oy +6015¢/ =0
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Therefore, we have to choose

. l(SQU-K) . Sou—K
90— w—7 and 91—So(u_£).

60 + 9150’& == Sou - K

0o+ 6154 =0

Figure 2.1.11: Replicating portfolio in a one-period binomial model

Then, one can see that the value of the replicating portfolio is equal to the price of the
call option, i.e.,
0 I(Sou — K Sou — K 1
o g = Su—K) S _
1+R (1+R)(u—12) u—4 1+R

(So — K ).

Now, we return to building an arbitrage in the case where the price of call option C' is
different from %ﬁu. We only cover the case C' < %fru. Consider a portfolio that
consists of a long position in a call option and a short position in a replicating portfolio
on the same call option. Shorting a replicating portfolio is equivalent to a —# position
in cash, and a —f; position in the underlying asset. Then, the value of such a portfolio
is equal to C' — (ufi;{)() 7y < 0. This means that there is some extra cash in the pocket,
while the payoff oé the call option can be used to clear off the shorted replicating portfolio

in full. Here, the arbitrage is in the strong sense of Definition 2.1.2.

A replicating portfolio can be built for any payoff g(S1) by solving the system of equations

Oy + 0 =
0+ 0uSou = g(Sou) (2.1.7)
Oy + 0154 = g(Sog)
to obtain o/ tol(S s 5
gy = 19500 = Lg(Sow) 4 g 9(Sow) = 9(Sol).

u—4
The value of the replicating portfolio is given by

fo_ g5y — “9S0l) ~Lo(Sow)  g(Sow) —o(Sof) _ 1
1+R T 1+ R)(u—10) — R

So(u— 1)

(Tug(Sou) + 7teg(Sol)),
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which is equal to the expected value of the discounted payoff under risk-neutral probability.

Exercise 2.1.6. Consider a one-period binomial model with parameters £, u and R and
let K € (Sol, Sou]. Find a replicating portfolio for a put option with strike K. Verify that
the value of the replicating portfolio is equal to the no-arbitrage price of the put option
P(K) = mp(K — Sol). Then, find an arbitrage portfolio when the price of the put option
with strike K is less than P(K).

Exercise 2.1.7. Consider an Arrow-Debreu market model with M = 2 that consists of a
risk-free bond with interest rate R = .01 and a forward contract® on a nonstorable asset*
with forward price K and maturity of one period. Given that the payoff of the forward
contract for the long position takes values P11 = 4, and P12 = —2 respective to the state
of the market at maturity, is there any arbitrage?

Now assume that the underlying asset is storable and has price p = 10. Given that there is
no arbitrage, find K, and binomial model parameters u and d for the underlying asset.

Example 2.1.7. Consider the binomial model with Sy = 4, R = .05, u = 1.45, and ¢ = .85.
We shall price and replicate the payoff g in Figure 2.1.12 . To find the replicating portfolio,
we solve the system of equations (2.1.7)

Oy +5.807 = 9(5.8) =.8
0o +3.40; =g(3.4) =.6
to obtain 6y = % and 61 = % The price can be found in two ways: either by using the
9(5t)
2
: : > S
2 4 5 7 r

Figure 2.1.12: Payoff of Example 2.1.7

replicating portfolio or by the risk-neutral probability. The former gives the price by the

3In the context of this exercise, the forward can be replaced by a futures contract.
4E.g. electricity.
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value of the replicating portfolio:

0, 1.9 12
015y = 4)— .
T+ R 0T §(L05) B TRERT;

A

For the latter, we use the risk-neutral probability 7, = 3 and 7y = % to obtain

Ll

—HElg(S)] =

1+ R

(Frug(Sou) + 7reg(Sol)) =

1 /1 2 2
1.05 <3('8) * 3('6)> ~ 315

2.1.4 One-period trinomial model

In a one-period trinomial model, M = 3, N = 2, Sy := p1, u := P11/So, m := P12/So
and ¢ := P; 3/Sy, where Sy, P 1, P12 and P 3 are all positive real numbers. By Theorem

// Sou
SO \Som

Sol

Figure 2.1.13: One-period trinomial model

2.1.1, no-arbitrage condition is equivalent to the existence of a positive probability vector
7t = (#t¢, Am, Ty) such that
erg + Wifrm + ujru = 1+ R (2.1.8)
Ty + Ty T, = 1.

It is not hard to see that the no-arbitrage condition has the same condition as the one-
period binomial model, i.e., ¢ < 1+ R < u. The intersection of two planes with equations
(2.1.8) in R3 is a line parametrized by

~  u—(1+R) m—~
e u—~ u—~ t
Tm =1

~ _ 1+R—¢ u—m
Tu = =7 u—g b
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The no-arbitrage condition is equivalent to the existence of a segment of this line in the
positive octane; i.e., there exists a ¢ such that

A u—(1+R) m—L

T = — =7 __u—€t>0
ﬁ'm =t> 0 )
~ _ 14R—¢ u—m

Tu =07 — agt>0

1+R—¢ u—(1+R)
u—m >  m—~

which is guaranteed if and only if 0 < min{ } Or equivalently, ¢ < 1+ R < u.

1+R—¢ u—(1+R)
u—m > m—F :

Notice that the positive segment is given by 0 < t < min{

Figure 2.1.14: The positive segment of line given by (2.1.8) when / <1+ R < u

Exercise 2.1.8. Derive the no-arbitrage condition for the multinomial model in Figure
2.1.15. Here, u1 < ug < --- < ups are positive numbers.

2.1.5 Replication and complete market

A contingent claim (or simply a claim) on an underlying asset S is a new asset with a
payoff given by a function g : R, — R on the price St of the underlying asset at maturity
T; i.e., the payoff is g(Sr). Call and put options are examples of contingent claims with
payoff functions g(St) := (S — K)4+ and g(Sr) := (K — St)+, respectively. A replicating
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Sou1

///> Souz
So \ :

Sounr—1
Souns

Figure 2.1.15: The description of the asset price in the multinomial model

(or hedging) portfolio for a contingent claim is a portfolio with the same future value as
the payoff of the claim at all states of the market. For example, in the binomial model in
Section 2.1.3, any arbitrary claim can be replicated. More precisely, a payoff g(Spu) and
g(Sp?) for states u and ¢, respectively, is replicated by a portfolio (6, 6;), given by

_ ug(Sof) —Lg(Sow) o o _ 9(5ou) — 9(Sol)
u— "¢ ! So(u—0)

to

Contrary to the binomial model, in the trinomial model, several claims may not be replica-
ble. For instance, the replication of a call option with K € [Sym, Sou) leads to the following
system of three equations and two unknowns:

90(1+R)+0150U = Sou — K
90(1+R)+9150m =0 ,
00<1+R) + 61504 =0

which obviously does not have any solutions for (6p,6;). A market model in which every
claim is replicable is called a complete market. A binomial model is a complete market,
whereas a trinomial model is an incomplete market.

For a general Arrow-Debreu market model, the condition of completeness is expressed in
the following theorem.

Theorem 2.1.2. Assume that there is no arbitrage, i.e., there exits a risk-neutral probabil-
ity . Then, the market is complete if and only if there is a unique risk-neutral probability;
i.e., if and only if the system of linear equation (2.1.1)

p=Pr
has a unique positive solution.

While in the binomial model there is only one risk-neutral probability and therefore the
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market is complete, in the trinomial model there are infinitely many risk-neutral probabil-
ities and therefore the market is incomplete.

2.1.6 Superreplication and model risk

Replication (or hedging) is a normal practice for the issuer of an option to manage the risk
of issuing that option. When the market is not complete, one cannot perfectly replicate all
claims and the issuer of a claim should take another approach: a nonperfect replication.
In practice, the replication starts only after pricing the claim. The issuer first picks up
a pricing model, i.e., a risk-neutral probability #* = (#¥,...,#%,)T, to price the claim
by ﬁl@l* [g(ST)]. Then, she tries to use the fund raised by selling the option to find a
nonperfect replication strategy. Genuinely, the higher the price of the claim, the less the
issuer is exposed to the risk. Therefore, the chosen risk-neutral probability #* to price
the claims represents some level of exposure to the risk. In this section, we would like to
provide a method to measure this risk, namely model risk.

The choice of a replication strategy usually depends on many variables, including the
risk preference of the issuer, which are outside the context of this section. However, for
the purpose of model risk, we introduce one specific choice of a nonperfect replication
strategy, namely superreplication. A superreplication strategy prepares the issuer for the
worst-case scenario. The superreplication price of an option is defined as the cheapest price
of a portfolio that generates a payoff greater than or equal to the payoff the option for all
states of the market. In the Arrow-Debreu market model for asset shown in Figure 2.1.15,
we want to make a portfolio (6p, ;) such that

0o + 01Sou; = g(Souj) forall j=1,.., M.

Then, among all such portfolios we want to choose the one that has the least cost, i.e.,
minli—OR + 0150. For instance, in the trinomial model, the superreplication price of an
option with payoff g(S1) is defined by

to
i 015 2.1.9
min TR + 0150 ( )
over all 6y and 0, subject to the constraints
Oy + 01.50u = g(Sou)
0o + 015om = g(Som) . (2.1.10)

0o + 01500 = g(Sp¥)
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The superreplication price of a claim is the smallest value that en-
ables the issuer to build a portfolio which dominates the payoff of
the claim, in other words, to remove all risk exposure from issuing
the claim.

For simplicity, we build the rest of this section in the context of the trinomial model.
However, extension to multinomial model is straightforward. Subreplication price can be
defined similarly by

to
*1+R

over all 6y and 67 subject to the constraints

ma

+ 6015 (2.1.11)

Oy + 01.50u < g(Sgu)
Oy + 01.5om < g(SOm) . (2.1.12)
0o + 01500 < g(Sof)

Sub or superreplication is a linear programming problem that can be solved using some
standard algorithms. However, for the trinomial model, the solution is simple: for su-
perreplication the minimum is attained in one of the at most three points of intersection

between the lines
o + 01.S0u = g(Sou)

to + 61.Som = g(Som)
(90 + 915’05 = g(Sof)
As shown in Figure 2.1.16, we only need to

(1) find these three points,

(2) exclude those that do not satisfy the inequalities (2.1.10), and

(3) check which one of the remaining yields the smallest value for 1?#01% + 615.

Example 2.1.8. In trinomial model, let So =1, R = .5, u =2, m =1, and { = 1/2.
Consider an option with payoff g shown in Figure 2.1.17.
a) Notice that payoff g(2) = 0 and g(1) = g(1/2) = 1. We shall find the superreplication

price for this option.

20
min ?0 + 64

over all 0y and 01 subject to the constraints

Oy +201 =0
Op+6, =1
904-07121
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61

Figure 2.1.16: The linear programing problem for superhedging. The hatched region is
determined by constraints (2.1.10). The dashed lines are the contours of the linear function

liOR + 6150 in (2.1.9). The point marked by ¢ is where the minimum is attained.

9(St)

1 9 St

Figure 2.1.17: Payoff of Example 2.1.8

This linear programing problem matches the one sketched in Figure 2.1.16 with the
minimizer given by (2,—1). Therefore, the superreplication price is given by %

b) We next find all risk-neutral probabilities. Notice that any risk-neutral probability
7t = (u, T, ) | satisfies
2ty + Fm + & = 3/2
Ty +Tm + 70 =1

Fuws s 710 > 0
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By eliminating 7t,,, we obtain 7, = % + % Then, we parametrize the line of inter-

section of the two planes 2w, + m, + % =3/2 and 7ty + Ty + Tp = 1.

A 1.t
7Tu=§+§
A 1 _ 3t
Tm =37 %
o=t

It is easy to see that my, mm,m¢ > 0 if and only if t € (0, %) The positive segment is

shown in Figure 2.1.18.

Figure 2.1.18: The positive segment of the intersection of two lines given by &, u+ T, m+
7l =1+ R and 7, + T, + 1y = 1. The mark on the segment represents a chosen pricing

model 7*.

¢) Next, we find the range of prices for the option described in Part (a) generated by
different risk-neutral probabilities. Notice that in Part (b), all risk-neutral probabili-
ties are generated by a single parameter t € (0, %) Thus, the risk-neutral price of this

option is given by
1 2t

(G pos (b= Dot sia) - e Bt

As t changes in (0, %), the price changes in (%, %)

Notice that in Example 2.1.8, the superreplication price % is the same as the supremum
2 '), This is not a coincidence. One

of the price range given by risk-neutral probabilities (g,
can see the relation between the superreplication problem and risk neural pricing through

the linear programming duality in Theorem A.3.
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The problem of superreplication is a linear programming problem (A.3) that has a dual
problem given by (A.4). Theorem A.3 suggests that both problems have the same value.
In the context of superreplication for the trinomial model, the dual problem is given by

max 7, g(Sou) + Tmg(Som) + meg(Som)
over all my, m,,, and m, subject to the constraints

TuSou + T Som + mpSom = Sy
Ty + Tm + T = IJ%R

T, Ty g = 0

By change of variable & = (1 4+ R)w, the dual problem turns into

1
P(g) := T R max Tug(Sow) + Tmg(Som) + weg(Som),  subject to

Tl + Tpem + 7l =1+ R (2.1.13)
Ty + T +7p =1

ﬁ'uﬂ%ma ﬁ'é =0

Given no-arbitrage condition, the line of intersection of two planes T, u+a,,m+7/ = 1+ R
and 7, + 7, + 7y = 1 has a segment in the positive octane, shown in Figure 2.1.14. Then,
the value of P(g) in (2.1.13) is attained at one of endpoints of this segment. This segment
represents the set of all risk-neutral probabilities. According to Theorem 2.1.1, the lack of
weak arbitrage implies that this segment is inside the first octane with to endpoints on two
different coordinate planes, and the lack of strong arbitrage only implies that the endpoints
of the segment are on the coordinate planes, possibly the same coordinate plane.

Let’s recall what we presented at the beginning of this section: the issuer of the option
chooses a risk-neutral probability #* inside the positive segment to price the option. The
endpoints of this segment, one of which maximizes and the other minimizes the value
IJ%R max 7,g(Sou) + Tmg(Som) + 7eg(Som), provide the super and subreplication price of
the option with payoff g, respectively. While the issuer has priced the claim by

1

mﬁ* [9(S1)],

to completely cover the risk, he needs P in (2.1.13). Therefore, he is short as much as

1

O(7*) :=P(g) — mﬁ*[g(sﬁ]

in order to cover the risk of issuing the claim. The value O(7*) is called superreplication
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model risk measureindexsuperreplication model risk measure.

Example 2.1.9. In Ezample 2.1.8, if the pricing probability #* = (7/12,1/4,1/6)7 is
chosen, then the superreplication model risk is measured by

1

5 _
18 18’

W=

Plo) — T lo(S0] = 5 — 5 (1729@) + o) + ég<1/2>) -

Exercise 2.1.9. In the trinomial model, let So =1, R=0,u=2, m=1, and { = 1/2.

a) Find all the risk-neutral probabilities and the range of prices generated by them for a
call option with strike K = 1.

b) Find the superreplication price and sub-replication price for this call option and com-
pare them to the lowest and highest prices in Part (a).

Example 2.1.10. In Example 2.1.8, if we modify the yield by setting R = 1, then there
will be an arbitrage. This can be seen through the absence of risk-neutral probabilities. On
the other hand, the superreplication problem is still feasible, i.e., problem (2.1.11) with
constraint (2.1.10) still has a finite value. But this value is zero. This is because we
minimize %0 + 61 subject to 6y +2601 =0, 0g+601 =1 and Oy + %1 > 1, which obviously takes
minimum value zero.

On the other hand, if we set R > 1, then the superreplication problem is not feasible
anymore and the minimum is —o0.

Example 2.1.11. Consider the trinomial model with So = 4, R = .05, u = 1.45, m =
1.25 and ¢ = .85. To price payoff g in Figure 2.1.12, the risk-neutral probability «# =
(Fus Tm, 70) T = (5/18,1/12,23/36) T has been chosen. In order to find the model risk, we
find the superreplication price by solving the following linear programming problem.

0 0o+ 5.801 = g(5.8) =.8
min % + 4601 subject to {0y +50; =g(5) =0
' 0o + 3.40, = g(3.4) = .6
The minimizer is given by Oy = % and 01 = 1—12, and the superreplication price is given by
%. Then, the model risk is O(g) := IJ%R]E[g(Sl)] —P.

2 1 A ool — 2L (B g Ly, 2
0l0) = 7= (Rug(Sou) + ng(Som) + g (506) = 2o (2(8) + 1500 + 26 )

We leave the treatment of the general multinomial model as an exercise.

Exercise 2.1.10. Write the linear programming problem associated with the superreplica-
tion of a contingent claim in the multinomial model in Exercise 2.1.8 and its dual.
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Remark 2.1.6. The superhedging price and therefore the model risk is not linear in the
payoff. The superreplication price of payoff g1 + g2 is less than the sum of the superrepli-
cation price of payoff g1 and the superreplication price of payoff go. To see this, recall that,
by Theorem A.3, the superreplication price of a payoff g is

1 -
P(g) :=sup {ME[Q(SQ] . over all risk-neutral probabilities fr} :

Because sup{ f(z) + g(z)} < sup f(x) + sup g(x), we have

P(g1 + g2) < P(g1) + P(g2)-

2.2 Multiperiod discrete-time markets

2.2.1 A discussion on the sample space for multiperiod asset price pro-
cess

Consider a discrete-time market with time horizon 7" in which trading occurs only at time
t = 0,...,7T, and there are d + 1 assets. We shall denote the price of asset ¢ at time
t=0,...,T by St(z), for ¢ = 0,...,d. The price of each risky asset in a multiperiod market
model is a stochastic process; this means for each ¢t = 1,...,T, the price at time ¢, denoted
by S; is a random variable. In this section, we set up a sample space to host stochastic
processes that represent the price of assets in a discrete-time market.

For a single period market with one asset whose price is a random variable with discrete
values, a finite or countably infinite sample space which matches the states to the values
of a random variable may suffice. For instance, if the future price S; of an asset is given
by three values 2, 1, and 0.5, one can assume a sample space with three outcomes, namely
QO = {wl,Qz,wg} with Sl(wl) = 2, S1(w2) = 1, and Sl(wg) = 0.5. When we have a
multiperiod market with a single asset, the price of the asset is a stochastic process, more
than one random variable, and we need a more complicated construction for sample space.
The following examples elaborate on this situation.

Example 2.2.1. Let the price S; of an asset at time t = 1,2 be given by the diagram in
the figure below. The random wvariable S1 takes values 1 and —1 and the random variable

Sl,l = ]_ L} 5’2,1 :2

Sia=1—2 . 8,=0

w3

5173 =1 - 52,3 =0
S1a=-1 o Sa4 = -2
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S takes values 2, 0, and —1. However, a suitable sample to host both random variables is
one with only four members, Q = {w1, ws, w3, ws} with S1(w1) =1, Sa(w1) = 2, S1(w2) =1,
Sa(wz) =0, S1(ws) = —1, Sa(wsg) =0, and Si(ws) = —1, So(ws) = —2. This sample space
is made up of all possible states of the market; here there are four states that are shown
with arrows. These states are also called the paths of the price process, which represents
the evolution of the price process in time for each outcome.

The above example is a standard random walk with two periods; see Example B.13.

Example 2.2.2. We modify Example 2.2.1 as shown below. Unlike Example 2.2.1, a

51’1 - 1 L) 52’1 - 2
\)3‘0
Sip=12 Sy =0
5173 =—-1 W3 52,3 =0
&
5174 - *1 UJ—4> 5274 - 72

sample space needs more than four members, exactly sixz. There are siz different paths that
the price of the asset can evolve in time. Q = {wi,ws,ws,ws,ws,ws} with S1(w1) = 1,
Sz(wl) = 2, Sl(WQ) = 1, SQ(WQ) = 0, Sl(wg) = —1, Sg(w;g) = 0, and Sl(OJ4) = —1,
Sg(w4) = —2, Sl(w5) = —1, SQ(W5) = 2, and Sl(w6) = 1, Sg(wﬁ) = —2.

In a more general case, a sample space needs to at least have the set of all probable sample
pathssuperreplication model risk measure. of the price process. In the Arrow-Debreu model,
the set of all sample paths is the set of all states of the market, regardless of the number
of assets. In a market with T" periods and one asset that takes values V; at time t with
t =0,...T, we can have the sample space

Q= {(xl,...,xT) cxr€Vy, t= 1,...,T}.

This sample space have l_[thl V; samples paths. We can use the sample-path methodology
to write one single sample space for both Example 2.2.1 and Example 2.2.2, namely

Q={(a,b) : a=—1orl, and b= —2,0, or 2}.

For a market with T periods and d + 1 assets such that at time ¢ the vector of assets
(St(o), s St(d)) takes values in the set V; € R‘fl for each t = 0,...T, the set of all sample
paths is the collection of all functions of the form

w:{l,..,T} > Vi x---xVp
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Notice that some of the sample paths may have probability zero. In Example 2.2.1, the sam-
ple path (—1,2) has probability zero, but in Example 2.2.2, no sample path has probability
Zero.

A unifying approach to set a sample space for the asset price process is by extending the
set of values of the price to include all positive real numbers, V; = R‘f’l, Q= 1_[3;1 Vi =
(RETS equipped with the Borel o-field B((RE™)T). The random variable St(i) which
represents the price of asset 7 at time ¢ is then defined by the canonical mapping

Sti) cw= (Wi, wr) € (REDHT wgi), where w; = (wt(o), ...,wt(d)) e RIH,

(4)

Here, we assume that the price of an asset only takes positive values w,” € Ry. If it

takes negative values, then we can extend the sample space to Q := (IR{‘”I)T. If asset
0 is a risk-free asset, then we can remove its contribution in the sample space and write
Q= (Ri)T.

The choice of canonical space allows us to cover all types of models for asset price with
discrete or nondiscrete distribution. For the rest of this section, we do not need to empha-
size on choice the sample space, we assume that the sample space is finite. Some of
the result can be generalized to countably infinite or even uncountable sample spaces. But,
the treatment of such cases needs more advance tools form martingale theory.

2.2.2 Arbitrage and trading in multiperiod discrete-time markets

Consider a market with multiple assets. There are three ways to represent a portfolio
that is made up of these assets: based on the proportion of each asset in the portfolio,
the number of units of each asset in the portfolio, and the value invested in each asset.
We start to define a portfolio based on the proportion, because it is easier to understand,
then we provide the equivalent representations on the number of units of each asset in the
portfolio and the value invested in each asset.

Portfolio

A self-financing portfolio, or simply a portfolio, is represented by the sequence of vectors
0; = (9150),...,91@)-'— fort =0,...,T — 1 with Z?:o ef) =1,fort=0,.. T —1. Here, Gt(i)
is the ratio of the value of portfolio invested in asset i at time ¢; 0@ = WW?, where Wt(i)
is the proportion of the value of portfolio invested in asset i at time ¢t and W; is the total

value of the portfolio at time t. Equivalently, Wt(i) = Agi) Sgi), where Aii) is the number of

SWe prefer to write (R7*")”" and not R(fH)T.
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shares of asset ¢ in the portfolio and St(i) is the current price of asset i. More precisely,

d . d . . . . . .
Wy =YW =S APSH and W = 6w, = AV s,
=0 =0

Ht(i) , Agi), and Wt(i) can be positive, negative, or zero, representing long, short, or no-
investment positions in asset ¢, respectively. In addition, they do not need to be determin-
istic; in general, a portfolio strategy can be a sequence of random vector that depends on

the information obtained from the assets’ prices before or at time ¢. In other words, Qt(i) is

(

a function of random variables Sl-j ) for i = 1,..,tand j = 1,...,d. More rigorously:

Definition 2.2.1. A self-financing portfolio strategy is given by a sequence of vector func-
tions 0; = (9150) ...,9£d))T such that 6y € R? is a real vector and for any t = 1,...,T — 1,

)

0; = (9,50), ...,Ht(d))T is a function that maps

o3 BRI
Sg=1| . (2.2.1)
Sii Std

into a vector in R that satisfies

d .
29,@ =1, for t=0,..,7T—1
i=0

In other words, the function eﬁ” depends only on the prices of all assets from time t = 0
until time ¢, not the future prices at points ¢ + 1,...,7 in time. This is in line with the
intuition that a portfolio strategy can only depend on the information gathered up to the
present time.

In different applications, different representation of a portfolio strategy are proved useful.
For example in the portfolio theory, it is easier to write the portfolio in terms of the ratio,
while in the replicating portfolio of an option, the number of shares in each asset happens
to provide a more convenient representation. If A; is known, the value of portfolio at time
t is given by

d . .
W= AP,
=0

Then, the value invested in asset ¢ changes by Agi)(St(i)l — St(i)) from time ¢ to time ¢ + 1.
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Time \ # of units of asset (j) \ Value of the portfolio ‘
oW, 0) (0 d) o(d
t AY) = s Wy =AVSY 4 AP s
@
t + 1 before rebalancing g’fjsgt“ Wip1 = A(O)St( +)1 +--+ A,(fd) Séi)l
t+1
. oW 0 d) old
t + 1 after rebalancing Agi)l = %f Wit = Al(t +)1 St( +)1 + -+ AE +)1St( +)1

Table 2.1: Rebalancing a portfolio strategy from time ¢ to time ¢ + 1.

Therefore, the total wealth at time ¢t + 1 changes to

Wt+l Z A l)St.t,_lv

and the change in the value of portfolio is given by

Wit — Wy = 2 AP (59, — 8y, (2.2.2)
=0

However, at time ¢t + 1, we need to change the investment ratio 6; to a different value 6,1,
and as a consequence, A; should be changed to A;1q accordingly. Since the sum of ratios
is always one,

d
20&)1 =1, for t=0,..7—1,

i) (i)
and 0( D WS the vector A1 must satisfy

d
S AW S = Wi = ZA”StH, for t=0,..,T—1.
=0 =0

Stochastic integral: discrete-time markets

For ease of calculation, we consider the case d = 1, i.e.,, i = 0 and 1. Recall from (2.2.2)
that the change in the value of the portfolio satisfies

0 0 1 1
Wiy — W, = Al )(St(+)1 s+ Al )(SIS+)1 s
—— “ _ “

change in the value of the portfolio change due to risky asset (0) change due to risky asset (1)
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Given initial wealth Wy, we sum up the above telescopic summation to obtain

t—1
W, = Wo + 3 AP S = 5% + 3 A (SE) - 5.
=0 =0

In the right-hand side above, either of the summations corresponds to the cumulative
changes in the value of the portfolio due to investment in one of the assets.

If asset SO denotes a risk-free asset with discrete yield R in the time period from i to
i+ 1, then S — 5@ = RS, On the other hand, A” S = Ww; — AW SW. Therefore,
AP (SO =80 = rwi - AP S,

2

In this case, we can simply drop the superscript of the risky asset to write

Wi — Wi = R(Wy — AySt) +  Ai(Sey1— St)
—_— —_— —_—
change in the value of the portfolio change due to risk-free asset change due to risky asset

Therefore, the total wealth satisfies

t—1 t—1
Wy =Wo+ R Y (Wi — AiSi) + > Ai(Si1 — S)). (2.2.3)
i=0 i=0

In (2.2.3), the first summation is the cumulative changes in the value of the portfolio due
to investment in the risk-free asset, and the second summation is the cumulative investment
in the portfolio due to changes in the risky asset.

An important consequence of this formula is that a self-financing portfolio is only charac-
terized by trading strategy A = (Ao, ..., Ap_1) and the initial wealth Wy, since there is no
inflow and outflow of cash to or from the portfolio. The term

t—1

(A-8) = Ai(Si1 — 5))
i=0

is called a discrete stochastic integral®.

Exercise 2.2.1. Let W; := (1+ R)™'W; and S; := (1 + R)™!S; be, respectively, discounted
wealth process and discounted asset price. Then, show that

t—1
Wy = Wo+ >, Ai(Sin1 = 55), Wo =W
i=0

5 According to Philip Protter, this notation was devised by the prominent French probabilist Paul-André
Meyer to simplify the task of typing with old-fashioned typewriters.
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To understand the meaning of stochastic integral (A -S);, we provide the following exam-
ple.

Example 2.2.3. Recall from Example B.13 that a random walk W is the wealth of a player
in a game of chance in which he wins or loses $1 in each round based on the outcome of
flipping a coin. If we denote the amount of bet of the player in round i by A;_1, then the
total wealth W™ from the betting strateqy A = (Ao, Ay, ...) in t rounds is given by

t—1
WtA = VVOA + Z Ai§i+1
i=0

where {&;}; is a sequence of i.i.d. random wvariables with values 1 and —1. Since & =

Wiv1 — Wi, we have
t—1

WP = Z Ai(Wiz1 = Wi) = (A- W)
i=0
In particular, if A; =1, WA = W is merely a random walk.

Example 2.2.4 (Saint Petersburg paradox and doubling strategy). In the setting of Ex-
ample 2.2.3, we consider the following strategy: Ao = 1 and A; = 2¢, for i > 0, if the
player has lost all the past rounds from 1 to i — 1. Otherwise, if the first winning occurs
at round i, we set Aj = 0 for j = 1. For example, if the player’s outcome in the first five
rounds are given by "loss, loss, loss, loss, win", then his bets are given by "1, 2, 4, 8, 16, 0

"

, ..." respectively. Then, the wealth of the player after five rounds is given by
Ws =1(—1) +2(—1) +4(—1) + 8(—1) + 16(1) = 1.
However, his wealth before the fifth round is always negative.
Wi=-1, Wa=-3, Ws=-7 W,=-15.
More generally, if the player loses first i — 1st rounds and win the ith round, the wealth of

the player satisfies

1—1
Wi =—1,.,W,_1 = Z 29 =92~ 1 gnd W,_1 = 1.
j=0

Exercise 2.2.2. In Example 2.2./, we showed that if the player has the opportunity to
borrow with no limitation and continue the game until the first win, he will always end up
with terminal wealth equal to $1.

a) Assume that the player has a credit line, denoted by C. He stops playing if either he
reaches his credit limit or he wins for the first time. Find the possible values for the
terminal wealth of the player.

70



2. DISCRETE-TIME MARKETS 2.2. TRADING AND ARBITRAGE

b) Find the expected value of the terminal wealth of the player, given that the probability
of winning is p € (0,1).

Arbitrage strategy

In this section, we present the definition of an arbitrage opportunity and a version of the
FTAP? for multistep discrete-time markets. In order to define arbitrage, we first fix the
sample space €2 of all samples paths of the price process and we define a o-field F of all
events on the sample paths space. When () is a finite or countably infinite set, we can
choose F to be the o-field of all subsets of Q. When Q = (RT)T | we set F = B((REH)T).
To define arbitrage, it is crucial to to determine the set of all events on the sample paths
space that are believed to have a chance to occur. This is a part of modeling a financial
market. Relevant events are those that basically represent our beliefs about the market
behavior. Equivalently, one can determine the set of all events on the sample paths space
that are deemed impossible to occur. We define such events below.

Definition 2.2.2. We call a collection of events N S F a polar collection if it satisfies
a) JeN.
b) If Be N and A< B, then Ae N.
¢) If {A}2 L S N, then |7 An e N.

The members of a polar collection are called polar sets .

As discussed in examples below, the polar collection depends on the choice of the space
sample paths.

Example 2.2.5 (polar set). In the binomial model in Section 2.1.3, if we set the sample
space to be Q = R, the polar collection N is given by all subsets of Q0 that do not contain
any of the points Sou or Sol. However, if we set the sample space to Q = {u,l}, then
N = {J}. Similarly, in the trinomial model in Section 2.1.4, Q = R, is the canonical
space and the polar collection N is the collection of all events A that do not contain any of
the points Sou, Som, or Sol. If we set the sample space to Q = {u,m, L}, then N' = {}.

Example 2.2.6. In Example 2.2.1, consider the sample paths space given by Q = {(x,y) :
x=—1lor +1andy = —2, 0, or2}. Then, the set of polar collection is

{240, -2} (1,2} (1, -2). (1.2} .

The arbitrage relative to the polar collection N is defined below.

TA fundamental theorem of asset pricing
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Definition 2.2.3. A (weak) arbitrage opportunity is a portfolio A such that
a) Wy =0,
b) {(Wr <0} eN, and
c) {(Wr>0}¢N.
A strong arbitrage opportunity is a portfolio A such that
a) Wy <0, and
b) {(Wr <0} eN.

By {Wr < 0} € N, we mean that the event {Wp > 0} will surely happen. {Wp > 0} ¢ N/
means that {Wp > 0} is likely to happen with a possibly small chance.

In the above, we did not assign any probability to the events, except the polar collection;
the polar collection is the collection of all events that are believe to have probability zero.
Outside polar collection, all the events have nonzero probability, which may not be known.

To extend FTAP to discrete-time multiperiod market models, we need the probabilistic
notion of martingale, which is introduced in Section B.3. Risk-neutral probability in a
multiperiod market can be defined in terms of the martingale property for the discounted
asset price: S; := (1+ R)™S,; we assume implicitly that there is a zero bond with yield R
in the market.

Definition 2.2.4. We call a probability P a risk-neutral probability if the discounted asset
price is a martingale with respect to the o-field generated by the price process {S; : t = 0}
under the probability measure P; i.e.,

A

E[Si1 | S, St 1,...,S1] = St (2.2.4)
Here, | is the expectation with respect to P.
We can also use the notion of o-field F}° := o(S;, ..., Sp) generated by S, ..., Sp to write
E[Sp41 | 7T = 5.

For a single-period binomial model, the martingale property with respect to risk-neutral
probability is expressed and verified in Section 2.1.3; see (2.1.5).

Exercise 2.2.3. Let {At}%2, be a bounded portfolio strategy; i.e., there exists a number

C such that |Ay| < C for all t = 0,1,.... Show that if the discounted price Sy = (157;%)'5

is a martingale with respect to probability P, then the stochastic integral (A - S’)t and the
discounted wealth process W; are martingales with respect to IP.
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The following result extends Theorem 2.1.1 into multiple periods. In order to have a
fundamental theorem of asset pricing in a general form, we need to impose the following
assumption.

Assumption 2.2.1 (Dominating probability). There exists a probability P such that A € N
if and only if P(A) = 0.

Assumption 2.2.1 holds trivially if the sample space of all paths are finite or countably
infinite. It is a nontrivial assumption when the sample path space is uncountable.

The probability P can be regarded as the physical probability in the market. Therefore,
one can equivalently define the collection of all polar sets as the set of all events that have
zero probability under IP. However, as seen in Theorem 2.2.1, the only relevant information
about probability P is the no-arbitrage condition is the polar collection; the actual value
of the probability of an event does not matter as long as it has a nonzero probability. In
this case, we say that the polar sets are generated by P.

Definition 2.2.5. Two probabilities P and P are called equivalent if they generate the same
polar sets. We denote the equivalency by P = P.

Theorem 2.2.1 (Fundamental theorem of asset pricing (FTAP)). Let Assumption 2.2.1
hold. Then, there is no weak arbitrage opportunity in the discrete-time market model if
and only if there exists a probability measure P such that

a) P=P, and
b) the discounted asset price Sy is a (local) martingale(local) martingale® under P.

The probability measure P is called a risk-neutral probability.

A market model with no arbitrage is called a complete market model if any contingent
claim is replicable. In other words, for a contingent claim with payoff g : (RTI)T - R
which maps the history of an underlying asset price, Sy, S, ..., St into g(So, S1, ..., ST),
there exists a portfolio Ag, ..., Ap_1 such that

(A ’ S)T = 9(507 Sla ceey ST)

As an extension to Theorem 2.2.1, we have the following condition for the completeness of
a market.

Corollary 2.2.1. Let Assumption 2.2.1 and no-weak-arbitrage condition hold. Then, The
market is complete if and only if there is a unique risk-neutral probability measure.

8local martingale is roughly a martingale without condition (a) in Definition B.15.
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One direction of Theorem 2.2.1 is easy to prove. Here is a glimpse of the proof. Assume
that a risk-neutral probability P exists, and consider an arbitrage strategy A with the
corresponding discounted wealth process W; integrable. Then,

Wi = (A-S);. (Recall that Wy =0.)
Since S; is a I@’—martingale, then by Exercise 2.2.1, W, is a martingale and we have
E[W,] = Wy = 0.

This is in contradiction to condition (c) in the definition of arbitrage 2.2.3. For a complete
proof of this result, see [13, Pg. 7, Theorem 1.7]. A very general form of this theorem can
be found in a seminal paper by Delbaen and Schachermayer [9].

Remark 2.2.1. Assumption 2.2.1 can be relaxed by assuming that the polar sets are gener-
ate by a convex collection of probabilities P. More precisely A € N if and only if P(A) =0
for all P € P. Then, the fundamental theorem of asset pricing should be modified: there is
no weak arbitrage opportunity in the discrete-time model if and only if

a) Q:={P : S is a P-martingale} is nonempty, and
b) P and Q generate the same polar sets.
For more on the relazation of Assumption 2.2.1, see [6].

By Theorem 2.2.1, the existence of risk-neutral probability eliminates the possibility of
arbitrage. However when T' = o0, the Saint Petersburg Paradox still holds even though a
risk-neutral probability exists. This is a different issue and is related to the notion of an
admissible portfolio strategy. The following corollary suggest a practical way around this
paradox.

Corollary 2.2.2. Let {M};2, be a martingale, {A} a portfolio strategy, and C be a
constant such that (A - M)y = C for all t = 0. Then, for any stopping time T such that
T < 0 a.S., we have

E[(A ' M)T ‘ Ft] = (A : M)T/\t'
In particular, E[(A - M),] <O0.

Definition 2.2.6 (Admissible strategy). A portfolio strategy is called admissible if there
exists a C be a constant such that (A -S)y = C for allt = 0.

restriction to admissible strategies is not necessary when there are only finite number
of periods, T' < o. For T' = o0, we need to restrict the portfolio strategy choices to
admissible strategies. In addition, this happens to be necessary when we pass to a limit
from a discrete-time market to a continuous-time market by sending the number of periods
to infinity.
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2.3 Binomial model

Let Hy, Ho,... be an i.i.d.? sequence of random variables with values u and ¢'°. Let T be
the maturity, and let the time variable t take values 0, 1,...,T. At time 0, the price of the
asset is Sg. At time ¢t = 1,...,T, the price of the asset satisfies S; = S;_1H;. The binomial
model is shown in Figure 2.3.1.

) SQUT
Sou® | YISOqulz
/ "
S()’LL2
Sou Sou2€ } SouT72£2
So Souf
Sol Soul? ) SouQET—Q
Sol?
S()ES ..“SougT_l
N

Figure 2.3.1: Asset price in the binomial model

We label the nodes of the binomial model by the time and the state of the asset price. For
example, at time ¢ when the asset price is equal to S j+1 := Sou?¢*=J, the node is labeled
(t,j +1). The only node at time 0 is labeled 0 for simplicity. See Figure 2.3.2.

9Independent identically distributed
10The probabilities of these values are irrelevant at this moment.
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(3,4)

<2,3>/

<1.,2>/ \’(3,3)
(o>/ \@,2)/
\wu)/ \@72)
\(271)/
\6,1)

Figure 2.3.2: Label of the nodes in a three-period binomial model

2.3.1 No-arbitrage condition

The no-arbitrage condition for the multiperiod binomial model is the same as for the single-
period. There is no arbitrage in the multiperiod binomial model if and only if there is no
arbitrage for the single-period model with the same parameters.

Proposition 2.3.1. There is no arbitrage in the multiperiod binomial model if and only
ifl <14+ R < u. In this case, the multiperiod binomial market is complete, and the
risk-neutral probability is given by assigning the following distribution to each H;.

1+ R
 ou—/

u—1-—

~
1

IP)(HZ =u) and I@’(Hl =/() =

u—4

Proof. By Theorem 2.2.1 (FTAP), no-arbitrage condition is equivalent to the existence of
a risk-neutral probability. We first show that given £ < 1 + R < u, the probability P
defined in the theorem is a risk-neutral probability. In other words, we shall show that

the discounted asset price is a martingale. Notice that since Sy;1 = H11S5:, we have

. o A
St+1 = 177 St- Therefore,

PN 1 PN
E[Si41 | Ff] = mE[Sth+1 | 771,

where F° = o(Sy, ..., Sy). Since S; is known given F7, if follows from Corollary B.6 that

A

~ A S, A A
E[SiHy i1 | FP] = 1 _i_tRE[HtH | 771

On the other hand, since Hy, Ho, ... is a sequence of independent random variables, Hyy1
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is independent of F;, and we have
B[Hy1 | FP] = B[Hi] = #yu+ 7l =1+ R.

Thus,
E[Sis1 | F2] = S

For the other direction, assume by contraposition that either u < 1+ Ror £ > 1+ R.
Then, Section 2.1.3 shows that there is an arbitrage in the first period. Then, one can
liquidate the position to cash after the first period to carry over the arbitrage until time
T. O

The above proof is also presented in Example B.41 in a different way.
As shown in Figure 2.3.1, the random variable S,, only takes values Sou™ *¢* for k =
0,...,n. Under the risk-neutral probability,

B(S, = Sou"Fek) = (Z) (7)™ F (700)F .

To see this, notice that in the binomial model in Figure 2.3.1, there are (Z) paths from
the node Sy to node Spu™ *¢*, and the probability of each path is (#,)" % (#,)F1. For
simplicity, we denote Sou!~¢* by S (i).

Remark 2.3.1 (Recombination in the binomialmodel). The binomial model has a feature
that allows reduce the number of values that S, can take. For example, consider a two
period market with one asset whose price process is given below:

S() = 1,51 = Hl, and Sg = HlHQ,

where H; takes values u; and ¢; for i = 1,2. At time t = 2, the Sy takes values ujus,
uila, usly, and f1fs. All these values are distinct unless uifo = usfy. In the binomial
model uy = ug = u and {1 = b = L. Therefore, uily = usly = ul. Therefore, the values
for So binomial model reduces to three, because the values uils and usly recombine. See
Figure 2.5.3. In general for a T period binomial market model, the recombination allows
that the price Sy takes only t + 1 values, whereas in a nonrecombining market model, there
are potentially 2t distinct values for S;.

2.3.2 Basic properties of the binomial model

The binomial model described above has some properties that are the common features in
many models in finance. These features allows to perform risk management evaluations in
a reasonable time. In this section, we discuss these properties.

"This is an elementary combinatorics problem.

7



2.3. BINOMIAL MODEL 2. DISCRETE-TIME MARKETS

U1 U U1 U

u1ly

/\

liug

/ " / “
So=1 So=1 urly = l1ug
\ ) \ ,

AN

A

{14y 52

Figure 2.3.3: Recombining binomial market model (right) versus a nonrecombining one

(left).

Time homogeneity

Since {H;}{2, is an i.i.d. sequence of random variables, then for ¢ > s, HE:SH H; has the

same distribution as Hf;f H;. Therefore, given S; = S, Sy = S, H§=s+1 H; has the same
distribution as S;_s = S Hf;f H;. In other words, the conditional distribution of S; given
Ss = S is the same as conditional distribution of S;_s = Sy Hf;‘f H; given Sy = S.

Markovian property

The Markovian property for a stochastic process asserts that in order to determine the
probability of future scenarios of the value of the process, for example the value at a time
in the future, the only relevant information from the past history of the price process is the
most recent one. In other words,

Definition 2.3.1. A stochastic process {X; : t = 0} with values in R? is called Markovian
if for any A c R and s > t, we have

P(X;e A| Xy,...,. Xo) =P(Xse A| Xy].
Equivalently, one can write the Markovian property of in terms of conditional expectation:

E[Q(Xs) | Xt, -~-7X0] = E[Q(Xs) | Xt]' (2'3'1)

The binomial model is Markovian under risk-neutral probability; given Sy, ..., S1, So

Blg(Ss) | St .-, Sol = B[ (S ]_[ H;) | St S0

i=t+1
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S
Since [] H; is independent of Sy, ..., Sy, by Proposition B.6, we have

i=t+1
8o (s [1 1) 15 = sivSo = 0] = E[a(s [] 1)] =E[o(s [] 1) 15 -]
i=t+1 i=t4+1 i=t+1
Therefore,

E[g(Ss) | Sty .y So] = E[g(Ss) | Sel-

See Figure2.3.4 for the illustration of the Markovian property in the binomial model in one
period. Given S; = S(i), the probability that Sy = Si+1(i + 1) is 7y, and the probability
that Siy1 = Si41() is . Given Sy # Si(i), both of the probabilities are 0.

St+1(i + 1) = St(z)u

(1)

Se1(i) == S,(i)¢

Figure 2.3.4: Conditioning of the binomial model

Why is Markovian property important? The Markovian property is often useful in reduc-
ing the computational effort, and models with the Markovian property are computationally
efficient. A reason for this reduction lies in the solution to the exercise below.

Exercise 2.3.1. How many paths are there in a binomial model from time t = 0 to time
t =n? How many nodes (values of asset price process at all points in time) are there?

If we don’t have Markovian property, we need to evaluate the conditional expectation
I@[g(SS) | St, ..., So] once for each sample path; IAE[g(Ss) | Sty ..., So] is a random variable
that has as many values as the process (Sp, ..., S;) does. However, Markov property allows
us to reduce the conditional expectation to E[g(Ss) | S¢], and therefore, the number of
values that E[g(Ss) | S¢] can take is as many as the number of values of the ranvom
variable S;.
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2.3.3 Arbitrage pricing and replicating European contingent claims in
the binomial model

As in Section 2.1, the introduction of a new asset can create arbitrage if and only if the
discounted price of the new asset does not satisfy

1 n /
mE[P-j] =D,

for at least one risk-neutral probability. In the one-period binomial model, since there is
only one risk-neutral probability provided that there is no arbitrage, one can readily find
the no-arbitrage price of any new asset including all derivatives.

The same methodology applies to the multiperiod binomial model, with a slight difference:
the discounted price of the newly introduced asset must be a martingale with respect to
the risk-neutral probability.

We start by illustrating the idea in a two-period binomial model in the following example.

Example 2.3.1. Consider a two-period binomial model with Sy =1, u = 2, £ = %, and

R = .5 (for simplicity). We consider a FEuropean call option with strike K = .8; the payoff
is g(S2) = (S2 — .8)+. Therefore, &, = 2 and ;= 3.

Sp(3) =4 (4—K)y =32

S51(2) =2

50:1/
\

s1(1) =%

(1-K)y =.2

/ Vl‘z
S2m =1 Yo \
Via

/A
A

Sa(1) =} (3 -y =0

Figure 2.3.5: European call option in a two-period binomial model. Left: asset price.
Right: option price

We first argue that the price of the European call option mimics the binomial model for
the asset and takes a similar form shown on the right-hand-side in Figure 2.5.5. At the
maturity, the value of the option is given by Vo = (So — K)4. Since Sa takes three values,
so does Vo. At timet =1,

We assume that there is no arbitrage. Therefore, the discounted price of the option must
be a martingale with respect to the asset price under the risk-neutral probability:

—_

N 1 -
Vl == mE[VQ ‘ Sl,SO] = mE[(SQ - K)+ | 51,50].
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By the Markovian property of the asset price, we have,

1

Vi=—
" 1+R

E[(S2 — K)4 | S1].

Therefore, V1 is a function of S, and since S1 takes two values, the value Vi of the op-
tion takes two values Vi o and Vi1 when Sy takes values S1(2) = Sou and Si1(1) = So,
respectively. More precisely,

1 . 1 . A
V172 = mE[(SQ - K)+ | Sl = SOU] = 1+ R (ﬂ-u(slu - K)+ + 77[(516 - K)+) S1=Sou
1 /2 1 4.4
= (Z32)+2(2)) = =2 ~ 1.4666.
15 (3( )+ 3 )) 3

Similarly at node (1,1), where t = 1 and state is 1, we have

1 . LI A

Via = 7 gl = K)o 151 = 50f] = 1 (RulSru = K)o + (S = KO0 |
1 (2 1 8
- (3( ) + 3(0)> =~ 0.8888

To evaluate the option price Vo at time t = 0, we use that the no-arbitrage implies the
martingale property for the option:

1 .
Vo= ——=E[W] =
0 1+ R V]

2

(FuVip + 7 Vig) = 3 <

1 2.,4.4 1,.8
—_ —(— —(=) | ~ .6716.
1+R 3(3)+3(9)> 6716

To replicate the option, we need to solve the same system of equations as in 2.1.7 at each
node of the binomial model in a backward manner. At node (1,2),

90(1+R) +9151(2)u = (4—K>+ 1.50p + 46, = 3.2
or .
90(1+R) +9151(2)€ = (1—K)+ 1.50g + 61 =.2

Thus, 61 = 1 and 6y = —%. In other words, to replicate the claim at node (1,2) we need

to keep one unit of the risky asset and borrow %6 units of the risk-free zero bond. This

leads to the price Oy + 0151(2) = 2 — 1?6 = %, the same price we found with risk-neutral

probability.

The same method should be used in the other node, (1,1), to obtain the system of equation

90(1 +R) + 6 =.2
Oo(L+R)+ 16, =0~

Thus, 6, = g and 0y = —é. The price 0p6151(1) = % (38) — é — 8 s again the same as
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the risk-neutral price.

At node 0, the replicating portfolio needs to reach the target prices of the claim at time
t=1, i.e.

b0 +01Sou = Vip =1 , Oo(1+ R)+20; =241
0 .
0o + 01500 =Vi1 = bo(1+R)+ 10, =8
By solving the above system, we obtain 01 = 224—%8 units of the risky asset and 0y = —%

units of the risk-free bond in the replicating portfolio. This is the structure of the replicating
portfolio at the beginning of the replication. If the price moves up, we have to restructure
the portfolio to keep one unit of the risky asset and 713%6 units of the risk-free bond. If it
moves down, we need to readjust the position to g units of the risky asset and —g units
of the risk-free bond.

Next, consider a general European claim with payoff g(S7), where ¢ : R, — R is a
function that assigns a value to the payoff based on the price St of the asset at terminal
time T'. Such European claims are also called Markovian claims. Let Vj, ..., Vi be random
variables representing the price of this European claim at time ¢ = 0,...,7T, respectively.
Then, in order to avoid arbitrage, the derivative price must remain martingale, i.e.

1 -
V, = ——E[V, S, ..., So].
t 1+R[t+1|t”0]
Let’s assume that at time ¢ + 1, V41 is a function V(¢ + 1,-) and S;41. This assumption
is true for T', where Vp = ¢(S7). We use induction to show that V; is a function of S;.
It follows from the Markovian property of the binomial model that E[V;y1 | St, ..., So] =

A N

E[V(t +1,S¢41) | Sty ., So] = E[V(t + 1, St41) | St], and therefore

1 .

Therefore, one needs to evaluate function V' (¢,.S) over the binomial model, as shown in
Figure 2.3.6.

We can also show bu induction that

1 ~
= ——TF|E .
Vt.5) = oy e BlEl(Sr) | S
This holds for t =T — 1:
1 -
V(T —1,87_1) = mE[Q(ST) | S7—1].
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Yo Vi V2 Vs Vr = g(St)
.g(SouT)
3 3 3 V(37S3(4)..).. ;(.].(SouT_lf)
| | S
3 o V(2:5:0)
1 V(1,5:(2)) V(3,55(3)) o(SouT-22)
Vo — V(2. 5:(2))
V(1,5:(1)) V(3,55(2)) o(SouT2)
V(2,5(1))
V(3,Sg(1)) g.(SouET_l)
g(S0m)

Figure 2.3.6: The price of a Markovian European contingent claim in the binomialmodel

Now assume that

1 N

t+1) E[E[Q(ST) | St-‘rl]'

V(t+1,541) = e

Then, by the tower property of the conditional expectation, we can write

V(t St) iR [V(t +1 St+1) | St]
1 - 1 R 1 N
— =R [(1 n R)T—(t+1)E[g(ST) | St-i—l, ...,SO] | St] = WE[Q(ST) | St]
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Therefore, for any ¢t = 0,...,T — 1, we have

VIt S1) = ————Blg(Sr) | Si] (2.3.3)

(1+R)

Remark 2.3.2. Since the binomial model is time homogeneous, E[g(St) | S; = S] in
(2.3.3) is equal to B[g(St—;) | So = S]. This suggests that the price function V (t,S) is a
function of S and time-to-maturity 7 :=T —t, V(7,S5). Time-to-maturity is often used
instead of time in financial literature regarding the evaluation of contingent claims.

Example 2.3.2. Consider a four-period binomial model for a risky asset with each period
equal to a year, and take So = $10, u = 1.06, £ = 0.98, and R = .02. We shall find the
price Vo of the option with the payoff shown in figure below. By 2.3.3, the value V (0, Sp)

9(St)

1 o ’5)

{97

of the option is the expected value of the discounted payoff under risk-neutral probability;

o
—e
—_
=

L Blg(s)]

V(0,S0) = WA

Since the random wvariable Sy takes values 9.2236816, 9.9766352, 10.7910544, 11.6719568,
and 12.6247696. Therefore, the only nonzero value of the payoff is obtained when Sy =
10.7910544 and is g(10.7910544) = 1. The risk-neutral probability of Sp = 10.7910544 is
sitmply (i) (#u)?(#e)? = 3. Thus,

3

Replication of European option in the binomial model

We show that any European contingent claim (even non-Markovian ones) are perfectly
replicable in the binomial model. The argument follows inductively: let the replicating
portfolio is built at each node of the binomial model at all points £ + 1 or later in time. As
a result of this assumption, at each node the value of the replicating portfolio is the same
as the value of the option. We continue by replicating the price of the option at time ¢ + 1;
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i.e., we need to solve the following system of equations for each ¢ = 1, ..., ¢t + 1:

Oo(1+ R) + 61S:41(i +1) =V (t+1,S41(+1))
Oo(1 + R) + 01541 (2) =V({t+1,54(+1))

The solution is given by

6o — uV(t+1,80)) —IV(t+1,5()u) and 6 =

V(t+1,S:(6)u) — V(t+1,S:()])
(u—0)(1+R) '

Si(i)(u = £)

0 is the number of units of the risky asset in the replicating portfolio, and 6y is the number
of units of the risk-free bond in the replicating portfolio. In other words, the replicating
portfolio is a self-financing portfolio given by (2.2.3) with initial wealth Vj and portfolio
strategy given by {A(t, S)}/ "

V(t+1,5u)—V(t+1,50)

A(t,S) := S(u—0)

(2.3.4)

The number of units of the risky asset in the replicating portfolio, given by (2.3.4), is called
the Delta of the contingent claim at time ¢. Basically, (2.3.4) suggests that the Delta of a
Furopean Markovian contingent claim is a function of time ¢ and the price of the underlying
asset at time t.

Remark 2.3.3. As you can see from (2.3.4), the Delta of the contingent claim at time t
measures the sensitivity of the value of the contingent claim with respect to changes in the
price of the underlying asset, i.e., changes in the price of the option due to changes in the
price of the underlying asset.

By (2.2.3), the replicating portfolio for the binomial model takes the form

t—1 t—1
V(t,8:) = V(0,50) + R Y, (V(i, $i) — AG, S:)Si) + D A(E, ) (Siv1 — Si),
=0 =0

where V (i,S;) is the price of the contingent claim at time ¢ when the underlying price
is S;. The term RZE;&(V(L Si) — Ai(S;)S;) represents accumulated changes in the risk-
free zero bond in the replicating portfolio caused by compounding of the interest, and
Zz;é A;(S;)(Si+1 — S;) represents the accumulated changes in the replicating portfolio
caused by changes in the risky asset price. The act of constructing a replicating portfolio
for a contingent claim is ofter referred to as Delta hedging.

The above discussion is summarized in the following algorithm.

Remark 2.3.4. Given that functions A and V are calculated, one has to plug time t
and asset price Sy into the function to find the price and adjust the replicating portfolio
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Backward pricing and replicating European options in the binomialmodel

1: At time T, the value of the option is g(S7(j)).

2: foreacht=T—-1,...,0 do

3: foreach j=1,...,t+1 do

4: The value of the option V (¢, S:(j)) = 1J%RIAE[V(t +1,S:41) | St = Se(4)]-

5: The replicating portfolio is made of A(t, S¢(j)) units of the risky asset and V (¢, S¢(j)) —
St(7)A(t, St(j)) is the risk-free bond.

6: end for

7: end for

of the contingent claim. However, there is no guarantee that quoted prices in the market
will match the prices in the binomial (or any other) model. In such case, interpolation
techniques can be exploited to find the price and adjust the replicating portfolio.

Exercise 2.3.2. In the binomial model, show that the Delta of a call option A" and the
Delta of a put option AP with the same maturity and strike satisfy

AL AP 1 forall t=0,..,T —1.

Is this result model-independent? Hint: consider the put-call parity.

Exercise 2.3.3. Consider a two-period binomial model for a risky asset with each period
equal to a year and take Sy = $1, u = 1.03 and £ = 0.98.

a) If the interest rate for both periods is R = 0.01, find the price of the option with
the payoff shown in Figure 2.53.7 with K1 = 1.00 and K9 = 1.05 at all nodes of the
binomial model.

9(57)
Ky — K,

St

Ky Ky

Figure 2.3.7: Payoff of Exercise 2.3.3

b) Find the replicating portfolio at each node of the binomial model.

Exercise 2.3.4. Consider a two-period binomial model for a risky asset with each period
equal to a year and take So = $1 v = 1.05 and ¢ = 1.00. Fach year’s interest rate comes
from Exercise 1.1.4.
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a) Is there any arbitrage? Why or why not? Give an arbitrage portfolio if you find out
there is one.

b) Now consider a two-period binomial model for a risky asset with each period equal to
a year and take Sy = $1 u = 1.05 and ¢ = 0.95.

Find the price of the option with the payoff shown in Figure 2.5.7 with K1 = 1.00
and Ko = 1.05 at all nodes of the binomial model. Find the interest rates for each
period from information in Part (a).

¢) Find the replicating portfolio and specifically A at all nodes of the binomial model.

Remark 2.3.5. 2.5.2 suggests that the price of a Markovian claim in a binomial model does
not depend on past movements of the price and only depends on the current price S. This
s mot indeed true for non-Markovian claims. For example, a look-back option with payoff
(maxt:O,,,,,T St —K)+ or an Asian option (%H Z?:o St —K)Jr are non-Markovian options
with the price depending to some extent on the past history of the price movement rather
than only the current price of the underlying. Fvaluation of these type of non-Markovian
payoffs, namely path-dependent payoffs, cannot benefit fully from the Markovian property
of the model.

Example 2.3.3. Consider the setting of Ezercise 2.3.3: R = 0.01, Sy = $1, u = 1.03
and £ = 0.98 To price a look-back option with payoff (maxt=071,2 Sy — 1)+, first notice that
the payoff of the option at time T = 2 is path-dependent: the paths (So, Sou, Soul) and
(So, Sot, Spul) generate the same value Soul for Sy. However, the payoff for the former is
(max{Sy, Sou, Soul} — 1), = (max{1,1.03,1.0094} — 1), = 0.03;
while the latter has payoff
(max{Sy, Sof, Soul} — 1) = (max{1,0.98,1.0094} — 1) = 0.0094.

Therefore, the binomial model should be shown as in Figure 2.5.8 It follows from no arbi-
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2 (max{Sy, Sou, Sou’} — 1) , = 0.0609

V(1,u)

u
ul / (max{So, Sou, Sout} — 1), =0.03

/A

— %

\ tu (max{Sy, Sof, Soul} — 1), = 0.0094
< V(L.0)

So=1

4

/\

- (max{So, Sof, Sol?} — 1)+ =0

Figure 2.3.8: Look-back option in the binomial model in Example 2.3.3

trage that the price of the look-back option must be a martingale, and therefore,

1.
V(Lu) = mE[g(50,51,52) | S =u,Sp = 1]
1
= To1 (%(0.0609) + ﬁg(0.03)) ~ 0.0480594,
1.
V(1,6 = mE[9(50,51,52) | S1=10,5) =1]
1
Tl (ﬁu(0-0094) + fre(O)) ~ 0.0055841, and
1.
S ) 1
‘/0 (1 + R)2 [9(50)51752) | SO ]
1
= o1y (ﬁ5(0.0609) + 7 te(0.03) + 77, (0.0094) + 7%,?(0)) ~ 0.0307617.

Replication is similar to the markovian case. For instance, to replicated the look-back option
at S1 = u, we first need to solve the system of equations

6o(1 + R) + 61u = 0.0609
6o(1+ R) + 614 =0.03

However, since the binomial model does not recombine, the number such systems of equa-
tions to solve grows exponentially in the number of periods; whereas, in Markovian case the
number of such systems of equations grows quadratic.

Exercise 2.3.5. Consider the setting of Fxercise 2.3.3. Price and replicate an Asian

option with payoff (%H ZZ:O St — K)Jr with K = 10. Hint: The price is path dependent
and each path has a payoff.
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Example 2.3.4 (Call and put option). Consider a call option with strike K and maturity
T. Let the nonnegative integer ko be such that SouFo=1¢T=ko+l < K < SyukofT—ko  Then,

Vrrgr = Soul — K

Vi1 |
/ Vi Vii VI ko1 = SourolT ko — K
Vo \
Via

4

Figure 2.3.9: Payoff of a call option in a binomial model; kg is such that
SoukofleTfko+l <K< SoukoeTfko'

by (2.3.3), we have

o Ls (") ()" ()" (55— ).
1+ R)T S \F

Similarly, one can use (2.3.3) to obtain the price of a put option. However, given that we
already have the price of a call option in the above, one can find the price of a put option
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by using the put-call parity (Proposition 1.5.3):

K
put __ vy call o
=W gy~
1 & (0 —k (K (ak K —E[Sr]
_ £ () (SE - K
TP (1) Gt ot 5 - 100+ G

ko—1

= 3 () oyt e sy

In the above, we used the martingale property of the discounted asset price, (2.2.4), to write

Sy = E[ST] = (?L%]T' Then, we expanded the expectation to write

T
K —E[Sr] = B[K — 5] = (Z) (7)™ (7)" (K — SF).
k=0

2.3.4 Dividend-paying stock

Stocks usually pay cash dividends to the shareholders. Then, it is up to the individual
shareholders to decide whether to consume the cash dividend or invest it back into the
market. The dividend policy is determined by the management of the company, but it
is also influenced by the preference of the shareholders. Dividends are usually announced
in advanced and are paid in a regular basis, quarterly, semiannually, annually and the
like. However, when the company announces unexpected high earnings, a special dividend
can be paid. Also, a regular dividend can be stopped if the earnings are unexpectedly
low. Dividends are announced as a cash amounts; however, for the ease of calculation, we
model them as a percentage of the asset price, which is referred to as dividend yield and
is a number in [0, 1). If the asset price at time ¢ is S;, then, after paying a dividend yield
of d; € [0,1), the asset price is reduced to (1 — d;)S;. Therefore, under the dividend policy
di,...,dy,, the asset price dynamics in the binomial model follows

t
Sy = SoHy..H | [(1 - dy),
=1

where H; is a sequence of i.i.d. random variables with distribution

_1+R—

u—1—R
u—4 '

P(H; = u) —

and P(H; = () =
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If we define H; = H;(1 — d;), the dividend policy makes the binomial model look like
S, = SoH,...H,.
See Figure 2.3.10. Then, H; is distributed as

o _1+R—

B, — u(l — dy)) = and B(F; — 01— dy)) = “= 1=

U — uw—F

Remark 2.3.6. It is important to notice that in this case, the mo-arbitrage condition
remains the same as £ < 1 + R < u, the case where the underlying asset does mot pay
any dividend. Regarding the effect of dividend on the replicating portfolio, each dividend
payment transfers the value invested in the risky asset into the risk-free zero bond. A period
before a dividend yield of d € [0,1), if the asset price is S, the investment in the risk-free
zero bond is 0y, and the investment in the risky asset is 01, the replicating portfolio solves
a stmilar system of equations as for the case of no-dividend:

(90(1 + R) + 61dSu + 91(1 — d)Su = V(t + 1, Su(l — d))
m’s;;‘ree m';rky

00(1 + R) + 01dSC+01(1 — d)St = V(t + 1, 5¢(1 — d))

. v

rislg—(free ri;’ky
One way of pricing contingent claims on dividend-paying assets is to introduce an adjusted
asset price with no dividend and transform the payoff in terms of the adjusted asset price.
If we define the adjusted asset price by S; := SoH;...H;, then S; = S, ]_[iTzl(l —d;). Then,
the payoff of a European contingent claim given by ¢(Sr) is given in terms of Sr by
g(gT 1—[3;1(1 — dl)) on the adjusted binomial asset S7. Then, the pricing of a contingent
claim with payoff g(S7) at time t given S; = S is given by

1 A 1 R _ T
Ve, S5) = WE[Q(ST) | S = S5]= WE[g(STjgl(l —d;)) | St = S]
1 (T =1\ i Ttei T
= (1_|_R)Tt; < Z. )me g(suie™ jglu - dy)).

(2.3.5)

Remark 2.3.7. Notice that the price V(t,S) of a European contingent claim g(St) on a
dividend-paying underlying asset S is no longer a function of time-to-maturity T =T — t.

This is due to the term HJT:tH(l —d;) in (2.3.5), which cannot be expressed as a function

of T, unless d; = d for all 1 =1,...,T; then, H?:H—l(l —d;)=(1-4d).
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Sou™(1 —dy)...(1 — dp)

Sou3(1 —dy)(1 — d2)(1 —dg) Sgu™"le(1 —dy)...(1 — dn)

\

Sou?(1 — d1)(1 — dg)

\
/

Spu(l —dy) sou22(1—d1)(1—d2)(1—d3) Sou™"262(1 — dq)...(1 — dn)
So

Sp€(1 —dy) sou22(17d1)(17d2)(17d3) Sou2e™=2(1 —dy)...(1 — dn)

/
\

Spul(l —d1)(1 — dg)

/N
\/

S0e2(1 — dq)(1 — do)

/

Soe3(1 —dy)(1 — d2)(1 — d3) Soue™ ™11 —dy)...(1 — dn)

Spe™(1 —dy)...(1 — dp)

Figure 2.3.10: Dividend-paying asset in a binomial model

Remark 2.3.8. Recall that a regular dividend policy is announced in cash and not the
dividend yield. This means for a high (low) asset price the cash dividend is equivalent to a
small (large) dividend yield. A dividend cash of $D corresponds to a dividend yield of %,
where S is the predividend asset price. In addition, a bigger picture of dividend payments
also suggests that the companies can change their dividend policies based on certain random
events. Therefore, it is natural to assume that the divided policy is random. If the dividend
policy is Markovian, at each node of the binomial model at time t and price Si(j), the
divided is a random wvariable d(t,S¢(j)), for j = 1,...,t + 1, the pricing methodology is
similar to the Markovian Furopean option. In the two-period binomial model in of Fxercise
2.3.6, Part (b) and Part (c) are special instances of Markovian dividends.

If the dividend policy is not Markovian, even for a Markovian asset-price model and a
Markovian contingent claim with payoff g(St), the pricing is similar to pricing methodology
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of path-dependent options. This is because the modified payoff takes the form g(ST HtT:1(1_
dt)), where dy depends on Sy, ...,So. Therefore, pricing and hedging must be conducted
similar to Remark 2.3.5, Example 2.53.3 and Exercise 2.3.5.

Exercise 2.3.6. Consider a two-period binomial model for a risky asset with each period
equal to a year and take Sy = $10, u = 1.15 and £ = 0.95. The interest rate for both periods
is R = .05.

a) If the asset pays a 10% dividend yield in the first period and 20% in the second period,
find the price of a call option with strike K = 8.

b) Consider a more complicated dividend policy that pays a10% dividend yield only if
the price moves up and no dividend if the price moves down in each period. Find the
price of a call option with strike K = 8.

¢) Finally, consider a dividend policy that pays 31 divided in the first period in each
period. Find the price of a call option with strike K = 8.

2.4 Calibrating the parameters of the model to market data:
the binomial model

Calibration is the practice of matching the parameters of a model to data. In the binomial
model, the parameters are interest rate R, u, and ¢. Calibrating the risk-free interest rate
R is a separate job and usually uses the price quotes of risk-free (sovereign) zero bonds. For
the purposes of this section, we assume that the yield of a zero bond is already calibrated
and satisfies R(t + d) = rd + o(d), where short rate r is constant and ¢ represents the
duration of one period in the binomial market. § is usually small relative to the maturity
T.

Data: price quote and return

Assume that the asset price quotes are collected at  time lapse; S_,,s, ..., So tabulates the
past quotes of the asset price from time —md until the present time ¢ = 0. We denote the
quoted price by S to distinguish it from the random variable S for future price.

The arithmetic return and the logarithmic return at time ¢ are defined by

Stys — St
Rarth = +
t St )
and 5
lo )
Rtg::1n< tst )
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respectively. If the time step § is small, then the price movement Sy, 5 — Sy is also small,
and Riog and R are very close'?. However, we will see that the small difference between
the two returns will show up in the parameter estimation. For the moment, we focus on the
arithmetic return and drop the superscript "arth" for simplicity. We discuss the logarithmic
return (or log return) at the end of this section.

From the data points S_,,s, ..., So, we obtain data points for the return, R_,,,..., R_1
given by

S(—kt1)s — O—ks
S_ks '

Next, we will use this data to estimate some parameters of the market that are important
in the calibration process.

R_; =

Binomial model with physical probability

The data on the quoted prices comes from the physical probability and not the risk-neutral
probability; see Remark 2.1.5. Therefore, for calibration, we need to present the binomial
model with physical probability rather than the risk-neutral probability. While the nodes
of the binomial model will not change, the probability must change; S;y1 = S¢H;11 and
{H:}, is a sequence of ii.d. random variables with the following distribution under
physical measure

ith probabilit
H, - {“ WML PROBablULY D porall £ =0,1,.... (2.4.1)

¢ with probability 1 — p

In the binomial model under physical probability measure, the sequence of returns {R;}72,
also makes a sequence of i.i.d. random variables. So, to proceed with calibration, we need
to impose the same assumption on the data.

Assumption 2.4.1. The return {R:} is a sequence of i.i.d. random variables with the
mean and the variance given by by ud + o(8) and o5 + o(5), respectively.

The dimensionless quantities o and p are respectively called the volatility and mean return
rate of the price.

Remark 2.4.1. The assumption that volatility is a constant is not very realistic. However,
this assumption, which was widely used in practice in the 1970s and 1980s, makes the prob-
lems more tractable. We will try later to test some approaches that relax this assumption
in different directions.

2In(1 + z) ~ z for small =
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Sou

p
U:=u—1 with probability p

So R,=H —-1=
L:=(—1 with probability 1 — p
I-p
Sol

Figure 2.4.1: Left: binomial model under physical probability. Right: arithmetic return
R;.

Statistical estimation of return and volatility

We proceed by introducing some basic statistical methods to estimate p and o. The
simplest estimators for these parameters come from Assumption 2.4.1:

’a::ni and 62 iRk—,ud

Exercise 2.4.1 (Project). Go to Google Finance, Yahoo Finance, or any other free database
that provides free asset price quotes. Download a spreadsheet giving the daily price of a
highly liquid asset such as IBM, Apple, Alphabet, etc. Assuming Assumption 2.4.1, find the
volatility o and the average return rate u of the asset. Then, use these quantities to find
the daily, weekly, and yearly standard deviation and mean of the return.

A calibration of the model parameters u, ¢, and p

We match the first and second momentum of the binomial model with the mean return
rate and volatility:

pU + (1 —p)L = pd + o(9)
pU? + (1 —p)L? — (pU + (1 — p)L)? = %5 + 0(9)
Or, equivalently,

(2.4.2)

pU + (1 —p)L = pud + 0(0)
p(1 = p)(U = L)* = 0% + ()

In the above system of two equations, there are three unknowns U, L, and p, which give
us one degree of freedom. We are going to use this degree of freedom by assuming that
the variance of return R; under risk-neutral probability is also 025 + o(6);

Fuite(U — L)? = 025 + 0(6), (2.4.3)
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1+R—¢ _ R—-L
u——L ~— U-L"

where 7, =

Remark 2.4.2. This assumption suggests that the variance of return under the risk-neutral
probability measure does mot deviate significantly from the physical probability measure.
Whether we are allowed to make such a strong assumption or not is debatable. However, ev-
idences from financial economics as well as statistical modeling of financial markets suggest
that this assumption is practical and significantly useful. In addition, in the continuous-time
modeling of financial markets, the assertion of this assumption becomes a conceptually deep
result. The reason this assumption will become clear later when we study continuous-time
models, specifically the Black-Scholes model.

To simplify further, we also drop the o(d) term from the equations. Therefore, we have a
system of three equations and three unknowns.

pU+ (1—p)L =pd

p(1—p)(U — L)? = 0%
(U~ R)(R—L) =02

For the sake of simplicity, we set new variables

U—-R R—-L R
_ 7 — ’ d ==, 2.4.4
Voo 5 Voo me ) ( )

where r is the annual interest rate (APR) calculated at periods 6. Thus, we have

pa—(1—p)B =0
p(l—p)la+p)=1 (2.4.5)
af =1

Here )\ ;= £L

Remark 2.4.3 (Risk premium). The quantity £=" is referred to as the risk premium of the
asset and measures the excess mean return of the asset adjusted with its level of riskiness
measured by its volatility.

The solution to (2.4.5) is given by

/ _ | _ _ !
PG, p= > M0, and P= i (2.4.6)

where x( is the unique positive solution to the equation (see Figure 2.4.2)

r— L e (2.4.7)
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Figure 2.4.2: Positive solution to equation =z — i = M.

Then, v and ¢ are given by
w=1+0r++déoa, and =1+ dr—+/dop. (2.4.8)

Remark 2.4.4. The above calibration is well posed in the sense that, for any possible value
of parameters o > 0, u, and r, one can find proper u and £ such that { <1+ R <wu in a
unique fashion. Notice that in (2.3.3), the pricing of contingent claims is not affected by p,
and thus p is the least important parameter in this context.

Example 2.4.1 (Symmetric probabilities). We shall show that the following choice of
parameters for the binomial model also provides a calibration; it satisfies the Assumption
2.4.1.

u = 65(7’*7)“/5", (= S=F)=Voo g p= %(1 + )\\/5)
First notice that

02
A=)V _ 1yt probability %(1 + /\ﬁ)
R; = )
2

(19

0_2
Or=)=Voo _ 1 with probability
Therefore,

B[R] = ((e‘s(”;)“/g" 1) (148 + (T 1) (1 /\\/5>>.
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2.4. CALIBRATION 2. DISCRETE-TIME MARKETS

We use e® =1+ x + 5 + 5y + -+, to write

E[R,] =% <<6(r - 022) + Voo + 5(272 + 0(5)) (1 + Aﬁ)
+ ((5(7" — 022) — Voo + 6;2 + 0(5)) (1 - )\\/5>>
=0(r — 022 + 022 + Ao) 4+ 0o(d) = ud + 0(0)

Recall that Ao = . — r. On the other hand,

(5 e ) o9 )

:% <(502 +0(6)) (1+AV3) + (607 + 0(6) ) (1~ WE)) — 625 + o(0).

Exercise 2.4.2 (Subjective return). Show that the following choice of parameters for the
binomial model also provides a calibration; it satisfies the Assumption 2.4.1.

_ Sv+eo _ dv—/bo _1 p—-—v_ g
u=e , L=ce and p—2<1+( - 2)\6),

where v is a real number. Find the range of v in terms of other parameters such that there
is no arbitrage.

Calibration the binomial model for the purpose of pricing contingent claims

Estimating rate of return is often a more difficult task than estimating volatility. Methods
such as the CAPM! have been developed to approximate the rate of return. However,
if the calibration is only used for option pricing, we often do not need the rate of return.
Recall that under risk-neutral probability, the return of a binomial asset is equal to the
yield of a zero bond, which is already estimated through the bond market data;
(u—1)A1+R—-0)+({—-1)(u—1—-R)

B[R] = B[H; —1] = (u—Day+ (£ — 17y = - =R

Therefore, if we only calibrate the binomial model under risk-neutral probability, the rate
of return under physical probability is irrelevant.

We impose the following assumption on the distribution of the return process under the
risk-neutral probability and use it to calibrate the binomial model under risk-neutral prob-
ability using data to estimate the volatility only.

13the capital asset pricing model
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Assumption 2.4.2. The arithmetic return {R:}{2 is a sequence of independent random
variables under risk-neutral probability P with mean E[R:] = rd + o(d) and var(R;) =
o238 + 0(6).

This assumption implies the assumption that we imposed earlier in (2.4.3).
Given r and R = rd + 0(d), the only equation that we obtain is

(U—~R)(R—L) = 0%.

Here, we drop the o(d) term for simplicity. If we define o = % and § = %, we have

aff = 1. Any choice for a leads to § = é, and therefore, is a calibration of the binomial
model. We obtain a calibration similar to (2.4.8):

w=1+6r++Véoa, and ¢ =1+ dr—+dop.
Here, o and § are different than in 2.4.8.

Remark 2.4.5. In practice, Assumption 2.4.2 is too good to be true. In fact, most of
the arguments for calibration of the parameters hold without appealing to such a strong
assumption. The main use of this assumption in this section is to estimate parameters
w and o, the mean return and volatility. One can find estimation of these parameters by
assuming that there exists a martingale {M}2 o such that Ry —rd = My — M.

Time-varying return and volatility

Assumption 2.4.1, which asserts that {R;}; is a sequence of i.i.d. random variables, is not
realistic in some situations and must be relaxed. Several empirical studies show that the
volatility is not constant. This removes the "identical distribution" of the return sequence.
The independence condition also does not have an empirical basis. In this section, we keep
the independence assumption but remove the part that says {R;}; is identically distributed.
We also allow for the interest rate to depend on time R; = 4. Under either of the following
assumptions, we can derive a calibration of the form

wy =1+ 0r + ooy, and € =1+ 6ry — Voo . (2.4.9)

Assumption 2.4.3. The arithmetic return {Ry}y is a sequence of independent random
variables with mean E[R¢] = 118 + 0o(8) and var(Ry) = 026 + 0(6).

Assumption 2.4.4. The arithmetic return {Ry}y is a sequence of independent random

variables under risk-neutral probability P with mean E[R:] = ud + o(d) and var(Ry) =
25

;0 + 0(9).
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Assumption 2.4.3 allows for the parameters p and o to vary over time. Therefore, the
calibration in Section 2.4, should be modified such that «, 8, and p vary in time and satisfy

prow — (1 —p) B = Mo

Vi1 =pe) (o + B¢) = 1

affy =1

Here \; := B2t If p, 0, and 7 vary with time but A remain does not, the calibration in

(2.4.9), becomes slightly simpler, because o and 8 does not depend on time.

u =14 06r + Voo, and £ =1+ dry — Vo 8. (2.4.10)

Assumption 2.4.4 provides a different calibration of the same form as (2.4.10) but without
assuming that X is time-invariant. Here, we can arbitrarily choose o and § = é

Estimating time-varying parameters falls into the time series analysis which is beyond the
scope of this book. For more details on the estimation of financial time series, see [14].
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3. CONTINUOUS MARKETS

3

Modeling financial assets in
continuous-time

In 1900, Louis Bachelier introduced the first asset price model and pricing method for
derivatives in his Ph.D. dissertation titled “The theory of speculation” [2]. Although this
model is now considered impractical, its educational implications of this model are still im-
portant. Bachelier modeled the discounted asset price by a Brownian motion. As seen in
Section B.5, the Brownian motion is the weak limit of a normalized random walk. In Bache-
lier’s time, the Brownian motion had not yet been rigorously defined. However, many of its
properties were well understood. Bachelier’s contribution to the theory of probability and
stochastic processes was to use heat equation in derivative pricing. However, this contribu-
tion was neglected for about thirty years, until Andrey Nikolaevich Kolmogorov employed
partial differential equations to describe a class of stochastic processes called diffusion pro-
cesses. Kolmogorov is the first mathematician to bring probability into rigor by establishing
its mathematical foundation. Other mathematicians who built upon Kolmogorov’s work
include Norbert Wiener, the first to discover the path properties of Brownian motion, Paul
Lévy, who provided a simple characterization of Brownian motion, and Kiyosi It6', who
introduced a simple representation of diffusion processes in terms of Brownian motion.
The Bachelier model has a major drawback: asset price in this model can take negative
values, which will be discussed in more details in Section 3.2.3. Almost fifty years after
Bachelier, Paul Samuelson, an economist, suggested to use geometric Brownian motion
(GBM) to model the price of assets. GBM never takes nonpositive values for the asset
price, and therefore, does not suffer from the major drawback of Bachelier model. GBM is
also known as Black-Scholes model, named after Fischer Black and Myron Scholes. Black
and Scholes in [5] and Robert Merton in [22] independently developed a pricing method for
derivatives under the GBM. For a through review of Bachelier’s efforts and contribution

You may find different romanization of Kiyosi such as Kiyoshi, and different romanization It6 such as
1to, Itoh, or Ito. According to Wikipedia, he himself ued the spelling Kiyosi Ito.
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see [26]. For a brief history of asset price models, see [25]. For Bachelier’s biography of see
[29].

3.1 Trading and arbitrage in continuous-time markets

Recall from Section I1.2.2.2 that in a discrete-time market, where trading occurs at points
to =0 <t <..<ty =T in time, the value of the portfolio generated by the strategy
Ao, Aty ...y D¢y, is given by

n—1 n—1
Wi, = Wo + Z Ri(Wti - AtiSti) + Z Ati(sti+1 - Sti)’
=0 1=0

Here, R; is the interest rate for the period of time [t;,¢;+1] which can be taken to be
r(tit+1 — t;), where r is the short rate. For i = 0, ..., N — 1, the strategy Ay, is a function of
the history of the asset price, {S, : u < t;}. Therefore,

n—1 n—1
Wi, =Wo+r Z (Wti - Atisti)(ti-i-l - ti) + Z Ati(sti+1 - Sti)’
1=0 1=0

If we take t;11 —t; ;=0 = % and let § — 0, we obtain the Riemann integral

N-1 T
%iir(l)’l“ ;} (Wti — Atis’ti)(tiJrl — ti) =S ’l“jo (Wt — AtSt)dt,

which is the accumulated net change in the portfolio due to investment in the risk-free
asset. The limit of the second term

n—1

2 Ati(Sti+l - Sti)
i=0

does not necessarily exist unless we enforce proper assumptions on the asset price S. For
instance if the asset price follows Brownian motion (the Bachelier model) or GBM (the
Black-Scholes model), then the limit exists and is interpreted as a stochastic It6 integral. If
the stochastic integral above is well defined, the wealth generated by the trading strategy

{A}s>0 follows
t

WtZWQ-i-T‘J

t
(W, — AuSs)ds + J AdS,. (3.1.1)
0 0

We choose the same notion (A - S); := Sé A4dSs for the stochastic integral in continuous
time. Notice that in the discrete-time setting, the strategy A at time ¢; is a function of the

past history of the asset price Sp, ..., S;. When we pass to the limit, the trading strategy
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Ay at time ¢, depends only on the paths of the asset until time ¢, {S, : u < t}. In other
words, a trading strategy does not use any information from the future.

Following the discussion in Section C.1, specifically (C.1), the stochastic integral is defined
only in the almost surely sense and can only be defined on the sample paths of the asset
price model S. Therefore, a probability space (€2, F,P) is needed. It is convenient to take
the sample path space with a proper o-field and a probability measure:

Q:={S:t— Si(w) : for each outcome w}
Then, the notion of arbitrage is defined as follows:

Definition 3.1.1. A (weak) arbitrage opportunity is a portfolio A such that
a) Wy =0,
b) Wr =0 a.s., and
c) Wr >0 on a set of sample paths with positive P probability.

A strong arbitrage opportunity is a portfolio A such that
a) Wo <0 a.s., and
b) Wr >0 a.s.

Given that the stochastic integral (A - S); = Sé AsdSs is defined in a probability space
(Q,P), the fundamental theorem of asset pricing (FTAP) for continuous time is as follows.
Two probabilities P and P are called equivalent if any event with probability zero under
one of them has probability zero under the other, i.e., P(A4) = 0 if and only if P(4) = 0.

Theorem 3.1.1 (Fundamental theorem of asset pricing (FTAP)). There is no weak ar-
bitrage opportunity in a continuous-time model if and only if there exists a probability I@’,
namely risk-neutral probability or martingale probability, equivalent to P such that S is a
P-(local) martingale®.

Recall that a market model is called complete if any contingent claim is replicable, i.e.,
for any F-measurable payoff X, there exists a strategy A := {A;}]_, such that the wealth
W generated by A in (3.1.1) satisfies Wr = X.

Corollary 3.1.1. Under the same setting as in Theorem 3.1.1, the market is complete if
and only if there is a unique risk-neutral probability.

%local martingale is roughly a martingale without condition (a) in Definition B.15.
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3.2 Bachelier’s continuous-time market

We start by recalling the properties of a Brownian motion from Section B.5. A standard
Brownian motion is a stochastic process such that By = z € R% and characterized by the
following properties.

1) B has continuous sample paths.

2) When s < t, the increment B; — By is a normally distributed random variable with
mean 0 and variance ¢ — s and is independent of {B,, : for all u < s}.

The Bachelier model is based on an assumption made by Bachelier himself in his PhD
dissertation“Théorie de la speculation” ([2]):

L’espérance mathématique de I’acheteur de prime est nulle (page 33) (3.2.1)

which translates as “The mathematical expectation of the buyer of the asset is zero”. In the
modern probabilistic language, what Bachelier meant is that the discounted asset price is
a martingale under a unique risk-neutral probability, which is equivalent to no arbitrage
condition by the FTAP in [9]. Without any discussion on the physical probability mea-
sure, the Bachelier model simply takes the discounted asset price under the risk-neutral
probability as a factor of a standard Brownian motion, i.e.

A

S;=e S, =8y +0B;, o>0. (3.2.2)

Therefore under risk-neutral probability, S, has a Gaussian distribution with mean Sy and
variance o?t, and the pdf of S; is given by

fA(x)—#ex =50 for zeR and t>0 (3.2.3)
ST o2t P 202t ' -

The price of the underlying asset in the Bachelier model is given by S; = €™ (Sy + o By).
Under risk-neutral probability, S; is also a Gaussian random variable with

E[S,] = Spe™, and var(S;) = o2e*tt.

Therefore, the risk-neutral expected value of the asset price increases in a similar fashion as
a risk-free asset. The variance of Sy increases exponentially quickly in time, too. It follows
from applying the It6 formula (C.4) to f(t,z) = €"'(Sy + ox) that S; satisfies the SDE

dS; = rSidt + oe" dB;. (3.2.4)

Inherited from the Brownian motion, the Bachelier model possesses the same properties
as the binomial model in Section 2.3.2:
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1) time homogeneity and

The conditional distribution of S; given S; = S equals the distri-
bution of S;_s with Sy =5

2) Markovian.

In using the available information up to time s to make
projections about the future, the only relevant part is
the asset price at current time Ss (or, equivalently Sy).

E[f(S) | Suy u<s] =E[f(S) | 8], VYO<s<t.

The condition {S,, u < s} (or Ss) in the above conditional expectations can simply be
replaced by {S,, u < s} (or Sy). Because both sets of random variables generate the same
o-field Fy := O'(Su Tu < 3):

A

It is important to know that the Bachelier model is not practically interesting in modeling
financial markets. However, for educational purposes, it has all the basic components of
the more practical Black-Scholes model. Pricing a European option in the Bachelier model
is equivalent to solving a heat equation, a simple parabolic partial differential equation. On
one hand, the heat equation also appears in the simplification of the Black-Scholes model.
On the other hand, most of the knowledge and techniques used in the heat equation can
also be applied to other forms of parabolic partial differential equations that appear in
more general models.

3.2.1 Pricing and replicating contingent claims in the Bachelier model

As a result of quote (3.2.1), Bachelier concluded that the price of a European contingent
claim with payoff g(St) is simply the discounted expectation of the payoff under the risk-
neutral probability, i.e.

Vo = e " E[g(S1)]. (3.2.5)

In addition, given the past history of asset price F; := O'(Su u < t), the price of this
option at time ¢ is given by

Vi = e "TOR[g(S7) | Fo. (3.2.6)

This is inline with the fundamental theorem of asset pricing that asserts the equivalency
of no arbitrage condition with the existence of a risk-neutral probability. Precisely, the
discounted price of an option with payoff g(S7) must be a martingale:

eV, = e TTR[Vy | Fi] = e "TE[g(ST) | Fil- (3.2.7)
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Price of a contingent claim at time zero

Since under risk-neutral probability Sy = ¢"T 87 is a Gaussian random variable with mean
e"'Sy and variance e?7¢?T, one can explicitly calculate Vj in cases where the following
integral can be given in a closed-form:

e T o _(@=5¢)?

g (ex) e 22T da. (3.2.8)

Vo =

B o\ 2nT —o0

We start off by providing a closed-form solution for the Bachelier price of vanilla options.

Example 3.2.1 (Price of call and put in the Bachelier model). Let g(St) = (S7— K)4+ =
T (Sp—K)y, where K = e "I K. Since St ~ N(So, a*T), the price VL can be calculated
in closed form.

—rT 0 2
e " _(@=5¢)
|/ p—— (eTT:U —K)_ e 271 dx
o 21T J_o +
1 0 A~ _(90*50)2
= (x — K) e 22T dx
oN2nT J_o +

1 foo( R’) _(I*§O)2d
B €r — e 20T X.
o\ 21T Ji

x—So .
ST we obtain

By the change of variable y =

1 (™ N2
call _ _ — . _y
G j(ze_s())/(aﬁ) (VT + 80— K) 5y
= oVT (* yefgdy—k Soif{ ” efédy
V271 J(K—S0)/(ov/T) V21 J(K-S0)/(ovT)

The second integral above can be calculated in terms of the standard Gaussian cdf ®(z) :=
.2
—L% Sfoo eV 2dy:

1 0
ov2rT f(kso)/(am

K—So) _(I)(SO—IA()

2
Y
“Tdy=1-¢(—_20) (202
© Yy (O'\/T oNT

Here, we used ®(x) =1— ®(—x).
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. . 2
The first integral can be evaluated by the change of variable u = %

2 2
ye Tdy = ye T dy

1 0
v2m fso—k/wﬁ)
1 2 |90 1 _(50=K)? :q)/(SO_K),

1 o0
V2n j(fc—so)/(aﬁ)

¥
= ———¢ 2 = e  202T

V2T is-klevT) V2T

»

where ' (z) = \/%e_% is the standard Gaussian pdf.

To summarize, we have
Vil = /T (9/(d) + d®(d)) , (3.2.9)

where d = if’\;%( By the put-call parity, we have

Vi = K — 8o + Vgt = ov/T (9/(d) — d®(—d)) .
Example 3.2.2. A digital call option is an option with payoff

1 Sr>2 K

9(S1) = lis;>K3 = {0 S <K

A digital put has payoff 1(s,.<k}-
The Bachelier price of a digital call option with strike K is given by

ydisite _ efrTE[l{stK}] _ e*TTI@’(ST > K)

Notice that St = K s equivalent to By — Si=5 > eirtK_SO, where By is the Brownian

R Vit oVt T ot
motion at time t. Therefore, St\%so = % s a standard Gaussian random variable. We can

write

ydigitc _ e—rT<1 —o(- d)) — e To(d).

Here, d = 500\715 is the same as in BExample 5.2.1.

Exercise 3.2.1. Find a closed-form solution for the Bachelier price of a digital put option
with strike K.

Exercise 3.2.2. Find a closed-form solution for the Bachelier price of a European option
with payoff in Figure (3.2.1)
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K

Figure 3.2.1: All slopes are -1 or 1.

The price at an arbitrary point in time: the Markovian property of the option
price

Recall from (3.2.6) that the option price V; at time ¢ is a random variable given by
Vo= e T E[g(eTSr) | Fi] = e " TOE[g(¢ T Sr) | Sy u < t].

Since Brownian motion B is a Markovian process, the only relevant information from the
past is the most recent asset price, S;. Therefore,

Vi = e "I E[g(e" " Sr) | 5] = V(t, 50),
where the function V (¢, z) is given by

V(t,z) = e "TIE[g(¢ T Sr) | Sy = a]

T o (z=y)? 3.2.10
_ e f g(erTy)ef 202247- dy ( )
A/ 27T(T - t) —00

The second equality in the above is because given S, = x, Sr is a Gaussian random variable
with pdf
1 (z—y)?

N S’ =)= ——— ¢ 203(T-1)
fST(y| t ) 27T(T—t)

The function V (¢, x) is called a pricing function, which provides the price of the contingent
claim in terms of time ¢ and the discounted price S;.

Remark 3.2.1. It is simpler in the Bachelier model to write the pricing function V as a
function of the discounted asset price, which is a Brownian motion, rather than the asset
price.
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Time homogeneity of the option price

By the time homogeneity of the Brownian motion, the pricing function is actually a function
of time-to- maturity 7 = T —t and the discounted underlymg price St = z. Because, St
conditional on S; = z has the same distribution as S, conditional on Sy = x, then

Vit,z) = e "TR[g(e""S;) | So = ] =: U(r, ). (3.2.11)

Example 3.2.3 (Vanilla options). Recall that in the Bachelier model, we have S =
St + o(Br — By). The payoff of the call option can be written as

(St —K)y =eT(Sr— K)y =eT(S; +0(Br — By) — K).
Here, K = e "TK. Given S, = x,
U, z) = e "E[e"T (S, + o(Byr — B) — K) 4 | S = z].
Since By — By and St = 0B, are independent random variables, we have
Ullr,z) = e "E[e"T (2 + o(Br — B;) — K)].

Because By — By is a Gaussian random variable with mean zero and variance T =T — t,
we have

1 e * T > e
U (1,2) = er a:—l— —K) e 2027 d
() oV yo k) ey

2
Y
= a;+ K) e 227 (d

0’\/271’7' K v 4

T Q0 y2
=e" | (z— e 202r dy + J ye_%%dy.)
< U V21T JR—2 K—=x

Similar to the calculations in Fxample 3.2.1, a closed-form solution for the Bachelier price
of a call option with strike K and maturity T at time t as a function of T =T —t and
St = x is given by

Ucall(T7 1’) _ eTTefrTO'\E (CI)/ (d(T, a:)) + d(T, $)<I)(d<77 x))) s

where
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Exercise 3.2.3. By mimicking the method in Example 3.2.3, show that
Udigit-c(r z) = e Te T (d(r, z))
s a closed form for the Bachelier price of a digital call option.

Exercise 3.2.4. Use the put-call parity to find a closed form for the Bachelier price
UP“ (1, x) of a put option with strike K and maturity T

Exercise 3.2.5. What is the Bachelier price of at-the-money put option (K = Sy) with
T =10, 0 = .5, Ro(10) = .025 (yield), and Sy = 1?2 What is the probability that the asset
price takes a negative value at T ?

Exercise 3.2.6. What is the Bachelier price of the payoff in Figure 3.2.6 with T = 1,
o=.1, Ry(1) = .2 (yield), and Sy = 29 What is the probability that the option ends up
out of the money?

St
1 2

Figure 3.2.2: Payoff of Exercise 3.2.6.

Martingale property of the option price and heat equation

No arbitrage condition assures that the discounted price of an option is also a martingale,
e "V (t,S;) is a martingale. If we assume that the pricing function V (¢, ) is continuously
differentiable on ¢ and twice continuously differentiable on x, by the It6 formula we obtain

2

d (e’”V(t, 5;)) — et <atv + %amv — 7‘V> (t,Sy)dt + e "0,V (t,5,)dS,
(3.2.12)

2
= €_Tt <atV =+ %axxv - TV> (t’ St)dt + o‘e_rtaxV(t, St)dBt

Notice that in the above, we used &, (e*’"t\/) = et <6tV — rV) and dS’t = odB;.
Then, it follows from Section C.3 that e "V (¢, 5}) is a martingale if and only if V satisfied
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the following partial differential equation (PDE):

0.2
oV + ?@HV —rV =0.

This is because d (e‘”V(t, 5})) reduces to the stochastic integral oe "0,V (t, S;)dB;.

A PDE needs appropriate boundary conditions be well-posed. The boundary conditions
here include the terminal condition given by the payoff g of the contingent claim

V(T,z) = g(e)

and proper growth conditions as  — +00?. The PDE above, always hold regardless of the

payoff of the option. The option payoff only appears as the terminal condition. Therefore,

the problem of finding the pricing function V' (¢,z) reduces to solving the boundary value
problem (BVP) below.

OV + S0V — 1V =0

{t T a el T (3.2.13)

V(T,z) = g(eTx)

and the growth condition at infinity: |V (¢, z)| < C|g(z)| for some constant C, as x — +o0.
The BVP (3.2.13) is a backward heat equation; i.e., we video record the evolution of the
heat over time and play it back in reverse. If we do the change of variable 7 = T — ¢ and
U(r,x) = V(t,x), then U satisfies the forward heat equation

(3.2.14)

0.U = % 0y0U — 1U
U(0,z) = g(e'z)

Therefore, the price of a contingent claim at any time can be obtained by solving the BVP
(3.2.14).

Example 3.2.4. By bare-handed calculations, we can show that the function
U(r,z) = eT(TfT)U\/? (<I>' (d(T,x)) + d(T,m)@(d(T,ﬂ:))) ,

where

satisfies
2

&Uz%ﬁmU—dﬁ

3In order for a PDE to have a unique solution, it is necessary to impose proper boundary conditions.
The terminal condition is not sufficient to make the boundary value problem well posed. We always need
boundary conditions at other boundaries; here they are growth conditions at infinity.
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Exercise 3.2.7. Show that the pricing function on nondiscounted price S; := erT-1g,,
U(r,z) :=U(r,e""x), satisfies

2rt .2

{&U = rxd, U + € 5> OuaU — rU

U(0,z) = g(x)

Exercise 3.2.8. Show that the discounted pricing function u(t,x) = e ""U(7, ) satisfies
the standard form of the heat equation below

0.2
{67” = Oasts (3.2.15)

u(0,z) = g(ex)

Remark 3.2.2 (On regularity of the pricing function). To be able to apply Ité formula in
(3.2.12), the pricing function V(t,z) needs to be continuously differentiable on t and twice
continuously differentiable on x. While the payoff of the option may not be differentiable
or value function n continuous, the V(t,z) is infinitely differentiable for allt < T and all
x.

Replication in the Bachelier model: Delta hedging

By (3.1.1), the dynamics of a portfolio in the Bachelier model are given by

t

WtZWQ-f-T‘J

t
(W — AySs)ds + J AdS..
0 0

Similar to Exercise 1.2.2.1, the discounted wealth from a portfolio strategy A satisfies

A

t
W, = e "W, = Wy +j AydS,,
0

and is a martingale. On the other hand, by applying the It6 formula to the discounted
option price e "V (¢, S;), we obtain (3.2.12)

t
e "V (t,S;) =V (0, 80) + f

2
0

¢
+ f e "0,V (s, S’s)dgs
0

¢

10, S) +f 50,V (s, $.)dSs.
0

The last inequality above comes from the martingale property of discounted option price
and (3.2.13).
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A replicating portfolio is a portfolio that generates the terminal wealth Wr equal to
the payoff V(T,57) = g(e""S). Since both W; and e "V (t,5;) are martingales with
Wr = e "™ TV(T, S7) = e_TTg(eTTS), then we must have W, = e "V (t,8,) =: V (¢, S,) for
all t € [0,T], V(0,80) = Wy, and A, = e ",V (£, 5;) = 0.V (¢, Sy).

A; represents the number of units of the underlying in the replicating portfolio. It follows
from (3.2.12) that A; is a function of ¢ and S; and is given by

A(t, St) = 6_”633V(t, gt)

Notice that since V' is a function of 7 =T — ¢, so is A:

A1, 8)) = e o,V (8, 5)) = e T To,U(T, Sy).

To summarize, the issuer of the option must trade continuously in time to keep exactly
Ay = e 0,V (8, 5’,5) number of units of the underlying asset at time t in the replicating
portfolio. A; also accounts for the sensitivity of the option price with respect to the change
in the price of the underlying.

Example 3.2.5. The replicating portfolio for a call option in the Bachelier model is ob-
tained by taking the partial derivative 0, of the function

Vel x)y = Ull(r, z) = T o1 (@' (d(7,z)) + d(r,2)®(d(1,2))),

with

We have
A(r,z) = T o, U (1, z)

oNT (azd(T, 2)0" (d(7,x)) + Opd(r, 2)@(d(7, 2)) + d(r, 2)dud(r, 2)' (d(r, x)))

= ®"(d(r,z)) + @(d(r,z)) + d(7, 2)®'(d(r,z))

= ®(d(7,2)).
(3.2.16)
Here, ®'(x) = \/%677 is the pdf of the standard Gaussian, and we used ®”(x) = %677 =
—x®'(x) and 0,d(T,z) = #

Example 3.2.6. To find the Bachelier price of an option with payoff g(x) = €*, we need
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to find the the pricing function U, which solves the following BVP:

0.U = 2 0,,U — U
U(0,2) = exp (e x)

We shall verify that the solution to this problem is if the form U(t,x) = e exp (e’"Tx),
and find the constant \ by plugging it into the equation:

O'2 0'2
0rU = 505U + 71U = ()\ — eQrT? + T)U(T,x) = 0.

Thus, for A = eQTT"; —r, U(r,x) satisfies the equation and the initial condition. Delta
hedging is obtained by

2
A(r,z) = e T 0,U(,2) = M7 exp (eTTa:) = exp (eQTT%T> exp (BTT:E>.
Exercise 3.2.9. Find a closed-form solution for the Bachelier price of an option with
payoff g(z) = 2cos(v/2x) — 3sin(—x). Hint: Search for the solution of the form U(t,x) =
1M cos(v/21) + e sin(—x).

Example 3.2.7. Let Sy = $10, 0 = .03, and r = 0.03. The Bachelier Delta of the following
portfolio of vanilla options given in the table below is the linear combination of the Deltas,
3A“l (T = 5, K = 10) — 3AP (1 = 1, K = 10) — A®(7 = 2, K =38).

’ position ‘ units ‘ type ‘ strike ‘ maturity ‘

long 3 call $8 ]
short 3 put | $10 1
short 1 call $8 2

The maturities are given in years. Then, (3.2.16) for the Delta of the call option in Example
3.2.5 should be used to evaluate A7 = .5, K = 10), 3AP"(7 = 1, K = 10) and A% (1 =
2, K = 8).

Exercise 3.2.10. Let Sy = 10, o0 = .03, and r = 0.03. Consider the portfolio below.

’ position \ units \ type \ strike \ maturity ‘
long 3 call | $10 .25 yrs
long 4 put $5 b oyrs

How many units x of the underlying are required to eliminate any sensitivity in the portfolio
with respect to changes in the price of the underlying?

Example 3.2.8. Let So = 10, r = .01, 0 = .02, and T = 1. Consider the payoff in Figure
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9(57)

9 10 11 12

Figure 3.2.3: Payoff in Exercise 3.2.8.

a) Find the Delta of the payoff g(St) at t = 0.

b) Find an appropriate portfolio of call options, put options and a short position in an
option with payoff g(St) such that the portfolio has a constant A at all points in time.

(a) The payoff g(St) can be written as the following combination of call options
g(ST) = (ST - 9)+ — (ST - 10)+ - (ST - 11)+ + (ST - 12)+.
Therefore,

AI(t =0,z =10) =AY 7 =1, K =9) — A“(r = 1, K = 10) — A“Yr = 1, K = 11)
+ACl(r =1, K = 12).
Then, (3.2.16) for the Delta of the call option in Example 3.2.5 should be used to evaluate
Al = 1,K), for K =9,10,11, and 12.
(b) By part (a), if we add a long position in a put option with strike K =9, a long position
in a put option with strike K = 12, a short positions in a put option with strike K = 10,

and a short positions in a put option with strike K = 11 all with maturity T = 1, then the
total payoff of the portfolio will be

(Q—ST)+—(IO—ST)+—(ll—ST)++(12—ST>+—g(ST) = 9-S7r+S7—10+S7—11+12—S7 = 0.

Thus, the above portfolio is equivalent to zero position in cash and zero position in the
underlying over time, which has a Delta of zero.

Exercise 3.2.11. Let Sp = 9, r = .01, 0 = .05 and T' = 1. Consider the payoff g(St)
shown in Figure 3.2.4.

a) Find the Delta of the payoff g(St) at time t = 0.
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9(5t)
1

8 9 10

Figure 3.2.4: Payoff in Exercise 3.2.11.

b) Find an appropriate portfolio of call options, put options, and a short position in an
option with payoff g(St) such that the portfolio has A of 0 at all points in time.

Example 3.2.9. Consider the payoff g(St) shown in Figure 3.2.5. Take T' = 10, o = 0.05,

9(Sr)
Ky — K,

)ST
Ky Ky

Figure 3.2.5: Payoff in Example 3.2.9.

Ry(10) = 0.01 (yield), and So = 1. In addition, we assume that K1 = 0.8, but K is
unknown. However, assume that the Bachelier Delta of the contingent claim at time 0 is
(approximately) equal to —0.385. From this we shall find K. Notice that

9(St) = (51 — K1)+ — 2(S1 — K2)+.
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Therefore,

AY(r =10,z =1) = A7 =10, K = K1,z = 1) — 2A“(r = 10, K = K»,z = 1)
(1 —0.8¢701 ) -2 (1 — Koe 01 1— K2e*0-1)
0.054/10 0.054/10 0.054/10 7~

) = 0.9596 — 20 (

Thus,
Ko = 1.0963.

To find the Bachelier price of the contingent claim at time 0, we simply use
Ut =10,z =1) = U7 =10, K = 0.8,z = 1) — 20 (7 = 10, K = 1.0963,z = 1).
Exercise 3.2.12. Consider the payoff g(St) shown in Figure 3.2.6.

9(57)
K -1

)ST
1 K

Figure 3.2.6: Payoff in Exercise 3.2.12. All the slopes are 0, 1, or —1.

Part a) Take T = 10, 0 = .05, Ry(10) = .01 (yield), and So = 1. Find K such that the
Bachelier Delta of the contingent claim at time 0 is (approximately) equal to —0.385

Part b) Find the Bachelier price of the contingent claim at time 0.

3.2.2 Numerical methods for option pricing in the Bachelier model

The BVP for the heat equation in (3.2.13), or, equivalently, (3.2.14) or (3.2.15), generates
closed-form solutions in some specific cases, such as a linear combination of call or put
options, an exponential payoff in Example 3.2.6, or a sin-cos payoff in Exercise 3.2.9. In
general, a closed-form solution can be obtained if the integral in (3.2.8) can precisely be
evaluated, or, equivalently, if the BVP for the heat equation has a closed-form solution.
The class of payoffs with closed-form solutions is narrow, and therefore one needs to study
numerical methods for solving the heat equation in the Bachelier model. Even though
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the Bachelier model is very far from being practically valuable, the numerical methods
presented in this section can be applied indirectly to the Black-Scholes model in the next
section. In addition, studying this numerical models for the BVP for the heat equation
establishes the methodology for evaluations of more complicated models. Therefore, the
reader is recommended to read this section to obtain a background on different methods
of the evaluation for the BVPs in finance.

Fourier transform

In this section, we interpret that (3.2.11) as the Fourier transform of a function. The
advantage of such interpretation is that a class of methods called fast Fourier transform
(FFT) algorithms can be deployed to efficiently approximate the Fourier transform and its
inverse with highly accurately. The Fourier transform of a function u(x) is defined by

(0) = F[u](0) = \/‘% f; w(z)e—Pidg,

and the inverse Fourier transform of a function u(#) is given by
1 L 0i
Ful(x) = f u(0)e™dx,
@)= 2= | ao)

If u is integrable, i.e., {* |u(z)|dz < o0, then the Fourier transform .#[u](f) exists and
is bounded uniformly on . However, the inverse Fourier transform of a bounded function
does not necessarily exists. If, in addition, we assume that u is square integrable, i.e.,
Siooo |u(z)|?dz < oo, then the Fourier transform .Z[u](f) is also square integrable and
FAF[u]](x) = u(z) and F[.ZFa]](0) = 4(F). For a twice continuously differentiable
square integrable function u, the Fourier transform of 0., u(r) equals —6%4(9).

In specific payoffs, one can apply Fourier transform and then inverse Fourier transform to
find a closed-from solution to the heat equation. However, for a wider class of payoffs, one
can only obtain a closed form only for the Fourier transform of the solution to the heat
equation. Then, the inverse Fourier transform can be achieved numerically through a class
of efficient algorithms, namely fast Fourier transform. Since these algorithms are numeri-
cally highly efficient, a closed-form for the Fourier transform of the solution is as good as
a closed-form for the solution. Assuming that U(7,z) is twice continuously differentiable
and square integrable on x, the Fourier transform of 0,,U(7,z) equals —(0)2U(7,0) and

~

U(,0) satisfies the ordinary differential equation (ODE)

~

U0,0) = e Tgle ) = 1 Siooo g(eTx)e 0 dg

dU _ 99277 .75
{dT_ 2020 — rU
27
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Notice that in the above ODE, 6 is a parameter and therefore, the solution is given by
U(r,0) = efTTefrTef‘TQOZT:q\(e*TTH).

If U(,-) is square integrable, the inverse Fourier transform of ﬁ(T, 6) recovers the solution

U(r,z), ie.

202

Ur,z) = Z70(r,)](z) = e Te " 71 [e—ff Tg(e—rTe)] (). (3.2.17)

It follows from the convolution rule in Fourier transform that,

-1 [67029%67@@(67@9)] T <ﬁl|:602927]> . <g1 [g(erTe)])

Here * is the convolution operator defined by

Fea)i= [ fwte -

. _1[ —o2p2 oz .
Since .# 1[6 a T] (z) = - 127rTe 2077 we derive the formula

_ (e=y)?

e—T’T o0 , (z=y)?
Ure) = \/%J g(eTy)e” 2 dy,
—00

which is the same as (3.2.10).

Finite-difference scheme for the heat equation

In this section, we introduce the finite-difference method for the classical heat equation
(3.2.15), that is

oru = %28mu
u(0,z) = g(z) := g(eTT:E)

For educational purposes, despite the availability of analytical formulas, we restrict the
discussion to call and put options only. Other types of payoffs should be treated with a
similar but yet different analysis. We denote the price of a call (put) option with strike
K as a function of time-to-maturity 7 and the current discounted price of underlying x as
u(t,z) = C(7,x) (u(r,x) = P(r,x)), which is the solution to the heat equation (3.2.14)
with initial condition u(0,z) = (e"Tz — K)+ (u(0,2) = (K — erTx)+). Finally, we set
So = 0 by considering the change of variable X; = S, — Sp, i.e., the shifted price equal to
the difference between the discounted price S, and the initial price Sp.
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As the actual domain of the heat equation is infinite, in order to apply the finite-difference
scheme, first we need to choose a finite computational domain (1,z) € [0, T] X [—Zmax, Tmax]
for a suitable choice of xp.x > 0. Now, since the computational domain is bounded,
it induces more boundary conditions to the problem at the boundaries x = Zya.x and
T = —Tmax. Recall that to solve a BVP analytically or numerically, the boundary condition
is necessary at all the boundaries. We should find appropriate boundary conditions at both
points Tmax and —Zmax, which usually rely on the terminal payoff of the option. These
types of boundary conditions, which are induced by the computational domain and do not
exist in the original problem are called artificial boundary conditions, or in short ABC.

To learn how to set the ABC, let’s study the case of a call option with payoff g(x) =
(T — (K + eTSy))+, ie, u(0,2) = (eTz — (K + €7Sp))+. The idea is simply as
follows. If z is a very small negative number, then u(0,z) = 0. If the current discounted
price of the underlying is a sufficiently small negative number, the probability that the
price at maturity enters the in-the-money region [(K + €7 Sp), ) is significantly small.
For instance, since the discounted price Sy = Sy + 0B, is a Gaussian random variable, for
A > 0 the probability that S; > A (or equivalently S; < —A) is given by

A2
e 27'02 dy ~ ie 2'1'(727 as A —> (x)7

el

which is smaller than .006 for A > 36+/T. In other words, far out-of-money options should
have almost zero price. On the other hand, when S; = x is sufficiently large, the probability
that the discounted price of the underlying will drop below K +¢"T Sy at maturity 7' (out-of-
money) is significantly small, and therefore (e'7 Sy — K) 4 ~ ¢'TSp — K. Far in-the-money
options should have almost the same price as the price of payoff S — K, that is one unit
of asset minus K units of cash.

More rigorously, we need the following estimation:

A2
J U\ﬁe 2702, as A — o0.
0’\/27’7‘(’ V2T

If we set A:=e "TK 4+ Sy + e " 2max, for sufficiently large zmax, we have

ye 27'02 dy ~

(y+ﬂ7max)2

AT, ~max) = gmf — (K +e5)) e et dy

e -rT _<y+zmax)2

= — (K + ¢S, 2702 d
< f e T (TS y
r(T—1) (oo 2

= - J (y—A)e_;Tdy
oN21T Ja
r(T—1) (oo 2

< S ye_;?dy~ U\Fe 2702, as A — oo.

2w Ja V2T
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In other words, far out-of-money options should have zero price. This suggests that
u(T, —Tmax) ~ 0 for sufficiently large zax.

On the other hand, if we set B := e "™ K 4+ Sy — e " 21ax, We obtain

(.U—Wmaux)2
(] T; Lmax) = K + eT‘TS 2702 d
( a ) 0_\/27_77_‘_] 0)) Y
r(T—T) 2
_ (y—B)e_;r!?dy.
27w JB
Notice that since
o\T _ B2
(&} 2702d = € 27'472d ~ [ 27’02’
o\ 21T y v= 0\/27'7r y Y V2T
and
e 2m2 dy ~ 1

o\ 21T

as B — —oo, we have
U(T, Tmax) ~ —€" T B = e (#max — (K + €"1Sp)).
Following this observation, we choose ABC for (3.2.18) for the call option given by
(T, Tmax) = e_”(e”TxmaX — (K + eTTSO)) and u(7, —ZTmax) = 0.

For put option, put-call parity Proposition 1.3.3 implies that the ABC is given by u(7, Tmax) =
0 and u(7, —Tmax) = € "7 ((K + € 1Sp) — €Tt pmax).
To summarize, we must solve the following BVP to numerically price a call option.

Oru(T, x) = ”—;amu(ﬂ x) for z€ (—ZTamx,Tmax);t >0
u(0, x) =Tz — (K +e78))). for x€ (—Tamx, Tmax) (3.2.18)
w(T, Tmax) =€ T (€T rpax — (K +€™1Sp)) for t>0 o

w(T, —ZTmax) =0 for 7>0

The next step is to discretize the BVP (3.2.18) in time and space. For time discretization,

we choose N as the number of time intervals and introduce the time step h := % and
discrete points 7; in time for i = 0,..., N — 1, N. Then, we choose a computational domain
[~Tmax, Tmax]. We discretize the computational domain by x; := kj with k := #mex for

j=—M,..,M. The discretization leads to a grid including points (¢;,z;) for i = 0,..., N
and j = —M, ..., M, shown in Figure 3.2.7.

Next, we need to introduce derivative approximation. There are two ways to do this:
explicit and implicit. In both methods, the first derivative of a function u(7;,z;) with
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xmax

\]

—Zmax

h

Figure 3.2.7: Finite difference grid for the heat equation. In the explicit scheme the CFL
condition should be satisfied, i.e., k% < % Artificial boundary conditions are necessary on

both Zmax and —Tmax.

respect to time 7 atanydiscretetime(t;, z;), is approximated by

u(Tiv1, v5) — u(Ti, 75)
h

8tu(n, ZL‘j) %

Then, the second derivative with respect to x can be approximated by

U(Ti,l‘j_H) + u(n,a:j_l) — QU(TZ',.CI}]')
k2

Ozau(Ty, T5) &

Now, we have all the ingredients to present the explicit scheme for the heat equation.
The scheme is obtained from the heat equation (3.3.25) by simply plugging the above
approximations for derivatives, i.e.

(i1, ) —ulm, w5) cﬁ w(Ti, 1) + u(Ti, xj—1) — 2u(, ;)

h 2 k2
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i
.Tj_HA ........ Q ....... @
Tj foeeeeee ’ ....... ]
-

h 4
<~

T Ti+1

Figure 3.2.8: Possible active points in the finite-difference scheme to evaluate u(7i41, z;),
marked with a square. The function v is unknown at dark nodes and known at light nodes.
All six nodes are active for implicit scheme with 0#1. For explicit scheme, 8§ = 1, only
filled-in nodes are active.

We can simplify the scheme by writing

ho? ho?
w(Tit1,25) = (1 - k:2> u(m, xj) + 512 (u(m, zj41) +u(mi, xj-1)) - (3.2.19)

In order to use explicit finite-difference scheme in (3.2.19), we need to have the CFL*
condition

h 1

S o
Otherwise, the scheme does not converge. The right-hand side of the CFL condition is
always % times the inverse of the coefficient of the second derivative in the equation. For
implicit schemes, this condition can be relaxed.
Notice that in problem (3.2.18), at 79 = 0, the initial condition is known. Therefore, we
set

—rT

u(0,x;) :=e "Tg(eTx;) for j=—M,.., M.

Then, if u(7;, ;) is known for all j = —M, ..., M, the explicit scheme (3.2.19) suggests that
w(Tj4+1,2;) can be found for all j = —M +1,...,M — 1. For j = —M and M, one can use
ABC to assign values to u(7;, z_ps) and u(7i, xar).

4Courant-Friedrichs-Lewy
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The implicit scheme is a little more difficult than explicit scheme to implement. But it
has its own advantages; e.g., the CFL condition is not necessary. To present the implicit
method we need to modify the approximation of the second derivative as follows.

u(n,xjﬂ) + u(n,xj_l) — 2u(n,xj)
k.Q
(i1, Tjr1) + u(Tiv1, Tj—1) — 2u(Tiq1, )
+0 e .

6mu(7'¢,xj) ~ (1 - 9)

In the above, 6 € [0,1] is a parameter. If # = 0, then the scheme is the same as the explicit
scheme. If § = 1, we call it a pure implicit scheme. Then for 6§ # 0, we can present the
implicit scheme as follows.

ho? ho?
<1 + ng> u(Tiy1, ) — 052 (u(Tit1,zj11) + u(Tiv1, 1)) =

0.2 0.2
(1 _a- e)hkg) w(mz;) + (1 — 9)’;@ (u(ri,2501) + ulTis 25-1)) -

(3.2.20)

If u(7;, z;) is known for all j = —M, ..., M, then the right-hand side above is known. Lets
denote the right-hand side by

o? o?
R(7;,25) = <1 - (1- 0)}22> (T, i) + (1 — G)Z? (w(Ti, xj41) + u(Ti, xi-1)) -

For j = M — 1, u(7i4+1,%j41) on the left-hand side is known. Thus, we move this term to
the other side

ho? ho?
(1 + 9k2> U(TiJrl,a?M,l) — GTI#U(Tiﬂ’ $M72) =

2
o
R(ri,xp—1) + G@U(Tiﬂ,mM)-

Similarly for j = —M + 1 we have

ho? ho?
<1 + 0]€2> U(Ti+l7 l‘fMJrl) — HTHU(Ti+1’ l’,MJrz) =

ho?
R(ti,2-prv1) + QWU(THL T_pp)-

To find w(7i4+1,2;), one needs to solve the following tridiagonal equation for wu(7;y1,;),
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j=—-M+1,...,M—1.
AU =R —Y; (3.2.21)

where A is a 2M — 1-by-2M — 1 matrix given by

[1+0hg  —pho 0 0 0 ]
—ghol 14 9hgt  _gho 0 0
0 —ghol 14 9h _ghoy 0
A= : - : )
0 —gher 14 ghy _ghol 0
0 0 —ghol 14 gh _gho
L0 0 0 —ghol 14 9he’ |

Y, is the column 2M — 1-vector

ho?

(w(Tip1,2-ar), 0, -+, 0, u(mipn, 2ar)) T,
R; is the column 2M — 1-vector
R; := (R(7i,x—n11), -+, R(mi,2n1)) T,
and the unknown is the column 2M — 1-vector
Uit = (w(risn, 2—p41), - u(Tipn, ma—1)) -
Notice that the endpoints u(7;41,z—pr) and u(7i+1, zpr) are given by the ABC:
w(tiyr, za) = e (e Ty — (K +€e1Sy)) and u(t,z_p) = 0.

The CFL condition for the implicit scheme with 6 € [0, 1) is given by

ho 1
2SS (1—0)02

For the pure implicit scheme (6 = 1), no condition is necessary for convergence.

Monte Carlo approximation for the Bachelier model

Recall that in the Bachelier model Gaussian distribution with mean Sy and variance o7,
S, is N(z,027), and the pricing formula is given by

U(r,z) = e "TE[g(e""S;) | So = x].
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In the Monte Carlo method, we generate samples based on the underlying probability
distribution to approximate the above expectation. Let the ii.d. samples {z; : j =

., N} be taken from A(0,1). Then, the expectation E[g(e’”S;) | So = z] can be
approximated by

N
Z etz + ov/Ty)).

Hence, the price of the option U(T, t,z) can be approximated by

—rT t)y N
UAPPYOX (1 ) = Z TT (x + foz))' (3.2.22)

The larger the number of samples N is, the more accurate the approximation U*PP™% (7, z)
is obtained. The plain Monte Carlo method is not as efficient as the finite-difference, at
least when there is only a single risky asset. However, some methods such as variance
reduction or quasi Monte Carlo can be used to increase its performance.

Quadrature approximation for the Bachelier model

Quadrature methods are based on a deterministic (nonrandom) approximation of the inte-
gral. In the Bachelier model the price of the option is given by

_ (= 1)2

2027 dy

e
vne) = s

As an example of the quadrature method, one can first approximate the improper integral
above with the proper integral

(= z>2

TTy) e 2027 dy

e
e
oNV2TT Joo A g

and then use Riemann sums to approximate the price of option by

—rT (y**ﬂﬂ)2

a\/ﬁ Z (€ Tys) e 2 (yja1 —yj),

[Japprox ( T, $

where yo =2 — A <y <--- <yny =z + A. If the discrete points y; for j = 0,..., N are
carefully chosen, the quadrature method outperforms the plain Monte Carlo method.

Exercise 3.2.13 (Project). Consider the initial price Sy, o, v and payoff assigned to your
group.
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

’Group]\T‘So‘

rl| o |
T 1] 0] .2] I
2 (10| 100| 1| 5
5 (1] 2| .2] 5
7 | 2| 2 5] 5
5 (2] 2 5] 5
6 | 1] 5| .1].001

Choose a computational domain around the initial price, [So — Tmax, S0 + Tmax]-

Set appropriate artificial boundary conditions (ABC) at the boundary points So—Tmax
and Sy + Tmax-

Write a program that implements the implicit finite-difference code. The time and
space discretization parameters (h, k) must be set to satisfy

ho o1
k2 7 (1—6)o?

To make sure that your code is correct, run the program for a call (or a put) option
and compare it to the closed-form solution in (3.2.9).

Run the program for 0 = 0 (ezplicit), 6 = 5 (semi-implicit) and 6 = 1 (implicit) and
record the results.

Simulate a discrete sample path of the price of the underlying asset with the same
time discretization parameter h. Use the following algorithm:

Simulating a sample paths of underlying in the Bachelier model

1: Discretize time by tg = 0, t; = th, and T = hN.

2: for each j =1,...,N do

3: Generate a random number w; from standard Gaussian distribution N (0, 1) to repre-
sent (B, — B;)/Vh

4: Sj = Sj_l + U\/ij

5 85 = erti Sj

6: end for

Output: vector (sg = So, St,, .-, Sty_,, ST) is & discretely generated sample path of the
Bachelier model.

Step 7.

Recall that the hedging is given by the derivative 0,V (t,S;) = €0,V (t,e™Sy). Eval-
uate the hedging strateqy discretely at each mode of the discretely generated sample
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path (so = So, Sty -, Sty_,) in Step 7, i.e.,
(2:V (0, 6”80), 0.V (t1, ertlstl), . eTthlé’xV(tN,l, eTthlstN_l)).
Note that some interpolation may be needed in this step.
Submit the following outputs:
Output 1. The program

Output 2. A comparison with the closed-form solution for a call at (0, Sp).

Output 3. The price and hedging strateqy at the points of the discrete grid.

9(Sr) 9(St)
10 80 100
Group 1 St Group 2 Sr
5 15 40 /o
-5 -40
9(St) 9(St)
1
1
Group 3 Group 4
S S
1 2 3 1 2 3
9(Sr) 9(St)
1
.25
.75

Group 5 St Group 6 St
P 25

o

-.25

Figure 3.2.9: Different payoffs of the group project
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3.2.3 Discussion: drawbacks of the Bachelier model

One of the drawbacks of the Bachelier model is the possibility of negative realization of the
asset price. However, this is not the main concern, as in many other applications; Gaussian
random variables are used to model positive quantities such as human weight. The negative
asset price can be problematic if the ratio % is not sufficiently large. For instance, if the

ratio U‘f}% = 1, then the chance of a negative price at maturity 7T is significant, i.e., higher

than .3.
In addition, the return of an asset in the Bachelier model is not integrable. The return of
an asset in the Bachelier model is given by

Rarth ._ e"tHDG, 5 — €S, _ €Bis— By €"(Byys— By) Lt
t - A _— - .
ertsS; By B,

Given By, the return in the Bachelier model is a Gaussian random variable. Some empirical
studies support the Gaussian distribution for the return. However, the random variable B%
is not integrable:

D [1] = 1J iff%dm =
|Bel | V2t Jg || '

3.3 Continuous-time market of Black-Scholes

The Black-Scholes model can be obtained by asymptotic methods from the binomial model.
To do this, we first present some asymptotic properties of the binomial model.

3.3.1 The Black-Scholes model: limit of binomial under risk-neutral
probability

Let T > 0 be a real number and N be a positive integer. We divide 7" units of time into

N time intervals, each of size § := %5. Then, consider a binomial model with N periods

given by the times tg =0 <t; =6, ..., = kK, ...ty = T. Recall from binomial model that
S(k+1)6 = Sk(;HkJrl, for k= 0, ceey N -1

where, in accordance with Assumption 2.4.1, {H, k}}c\f:l is a sequence of i.i.d. random vari-
ables with the following distribution

- u  with probability 7«
"7 )¢ with probability 1—#

®Each time unit is divided into 1/§ small time intervals.
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Asymptotics of parameters u, ¢, and p

The goal of this section is to show the following approximation:

2

w=1+0dr+ooa = r—7)tVioa 0(9),
o2

(3.3.1)
(=1+6r —Voop =0~ )\[”'B+0(5)
To obtain this approximation, one should notice that from (2.4.7), we have o = 1+ )“[ +
0(v/0). Thus, it follows from (2.4.6) that
1— 1 A
Tp: 23 =14 M6 + o(V5) andp—2—\/> o(V9).
Then,
1
o? = . 206 T +0(V6) = 22 =14 3:M/6 + o(V0). (3.3.2)
On the other hand, one can easily see that®
2 5(r — %) + Vdoa)?
e’ )+‘[‘7°‘—1+5(7‘—2)+\faa+( (r 2)2 Vioa) + 0(9)
2 So2a2
=1+5(r—%)+\/50a+ 7L o)
§(c? —1)a?
:1+6r+\/50a+u+0(5)

2
=1+ dr + Véoa + o(9).

In the above we used (3.3.2), i.e., 02 — 1 = O(\/9).
Similarly, we have 2 = 1 — 36 + 0(\/3) and

02
S(r=%)—VooB _ + 0r — \f(SUﬁ +0(9).

Arithmetic return versus log return

This asymptotics yields to the relation between the arithmetic return and the log return
in the binomial model. While the arithmetic return is given by

Rarth or 4+ Voo
or — \faﬂ
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the log return is given by

RIS _ {6(r — —"22) ++/doa + 0(9)
t = 52
r

S(r—9%)— Vo + o(8)

The probabilities of the values in both returns are given by (7,1 — @) for risk-neutral
probability and (p, 1 —p) for physical probability. In particular, if E and E are respectively
expectations with respect to risk-neutral probability and physical probability, then we have

E[R{™] =rd, and E[R{™)*] = 0°5 + 0(0)
E[R?rth] = po, and E[(R?rth)2] = 028 + 0(9)
E[R®] = (r — 302)5, and E[(R})%] = 023 + 0(0) (33.3)

B[R] — (4 — 202)5, and E[(R®)2] = 625 + o(5).

2

Weak convergence of the binomial model: the geometric Brownian motion

From the asymptotics in (3.3.3), the log return of the calibrated binomial model is given
by
log _)o(r— %2) ++/6oa  with probability #
Rt = ln(Hk) = o2 . .1 A
§(r— %) —+/60B  with probability 1—#
Indeed,
In(Sk11)5) = In(Sks) + In(Hy+1),

or

In(S;) = In(Sy) + Z In(Hy).

Let {Z;}&_, be a sequence of i.i.d. random variables with the following distribution

7 « with probability 7«
*T1=8 with probability 1— 4
Then, we have

In(St) = In(Sy) + (r — —Z)T +oVT

M%\

N
LYz (3.3.4)
k=1
iV: Z. converges weakly to

Next, we want to show that the normalized summation \ﬁ
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a random variable (distribution) as the number of time intervals N approaches infinity”.
To show this, from Theorem B.9 from the appendix, we only need to find

o).

lim x 1

N Z
N—oow /N &k=1%k

Notice that here the characteristic function is under the risk-neutral probability, xx(0) =
E[GZGX].
Since {Z;}4_; is a sequence of i.i.d. random variables, we have

N
0
X\%ﬁ Zszlzk(e) - IQX& (W) :
On the other hand,

0°E[Z7]

Xz, (0) = E[e??1] = 1 + i0R[Z,] — +0(6?).
Notice that by (2.4.4), we can write
. R-L P
W_U—L_Oé“—ﬁ‘ (3.3.5)

Therefore, straightforward calculations show that E[Z;] = 0, and E[Z}] = 1. By using the
Taylor expansion of the characteristic function, we obtain

0 62 1
Xz, \/7N :1_ﬁ+0(ﬁ)7
and
62 1 \"
Xgosin, af) = (1 “av O(N)> |
By sending n — o0, we obtain
. . > 1\" e
A}l_r)nooleﬁZkN:le(G) = lim (1 ~ 5N —|—0(N)> =e 2.

Since e~ 7 is the characteristic function of a standard Gaussian random variable, we con-

clude that \/% Z]kv=1 Zj, converges weakly to N(0,1).

Exercise 3.3.1. In the above calculations, explain why we cannot apply the central limit
theorem (Theorem B.7) directly.

"Or equivalently § — 0.
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(3.3.4) suggests that we define a continuous-time model for price S; of the asset at time
T as the weak limit of the binomial model by

2
In(St) = In(So) + (r — %)T +oN(0,T)

or equivalently

2
St = Sy exp ((r — %)T + UN(O,T)) :

Calibrating binomial model: revised

In the above, we see that the choice of parameters u, £, and R leads to a perfect choice
of E[Z1] = 0 and E[Z?] = 1. However, in (3.3.4), the only criteria for the convergence of
binomial model to Black-Scholes model is that the random variables Z, k = 1, ..., N must
satisfy E[Z,] = 0(8) and E[Z2] = 1 + o(1);

If E[Z1] = o(6), and E[Z?] =1+ o(1),

N
th ! >z to MN(0,1) kl (3.3.6)
en —— L converges to , weakly.

VN o

To avoid the calculation of a and 3, one can choose different parameters for the bino-
mial model. Notice that the binomial model has three parameters u, £ and R while the
Black-Scholes parameters are only two. This degree of freedom provides us with some mod-
ifications of the binomial model which still converges to the Black-Scholes formula. This
also simplifies the calibration process in Section 2.4 significantly. Here are some choices:

1) Symmetric probabilities:

U = 66(7”_%”\/30, = 65(T_%)_\/50, and R =19,

Then 1

o= e = 5
Notice that (3.3.4) should be modified by setting the{Z;}Y_; distribution of the i.i.d.
sequence

7 1 with probability
! —1  with probability

[T e

and E[Z;] = 0 and E[Z?] = 1.
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2) Subjective return:

= 66”“/3‘7, = 651/7\/30, and R =rd,

u

Then

1 _ 1.2 1 ., 1 2
ﬁu:<l+¢gw) o m:2<l_¢gw |

2 o o

In this case, (3.3.4) should be modified by setting the{Zj}4_, distribution of the i.i.d.

sequence
N
p V627 11 with probability 7,
1= I/*T‘+l0'2 . e N
NZ) 2— — 1 with probability 7,

g

(e

A A v—r+io?\2
and B[Z,] = 0 and B[Z2] = 1 + (#2) s.

Exercise 3.3.2. Show
E[Z1] = 0(6), and E[Z?] =1+ o(1)

in the following cases:
a) symmetric probabilities
b) subjective return

Exercise 3.3.3. Consider a risk-neutral trinomial model with N periods presented by

Stt1)s = SkeHi1, for k=0,..,N—1

where § 1= % and {Hy}Y | is a sequence of i.i.d. random variables with distribution

02
DT F)+VIT i probability 7 = é

52

Hy =4 0—%) with probability 1 — 27 = %

J(ng—;)fv&io 1

e with probability & = &

and T < % Show that as 6 — 0, this trinomial model converges to the Black-Scholes model

in the weak sense. ,
Hint: Find Zj, such that In(Hy) = (r — %)0 + 0\/6Zy. Then, show (3.3.6)
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3.3.2 Pricing contingent claims in the Black-Scholes model

Recall from the last section that the limit of the binomial model under risk-neutral proba-
bility yields the geometric Brownian motion (GBM)

2
Sy = Spexp ((T‘ - %)t + O'Bt> . (3.3.7)

We can use this random variable S} to price an option in this continuous setting. We start
with a call option with maturity T and strike price K.

Inspired by the geometric Brownian motion market model, the price of this call option is
the discounted expected value of (Sp — K); under risk-neutral probability. To calculate
this price, we only need to know the distribution of Sy under risk-neutral probability, which
is given by (3.3.7). Since S; is a function of a standard Gaussian random variable, we obtain

E[(Sr — K)4] = \/127 JOOOO (SO exp <(r - 022)T + a\/Tx> - K> P (—f) dz.

2

Notice that when z < z* := ﬁ (ln(K/S’o) —(r— %)T), the integrand is zero and
otherwise (St — K)4 = Sy — K. Therefore,

. o2 0 crfac—— 7
E[(Sr — K)+] = Soe"= )T J

pors
_ (z—oVT)* a\/7)2 7357
2
=5 eTTf KJ
0 \/ 27r
2
0 e~ “”2
= S()@TTJ Kf
¥ +o/T V 27T \/

2
Notice that Sz* e r dx is the probability that a standard Gaussian random variable is

22

greater than z* and { toT %dw is the probability that a standard Gaussian random

variable is greater than z* + o+/T. Simple calculation shows that

x+a\ﬁ—

. \F (ln(K/So) —(r+ U;)T> .

In other words, the price of a European call option is given by
O(T, K, Sp,0) := e "TR[(S; — K)+] = So® (d1) — e "TK® (dy), (3.3.8)
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where
dy = L(ln(SO/K) +(r+ U2)T> and dp = L(ln(SO/K) +(r— JZ)T). (3.3.9)
o T 2 o\ T 2
Tl
Here ®(z) = {* . er dy is the standard Gaussian distribution function.®

Exercise 3.3.4. Use put-call parity to show that the Black-Scholes formula for the price
of a put option with maturity T and strike K is given by

P(T,K,S0,0) := e "TK® (—dy) — So® (—d) .

For a general contingent claim, the price of a derivative with payoff g(S;) in the Black-
Scholes model is given by

A R o2
Vo(So) = e_TTIE[g(ST)] ) {g <e(r—2)T+a\/TN(0,1)>]

e} 2 2
_ 1 f g <€(r"2)T+U\/Tz> ei%dﬂj.
V2T J_o
As a consequence of Assumption 2.4.1, if we repeat the calculations in Section 3.3.1, we
obtain

02
O

Stzsoexp<( 2)t+a/\/(0,t)> and ST=Stexp<(r—022)(T—t)+0/\/'(0,T—t)>.

Now we would like to explain the relation between the two normal random variables
N(0,T —t) and N(0,t) in the above. In the Black-Scholes model, % is independent
of S;. This, in particular, implies that the Black-Scholes model is Markovian® and
given that the price of the underlying asset at time ¢ is equal to S;, the price of a call
option with strike K and maturity 7" is a function of S; and ¢t but not S, for u < t. As a
result, the price of a call option at time ¢ given S; = S is given by

C(T,K,S,t) := e " T OR[(Sp — K), | Sy = 5] = S (dy) —e " T VKD (dy),

d; In(S/K) + (r + Z)(T —t)

1 2
= T—t< 5 ) and
1 o?

In general, the Markovian property implies that for a general contingent claim with payoff

8In the above calculations, we use 1 — ®(x) = &(—x).
9Given the current asset price, future movements of the price are independent of past movements.
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g(S;), the Black-Scholes price at time ¢ is V(t,S;) := e "T—DE[g(Sr) | S¢]. We will study
some more properties of this function V' : [0,T] x Ry — R later in the chapter. In the
Black-Scholes market, a contingent claim that has payoff g(Sr), a function of the price of
the underlying asset at time T, is called a Markovian claim, and the price of a Markovian
claim is given by

V(t,S) = e T OR[g(ST) | Sp = S] = e " TR [g <e(r—"22)(T—t)+m/7T—tN(O,1))}

—r(T—
_ e (2 t) oo g <S(€(r—(’22)(T—t)+U\/’1Ttm)> 6_§d$.
V4T -0

(3.3.10)

Remark 3.3.1. The price of a Markovian claim in the Black-Scholes model does not de-
pend on past movements of the price; it only depends on the current price Sy. This is not

true for non-Markovian claims. For example, a look-back option with payoff (maxo<i<r St — K)

or an Asian option (% SOT S — K) are non-Markovian options with a price that depends
+

to some extent on the history of price movements rather than only on the current price of
the underlying.

As seen in (3.3.10), the Black-Scholes price of a Markovian European option is always
a function of T"— ¢ rather than ¢ and T separately. Therefore, we can introduce a new
variable 7 := T — t, time-to-maturity. Then, one can write the value of the Markovian
European option as a function of 7 and S by

22

R —TrT 00] o2
V(r,S):=e"TE[g(S;) | So = S] = f/? J_Oog (S(e<r—2)7+”‘ﬁm)> e zdx.
For call option the Black-Scholes formula in terms of 7 is given by
C(r,K,S) =85 (dy) —e ""K® (da),

dy =

(ln(S/K) +r+ U;)T> and dy = <ln(S/K) ‘o 022)7> ~(3:311)

1
oN\/T o\/T

3.3.3 Delta hedging
As seen in the binomial model, to hedge the risk of issuing an option, one has to construct
a replicating portfolio. The replicating portfolio contains A;(S;) units of risky asset at

time ¢. If the price of the asset at time ¢ is given by S; = S, the A¢(S;) in the binomial
model is given by (2.3.4);

V(t+0,Su) —V(t+46,85)

£l = S(u—10)
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Using the asymptotic formula for v and ¢ from (3.3.1), we have

V(t+08,5+ SOr+Vooa)) —V(t+0,5 + S+ 6r —éop))
Svio(a+ f)

At(5> =

By expanding V (t + 8,5 + S(0r + Véoa)) and V(t + 6,5 + S(1 + dr — /60 3)) about the
point (¢,5) and sending § — 0, we obtain the Delta of the Black-Scholes model as

AtBS(S) = aSV(t,S), (3312)

where V (t,.5) is the Black-Scholes price of a general contingent claim with any given payoff.
As for a call option with maturity 7" and strike K, by taking derivative with respect to S
from (3.3.11), we obtain
APS(S) = @(d).

Here we used
Sogd1®'(dr) — e " T K dgdy®' (dy) = 0.

Exercise 3.3.5. Let So = $10, o0 = .03, and r = 0.03. Find the Black-Scholes Delta of the
following portfolio.

’ position ‘ Units ‘ type ‘ strike ‘ maturity ‘
long 3 call | 310 | 60 days

short 3 put | $10 | 90 days
short 1 call | $10 | 120 days

The maturities are given in business days.

Exercise 3.3.6. Let Sy = 10, 0 = .03, and r = 0.03. Consider the portfolio below.

] position ‘ units ‘ type ‘ strike ‘ maturity ‘
long 3 call $10 | 60 days
long 4 put $5 90 days

¢ x underlying | NA NA

How many units x of the underlying are required to eliminate any sensitivity of the portfolio
with respect to the changes in the price of the underlying?

Another derivation of the Delta in the Black-Scholes model

Another heuristic derivation of this result is as follows. In the binomial model, we can
write

E[g(S7) | Sivs = Sul = E[g(Sr—su) | S = S] and
E[g(Sr) | St4s = S = Elg(Sr_sl) | S = S].
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This is because the binomial model is time homogeneous. Therefore,

V(t+9,Su)—V(t+0,5¢)

_ e BL9(S1) | Spss = Su(] gggwﬂ [ Sees =50 65
_ —T(T—t)E[g(STf(SU) ‘ St = ] Q(ST 5l) | Sy = ] + 0(5)

E[
S(u—10)
(T »E[Sr_59'(S7—s) | St = S](u— 1)
S(u—10)

+0(5).

In the above, we used (3.3.1) to obtain (u — £)? = O(6), and we used

9(x) = g(y) = ¢'(2)(y — 2) + O((z — y)?)
to obtain the last equality. Hence,
e—r(T—t) . ,
Ay(S) = 3 E[Sr—s9'(S1—5) | St = S|+ O(9)

Now, by the weak convergence of the underlying asset price in the binomial model to the
asset price in the Black-Scholes model, as § — 0, we obtain

—r(T—t)

APS(8) = S

E[Srg' (ST) | S; = S].

Notice that given Sy = S, we have

2

Sr = Sexp ((r — T )NT —t) + oN(0,T — t)) .

2
Therefore,
0_2
15 (9t50) = exp (0= FHT =)+ N 0.7 0)) o (51) = L/ (50)

This implies that

AP(8) = TR Ty (51) | 5, = 5] = VB[ (o(51)) | 52 = 8]
d

_ E(efr(T DB [g(Sr) | i = ]> — 05V (t, S).
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3.3.4 Completeness of the Black-Scholes model

Similar to the binomial model, the Black-Scholes market is complete; every contingent claim
is replicable. For the moment, it is not our concern to show this rigorously. Instead, we
accept this fact and would rather emphasize how to replicate a contingent claim. In order
to replicate a Markovian contingent claim with payoff ¢(St) in the Black-Scholes model,
we start by recalling from Section 2.3.3 that the replicating portfolio in the binomial model
is determined by APi(S;,) given by (2.3.4) and the replicating portfolio is written as

t—1 t—1
VPi(t,5p) = VP(0,80) + R (VPi(i, S5) — AP(Si)Si) + D AP(Si)(Sir1 — Si). (3.3.13)
=0 i=0

Notice that R = rd + o(d). By taking the limit from (3.3.13), we obtain

T

VT, Sr) = V(0,S0) + J (V(t,8)) — A(S0)S))dt + LT A(S)dS,. (3.3.14)

0
In the above V (t,.5) is the Black-Scholes price of the contingent claim, and A;(S;) satisfies
(3.3.12). The first integral in (3.3.14) is a simple Riemann integral. The second integral
is a more complicated stochastic integral; the integrator d.S; is an Itd stochastic, which is
presented in Section C.4. But for the moment, you can interpret the It0 integral in (3.3.14)
as the limit of the discrete stochastic integral Z,f\fol A, (St;,) (St — St,)-

Exercise 3.3.7. Repeat the above calculation to show that the discounted wvalue of the
option (1 + R)“tVY(t,S;) converges to

T

e "TV(T, S7) = V(0,Sp) +f e " A(Sy)dS;.
0

3.3.5 Error of discrete hedging in the Black-Scholes model and Greeks

Equation (3.3.14) suggests adjusting the Delta continuously in time to replicate the contin-
gent claim. On one hand, this is a useful formula, because in reality trading can happen
with enormous speed which makes continuous time a fine approximation. However, in prac-
tice, the time is still discrete, and hedging is only a time lapse. Therefore, it is important to
have some estimation of the error of discrete-time hedging in the Black-Scholes framework.

Let us consider that the Black-Scholes model is running continuously in time, but we
only adjust our position on the approximately replicating portfolio at times ¢; := §i where
6 = % and ¢ = 0,1,..., N. By setting aside the accumulated error until time ¢;, we can
assume that our hedge has been perfect until time ¢;, for some i, i.e.

V(tia Sti) = AES(SU)SM + Y;fw
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where V (¢,.5) is the Black-Scholes value of the contingent claim and Y; is the position in
cash. At time ;.1 = t; + d, the value of the portfolio is

APS(St,) St + €Y,

Since by (3.3.12), APS(S;,) = 05V (ti, St,), the error is given by

Err, (0) :

IE V(tz + 67 Sti+5) - aSV(tla Sti)Sti—l—é - 6T6Yti | Stz]

Il
=

V(ti + 0, St,46) — 05V (i, S,)Stvs — € (V (£, St,) — 05V (ti, Si,)St,) | Stl]
—E[V(t; +6,845) — V(i Si,) — sV (ti, St.) (St 45 — St,)
(@ =DVt ) = 05V (4.51)50) | S

) —

7

:E V(ti + 9, Stz‘+5) (tu St, s (tza Stl)(St +5 — St,)

— 5 (V(t, Se) — 95V (1i,56)S5)) | S, ] +0(5?)

7 7

3

By the Taylor formula, the price of the option is
V(ti + 6, Sti+6) = V(ti, St,) + 0V (i, St,)0 + 05V (ti, St;) (Sti+6 — St,)
+ %@ssv(tz‘, S1:)(Sti4s — i) + %@:tv(tz‘, St,)8°
+ 05V (ti, St; ) (St;+6 — St;)0 + 0(9).
Notice that since

Siv5— S, = 08, VON(0,1) + O(6), with A(0,1) independent of S, (3.3.15)

3
2

the conditional expectation E[(S;, 15 — St,)? | St,] = 02526 + O(0
properties of the conditional expectation, we have

). Therefore, by the
E[asv(tiasti)(stﬁ-é - St) | Stz] = 85V(ti,5t )E[Sti+5 - Sti | Stz] =0

E[0ssV (ti, St,)(St;+6 — St)? | St] = dssV (£, St )E[(Sty+6 — St)? | Si,]
— 0257 055V (ti, i) + O(87),
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and we can write the error term'? by

252
Errti(é) = 5(8tV(ti, Stz) + 7 5 bi aSSV(ti, Stz) + TaSV(ti, Stl)Stz) — TV(ti, Stz)) + 0(5%)
(3.3.16)

where the term 0(6%) depends on the higher derivative oV, o, St,;, and r.
Before finishing the error estimation, let us briefly explain some of the important terms
which show up in (3.3.16).

1) The first derivative dgV of the option price, Delta, is denoted by A(t,S) and de-
termines the sensitivity of the value of the option with respect to the price of the
underlying.

2) The second derivative dgsV of the option price, which is called Gamma and denoted
by I'(¢, S) and determines the convexity of the option value on the price of underlying.

3) The time derivative 0;V, which is called time decay factor or Theta and is denoted
by O(t,S), determines how the price of option evolves over time.

As a function of time-to-maturity 7 = T'—t¢, by the abuse of notation, we define V (7, 5) :=
V(t,S) and therefore we have

For example in the case of call option with strike K and maturity 7', by taking derivatives
0ss and 0 in (3.3.11), we have

= Sal\ﬁq)/(dl) and O(T,S5) = —;\;;@'(dl) —rKe "T®(dy).
(3.3.17)
The A, T', and © of a call option in the Black-Scholes model is shown in Figure 3.3.1.
To continue with the error estimation, we need the following proposition.

A(1,8) = ®(dy), I'(r,5)

Proposition 3.3.1. For a Furopean Markovian contingent claim, the Black-Scholes price
satisfies
252
o(r,5) = -2

I(r,S) —rSA(1,S) + rV (1, 95).

Proof. Apple Proposition (C.1) to the martingale e "tV (¢, S;). O

0Here we heuristically assumed N'(0,1) ~ 1. A more rigorous treatment of this error is in by calculating
the L? error by calculating E[(Erry, () 2]%.
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6 8 10 12 14

Figure 3.3.1: Greeks of a call option with 7 =1, 0 = .1, » = .05, and K = 10. As you
see the significant sensitivity is near the ATM.

As a result of this proposition, the term of order § in (3.3.16) vanishes, and thus one step
error is of order 0(5%). Since § = L, we have

N—-1
Err(6) := [ Z Errti(é)] = O(V9),
1=0

which converges to 0 as quickly as v/6 when 6 — 0.

Discrete hedging without a money market account

One reason to completely disregard the money market account is because the risk-free
interest rate r is not exactly constant. The money market is also under several risks which
is a different topic. One way to tackle the interest rate risks is to completely exclude the
risk-free money market account from the hedging portfolio, and try to measure the hedging
error in this case. To understand this better, let us first consider the issuer of an option
that is long in ABS(¢;, St,) units of the underlying. Then the change in the portfolio from
time ¢; to time t; + J is

E[V(tl + 9, Sti+§) - V(ti’ Stz) - ABS(ti’ Sti)(sti+5 - Stz)]
2Q2

hi
5 Y% 0g5V (ti, Si,)) + o(9),

— AVt 8,,) + 2
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where we use (3.3.15) on the right-hand side. This error is related to the loss/profit of not
perfectly hedging and is called a slippage error; see Figure 3.3.2.

V(t,9S)

V(ti + 57Sti+6) [ R

V(ti,Sti) [ R :

S
Sti Stl—i—é

] t
T T

Figure 3.3.2: The red curve is the value of the option at time ¢;, the blue curve is the
value of the option at time t; 1. The slippage error is shown in burgundy.

The loss/profit from slippage can be calculated by using the same technology as in the
previous section; the slippage error during the time interval [¢;,t; + 0] is given by

o252
(O(ti, St;) + 5 LT (ts,St,))0 + o(9)

As illustrated in Figure 3.3.4, when, for instance, the time decay factor is negative and
Gamma is positive, for small changes in the price of the asset, we lose, and for larger
changes we gain. As seen in (3.3.17), it is a typical situation to have negative © and
positive T' for call options (or put options or any European Markovian option with a
convex payoff function). See Figure 3.3.3.

Exercise 3.3.8. Show that if the payoff function g(St) is a convex function on St, then
the Markovian European contingent claim with payoff g(St) has nonnegative I'; V (1, S) is
convex on S for all T.
Let S; = e ™S, and V(t,5;) = e "V (t,S;) = e "V (t,e™S;) be respectively the dis-
counted underlying price and discounted option price. Then, we can show that
0252

atV(t, S) = —T(?ng/(t, S)
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2.5| ]
2,
N 15| :
=
1, ]
0.5 :
0
K
S

Figure 3.3.3: The time decay for the price of call option in the Black-Scholes model. As
7 — 0, the color becomes darker.

Exercise 3.3.9. Use Proposition 3.53.1 to show the above equality.

This suggests that if the interest rate is nearly zero, then the lack of a money market in
the replication does not impose any error. Otherwise, when the interest rate is large, the
slippage error is significant and is equal to

262
(O(ts, St,) + "5 T (ti, S4,))3 + 0(8) = r(V (1, S1,) = SE A, 51,))8 + 0(6),

which can accumulate to a large number.

Other Greeks

Two other Greeks are Rho, denoted by p, and Vega, denoted by V, which respectively
measure the sensitivity with respect to interest rate r» and volatility o, i.e.,

p(1,8) = &, <e_TTE[g(ST) | So = s]) and V(r,8) := 0, (e—”fa[g(sT) | So = s]) .
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Profit/Loss

AS

~_| - '

Figure 3.3.4: The loss/profit of the discrete hedging in the Black-Scholes model. The
red graph shows the loss/profit without the time decay factor. The blue includes the time
decay factor, too.

For a call option, these derivatives are given by
p(1,8) = e "TK7®(dy) and V(7,5) = Sy/79'(dy).

Figures (3.3.1) and 3.3.5 show the Greeks A, I', ©, p and V for a call option as a function
of S.

Exercise 3.3.10. The third derivative of the Black-Scholes price with respect to S is called
speed. Find a closed-form solution for speed.

Example 3.3.1. The payoff in Figure 3.3.6 can be written as (St — K1)+ — (S — K2)+ —
(ST — K3)+ + (ST — K4)+. Therefore, the closed-form solution for the Black-Scholes price
of the option is given by

V(r,S)=C(r,K1,S) — C(1,K3,5) — C(1,K3,5) + C(1, K4, S).

All the Greeks of the option are also a linear combination of the Greeks of these call
options. For instance,

A(t,S) = ®(di(7, K1, 5)) — ®(di(7, K2, 5)) — ®(d1(7, K3,5)) + ®(di(7, K4, 5)).
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101 Rho y
— Vega
8 | |
6 - -
4 - -
2 - -
0 A
| | | | |
6 8 10 12 14

S

Figure 3.3.5: p and V of a call option with 7 =1, 0 = .1, r = .05, and K = 10.

g(St)

St

K Ko K3 K,

Figure 3.3.6: Payoff of Example 3.3.1 g(S7) = (St — K1)+ — (S7— K2)+ — (ST — K3) 4+ +
(57 — K4)+.

Exercise 3.3.11. Write the payoffs in Figure 3.5.7 as a linear combination of call options
and derive a closed-form formula for the Black-Scholes price, the Delta, the Gamma, and
the time decay of options with these payoffs.

Exercise 3.3.12 (Bull and bear call spreads). Write the payoffs in Figure 3.3.8 as linear
combination of call options with different strikes and possibly some cash and give the closed
form formula for them.

3.3.6 Time-varying Black-Scholes model

Recall from Section 2.4 that the binomial model can be calibrated to time-dependent
parameters. Let § = % and consider the discrete time instances t; = ¢9. The time-varying
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9(ST) 9(ST)

St ST

Figure 3.3.7: Left: payoff of straddle. Right: payoff of strangle.

9(St)

St

K, Ko

Figure 3.3.8: Red: Bull-spread call. Blue: Bear-spread call

binomial can be given by
ln(Stk+1) = In(Sks) + In(Hy+1),

where {H, k}ivzl is a sequence of independent random variables with the following distribu-
tion under the risk-neutral probability

1+ 0r, + \/gatkak with probability 7y
k= R
1+ org, — \/gcrtkﬁk with probability 1 — 7y
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where ay, Sy are given by (2.4.6) and (2.4.7) for time-dependent \;. Therefore, equation
(3.3.4) takes the following time-dependent form:

k=1 2 N
of
In(Sy,) = n(So) + . (re, — —=2)6 + V6 > 01, Z. (3.3.18)
. 2
1=0 k=1
Analogous to (3.3.5), we have 1, = akﬁfﬂk and

E[Z] =0 and E[Z?]=1.

Therefore,
arifo . A 0202 [ Z2]
X\/Scrthk(e) = Ele ’ W] =14 0o, OE[Z1] — kf + 0(6).

This implies that

N N

1 —1p25 _02 N 5

X\/gZivzlothk(e) - H (1 - 5592Utk +0(6 > H 20 ?k5+0 (0) =e 2 ==t t2k6—|—0(5).

k=1 k=1

As o — 0,
XVES o2 (0) = e ofdt
which is the characteristic function of N(0, SoT o2dt). Thus in the limit, we have
T o2 T
St = Spexp (Jo (ry — ?t)dt + L o2dtN (0, 1)) .

As a matter of fact, for any ¢t we have

t o2 t
S; = Spexp (J (ry — Tu)du +WN <0,f aidu))
0 0
T 0.2 T
St = Stexp <J (ry — %)du + N (0,f UZdu)) .
t t

and the random variables N (O, S;‘F agdu) and N (0, Sé Ugdu) are independent.

Usually the interest rate r; and the volatility o; are not given and we have to estimate
them from the data. In the next section, we discuss some estimation methods for these
two parameters.
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Using the variable r and o, we can rewrite the Black-Scholes formula for a call option by

O(T,K,S,t) = e T“d“E[(ST K), y Sy = S] =SB (dy) — eV UKD (dy)
2
dy = <1n S/K) + <ru + ”") du) and
) 2
a du
0.2
<1n S/K) + <ru - 2“) du) :

For a general European payoff g(Sr) we have the Black-Scholes price given by
T duts
V(t,S) == el uduR[g(S,) | Sp = S]

— T rudu o o2
N IO R e P
Q —0

3.3.7 Black-Scholes with yield curve and forward interest rate

Recall from Section 1.1.5 that the yield curve R;(T") and forward curve Fy(T') of a zero
bond are defined by

1 dln By(T)

By(T) = e~ T=DR(T) _ o= I Rde op o R(T) := T InB/(T) F(T):=— o7

Since setting a model for the forward rate is equivalent to setting a model for the short
rate r;, in the Black-Scholes formula with a time-varying interest rate, one can equivalently
use the forward rate or the yield curve. Assume that o is constant. Then, the Black-Scholes
pricing formula becomes

O(T, K, 8,t) := e~ 4t B@AR[(S, — KY), | S, = S] = S® (dy) — e~ ¥ P (dy),

1 T o?
dy = m <1n(S/K) + L Fi(u)du + ?(T - t)> and
1 T o?
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and

C(T, K, S, t) := e BeMITIR[(Sp — K) | S, = 8] = P (dy) — e D THDED (dy),

1 o
1 o?
dy = wre (ln(S/K) + Ry(T)(T = 1) = (T ~ t)> .

(3.3.19)

3.3.8 Black-Scholes model and Brownian motion

In Section B.5, we show that the symmetric random walk converges to the Brownian motion
B;. The same principle shows that the linear interpolation of the summation Zivzl Zi in
the logarithm of the asset price in the binomial model in (3.3.4) also converges to the
Brownian motion. Therefore, one can write the Black-Scholes model (3.3.7) by using the
Brownian motion By;

2
Sy = Spexp <(7" - %)t + O'Bt> : (3.3.20)

Here By is a Gaussian random variable with mean zero and variance t. The above process
is called a geometric Brownian motion (GBM for short)!!.

Markovian property of the Black-Scholes model

Since for Brownian motion the increment Bsi; — By is independent of By,

0_2
D

2
o
Sy = Spexp (( 5 )t + O‘Bt> and Siis = Spexp ((r — ?)s + 0(Bys — Bt)>
are independent. Verbally, this means that future price movements are independent of past
movements. In other words, given the history of the movement of an asset’s price until
time ¢, i.e., S, for all u € [0,¢], the distribution of S;;s only depends on S; and that part
of history during [0, ¢) is irrelevant. As a result, for any function g : Ry — R, we have

BLo(Ste) | S Vue 0.6]] = Bla(Ser.) |51 = B g (Siexp ((r - 7 s+ (B - 5))|

The pricing formula (3.3.10) is precisely derived from the Markovian property of the Black-
Scholes model.

"Paul Samuelson, in the 1950’s, first came up with the idea of using GBM to model the risky asset
price. His primary motivation is that GBM never generates negative prices, which overcomes one of the
drawbacks of Bachelier model, negative prices for an asset.
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As a result of the Markovian property of GBM, one can write

2

Strat — St = Sy <exp ((r — %)dt + 0(Bpyar — Bt)> — 1>

o? 1
= St((r - 7>dt + U<Bt+dt - Bt) + 502(Bt+dt — Bt)2> + O(dt).

Therefore, the short-term return of an asset in the Black-Scholes model is given by

Sivar — S 2 1
% =(r— %)dt + 0(Birar — By) + 502(Bt+dt — By)? + o(dt).
¢

This is, in particular, consistent with Assumption 2.4.1 and the definition of mean return
and volatility, i.e.

—_— 2 A A
) {W] =(r— %)dt + 0E[Biyat — Bt] + %U2E[(Bt+dt — By)?] + o(dt) = rdt + o(dt).
t
ar <St+d;_5t> = o?dt + o(dt).
t

Inspired from the above formal calculation, We formally write the Black-Scholes model for

the asset price as

d
% = rdt + odB;,. (3.3.21)
t

The above equation, which describes (3.3.20) in the differential form, is called the Black-
Scholes stochastic differential equation.

Martingale property of the Black-Scholes model

Similar to the binomial model, in the Black-Scholes model the lack of arbitrage is equivalent
to the martingale property of the discounted asset price. The discounted asset price in the
Black-Scholes model is given by

2
S =e S, = Syexp (—0215 + aBt> )
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The conditional expectation of S, given S; is then given by

.

o? N o2
= Sy exp <—2t + aBt> E [exp <—2S + 0(Biys — Bt)>

gt} .

By the independence of the increments of Brownian motion, we have

S’t] =k [exp (—0225 + 0(Bys — Bt)ﬂ ,

2
SoE {exp (—02(15 +5) + UBH_S>

.

A 2
= S;E {exp <—028 + 0(Bpys — Bt))

~ 0'2
E [exp <—28 + 0(Bys — Bt)>

and therefore,
PR < o?
E [St+s’St] = S;E [exp <—2S + U(Bt+s — Bt)>] .

On the other hand since Byys — By ~ N(0, s), we have

£ [exp (0(Bres — B))] = exp (“2) ,

and therefore, I [S'Hs‘gt] =S,.

In addition to the asset price, the discounted price of a newly introduced contingent claim
must be a martingale to preserve the no-arbitrage condition. Recall from formula (3.3.10)
that the price of a contingent claim with payoff g(Sr) is given by

V(t,S;) = e "TIER[g(ST) | Sy].

If we define the discounted price by V (¢, S;) = e "V (t, S;), then we can write the above

V(t,S)) = e "TRE[g(ST) | Sy

By the tower property of conditional expectation, we have

A ~

B[V(t+ s Ss)[S] = B [e*rTfa[fa[g(sT) | Siss]

Si| = e TR [g(S7)IS1] = V(£ S1).
Therefore, the price of the contingent claim is a martingale under risk-neutral probability.
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3.3.9 Physical versus risk-neutral in the Black-Scholes model

Recall from (2.4.1) that the binomial model under physical probability is given by
S(k+1)5 = Sk5Hk+17 for k= 07 7N - 17

where the sequence of i.i.d. random variables {H, k}}f:l is given by

ool with probability p
F ¢ with probability 1 —p

Then, the dynamics of the asset price under physical probability is given by
N
In(S7) = In(So) + > In(Hy).
k=1

In(Hy) is the log return R}Coég. Recall from (3.3.3) that the first two moments of log return
are given by

E[ln(Hy)] = (1 — %ag)é + 0(6%) and E[In(Hy)?| = 025 + o(9).

If we define 7, := M, one can write

Vs
In(St) = In(Sy) + (u - 102> T4 oVT  —— i Z,
2 VNS

where {Z} } is a sequence of i.i.d. random variables satisfying
E[Z;] = 0(6), and E[(Z})?] =1+ o(1).

If follows from (3.3.6) that \/% Z]kvzl Z;, converges weakly to A(0, 1), and under physical
probability, the Black-Scholes model is described by

o2
St = Spexp ((,u — ?)t + O'Bt> .

In other words, by switching from risk-neutral probability to physical probability, we adjust
the mean return of the asset from r to the risk-free interest rate p.

Remark 3.3.2. For the purpose of derivative pricing, physical probability is irrelevant.
This is because by the fundamental theorem of asset pricing, Theorem 2.1.1, the price
of any derivative is determined by the discounted expectation of payoff under risk-neutral
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probability. However, for portfolio management, physical probability is important, because
it carries the long-term growth rate of the asset, . For example, an investor with x initial
wealth wants to decide how to split his investment between a risk-free bond with interest
rate r and a risky asset given by the Black-Scholes model

o2
St = Spexp ((,u — ?)t + O'Bt> .

His objective is to mazimize his expected wealth at time T subject to a constraint of the risk
of portfolio measured by the variance of the wealth at time T, i.e.,

mgx{E[X%] — Avar(X%)}. (3.3.22)

where X:?, 1s the wealth of the investor at time T if he chooses to invest xo—@ in the risk-free
asset and 0 in the risky asset. The wealth X% satisfies

X0 — (g — 0) + feln—%)T+oBr
Therefore,
]E[XJG“] = erT($0 —0)+ 6et  and var(X%) = GQeQ#T(ef’QT —1).
Therefore, the portfolio maximization problem (3.3.22) is given by
max {erT(ﬂUo —0) + 0elT — A92e2T (T — 1)}

and the solution is given by

wT T

B ettt — e
C2)e2T (eo°T — 1)

9*

Volatility estimation

Notice that the log return of the Black-Scholes model satisfies

2

S, o
In ( gt(g) = (u— 7)(5 + 0(Biys — Bt)

We consider the time discretization tg = 0, t;41 = t; + 0, and ty = t. Therefore, it follows
from (B.15) (the quadratic variation of Brownian motion) that

Nz_l In (SA)Q — 52 Ni(Bt. — By,)? + o(8) — 0%t (3.3.23)
i=0 St; i=0 ZH '
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One can use (3.3.23) to make an estimation of volatility. For any ¢; = id, evaluate
i1
Stj+1 2
Vi Y ()
J=0 J

If § is small enough, then Y;, should approximately be equal to t;02. This suggests that
if we fit a line to the data {(¢;,Y;,) :4 = 0,1,...}, the slope of line is 0?. The schematic
picture of this fitting is shown in figure 3.3.9.

) data
—— fitted line: Slope=o>2

Quadratic variation of log return

|
0 0.5 1

Time

Figure 3.3.9: Quadratic variation estimation of volatility

Exercise 3.3.13 (Project). With the same set of data from Ezercise 2.4.1, calculate the
volatility by using the quadratic variation formula (3.3.23). Take 6 = flo year. Then, plot
the estimated quadratic variation Yy, versus time t;. Some examples of the generated plots
are given in Figure 3.3.10. Then fit a line to the data by assuming Y; = ot + noise. To fit
a line to the data points, you can use the least square method. The slope of the line gives

you the volatility o.

3.3.10 Black-Scholes partial differential equation

Recall from Proposition 3.3.1 that the price V (7, .S) of the Markovian European contingent
claim with payoff g(Sr) at time t = T'— 7 (7 is time-to-maturity) when the asset price is
S satisfies

0_2 SZ
5 0ssV (1, S8) —rSos(r,S) +rV(r,D95).

—0;V(1,5) = —
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Figure 3.3.10: Quadratic variation estimation of volatility: Left: Tesla. Right: S&P500

The above equation is a partial differential equation called the Black-Scholes equation. One
way to find the pricing formula for an option is to solve the Black-Scholes PDE. As with
all PDEs, a boundary condition and an initial condition!? are required to solve the PDE
analytically or numerically. The initial condition for the Black-Scholes equation is the
payoff of the derivative, i.e.

V(0,5) = g(S).

Notice that here when 7 = 0, we have t =T

Notice that the above PDE holds in region 7 € [0,7] and S > 0. Therefore, we need a
boundary condition at S = 0. This boundary condition is a little tricky to devise, because
in the Black-Scholes model, the price of the asset S; never hits zero; if the price of an asset
is initially positive, then the price stays positive at all times. If the price of the asset is
initially 0, then S = 0 and the price of the option with payoff g(Sr) is given by

V(r,0) = € "E[g(S7) | Srr = 0] = €77(0).
Therefore, the boundary condition for S = 0 is given by
V(7,0) = e "g(0).

To summarize, the Black-Scholes PDE for pricing a Markovian European contingent claim
with payoff g(St) is given by the following boundary value problem

V(r,8) =055V (r,S) + 1805V (r,S) —rV(r,S)
V(r,0)  =e"g(0) : (3.3.24)
V(,5)  =g(5)

Exercise 3.3.14. Consider the option with payoff g(St) = ﬁ Find the Black-Scholes

12For time-dependent PDEs.
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price of this payoff at time t = 0 by solving PDE (3.3.24). Hint: Try to plug in V(7,S) =
e~ ""S% into the Black-Scholes equation, for some constant a. Then, find the constant a.
The boundary condition V(1,0) = e"""¢(0) is unnecessary as g(0) = o0.

Remark 3.3.3. Somehow the boundary condition V (7,0) = e~ ""g(0) is redundant in equa-
tion (3.3.24), because in the Black-Scholes model, the price of the underlying asset never hits
zero. But this condition is important for solving the Black-Scholes equation numerically.

Heat equation and Black-Scholes model

Recall from Exercise 3.3.9 that the change of variable S = e T8 and V(r,5) :=
e "INV (7,8) = e " T=1V (1,e"T=7) §) modifies the Black-Scholes equation to

If we make a change of variables x := In(S) and U(r,x) := V(7, %), then we obtain the

heat equation
2

o0;U(1,x) = %asz(T, x).

Unlike (3.3.24), the heat equation holds on the whole space, i.e.
aTU ) = ﬁa:ca:U )
(rz) =5 b (TTx) . (3.3.25)
U(0,x) =e "V (e"er)

Notice that at time ¢ = 0 (or 7 = T'), the price of the Markovian European contingent
claim with payoff ¢(St) is equal to V (T, S) = V (T, So) = U(T,In(Sp)).

Transforming the Black-Scholes equation into the heat equation helps us to apply nu-
merical techniques for the heat equation that are developed in Section 3.2.2 to obtain the

Black-Scholes price of an option.

3.3.11 Numerical methods for the Black-Scholes price of a European
option

Although the Black-Scholes price of call options, put options, digital options, or a linear
combination of them has to a closed-form solution, there are many payoffs that does not.
As a result, one need to develop numerical methods to evaluate the price of such options.
This section, covers the finite-difference scheme for the Black-Scholes equation, the binomial
model approximation of the Black-Scholes model, and the Monte Carlo approximation of
the price of a European option in the Black-Scholes model. All the methods in Section
3.2.2 can also be applied after transferring the Black-Scholes into the heat equation, as
discussed in Section 3.3.10.
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Solving the Black-Scholes equation via finite-difference scheme

One can directly discretize the Black-Scholes equation (3.3.24) to apply the finite-difference
method described in the previous section. See Figure 3.3.11. In this case, the computation
domain has to be [0, Spax] for some Syax > 0. The boundary condition at 0 is already
assigned at (3.3.24) by

V(1,0) =¢e ""g(0),

and the ABC at Spax is given by the growth of the payoff for large values of S. For a call
option, for instance, the ABC is

V(t, Smax) = Smax for Smax sufficiently large.

The rest of the approximation follows as was presented in Section 3.3.10. However, one
should be cautious about applying explicit schemes, which need the CFL condition. Recall
that the right-hand side of the CFL condition is always % times the inverse of the coefficient
of second derivative in the equation. Therefore, the CFL condition translates to

h 1

WS o2gr
If Shax is chosen very large, for a fixed discretization k of variable S, one needs to set the
discretization h of variable ¢ very small. The downside of this method is that the time of
the algorithm increases significantly. In such cases, transferring the Black-Scholes equation
into the heat equation and implementing the explicit finite-difference scheme in Section
3.3.10 is more efficient.

S

A

Smax

> 1

h T
Figure 3.3.11: Finite-difference grid for the Black-Scholes equation. In the explicit

scheme the CFL condition should be satisfied, i.e., k% < % This requires choosing a
very small h. Artificial boundary conditions are necessary on both Sy, and 0.
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Binomial model scheme for the Black-Scholes equation

Recall from Section 3.3.1 that the Black-Scholes model is the limit of the binomial model
under risk-neutral probability. Therefore, if necessary, one can use the binomial model
to approximate the Black-Scholes price of the contingent claim. For implementation, one
needs to choose a sufficiently large number of periods N or, equivalently, a small § = %
Suggested by (3.3.1), for a given interest rate r and volatility o, we need to choose u and
£ and the one-period interest rate R as follows.

0,2
u = S0 )+faa [ = eé(T’T)"/S"ﬁ, and R =rd,

where a and 8 are given by (2.4.6). However, one can avoid the calculation of « and 5 by
making some different choices. Notice that the binomial model has three parameters u, £
and R while the Black-Scholes parameters are only two. This degree of freedom provides
us with some modifications of binomial model, which still converges to the Black-Scholes
formula. This also simplifies the calibration process in Section 2.4 significantly. Here are
some choices:

1) Symmetric probabilities:

u = e

’“*%2)*\5‘77 | = e‘;(’"*é)*‘/&’ and R =179,

Then

2) Subjective return:

Y

_ 661/+\/g¢77 ] = 661/7\/30 and R = 7“(5,

Then

2 o o

1 _ 1.2 1 o, 12
ﬁu:<l+¢gw) o @:2(1@7“”20 |

To see why this choices work, recall (3.3.4) from Section 3.3.1. The only criteria for the
convergence of the binomial model to the Black-Scholes model is that when we write the
log of asset price in the binomial model as in (3.3.4),

In(S7) = In(Sy) + (r — —Q)T +oVT

e

ﬁ\
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the random variables Zi, k = 1, ..., N must satisfy
E[Z1] = 0(0) and E[Z?] =1+ o(1).

In Section 3.3.1, we made a perfect choice of E[Z;] = 0 and E[Z?] = 1.

Monte Carlo scheme for Black-Scholes

Recall from Section 3.3.2 that the price of a Markovian European contingent claim can be
written as an expectation and/or a single integral.

22

N 6—7’7’ o0 0_2
V(r,S):= e "R[g(S,) | So = 5] = \/%f g (s(evwmﬁx)) e~ T dr.
—Q0

One way to estimate V (T, Sp) is to generate a sample (1), ..., (M) of A/(0,1) and approx-
imate the above expectation by

0_2 .
c g <So (elr=F)T+oVT, W))) . (3.3.26)

j=1

Another class of approximation methods, quadrature methods, directly targets the integral
by choosing a large number 0 < xp,x and approximate the integral

[ o (steosrovm)) 2

—Zmax

by a finite Riemann sum. For instance, if we choose Ax := #%ax and z(;) = jAw, the
approximation goes as follows:

Tme
max 22

—rT o2
V(r,S) ~ f/ﬂf g (S(e(r_2)7+”ﬁx)> e Tdx

L-1 ) o2,
~e T Z g (So (e(r_z)TJr”ﬁm(j))) e Az
=1L

Quadrature methods, if implemented carefully, can be more efficient than the naive Monte
Carlo scheme (3.3.26).

Exercise 3.3.15 (Project). Consider the payoff of a bull-spread call in Figure 3.5.8 with
T =1, K1 = 10, and Ko = 20. Assume that the parameters of the underlying asset
are given by Sy = 15 and o = .02, and that the interest rate is r = .01. Compare the
following approximation schemes for the price of the bull-spread call. Record the time of
the algorithms for each scheme to obtain four-digit accuracy.
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a) The closed-form solution for the value of this option from the Black-Scholes formula.
b) Implicit finite-difference with parameter 6 = .5.

¢) Implicit finite-difference with parameter 6 = 1.

d) Explicit finite-difference (equivalently implicit with 6 = 0).

e) Symmetric binomial model.

f) Monte Carlo scheme.

g) Approzimation by a Riemann sum.

3.3.12 Stock price with dividend in the Black-Scholes model

IN this section, we consider two types of dividend strategies. If the dividend is paid
continuously, then there is a constant outflow of cash from the price of the asset. If the
rate of dividend payment is Dy, the Black-Scholes model in (3.3.21) has to be modified to

dSy = rSidt + odBy — Dqdt.
Choosing D, := ¢S; for ¢ = 0, we obtain

dS; = (7" — q)Stdt + 0S;dB;.

Remark 3.3.4. For a continuous dividend rate q, the dividend yield in time period [t,T]
is given by e~1T=1 % 100 percent.

Especially, this choice guarantees that the dividend is always less than the asset price and
that paying the dividend does not diminish the value of the asset. In exponential form, we
have

2
Sy = Spexp ((r — q)t + oB;) = e 1Sy exp ((r - %)t + aBt> .

In this case, the Black-Scholes price of a European contingent claim with payoff g(Sr) is
given by

V(t.8) = e T IR[g(Sr) | S, = 8] = e T TOR[g(e71T 051 ) | 8 = 5],

where S; satisfies the Black-Scholes equation without dividend, i.e.

0_2
r——

S, = Spexp (( 5 )t + aBt> .
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If the dividend strategy is time-varying ¢;, then one can write the above pricing formula as
A T ~ ~
V(t,8) =TT OR[g (e S 51 | 5, = 5],

For continuous-rate dividend, the relation between the Greeks of the option in Proposition
3.3.1 is modified as in the following proposition.

Proposition 3.3.2. Let Sy follow the Black-Scholes price with a continuous dividend rate
q. For a FEuropean Markovian contingent claim, the Black-Scholes price satisfies

2Q2
o(r, ) = - 22

L(r,S)— (r—q)SA(7,S) + rV (1, S).

The second type of dividend strategy is discrete. The discrete dividend is paid in times
0<ty<t; <..<ty <Tin amounts Dy,..., Dy. Then, between the times of dividend
payment, the asset price follows the Black-Scholes model, i.e.

0_2

Sy = St,_, exp ((1" - 7)(2& —tp_1) +0o(B — Btn_1)> , tE [tno1,tn).

Just a moment before the payment of dividend at time ¢,,—'3 the price of the asset is

2
Stn— = St,_, €xXp ((7" - %)(tn —tn-1) + (B, — Btn1)> :

But, after paying a dividend of D,,, this price drops to

2
o
St, = St,— — Dp =S, | exp ((7’ — ?)(tn —tp—1) + o(By, — Btn_l)) - D,,.
As mentioned in Section 2.3.4, the dividend is usually given as a percentage of the current
asset price, i.e.
D, =d,S;,—, with d,€]0,1).

and we have

2

S = (1= d)S- = (1= dn)Si 050 (= )00 = tuos) + 0B~ B ).

Remark 3.3.5. For a discrete dividend, the dividend yield in time period [t,—1,t,] is
dn x 100 percent.

13The moment before time ¢ is denoted by t—.
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Therefore,
2

N
Sr =] —dn)Spexp <(7« - %)T + UBT> .
n=1

Remark 3.3.6. If at time T there is a dividend payment, the payoff of a contingent claim
g(ST) takes into account the price St after the payment of the dividend. In short, the price
of the asset at the maturity is always ex-dividend.

Proposition 3.3.3. Let S; follow the Black-Scholes price with the discrete dividend policy
given by do, ...,dn € [0,1) at times 0 < tg < t1 < ... <ty <T . For a European Markovian
contingent claim, the Black-Scholes price satisfies

0282

O(r,S) = — L(r,S) —rSA(1,S) +rV(7,S) for 7€ (T —ty, T —1tyh_1).

Then, the Black-Scholes price of a contingent claim with payoff g(St) is given by

V(t.S) =T OBlg(Sr) | S = 8] = e " R[g( [ (1-du)Sr) |8 = 5],

t<tn<T

where S; satisfies the simple no-dividend Black-Scholes model.

Exercise 3.3.16. Consider a portfolio of one straddle option with K = 10 and one strangle
option with K1 = 8 and Ky = 14, both maturing at T = 1. See Figure 3.3.7. Assume that
the underlying asset has parameters So = 2 and o = .2, and that it pays a 4% quarterly
dividend. The interest rate is r = .01 (1%). Find the price of this portfolio and its A and
I at time t = 0.

Remark 3.3.7. Dividend strategies are sometimes not known upfront and therefore should
be modeled by random variables. If the dividend policy is a random policy that depends on
the path of the stock price, then, the pricing formula will be more complicated even in the
Black-Scholes model.

Exercise 3.3.17 (Butterfly spread). Consider the payoff g(St) shown in Figure 3.3.12.

Consider the Black-Scholes model for the price of a risky asset with T =1, r = .04, and
o = .02 with dividends paid quarterly with a dividend yield of 10%. Take Sy = 10, K1 =9,
and Ko = 11. Find the Black-Scholes price, A, T, p, and V of this option at time t = 0.
Find © at time t = 0 without taking derivatives with respect to S.
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9(Sr)

Ko—K,
2

St

K, K1+ Ky K,
3

Figure 3.3.12: Butterfly spread payoff

The Black-Scholes equation with dividend

In the case of dividends, the Black-Scholes equation in (3.3.24) is given by

o V(r,8) =CF055V(r,9) + (r — q)Ss(r,S)V(r,S) — rV(r,5)
V(r,0) =e ""g(0)
V(0,5)  =g(S5)

This also allows us to solve the derivative pricing problem with more complicated dividend
strategies. Let’s assume that the dividend payment rate at time ¢ is a function ¢(t, St).
Then, the Black-Scholes model with dividend is given by the SDE

dS; = St(T — q(t, St))dt + 0S;dB;.

and Black-Scholes equation in (3.3.24) is given by

o, V(r,8) =055V (1, 8) + (r —q(t,9))SdsV (7, S) =V (r,S)
V(r,0) =e"7g(0)
V(0,8)  =g(S)

After the change of variables described in Section 3.3.10, we obtain

0. U(r,2) = T dnU(r,x) — q(T —7,e" T e?)0,U (7, z),
U(0,z) =e TV (eTer) '

The above equation is a heat equation with a drift term given by ¢(T—, e" T~ e?)0,U (7, z).

Exercise 3.3.18 (Project). Consider a European call option with T = 1 and K = 2.

Assume that the parameters of the underlying asset are given by So = 2 and 0 = .2, and

that the interest rate is v = .01 (1%). In addition, assume that the underlying asset pays
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dividends at continuous rate q(t,S;) = .05e=°1S, i.e., 5% of the discounted asset price.

a) Write the Black-Scholes equation for this problem and convert it into a heat equation
with a drift term.

b) Solve this problem numerically by using a finite-difference scheme.

Example 3.3.2. Consider a European option with payoff
g9(St) = e

Assume that the interest rate is v > 0 and that the volatility of the underlying asset is o > 0,
and at time 0 it has value Sy, and pays dividends at a continuous rate q(t,St) = qSt, where
q > 0. Then, the Black-Scholes equation is given by

o, V(r,S) =055V (r,S) + (r —¢9)SasV (7, S) — rV(r,S)
V(0,S) =9,

The boundary condition for the Black-Scholes equation at S = 0 is given by
V(r,0) =1.

Function V(1,8) = e "Te*S satisfies the Black-Scholes equation and the boundary condi-
tions. Therefore, the price of the contingent claim with payoff €T at time-to-maturity T
(at time T — 7) is given by V (1, 8) = e7"7e® if the asset price takes value S at that time.

Exercise 3.3.19. Consider a Furopean option with payoff
g(57) = S €'

Assume that the interest rate is r = .1 and the underlying asset satisfies Sy = 2 and o = .2,
and that pays dividends at a continuous rate of q(t,Sy) = .25;.

a) Write the Black-Scholes equation for this problem.

b) Solve this problem analytically by the method of separation of variables. Plug into the
equation a solution candidate with the form e*™S=%el% and determine c.
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4

American options

Unlike European options, holder of an American options has the right but not the obligation
to exercise any date before or at the maturity. When she chooses to exercise the option
at time ¢ € [0,T] (or in discrete-time models ¢ € {0, ...,T'}), she receives the payoff of the
option g(t, Sy); i.e., the payoff is a function g(¢,S) of the time of exercise ¢ and the price
of the underlying S at the time of exercise. For instance, the payoff of an American call
option if exercises at time ¢ is (S; — K) 4.

To price an American option, we assume that the holder chooses to exercise the American
option at the optimal time of exercise; the time that the holder receives the largest value
possible. We will discuss the details of the optimal exercise time in the future.

We use Can(T, K, S,t) and Pan (T, K,S,t) to denote the price of American call and
American put at time ¢ when the underlying asset price is S with maturity 7" and strike K,
respectively. The following remarks are very important in our future study of American
option.

Remark 4.0.1. Notice that since exercising is always an option, the value of the American
option never falls below the payoff. In fact, is can sometimes be strictly larger than the

payoff.

Remark 4.0.2. Consider an American option with payoff g(t,S) which can possibly take
negative values. Since the holder has no obligation to exercise the option, she will not do
so as long as g(t,S¢) < 0. In particular, if the American option has not been exercised
before the maturity T, it is not optimal for her to exercise at T if S(T,St) < 0. Therefore,
the actual payoff is g+ (t,S) = max{0, g(t,S)}. On the other hand, if the payoff g(T, St) is
positive at maturity, it is always optimal to exercise it. Therefore, we always assume that
the payoff of an American option is nonnegative.

Remark 4.0.3. The price p of an American option with payoff g1(t,S) + g2(t,S) is not
the same as the sum of the price p1 of an American option with payoff g1(t,S) and price pa
of an American option with payoff g2(t,S). In fact, the first value is always smaller than
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or equal to the sum of the other two. To see this, let t be the optimal exercise time for the
American option with payoff g1(t,S) + g2(t, S), i.e., the present value of the option is

p = Bo(t)(g1(f, S5) + g2(%, 5)).-

Notice that time t is not necessarily optimal for the other two American options with payoff
g1(t,S) or ga(t,S). Therefore,

p; = BO(E)gl(Ev Sf)’ fOT’ i = 1a 2.

This implies that p < p1 + po.

4.0.1 Pricing American option in the binomial model via examples

The key to the pricing of American options is to compare to values at each node of the
model, i.e., continuation value and exercise value. We will properly define these values in
this section and use them to price American option. We first present the pricing method
in the naive case of one-period binomial model.

Example 4.0.1. Consider a one-period binomial model with So = 1, u = 2.1, £ = .6 and
R = .1 (for simplicity). We consider an American put option with strike K ; the payoff is
(K —8)+. Similar to the European put, at the terminal time T = 1, the value of the option
is known. However, at time t = 0 we are facing a different situation; we can choose to
exercise and get the exercise value of E := (K — 1)y, or we can continue. If we continue,
we will have a payoff of (K —2.1)4 or (K —.6)4 depending of the future events. The value
of continuation is obtain via taking risk-neutral expectation:

1 4 1 /1 2
C = mE[(K = Sr)+] = 11 (3(K —21)+ + §(K - ~6)+> :
(K —2.1),
max{C, F}
(K - 6),

Figure 4.0.1: American put option in one-period binomial model

Next, we should compare continuation value C and exercise value E. If C > E, we should
not exercise at time 0 and should wait until time 1. Otherwise when C' < E, it is optimal
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to exercise. For example when K = 3, we have C' = 1.7273 < E = 2 and thus we exercise.
However, when K =1, we have C' = .2424 > E = 0 and thus we do not exercise.

a. - - N
4
.

Figure 4.0.2: One-period  binomial model: continuation value C =
L (3(K—21)4 + 2(K — 6);) (gray) and exercise value E = (K — 1); (red) of
an American put option as a function of strike price K.

21

As seen in Figure 4.0.2, only American put options with strike K in (.6, 3

larger continuation value and therefore should not be exercises at time 0.

) generate a

To illustrate more, we consider a two period binomial model in the following example.

Example 4.0.2. Consider a two-period binomial model with the same parameters as in
Ezxercise 4.0.1, i.e., u = 2.1, £ = .6 and R = .1. We consider an American put option
with strike K ; the payoff is (K — S)4+. The terminal time T = 2, the value of the option is
known. At time t = 1, there are two nodes and at time t = 0 there is one node, at each of
which we have to find exercise value and continuation value. The exercise values are given
by the payoff as seen in Figure 4.0.3

Here Cy, C1,1, and C1 2 are the continuation values at nodest = 0, t = 1 price-down, and
t = 1 price-up, respectively. Next, we should compare continuation value and exercise value
at each node in a backward manner. At time t = 1, the continuation value is

1 . 1 /1 2
1 - 1 2
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(K —4.41) ¢

\

max{Clg, (K — 2.1)+}

/

max{Cp, (K —1)4+}

\

max{C1,1, (K — .6)+}

(K —1.26)4

\/

/

(K —.36)4

Figure 4.0.3: American put option in two-period binomial model

Therefore, the price of the option at these nodes are

—

Vi = max {1 (;(K _ 441y, + g(K _ 1.26)+> (K — 2.1)+}

1
Vi1 = max {111 (;(K —1.26), + ;(K - .36)+> (K — .6)+}

126 2.0 33 441 36 6 %1.26
Node (1,2) Node (1,1)

Figure 4.0.4: Two-period binomial model: at each nodes at time ¢t = 1, continuation
value (gray) is compared to exercise value (red) as a function of strike price K.

As you see from Figure 4.0.4, if we choose the strike of the option K in (1.26,3.3), then
at node (1,2) the continuation value is larger, otherwise we ezercise at this node. If we
choose K in (.36, %), at node (1,1) the continuation value is larger.In this example, values
of K that imposes the continuation in node (1,1) is disjoint from those which imposed
continuation at node (1,2). Therefore, we exercise the American option on at least one of
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these nodes.
Now let fix our put option by choosing K = 2. Then, we continue at node (1,2) and
exercise at node (1,1). Therefore, at time t = 1, the option takes values

Vig = Cr2 ~ 0.4485 and Vi1 =14

At time t = 0, we need to see if it is optimal to exercise or if it is optimal to continue. The
situation at node (0,0) is explained in Figure 4.0.5. The exercise value is E = 1 but the
continuation value is positive, i.e., C' = .9844. Therefore, it is optimal to exercise.

0.4485

/

max{C,E} =FE =1

\

1.4000

Figure 4.0.5: American put option at time ¢ = 0 in two-period binomial model of Example
4.0.2.

Remark 4.0.4. As a general rule, when it is optimal to exercise, i.e., the continuation
value is less than or equal to exercise value, there is no point in continuing the option. This
1s because the continuation value remains equal to exercise value since then after. This can
be observed from Example 4.0.2 by taking for example K = 1. The schematic pattern of
exercise and continuation nodes is presented in Figure 4.0.6.

(4.41,0) (4.41,0)
/ /
(2.1,0) (2.1,.9)

- ~ - ~
(1,.2424) (1.26,0) (1,1) (1.26,.74)
™~ e ~ _

(6,.4) (.6,1.4)

. ~.

K=1  (.36,46) K=2  (36,1.64)

Figure 4.0.6: The pattern of continuation versus exercise in a two-period binomial model
in Example 4.0.2. The red nodes are the exercise nodes and blue nodes are continuation
nodes. In the pair (a,b), a is the asset price and b is the continuation value.

Exercise 4.0.1. In Example 4.0.2, take the following values of K.
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4.1. PRICING AMERICAN OPTION IN THE BINOMIAL MODEL; PROBLEM

FORMULATION 4. AMERICAN OPTIONS
1) K =1.
2) K =3.

4.1 Pricing American option in the binomial model; problem
formulation

In this section, we formulate the problem of pricing an American option with (nonnegative)
payoff g(t,S) in T-period binomial model. Notice that to price an American option, it is
important to know the best exercise time for the holder of the option. Since the price of the
underlying is randomly changing over time, the best execution time can also be a random
time. To formulate an exercise strategy as a random time, we need to define the notion of
stopping time. Recalling from Definition B.19, we define an exercise strategy for the multi
period binomial model.

Definition 4.1.1. An exercise strategy for an American option is a stopping time with
respect to price of underlying {S; : t =0,...}, i.e., is a random variables T : Q — {0, ..., T}
such that for any t = 0,...,T, the even 7 <t is known given the values of S, for u <t.

In other words, exercise strategy is a stopping time with respect to the information gen-
erated by the price process. Given the holder of an American option chooses a specific
stopping time 7, the corresponding value of the option is obtained through

- 1
E[i .S ]
(1 + R)T g(T 7’)

Therefore, the (optimal) value of the option for the holder is given by the maximum value

over all exercise strategies;

- 1
Vo = %%E[mg(ﬂ Sr)]7

where the maximum is taken over the set 7y all stopping times 7 with values in {0, ..., T'}.
Since the binomial model can be constructed on a finite sample space (the set of all price
process paths is finite), then the set 7y is finite and therefore in the above e can show the

value of the American option with a maximum. More generally, given the option has not
been exercised until time ¢, then the value of the option is given

V; := max [

g mg(ﬂ S:) | Fil- (4.1.1)

Here the maximum is taken over the finite set 7T; of all stopping times 7 with values in
{t,...,T}. Since Ty is finite, there exists an optimal exercise strategy (stopping time) o*
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with values in {0, ..., T} such that

. 1
Vo = E[mg(g*y Sg*)]
Similarly at time ¢, there exists an optimal a stopping time o} with values in {t,...,T'} such
that 1
Vi = E[WQ(Qfang) | Ft]
We explain the methodology for pricing American option in the simple one-period case
by choosing t =T — 1, i.e.

T€Tr_1

A 1
VT_I = 1max E[mg(ﬂ Sq-) ‘ .FT_l],

where the maximum is taken over all stopping times 7 with two values 7' — 1 and T'; the
former corresponds to decision to exercise at time T" — 1, while the latter is to continue
untill maturity 7. Given Fp_q, for any stopping time 7 with two values {T"— 1,7}, the
events {7 =T —1} = {r <T—1} and {r = T} = {7 < T —1}° are both known. Therefore,
either 7 = T — 1 as. or7 =T a.s.. When 7 = T — 1 we obtain the exercise value
g(T — 1,S7_1); otherwise 7 = T yields the continuation value 1J%QIA[‘E[g(T, St) | Fr-i].
Therefore, the choice of exercise strategy boils down to choosing the maximum of the

exercise value g(T — 1, S7—1) and the continuation value 1+#RIAE[g(T, St) | Fr-i], i-e.

1 N
Vr—1 = max {mE[g(T7 St) | Fr-1],9(T — 1, ST—l)}-

By using the Markov property of the binomial model, we have E[g(T,Sr) | Fr_1] =

E[g(T, St) | Sr—1] and thus the value of the American option is a function of time 7' — 1
and asset price Sp_q, i.e.

1 =
V(T —1,87r-1) = max {mE[Q(T, St) | Sr-1],9(T — 1, STA)}-
In this one period situation, it is not hard to see that the optimal stopping time is obtained
by the first time ¢ (among T'— 1, and T') that the exercise value g(t, S¢) is not smaller than
continuation value = RE[g(T, S7) | St_1]. Notice that from Remark 4.0.2 the value of the

1+R
American option at maturity time 7T is always equal g(T, St) and

1 ~
V(T —1,S7_1) = max {mE[VT | Sr_1],g(T — 1, ST_l)}.

In the sequel, we would like to extend the above implication to all . More precisely, we
seek to show the following theorem.
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Theorem 4.1.1. The value of the American option with payoff function g(t,S) is a func-
tion V(t,S) of time t and the asset price S which satisfies

1 -
V(t,St) = max {mE[V(t +1,841) | Sl 9(2, St)} (4.1.2)
Here the supremum is over all stopping times with values in {t,...,T}. In addition, we show
that an optimal exercise strategy is given by the stopping time 7;° defined by the first time
u =t such that V(u,S,) = g(u,Sy), i.e.,

f=inf{u : u=1t,....,T, such that V(u,S,) = g(u,Sy,)}. (4.1.3)

Recall that from Remark 4.0.1, we already know that V; > g¢(¢,S;). Therefore (4.1.3)
representation for an optimal exercise implies that Y(t, St) > g(t, Sy) if and only if 77 > ¢.
To prove Theorem 4.1.1, we define a new process V' by

{VT = g(T, Sr) (4.1.4)

Vi = max { 5 E[Vis1 | Filg(t,S)}  t=0,..,T—1

The following lemma presents some key properties for the study of an American option.

Lemma 4.1.1. The following properties hold for V; and V; defined by 4.1.1 and 4.1.4,
respectively.

i) Both (1}(73?.)75 and (1}:73%),5 are supermartingales with respect to filtration generated by

the asset price.
i) Vi and V; are greater than or equal to g(t,Sy).

i11) Vi is the smallest process with property (i) and (it).

i) {Lt** Cu =1, ...,T} is a martingale.
(1+R)“" "t
Property (i) asserts that the discounted price of an American option is a supermartingale
and property (ii) simply restates that the value of the American option is never smaller
than the payoff. Property (iii), which is a crucial property of the value of American option,
indicates that the discounted values of the American option is the smallest supermartingale
which is greater than or equal to the discounted payoff.

Proof of Lemma 4.1.1. Given F, for any stopping time 7 with values in {¢,...,T}, the
occurrence of the event {T <t} = {r = t} is known. Therefore,

e If 7 =t has happened then strategy 7 suggests to exercise and

A

1
) —9(r,S:) | | = g(t.50).

[
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e If 7 =t has not happened, then strategy 7 suggests to continue.

Therefore,
Vi = max B[ ————g(r, 5,) | ] = max { max Bl————g(r,5,) | Fl.g(t.5)}
TRy gy 9\ o) I A O Bl Ryt 9\ o) 1 9 ot

(4.1.5)
(T, ST) | Ft]

A

> max E[ ————
1+ R reTis1 [(1 + R)T*tflg
Let o}, be an optimal exercise for Vi1, i.e.

A

Vi1 =E

*
[t S|

Then, in particular we have

R 1 . 1
Vs Bl ol Sy ) | 5 -

Ik .
1+ R Vit | Fi

Therefore, (14‘:73%)t is a supermartingale. The supermartingale property for ~ is a direct

(1+R)?
consequence of its definition (4.1.4), i.e.

V; = max { E[Vier | Fi), gt Se)} = E[Vit1 | Fi)-

1+R 1+R

Hence, (i) is proven. (ii) is a straightforward consequence of choosing 7 =t in (4.1.1) and
(4.1.4).

To show (iii), let Y; be another process which satisfies (i)-(ii). In particular, Yy >
g(T,Sr) = Vp. Inductively, assume that Y, > V, for u > ¢t. If V; = ¢(¢,S;), then
property (ii) for Y; implies V; = g(¢, S;) < Y;. Otherwise, V; > ¢(¢, S;) and we deduce from
(4.1.5) that

N 1
Vi = max E| ———— ) | Fi].
¢ 7'67%1(1 [(1 + R)T_tg(7_7 s ) ’ t]

Since Y; satisfies (ii), we have

~ 1
Vi < max E[

Y. | Al
reTirn C(1+ R)™ | il

By optional sampling theorem, Theorem B.6, we obtain
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Hence, V; < Y;:. L]

Remark 4.1.1 (Snell envelope). For any given payoff process g := {gi}i=0, for instance

g = %, the smallest supermartingale which is greater than or equal to g is called Snell

envelope of g. Therefore, the discounted value of the American option is the Snell envelope
of the discounted payoff.

First, we use the properties (i)-(iii) in Lemma 4.1.1 to show that V; = V; for all ¢.
Lemma 4.1.2. Foranyt=0,....,T, we have V; = V.
Proof. Obviously, Vi = g(T, St) = V. If Viy1 = Vig1, then
7, — max {LEWM | ], 9(t,5)} = max {Lfa[vt+1 | gt}
1+ R 1+R

By (i) (supermartingale property of discounted V') and (ii), we have
‘7t < maX{%,g(t,St)} = ‘/t

On the other hand, since V; is the smallest process with properties (i) and (ii), we must
have V; < V4, which verifies the equality. O

Next lemma is on the Markovian property of the price of American option.

Lemma 4.1.3. The value of the American option V; is a function of time t and asset price

S, z'.e., V;f = V(t, St)
Proof. If Vi11 = V(t + 1, S¢11), then by Markovian property of binomial model, we obtain

A

E[V(t+1,S41) | Fi] = E[V(t +1,5:41) | S¢] and

1 =
V; = max {mE[V(t +1,841) | Si], g(t, st)}

is a function V(¢,S;) of time and the asset price. Hence, (4.1.2) follows. O

Finally, we show that (4.1.3) provides an optimal exercise.

Lemma 4.1.4. The stopping time 7;° given by 4.1.3 satisfies

A

1
V=B 977, S,x) | Fi|

[(1+R) -

Proof. Notice that by definition, VTz* = g(74, STt*)' Hence, by the optional sampling theo-
rem, Theorem (B.6), and property (iv), we obtain that

1

Vi=Viprx = E[(lerTf*_t

V(S | | = B 9(77. Sre) | T,

(1+R)
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which shows that 7;* is optimal. O

The above discussion suggests the following algorithm in pricing American options.

Pricing American options in the binomial model
1: At time T, the value of the option is g(7', St(7)).

2: foreacht=T-1,...,0 do

3: foreach j=1,...,t+1 do

4: Exercise value = g(t, S¢(j)).

5: Continuation value = ﬁE[V(t +1,8141) | Se = Si(i)] = 14%1% (%Tllﬁu + Vi#e).

6: The value of the option V' (¢, S¢(i)) = max {g(t, St (1)), 1+LRIE[V(t +1,5:41) | St = St(z)]}
7. If V(t,S¢(2)) = g(t, S¢(7)), we exercise the option and stop.

8 If V(¢,5:(i)) > g(t,5:(i)), we continue and the replicating portfolio is given by

A¢(S¢(j)) units of risky assets and V (¢, S(i)) — A¢(Se(4))St(j) is cash.
9: end for
10: end for

Remark 4.1.2 (Path dependent American option). If the payoff of the American option
depends on the path, one can adjust the algorithm by considering the path dependent con-
tinuation value and path dependent exercise value. Ezxercise 4.1.1 provides an example of

such kind.

Example 4.1.1 (American call option on a nondividend asset does not exist!). In this
case the payoff is given by g(t,S) = (S — K)4. Then, the price of the American call option
s the same as the price of European call option! In fact, this is true in any model where
the pricing of European claims is carried by the risk-neutral probability. See Proposition
4.1.1.

This situation is not unique to American call option. The following proposition further
elaborate on this matter.

Proposition 4.1.1. Consider an American option with a convex payoff g(S) such that
g(0) = 0 on an asset which pays no dividend. Assume that the price of a European contin-
gent claim is given by .

VEUt, 8) = By(T)E[g(ST) | St = 5],

where B is expectation under risk-neutral probability, and the discounted asset price S, =

(lfij,{)t is a martingale under risk-neutral probability. Then, the price of American option

VA™(t,S) with payoff g(S) is the same as V¥, i.e.
VBt S) = vAM(t, S).
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Remark 4.1.3. Proposition 4.1.1 is only true when the underlying asset does not pay
dividend. See Exercise 4.1.2.

Exercise 4.1.1. Consider a two-period binomial model for a risky asset with each period
equal to a year and take So = $1, u = 1.5 and £ = 0.6. The interest rate for both periods is
R =1

a) Price an American put option with strike K = .8.
b) Price an American call option with strike K = .8.

¢) Price an American option with a path dependent payoff which pays the running maz-
imum! of the path.

Remark 4.1.4. A naive example of an American option is the case where the payoff is $1.
In this case, if the interest rate is positive, it is optimal to exercise the option right away.
Howewver, if interest rate is 0, the time of exercise can be any time. This naive example has
an important implication. If interest rate is zero, one can remove condition g(0) = 0 from
Proposition 4.1.1, simply by replacing payoff g by g(S) = g(S) — g(0). Since cash value of
9(0) does not change value over time, the value of the American option with payoff g(S) is
9(0) plus the value of American option with payoff §(S).

For negative interest rate, the exercise date will be postponed compared to the positive
interest rate.

For example, if the interest rate is zero, the price of American put is equal to the price of
FEuropean put.

Hedging American option in the binomial model

Hedging American option in the binomial model follows the same way as European option.
The only difference is that the hedging may not continue until maturity because of the
early exercise. Given that we know the price V(¢ + 1, S¢4+1(7)) of the American option at
time t + 1 at all states ¢+ = 1,...,t + 2, to hedge at time ¢ and state j, we need to keep
A¢(S¢(j)) units of risky asset in the replicating portfolio and V (¢, S¢(2)) — A¢(Se(4))Se(4)
in cash, where A.(S) is given by (2.3.4), i.e.

V(t+1,Su)—V(t+1,5¢)

fi *,
S(u—@) ort<rT

A(t,S) :=

Notice that hedging an American contingent claim is only matters before the time of the
exercise. At the time of the exercise or thereafter, there is no need to hedge. However, if
the holder of the American claim decides not to exercise at time 7%, the issuer can continue
hedging with no hassle. For example, in Example 4.0.2 with K = 2, it is optimal for the

!The running maximum at time ¢ is the maximum of the price until or at time t.
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holder to exercise the option at the beginning, where the price of asset is $§ 1. Therefore,
the issuer need $ 1 to replicate. However, if the holder continues, the replication problem
in the next period leads to solving the following system of equation.

2.1a+1.1b = .4485
.6a +1.1b = 1.4000

which yields @ = —1.903 and b = 2.3107. Therefore, the issuer needs $ a + b = 4077 to
replicate the option which is less than $ 1 if the holder exercises the option.

Exercise 4.1.2. Consider a two-period binomial model for a risky asset with each period
equal to a year and take So = $1, u = 1.2 and £ = 0.8. The interest rate for both periods is
R = .05.

a) If the asset pays 10% divided yield in the first period and 5% in the second period,
find the price of an American and European call options with strike K = .8.

b) Construct the replicating portfolio for both American and FEuropean call option.

4.2 Pricing American option in the Black-Scholes model

In continuous time, including Black-Scholes model, the definition of exercise policy (stop-
ping time) for American options is not easy to define. The definition needs to use filtration
and o-algebra from measure theory?. Here we avoid technical discussion of stopping times
and only present the solution for American option in the Black-Scholes model.

First notice that Proposition 4.1.1 implies that the American call option is Black-Scholes
model has the same price as European call if the underlying does not pay any dividend.
Therefore, our focus here is on the derivatives such as American put or American call on
a dividend-paying asset.

The key to solve the American option problem in the Black-Scholes model is to set up a
free boundary problem. This type of problems are widely studied in physics. For example,
in order to understand how an ice cube is melting over time, we need to solve a free
boundary problem. Or if we push an elastic object to a certain shape, after releasing, the
shape starts changing in a certain way which can be realized by solving a free boundary
problem. See Figure 4.2.1.

Another simple example occurs if we add obstacle underneath a hanging elastic rubber.
An elastic rubber fixed at two level points takes shape as a piece of parabola shown in left
image in Figure 4.2.2. The equation satisfied by the free rubber is u” = ¢ where the constant
c depends on the physical properties of the rubber. If we position an obstacle underneath
the rubber such that the elastic rubber is touched, then it changes the shape of the red

*For more information see for example [23, 31] or for a more advanced text see [17, Chapter 1].
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Figure 4.2.1: Exterior membrane of a tube (purple shape) is forcefully shaped into a
dumbbell (red shape). Upon release of the forces, the surface of the shape starts moving;
each point moves at a speed proportional to the curvature of the surface. Eventually, it
returns back to the original shape. The picture is adopted from [12].
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curve shown in right image in Figure 4.2.2. The position of the red curve satisfies the
same equation u” = ¢ but only at the points where the rubber in not touching the obstacle.
Inside the touching region (xg,x1), the rubber takes the shape of the obstacle. At the two
endpoints of touching region, the shape of the rubber is once continuously differentiable;
i.e., if the u(xzp) = u(z1) = yo the height of the obstacle and u/(z9) = u/(z1) = 0.
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Figure 4.2.2: The blue curve on the left shows the position of a free elastic hanging at
two points. The red curve shows the same elastic rubber hanging at the same points but
bounded below by an obstacle.

After this short introduction, we come back to the problem of pricing and hedging Ameri-
can option. For the sake of simplicity, we only consider simple case where there is only one
free boundary. This for example occurs when we have an American put or an American
call on a dividend-paying asset. Below, we list the important facts that you need to know
about the free boundary.

a) The domain for the problem {(¢,5) : t€[0,7], and S € [0,00)} is divided into to
parts separated by a curve C' := {(¢,5*(¢t)) : t € [0,T]}. The curve C is called free
boundary.

b) On one side of the boundary it is not optimal to exercise the option. This side is
called continuation region, e.g. if the asset price S; > S*(s) for all s < ¢, it has never
been optimal to exercise the option before or at time ¢.

¢) The other side of the boundary is called ezercise region, e.g. if the asset price S; <
S*(t), then it is optimal to exercise the option at time ¢. Therefore, the optimal
stopping time is the first time that the pair (¢,S;) hits the exercise region. More
precisely, the asset price S; hits the free boundary at time ¢ at point S*(¢).

M i=inf{t<T : S =5%(t)}.

181



4.2. AMERICAN OPTION IN THE BLACK-SCHOLES 4. AMERICAN OPTIONS

It is important to notice that the exercise boundary is an unknown in pricing American
options in continuous time. The other unknown is the price of the American option. We
next explain that finding the price of the American option also gives us the free boundary.
The relation between these two is lied in the following representation of the stopping policy.
For an American option with payoff ¢(t, S¢), we have the optimal stopping 7* given by

T* = inf {t <7T: V(t, St) = g(t, St)} .

See [24] for more details. Therefore, finding the price of American option is the first priority
here, which will be explained in the sequel.

Finding the edges of exercise boundary

So far, we learned that the domain of the problem is split into continuation boundary and
exercise boundary; e.g. for American put at each time ¢, (0, S*(¢)) is the interior of exercise
region and (S*(t),0) is the interior of the continuation region. determining continuation
region is the matter of guess-and-check; we must look at the payoff of the American option
to guess the topology of the continuation region. One general rule is that it is not
optimal to exercise in the out of money region or where the payoff takes its
minimum value. We consider the following examples to clarify this rule:

a) American put. An American put option with strike K is out-of-money if S; >
K, and since it is not optimal to exercise in the out-of-money region, the exercise
boundary should be inside the in-the-money region, i.e., S*(t) < K. See Figure 4.2.3
on the left. At the maturity (¢t =T), S*(T) = K.

b) American call. An American call option with strike K on a dividend-paying asset
is out-of-money if S; < K, and since it is not optimal to exercise in the out-of-
money region, the exercise boundary should be inside the in-the-money region, i.e.,
S*(t) = K. See Figure 4.2.3 on the left. At the maturity (¢t =T), S*(T) = K.

c) Straddle. Several other options including strangle, bull and bear spread, etc can also
be argued in the similar fashion. However, we only explain it for straddle. First notice
that one can shift the payoff of a straddle option by cash amount of % so that the new
payoff is positive. The key to analyze the straddle is that it is the least desirable to
exercise the option at and around the minimum point. Therefore, we can guess that
there are two free boundaries, S7(¢) and S5 (¢) , located symmetrically on two sides of
the minimum point of the payoff K. At the maturity (¢t = T), ST(T) = S*2(T) = K;
the free boundaries collapse to K.

The position of the free boundary with respect time in the three examples is sketched in
Figure 4.2.5.
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>SSy .

Figure 4.2.3: Left: Free boundary of American put at time ¢. Right: Free boundary of
American call (on dividend-paying asset) at time ¢. The continuation region in marked
with [—|.
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Figure 4.2.4: Two free boundaries of straddle.The continuation region in marked with
|—|. The free boundaries can occur both on the positive regions of the payoff and on
the negative region of the payoff. If the time-to-maturity is long, we guess that the free
boundaries are wides apart and as time-to-maturity decreases, they get closer.

Remark 4.2.1. The price of an American option with payoff equal to g1(S) + g2(S) is
not equal to, but only smaller than, the summation of prices of an American option with
payoff g1(S) and an American option with payoff g2(S) Similar phenomenon is observed
in Fxercise 1.5.3.

Smooth fit

The main tool in finding the free boundary and to evaluate American options in the prin-
ciple of smooth fit.

Let’s denote the price of the American option at time ¢ when the asset price is equal to
Sy = S by V(t,5). We provide the methodology for American put option. For other cases,
the method can be adopted after necessary modifications. Before presenting this principle,
we shall explain that in the continuation region, the price function V (¢, S) of the American
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Figure 4.2.5: Sketch of the position of American option exercise boundary in time (hor-
izontal axis). Left: American put. Middle: American call (dividend). Right: American
Straddle.

put option satisfies Black-Scholes equation, i.e.

oV (t,S) + T20ssV (t,S) + rSosV(t,8) —rV(t,S) =0 for S > S*(t)
V(t,S) =g(t,5) for §<S*(t). (4.2.1)
V(T7 S) = g(T7 S)v

Therefore, S*(t) serves as a boundary for the above equation. However, S*(t) itself is an
unknown. With the Black-Scholes equation, we have two unknowns but only one equation.
Principal of smooth fit provides a second equation.

Proposition 4.2.1 (Principal of smooth fit). Assume that the payoff g(t,S) of the Ameri-
can option is twice continuously differentiable with respect to S and continuous in t. Then,
at the free boundary S*(t), we have

V(t,8%(t)) = g(t,S%(t)), and 0IsV(t,5%(t)) = dsg(t, S*(1)),

forallt <T.

For example for American put we have g(t, S) = (K —S5). Therefore, principle of smooth
fit implies that V(¢,5*(t)) = (K — S*(t))+ and dgV (¢, S*(t)) = —1.

To see how smooth fit can be used in pricing American options, we provide some exactly
solvable example in the following. These examples are called perpetual American options
with maturity 7" = c0. As a result, the price of the American option does not depend
on time and the term ¢,V in PDE (4.2.1) vanishes. Therefore, the pricing function V' (.5)
satisfies the ODE

%52
2

V"(S) +rSV'(S) —rV(S) =0,

in the continuation region.
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Example 4.2.1 (Perpetual American put option). A perpetual American option is an
option with maturity T = c0. In practice, there is no perpetual option. However, if the
maturity is long (10 years), then one can approximate the price with the price of a perpetual
option.

The key observation is that since the Black-Scholes model is time-homogeneous, the free
boundary of the perpetual American put option does not depend on time, i.e., S*(t) = S*
for some unknown constant S* < K. On the other hand, since the time horizon is infinite,
the price V (t,S) of the American put does not depend on t, i.e., ;V (t,S) = 0. Thus, we
have )

0%5?
2
The general solution of the above equation is given by

V/(S) + rSV'(S) — 1V (S) = 0.

V(S) = c1S + S .

One can argue that ¢ must be equal to 0. Since as S — o0, the option goes deep out-of-
money and becomes worthless. To find co, we use principle of smooth fit.

eo(S*) P = K — §*

g 2r
c2 = —( *)02+1
2r
Thus, S* = £, and
T+

K-S §> -ty
ry o2
2
V(S) - o2 rK %+1 -2z rK
o S o2 S < -
"\t T+

Example 4.2.2 (Perpetual American call option on continuous dividend-paying asset).
Consider a continuous constant dividend rate ¢ > 0. The free boundary in this case is
given by a constant S* with S* > K and the price of American option satisfies

0282
2

V"(S) + (r —q)SV(S) —rV(S) = 0.
The general solution of the above equation is given by
V(S) =15 + 62572,
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where 1 and vy are roots of

2 2
g .2 < g — ‘L) —r=0
5 Y+ \T—q 5 Y- .
Notice that v1 and 2 have opposite sign and the positive one is strictly larger than 1. With
out loss in generality, we assume that y1 <0 <1 < 7.

One can argue that ¢ must be equal to 0. Since as S — 0, the option goes deep out-of-
money and becomes worthless. To find co, we use principle of smooth fit.

o (SF)2 = §* — K

1
D
Thus, S* = ,7225{1 and
g |5 K S < 25
( )_ L(S*)1*V2S’Y2 S > YK -
V2 v2—1

Exercise 4.2.1. Formulate and solve the free boundary problem for the perpetual American
options with following payoffs.

a) (S— K)4+ + a where a > 0.
b) (K —S)4+ +a where a > 0.
¢) Straddle

d) Strangle

e) Bull call spread

f) Bear call spread

American option with finite maturity

Unlike perpetual American option, when T' < o0, there is no closed-form solution for the free
boundary problem (4.2.1). Therefore, numerical methods should be used to approximate
the solution.

The simplest among numerical methods is the binomial approximation. One needs to
choose large number of periods N and apply the algorithm of “Pricing American options
in the binomial model”. The parameters of the binomial model u, £ , and R can be
chosen according to symmetric probabilities, subjective return, or any other binomial which
converges to the specific Black-Scholes model.
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The finite-difference scheme can be employed to solve free boundary problem numerically.
Similar to Section (3.3.10), one can apply the change of variables U(1,z) = ¢ "V (T —
7,e" 7T, to derive a heat equation with free boundary for U, i.e.

o-U(r,x) = %ZﬁmU(T,J?) + 710, V(r,z) —rU(r,z) for x> x*(7)
U(r,x) = g(T —7,€%) for =z <a*(1),
U(0,z) = g(T'e")

where z*(7) = In(S*(7)).

For the simplicity, we only consider American put option, where we have U(7,z) = g(T —
7,e%). Whether we want to apply explicit or implicit scheme to the above problem, because
of the free boundary, we need to add an intermediate step between step ¢ and step 7 + 1
of the scheme. Suppose that the approximate solution U (73, 2;) at 7; is known for all j.
Therefore, finite-difference scheme (3.2.19) or (3.2.20) provides an approximate solution,
denoted by U (7,4 1 ;) for the heat equation without including the free boundary?. Then,
to find an approximate solution U (Tit1, x;) for the free boundary problem at 7;11, one only
needs to set R R

U(Tit1,25) := maX{U(TH%,xj),g(T —7,e%)}.

To summarize we have the following:

ﬁ(Ti+%,-> = AU(ny)
U(Ti+17xj) = maX{U(Ti+%,$]’),g(T—T, exj)} vj

Here A can be implicit, explicit or mixed scheme.
The above method is in the category of splitting method, where there is one or more
intermediate steps in the numerical schemes to go from step i to step 7 + 1.
The splitting method described in this section can also be applied directly to Black-Scholes
equation with free boundary
oV (r1,8) = 52055V (1, S) + rSdsV(r,S) — 1V (r,S) for S > 5*(r)
V(r,S)=g(T —r,5) for S < S*(7).
V(O7 S) = g(T7 S),

The CFL condition is not different in the case of free boundary problems.

The Monte Carlo methods for American options are more complicated than for the Eu-
ropean options and in beyond the scope of this lecture notes. For more information of the
Monte Carlo methods for American options, see [19], [7], or the textbook [15].

3The subscript in Tivd indicate that finite-difference evaluation in each step in an intermediate step.

+
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American call option on discrete dividend-paying asset

Unlike continuous dividend problem, the discrete dividend cannot be solved as a single
free boundary problem. Consider an asset which pays dividend yield of d € (0,1) at times
t1 < tg < .. <t, =T. Proposition 4.1.1 suggests that at any time ¢ € [t;,t;11) between
the times of dividend payments it is better to wait and not to exercise. However, at time ¢;
of the dividend payment, the price of the asset decreases by the dividend and so does the
price of the call option. Therefore, if the continuation is not optimal, the option should be
exercises at the moment just before the time of a dividend payment.
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A. CONVEX OPTIMIZATION

A Convex optimization

In this section, we briefly review the important result that we need from linear and convex
optimization for this course. We start with reminding the notion of convex set and convex
function.

A.1 Convex functions

Definition A.1. A set A € R? is called convex if for any X € (0,1) and x,y € A, we have
Ar+ (1 - ANye A

In other words, a convex set is a set which contains all the segments with endpoints inside
the set.

Example A.1. The unit disk {x € R? : |z| < 1} and the unit cube [0,1]% are convex
sets. The volume given by inequalities a; - x < b; fori = 1,...,n, a; € R and b; € R
(enclosed within n hyperplanes) is a convex set. Buclidean space R® and the empty set are
also convex.

Definition A.2. Let A be a convex set. A real function f: A< R? — R is called convex
if for any A e (0,1) and x,y € R, we have

fQz+ (1 =Ny) <Af(z) + (1= A)f(y).

A function f is called concave if —f is convex. The convezity (concavity) is called strict if
the inequality above is strict when x#y.

Proposition A.1. A set A < R? is called convex. Then, a function f : A < R* — R is

convex if and only if
/ (2 >\¢$¢> <D Aif (@),
i=1 i=1

for all 1, ...,xp € A and Ay, ..., \p € Ry with 37 1 N = 1.

If a convex function f is twice differentiable, then the Hessian matrix of second derivatives
of f, V2f, has all eigenvalues nonnegative. In one dimensional case, this is equivalent to
f// > 0.

However, not all convex function are twice differentiable or even differentiable. We actually
know that all convex functions are continuous. In addition, we can show that the one-sided
directional derivatives of a continuous function exits.

Proposition A.2. Let A be a conver set and f : A € R* — R be a convex function. Then,
for all z in the interior of A and all vectors v € R?, the directional derivative of f at x is
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the direction of v,

Vof(z):= lim flw+ev) = @)
e—0t €
exits and satisfies f(x + tv) = f(x) + tV,f(z) for all t = 0. In particular, f is continuous
at all points of A.

In one dimensional case, for a convex functions f the above Proposition implies that the
right and left derivatives, f/(-+) and f’(-—), exist at all points, and in particular a convex
function is always continuous.

The above proposition has an important implication about the tangent hyperplane to a
convex function.

Corollary A.1l. Consider a convex function f and xo € R%. Then, there exists some
u € R? such that the hyperplane y = f(xo) + (x — x0) - u always lies underneath the surface,
i.e.
f(x) = f(xo) + (x — 20) - u  for all z € RY,
When f is differentiable, the linear approximation of f is always under-approximating the
function, i.e.

f(x) = f(xo) + (x — x0) - Vf(xp) for all v e R

If a function f is twice differentiable, the Hessian V2f is the matrix which contains all
2 f

0xiaa:j

second derivatives of the function f, i.e. [ ]d v For twice differentiable function one
X
can provide a criteria for convexity based on the eigenvalues of the Hessian matrix.

Corollary A.2. If all eigenvalues of the Hessian matriz V?f are nonnegative (positive)
at all points, then the function f is convex (resp. strictly convex).

One can also use the Hessian matrix to find the local minimum and maximums of a
function by checking its local convexity and concavity which is given in the following result.
Recall that a point xq for a differentiable function is called critical if V f(zo) = 0.

Proposition A.3. A critical point xo for a differentiable function f is a local minimum
(resp. mazximum) if and only if f is convex (resp. concave) in a neighborhood of xg.

As a result of the above proposition we have the second order derivative test in multivariate
calculus.

Proposition A.4. A critical point xg for a second order differentiable function f is
i) a local minimum if the Hessian V2 f(xg) is positive-definite.
ii) a local maximum if the Hessian V2 f(x0) is negative-definite.

iii) a saddle point if the Hessian V2 f(xo) has both negative and positive eigenvalues.
z2 2
Exercise A.1. Find and categorize all the critical point of the function f(x,y) = xe~ 7
322 2
Exercise A.2. Find and categorize all the critical point of the function f(x,y) = xye~ i
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A.2 Convex constrained optimization
Consider a convex function f: D € R™ — R where the set D is given by
K ={zeR" : gi(z) <0 for i =1,...,m}.

We assume that all functions g; for i = 1, ..., m are convex and therefore the set K is closed
and convex. The primal problem is to minimize f in D, i.e.

min f(z) subject to constraints g;(z) <0 for i=1,..., M.

If f is strictly concave, then the optimizer is unique if it exists. Notice that the existence
of the optimizer is subject to nonemptiness of the set D.

An equality constraint can also be described in the above form if the function g; is affine*
and both g;(z) < 0 and —g;(z) < 0. For later analysis, we specify constraint equalities in
the problem separately and define the feasibility set by

K ={xeR" : gi(x) <0 for i =1,...,m and hj(x) =0 for j=,... k}.

Notice that since g;s are convex and h;s are affine, K is convex, for any number X € (0,1)
and any z,y € K, Ax + (1 — A\)y € K. Given the convex functions g¢; for i = 1,...,m and
affine functions h; for j = 1, ..., k, the convex constrained optimization problem is given by

gi(z) <0 for i=1,....m

. : (A1)
hj(xz) =0 for j=1,...,k

P :=min f(z) subject to constraints {
Function f is called the objective function and the inequalities g; < 0 and equations h; = 0
are called constraints. If K # (J, the problem is called feasible. if f(x) is strictly convex,
then the minimizer is unique; for any two distinguished minimizers x1 and z9 with minimum
value P = f(z1) = f(z2), we have f(2322) < I(f(z1) + f(22)) = P which contradicts
with that x; and x9 are minimizers.

Duality method is one of the useful approaches to solve the convex optimization problems.
To present the dual problem, we first introduce the Lagrangian

L, A) = min { f(2) + - glw) + A+ h(z) .

Here p e R™ and g(z) = (91(2), ..., gm())), A € R¥ and h(z) = (h1(2), ..., hm(z))) and - is
the dot product in the proper Euclidean space. Then, the dual problem is given by

D:= max L(u,\).
pER, AeRF

4An affine function is a linear function plus a constant; h(z) =a-x+ b, where a € R™ and b e R.
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Notice that for v € K, L(p, ) < f(z) + p-g(x) + XA - h(z) < f(z). Therefore, L(u, \) <
mingex f(z) and thus, D < P which is called the weak duality. We can show that under
the following condition that the strong duality holds.

Assumption A.1 (Slater condition). There exist a point xo such that g;(xo) < 0 for all
i=1,...m and hj(zg) =0 for all j =1, ..., k.

Theorem A.1 (Duality). Let f, g; for i = 1,...,n and h; for j = 1,..,m are convex
and Slater condition A.1 holds. Then D = P. In addition, the dual maximizer (u*, \*) €
R x RF exists whenever D > —o0, i.e.

L(p, \) = L(p*, \%).
e (1, A) = L(p™, %)

A proof of this theorem can be found in [8, Section 5.3.2]. The following example shows
if Slater condition fail, the strong duality does not necessarily hold.

Example A.2. Take d = m = 2, n = 1 with f(x1,22) = 27 + 22, g1(x) = 22, hi(x) =
x1 + x2 and ha(x) = x1 — x2. Since feasibility set is a singleton; K = {(0,0)}, the Slater
condition does not hold. Therefore, P = f(0,0) = 0. On the other hand, L(pu,\) = —o0
unless A = 0. Specifically, L(y1,0) = min,, .y f(z1,72) + pra. Then, we also have

L(p,0) = min:r% + minxe(l + pu) = —o0,
z1 T2
since = 0. Therefore, D = —o0 < P = f(0,0) = 0.

Remark A.1. Notice that the duality can sometimes hold when the Slater condition does
not hold or when the problem is not even feasible. For instance, if K = &, since ming = o0,
P = o0. On the other hand, for and arbitrary point xq, let I and J respectively be the set
of all indices i and j such that g;(x¢) > 0 and hj(xg) # 0. Since K = &, at least one of I
or J is nonempty. Then, choose u and \ such that p; = 0 if and only if i ¢ I and X\; =0
if and only if j ¢ J. Therefore,

L(p, A) < f(wo) + p - g(wo) + A - h(x0)-

By sending p; — +o forie I and \j — +00 whether h;(xo) is negative/positive, we obtain
that maXueRT7 A\eRK L(ILL, )\) = 4-00.

One of the practical methods of finding the optimal points for primal and dual problem is
through the KKT?, which provided a necessary condition of optimality. Additionally with
Slater condition, KKT is also sufficient.

5Karush-Kuhn-Tucker
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Theorem A.2 (KKT optimality condition). Assume that f, g and h are differentiable
and * € R? and (pu*, \*) € RT x RF are respectively the optimizer of the primal and dual
problems. Then,

Oz, f(&™) 4+ p- O3, 9(x™) + X+ Og,h(x*) =0 for £=1,...,n
pigi(z*) =0 for i=1,..,m. (A.2)
hj(z*) =0 for j=1,..,k
Condition pfgi(z*) = 0 is called the complementary slackness condition. In addition, if

the Slater condition A.1 holds and (A.2) is satisfied, then z* € R? and (u*,\*) € R x R¥
are respectively the optimizer of the primal and dual problems.

Example A.3. We want to find the maximum volume of an open lid box with a fixed
surface area s by solving the constrained mazximization problem

max xyz subject to constraints vy + 2xz + 2yz = s.

Notice that since the Slater condition holds for xo = yo = +/s and Zy = 0, the dual problem
and primal problem have the same value. The KKT condition suggest to solve the following
to find candidates for the primal and dual problem.

zy+2u(z+y) =0
xz+ p(r+22)=0
yz+ pu(y+22) =0
Yy + 222+ 2yz =5

Solving the above system of equation yields

B

\V/3s
12

x*zy*zQz*zT and p* = —

5v/3s

and the maximum volume is 1—5.

Exercise A.3. Find the volume of the largest box under the constraint that the sum of the
diagonals of the three sides sharing a corner equal is to s.

The duality method, while can be used as a computational tool, it can also provide us
with some qualitative results about the optimization problem that we are studying. For
instance, in Section 2.1.6, the dual problem for evaluation of model risk is the problem of
superreplication. In the next sections, we formulate the dual problem for the linear and
quadratic programming.
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Linear programming

Linear optimization is when the objective function f and the constraints are all linear;
for some constants p € R? a; € R? b; € R for i = 1,..,m, and cj € R? and d; € R for
j=1,.. k.

fl@)=p-z, gi(x)=a; -z +b;, and hj(x)=c; -+ d;.

Therefore,

a;-x+b; <0 for i=1,....m

. (A.3)
cj-x+d;j =0 for j=1,..,k

P :=minp-x subject to constraints {

Let matrices A and C' consist of rows ay, ..., a,, and cy, ..., cg, respectively and set d :=
(di,...,dg) and b := (by,...,by,) as column vectors. Then, the linear programming can be
written in the following compact form.

Az +b <0

minp -z subject to constraints .
Cx+d =0

Each equation c¢j - ¢ + dj = 0 is a hyperplane and each inequality a; - x + b; < 0 is a half-
space in the d-dimensional Euclidean space. The feasibility set K can easily be empty, if the
constraints are made by parallel hyperplanes; for example a;x + b; < 0 and ayx + by <0
with a; = —a; and b; = —b;y — 1. To avoid this situation, we assume that the vectors
ai,...,am and ci, ..., ¢ are linearly independent in R?. As a result, m + k < d the matrices
A and C are full rank, where A and C are matrices with rows aq,...,a,, and c, ..., cg,
respectively. In addition, we need to assume that the column vector d = (dy, ..., dy) is in
the range of —C' and the orthant {y € R™ : y > b; for i = 1,...,m} intersects with the
range of —A, Cx +d = 0 and Az + b < 0 together have a solution for z. and are column
vectors.

The Lagrangian for the linear programming is given by

L(p,\) = m%r(ll{p-x—ku-(/lx—i-b)—k)\- (Cz+d)}.
xTre
Notice that if (g, A) are such that pT + (u*)TA + (A*)TC # 0 then,

min {(pT +utA+ATO)- :z:} +u"b+\Td = —c0.

zeRd

Therefore,
. o P+ (1) TA+ (\)TC 20
(A =19 ¢ Ty T T T —
prb+Ad pl+(p)TA+(A)'C =0
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Therefore, the dual problem can be written as

D := max p'h+ ATd subject to constraints p' + (u*)TA+ (A*)TC =0 (A4)
M/ k]

Theorem A.3 (Linear programming duality). Consider the following two linear program-
ming problems (A.3) and (A.4). If either of the problems has an optimal solution, so does
the other one and both problems have the same value, D = P.

Exercise A.4. Write the dual problem and KKT condition for the standard linear pro-
gramming equation:

z; <0 for i=1,...,d

minp -z subject to constraints ) .
cj-x+dj =0 for j=1,..k

Exercise A.5 (Project). Study the following algorithms for the linear programming prob-
lem in Ezercise 2.1.10. Find a package that has both methods and compare the running
time of each method on the same problem.

a) Simplex method

b) Interior points

Quadratic programming

Consider a positive-definite symmetric® d-by-d matrix M, a; € R?, b; € R for i = 1,..,m,
and c; € R? and djeRforj=1,.. k.

1
f(ﬂﬂ)zam'M% gi(x) = a;-x +b;, and h;(z) =c; -z +dj.

Therefore, the quadratic optimization problem is given by

a;-r+b <0 for i=1,....m

‘ . (A.5)
cj-x+d;j =0 for j=1,..,k

1
min gx - Mz subject to constraints {

The Lagrangian for the linear programming is given by

L(u,)\)=min{;x-Mm—l—u-(Aa:+b)+)\'(0x+d)}.

zeR4

5A matrix A is symmetric if AT = A and is positive-definite if all its eigenvalues are
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The dual problem for (A.5) is also a quadratic problem; the minimizer for = in the La-
grangian function L(u,\) is given by z(u,A\) = =M Y (ATp + CT)) and therefore La-
grangian L(u, \) is a quadratic function of p and A. Therefore,

1 - 1 ~

where A = AM~'AT and C = CM~'CT are indeed nonnegative definite symmetric matri-
ces. The dual problem can now be decoupled into two problems;

1 - 1, =
rgzaé({—Qu-Au + - b} and Hl)(‘\iX{—Q)\'C)\—F A d}
The maximization problem on A is an unconstrained problem which leads to N = Cd
when C is invertible. The maximization problem on p is, however, a constrained problem.
One way to find the primal and the dual optimal variables X*, p* and A* is through KKT
condition in Theorem (A.2), which is written as

Mz* + ATp* + CTA* =0
pi(aiz® +b) =0 for i=1,...,m
cjz*+dj =0 for j=1,....k

When the dual maximizer pf > 0, then by KKT condition the ¢th constraint must hold
with equality, a;x* 4+ b; = 0. In this case, we call the constraint an active constraint.

Exercise A.6 (Project). Study the following algorithms for the linear programming prob-
lem in Section 1.2. Find a package that has both methods and compare the running time
of each method on the same problem.

a) Active set

b) Interior points

Computational tools for convex optimization problems

The computational methods for convex optimization problems are vast and we do not
intend to study them in this book. Instead, we briefly introduce some of the tools which
you can use to solve optimization problems in finance.

A well-developed convex optimization tool is CVX under MatLab created by Michael Grant
and Stephen Boyd. The academic (noncommercial) version of the toolbox is free and under
a GNU General Public License; it can be used or redistributed but not altered. However,
it works under commercial software MatLab. The home of CVX is http://cvxr.com.
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Another convex optimization tool is CVXOPT which is a Python Program created by Martin
Andersen, Joachim Dahl, and Lieven Vandenberghe. The license is also a GNU General
Public License. The home of CVXOPT is https://cvxopt.org.

As a fun fact, Stephen Boyd from Stanford University and Lieven Vandenberghe from
UCLA are the authors of the convex optimization book [8] which has more than 40,000
citations and is widely used as textbook for optimization courses.

B A review of probability theory

In financial modeling, most uncertainties can effectively bemodeled by probability. Prob-
ability was not considered part of mathematics until approximately four hundred years
ago by a series of correspondence between Blaise Pascal (1623-1662) and Pierre de Fermat
(1607-1665). Most of the problems were motivated by observation in gambling and games
of chance.

Example B.1 (Empirical observation). One wins a game of rolling one die if he achieves
at least one siz in four trials. In a different game, one wins in rolling two dice if he
achieves at least one double siz in twenty-four trials. Chevalier de Méré a.k.a. Antoine
Gombaud (1607-168/4) wrote to Pascal that these two games must have the same probability
of winning; in the latter, the chance of getting a favorable outcome is a round in siz times
less than the former, while the number of trials is six times more. Chevalier de Méré,
however, discovered that the two games are not empirically the same. More specifically,
he observed that the first game has a winning chance of slightly more than 50% while the
second game’s chance is slightly greater than that. Pascal and Fermat discussed the problem
until Fermat eventually solved it. The solution is as follows.

4
The chance of losing the first game is (%) . Therefore, the change of

4
winning is 1 — (%) ~ 0.5177.The second problem has the change of

24
winning equal to 1 — (%) ~ 0.4914.

It is astonishing that Chevalier de Méré could empirically distinguish a difference of 0.0263
between the two chances of winning.

Example B.2 (Problem of points). Three players are playing over a stake. The condition
of winning is that whoever wins a certain number of rounds takes the whole stake. Player
1 needs one more round to win the stake, while players 2 and 3 need two rounds. However,
outside circumstances dictates that they have to suddenly stop playing and agree to divide
the stake according to current situation of the game. Obviously, player 1 deserves a greater
share of the stake than the other two players, who should receive the same share. What is
the fair share of the stake for each player?
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The game is over after at most three rounds. Therefore, for each pos-
sible outcome of the next three rounds a winner can be decided. For
example, if the outcome of the next three rounds is (2,3,1) (player 2
wins, then player 8 wins, and finally player 1 wins), then player 1 is
the winner. There are twenty-seven possible outcomes in the next three
rounds in seventeen of which player 1 wins. Players 2 and 3 each win in
exactly five of the twenty-seven outcomes. Therefore, if all players have
the same chance of winning each round of the game, the stake should
be divided by 17, 5 and 5 between players 1, 2, and 3, respectively.

For about a hundred more years, probability theory continued to be used primarily to
address gambling-related problems, until Jacob Bernoulli (1655-1705), Abraham de Moivre
(1667-1754), and Thomas Bayes (1702-1761) introduced the first limit theorems. Bernoulli
proved that if the probability of heads in tossing a coin is p, then the frequency of heads
in a sequence of n trials converges to p as n — 00. De Moivre showed that the empirical
distribution of the number of heads in n trials converges to a normal distribution.

Law of large numbers. If r is the number of heads in n trials of
tossing a coin with heads probability p, then the probability of that
|p — %-| = € converges to zero as n — o0.

In n trials of tossing a coin with heads probability p, the probability of r heads is given by
(:) p"(1 —p)"~" for r = 0,...,n. This probability is called the binomial distribution.

De Moivre-Laplace. In the binomial distribution, (7)p"(1—p)"™" ~

2
1 —zZ r—np
——e~ 2 hol hen — 0 an
oras olds when as n and

— .
np(1-p)

The above theorem is an early version of the central limit theorem, which will be presented
later in Theorem B.7 in Section B.4.

Bayes also contributed the concept of conditional probability, which deals with how the
occurrence of a specific event can affect the probabilities of other events. This gave birth to
the concept of conditional probability. Consider the Venn diagram in Figure B.1. Assume
that events A, B, and C have their ex ante probabilities. If we discover that event A has
happened, the ex post probability of A is now equal to 1. Another event B is now restricted
to whatever remains of it inside A, i.e., A~ B, and their ex post probabilities are obtained
by rescaling the ex ante probability of A n B by the ex ante probability of A. For example,
the probability of event B given by

ex ante probability of A n B

t probability of A gi B =
% POSt Probabliity of £ given ex ante probability of A

In Figure B.1, the ex post probability of C is zero, since the ex ante probability of A n C
is zero.
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Figure B.1: Given A, the ex post probability of event B is the probability of event B
inside A (A n B) divided by the probability of A.

In the above, we explained how to find the ex post probability in terms of the ex ante
probability. The Bayes formula explains how to obtain the ex ante probability in terms of
the ex post probability. Bayes formula, one of the most influential results in probability,
constructs the foundation of Bayesian statistics. To explain the formula, first we need to
introduce some notations. By P(A) we denote the ex ante probability of event A, and by
P(A|B) we denote the ex post probability of A given B.

Bayes formula 1.
P(A) = P(A|B)P(B) + P(A|B")P(B")
If By, Bs, ... are mutually exclusive and
P(BiuByu---) =1,

then

P(A) = P(A|B,)P(By) + P(A|B2)P(By) + - -- .

When ex post probabilities of an event A conditional on a certain event B and the ex ante

probability of B are known, one can use Bayes formula to find the ex post probability of
B conditional on A.

Bayes formula 2.

P(A|B)P(B) P(A|B)P(B)

POBIA) = =504y — ~ BABP(B) + PAIBPE

We elaborate on the notion of conditional probability and the Bayes theorem via a famous
example in conditional probability, namely the three prisoners problem.
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Example B.3 (Three prisoners problem). Three suspects (Bob, Kevin, and Stuart) are
equally likely to be convicted. Howewver, the judge has made up his mind and is going
to pronounce one and only one of them guilty the following morning. None of the three
prisoners knows who is going to be announced; however, the warden has been told the name
of the guilty by the judge and has been given strict orders not to pass the information to
the prisoners. Stuart argues with the warden that at least one of the other two, Kevin or
Bob, is not guilty. If the warden names one of the other two, Stuart still cannot know
if he himself is guilty or not. The warden counterargques that if he reveals the name of a
nonguilty person, Stuart’s chance of conviction increases from % to %, because now there
are two prisoners one of whom is going to be guilty. Is the warden correct?

To answer the question, we formulate the problem wusing conditional probabilities. In
this case, if the warden names Bob as not guilty, then the ex ante probability of Stuart’s
conviction is given by

ex ante probability of conviction of Stuart() Bob named not guilty by the warden

ex ante probability of Bob named not guilty by the warden

The ex ante probability of Bob named not guilty by the warden can be calculated using the
Bayes formula. Let’s denote this event by B, and let S, K, and B be the events that either
Stuart, Kevin, or Bob, respectively, is announced guilty. By conditional probability, one
needs to calculate B
P(S n B)

P(B)
Since P(S v K u B) =1, it follows from the first Bayes formula that

P(S|B) =

P(B) = P(B|S)P(S) + P(B|K)P(K) + P(B|B)P(B).

Notice that P(K) = P(B) = P(S) = 17, P(B|S) = 3, P(B|K) = 1, and P(B|B) = 0.
Therefore,
-1 1 1
P(B)==+-+0==.
(B)=5+3+0=3

On the other hand,
- - 1
P(S n B) =P(B|S)P(S) = 6

Therefore, P(S|B) =

vl-ol-

1
3-

In Example B.3, the revealed information does not change the ex ante probability. This
is, however, a coincidence and not necessarily true. The following exercise addresses this
issue.

"Here we assume that they are equally likely to be pronounced guilty. One can adjust these probabilities
and solve the problem accordingly.
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Exercise B.1. Repeat the solution to Ezample B.5 with P(K) = P(S) = t and P(B) = 2.
Beware as here is some ambiguity about how to choose P(B|S)!

Example B.4. In a burglary hearing, there is a probability pg that the suspect is guilty.
In actual fact, the suspect is left-handed. If it is brought before the court that the burglar
1s Tight-handed, the ex post probability that the suspect is guilty vanishes to zero. However,
if the evidence shows that the burglar is left-handed, we need to use the Bayes formula to
find the ex post probability that the suspect is guilty. In this case, let G be the event that
the suspect is guilty and L be the event that the burglar is left-handed that, we assume, has
the same ex ante probability of any individual is left-handed®. Then,

P(LIG)P(G) _ P(G)

FOID =30 ~B@)

Notice that P(L|G) = 1, because the suspect is left-handed. On the other hand,
P(L) = P(LIG)P(G) + P(LIG")P(G") = P(G) + P(L|G")P(G")

Notice that P(G) = pg, P(G®) = 1 — pg, and P(L|G") is roughly equal to the percentage of
the left-handed population, denoted by pr,. Therefore,

y4e;
B(GIL) pc + (1 —pac)pr
Notice that when P, < 1, then P(G|L) > P(G) = pg, because pg + (1 — pa)pr, < 1. For
instance, when pr, = .1 and pg = .15, then the ex post probability P(G|L) is % If prL, =0,
then no one in the population is left-handed except for the suspect, which makes him guilty.
If pr, = 1, then everyone in the population is left-handed, P(G|L) = pg, and the event L
does not add to the information we already have.

Exercise B.2. Show that if the ex ante probability of event A is 1, then P(B|A) = P(B).

The notion of conditional probability (the handling of new pieces of information in prob-
ability) is one of the most influential tools in applications of probability theory. Most
important applications appear in Bayesian statistics, through which they contribute to all
other areas of science.

We conclude the discussion of early advances in probability theory by mentioning that
these early developments are gathered in Essai philosophique sur les probabilités by Pierre-
Simone Laplace (1749-1827) ([18]). However, the subject still lacked mathematical rigor
compared to other areas of mathematics until a breakthrough happened in the twentieth
century. Andrey Nikolaevich Kolmogorov (1903-1987) initiated the foundation of probabil-
ity theory through measure theory, a topic in mathematical analysis. We provide a more

81t is logical to assume that the probability that a burglar is left-handed is the same as any other
individual.
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rigorous treatment of probability theory in Section B.2. In the next section, we present
the discrete theory of probability, which does not need measure theory.

B.1 Basic concepts and definitions of discrete probability

A (finite, countably infinite) sample space is a collection of all possible outcomes of a
random experiment. Any subset A of the sample space 2 is called an event.

Example B.5 (Flipping a coin). The sample space is {head, tail}.

Example B.6 (Arrow-Debreu market model in Section 2.1). The sample space can be
chosen to be {1, ..., M}, i.e., the collection of all the possible states of the system.

Example B.7 (T-period binomial model). The sample space of the T-period binomial
model in Section 2.3 can be chosen to be the collection of all T-sequences of the form
(a1, ...,ar) where each a; is either u or £. Each sample addresses the complete movements
of the asset price over time.

A probability over a finite (countably infinite) sample space Q = {wi,...,wy} (2 =
{wi,wa,...}) is a vector m = (71, ..., mpr) (m = (71,72, ...)) of nonnegative values such that
D> eq ™ = 1. For simplicity, we write P™(w;) = 7; if no confusion occurs. The collection
of all subsets of €2 determines the set of all events. The probability of an event A < € is

then defined by
P(A) := Z T -
weA

Evidently, P satisfies
1) P(g) =0,
2) P(AY) =1 —P(A) for all A< Q, and,

3) If {A,}n>1 is a sequence of disjoint events, then

P (U An> = Y P(Ay).

n=1 n=1

Example B.8 (Flipping a coin). In flipping a fair coin, the probability of either heads or
tails is p = % In flipping a unfair coin, the probability of heads is p # %, and therefore the
probability of tails is 1 —p. In two consecutive flips of a fair coin, the probability of having
(H,H), (H,T),(T,H), or (T,T) is equally 1/4. If the coin is not fair, then the sample space
s not changed. But the probabilities of these outcomes change to 7y = p and 7p =1 —p
where p € [0,1]. In two consecutive flips, we have TH g = P2, T =7 = p(1—p), and
T = (1 —p)Q.

204



B. PROBABILITY

Example B.9 (Single asset T-period binomial model). In a binomial model with T-periods,
a risk-neutral probability assigns the probability ﬂﬁﬂz_k to an outcome (aq, ..., ar) in which
k of the entities are u and the T — k remaining are £.

A random variable X is a function from sample space to R%, X : w e Q — X (w) € R%. The
values that X takes with positive probability are called the values of the random variable,
r € R? such that P(w : X (w) = x) > 0. To simplify the notation, we often write P(X = x)
for P(w : X(w) = x). When the sample space is finite or countably infinite, the random
variables can only take finitely of countably infinitely many values. Random variables with
at most countably infinitely many values are called discrete random variables.

Remark B.1. Notice that the values of a random wvariable are relative to the choice of
probability measure. For example, a random variable X : {0, 1,2} — R defined by X (z) = x
has values {0, 1,2} relative to probability P(0) = P(1) = P(2) = 1/3. Howewver, relative to a
new probability Q(0) = Q(1) = 1/2 and Q(2) = 0, the set of values is given by {0,1}.

Example B.10. Recall from Example B.6 that the sample space for the Arrow-Debreu
market model is the set of states Q = {1,..., M'}. Therefore, a random variable is given by
a function X : {1,..., M} — R. In particular, the payoff of an asset (the price of an asset
at time 1 for each state of the market) in the Arrow-Debreu market model is a random
variable. For instance, the payoff of asset i given in diagram 2.1.1 is a random variable
P;.:Q — R such that

Example B.11 (Bernoulli random variable). Flipping a coin creates a Bernoulli random
variable by assigning values to the outcomes heads and tails. The Bernoulli random variable
X takes the value 1 if the coin turns heads and 0 otherwise. If the coin has a probability
of tails equal to p, then X =1 has probability p and X = 0 has probability 1 — p.

Definition B.1. For an event A, the indicator of A is a random variable that takes value
1if A occurs and 0 otherwise. The indicator of A is denoted by 14°. The indicator random
variable 14 is a Bernoulli random variable that takes value 1 with probability P(A) and
value O with probability 1 — P(A).

Example B.12 (Binomial random variable). In flipping a coin n times, the binomial
random variable X takes the value of the number of heads. The set of values of X is
{0, ...,n}. If the coin has a probability of heads equal to p, then for x in the set of values,

the probability X = x is given by
n X n—x
1— .
(x)p (1=p)

9the indicator is also denoted by xa in some literature.
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Example B.13 (Random walk). In a game of chance, in each round a player flips a coin.
If it turns tails, he gains $1; otherwise, he loses $1. Technically, each round has an outcome
given by 2X —1 where X is a brand new Bernoulli random variable with outcomes 1 and 0.
The player’s accumulated reward after two rounds is a random variable Wo that take values
—2, 0, and 2 with probabilities 1/4, 1/2, and 1/4, respectively. If the coin has a probability
of heads equal p, then P(Wo = 2) = p?, P(Wy = —2) = (1—p)?, and P(Wy = 0) = 2(1—p)p.
Here, 1 is not among the values of Wa, because P(Wy = 1) = 0.

If the player continues this game, the sequence of his accumulated wealth at all times,
Wo, W1, Wa, ...., is called a random walk. At time t, Wy takes values {—t,—t + 2, ...,t} for
t=1,...,T. The probability of Wy = x is given by

t t
(k>pk(1 —p)TE with k= —;x
In Example B.13, a proper sample space can be given by
Q:={(a1,a2,...) a;=H or T for i =1,2,...}, (B.1)

when the game is infinite.
Exercise B.3. In Example B.13, calculate P(Wy =2 | Wi =1) and P(W3 = —1 | W) =1).

Example B.14 (Negative binomial random variable). In flipping a coin, the negative
binomial random variable X counts the number of heads before r number of tails appear.
The set of values of X is {r,r+1,...}. If the coin has a probability of heads equal to p, then
for x in the set of values, the probability X = x is given by

(x +; N 1>p$(1 —p)".

Exercise B.4. In FExample B.14, find an appropriate sample space and an accurate prob-
ability on this sample space.

Example B.15 (T-period binomial model). For the binomial model with T periods, con-
sider the sample space described in Erample B.7. Recall from Section 2.3 that in the
binomial model with T periods, the price S; of the asset at time t is a random variable that
takes values {Soukﬂt_k i k=0,...,t}. Thus, one can say that under risk-neutral probability,
we have P™(S; = Souket=F) = (,i) (7ta)*(70)! . This is because exactly (i) of outcomes in
the sample space lead to Sy = SouFlt=%, and each outcome in the sample space has proba-
bility (7t,)F(7¢)7%. Under physical probability, see 2.4.1; the probability of S; = SouF¢!=*
changes to (;)p*(1 —p)'=*.

Remark B.2 (Random walk as a corner stone of financial models). A binomial model is
related to the random walk in Example B.13 through taking logarithm. If Vi = In(S;) then
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Vi takes values In(Sp) + kln(u) + (¢t — k)In(¢) for k = 0,...,t. In other words, V; is the
position of a generalized random walk after t rounds, starting at In(Sy) which moves to
In(u) or In(¢) in each round, respective to the outcomes of a coin. If So =1, u = e and
¢ = e, then the random walk V; is the standard random walk Wy described in Example
B.13. Otherwise, Vy = In(Sp) + ut + oWy where p = w and o = M. In other
words,

Sy = Sopexp (ut + ocWy).

Example B.16. Two random variables representing the payoff of two risky assets in the
Arrow-Debreu market model that also includes a zero bond with yield R = 0, is shown in
Figure B.2. From Ezercise 2.1.4, we know that all risk-neutral probabilities are given by
7= (t/2,(1 —1)/2,(1 —t)/2,t/2)T with t € (0,1). The conditional probability of X = y

X Y
P1,1 =1 P2’1 =1

432:—1 pzoé%l

P y=-1 Py=-1

) )

p1 =0

Figure B.2: Example B.16

given Y = x, forx = £1 and y = +1, is found below.
P(X =1&Y =1) 7t

PIX=1Y=1) = = =t
( ‘ ) IP’(YZl) T + 7o
P(X:_HY:l)ZP(Xz—l&Yzl): o 11—y
P(Y =1) T + 7o (B.2)
P(X =1&Y = —-1) 3 '
PX =1Y =-1) = = =1—1
( ‘ ) P(Yz—l) T3 + 7y
P(X = —-1&Y = —1) Ty
P(X =—-1Y =-1) = = =1
( ’ ) P(Yz—l) Ty + T4
Independence

Recall that the conditional probability of event B given that event A has occurred is defined
by
P(An B)

P(B|4) = =50p
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The conditional probability gives birth to the important notion of independence. Two
events A and B are called independent if

B(B | 4) = P(B),

or equivalently

P(A | B) =P(A).
It is easier to write independence as
P(B n A) =P(A)P(B).

Two random variables X and Y are called independent if each event related to X is inde-
pendent of each event related to Y, i.e.

For all = in values of X and all y is values of Y, we have

PX =z Y =y)=PX =2)P(Y =y).

Exercise B.5. Show that two events A and B are independent if and only if the indicator
random variables 14 and 1g are independent.

In modeling random experiments, independence is a common-sense knowledge or an as-
sumption inside a model. For example in a random walk, the outcomes of two different
rounds are assumed independent, because of the belief that two flips of a coin are indepen-
dent trials. As a result, two random variables W5 and Wg — W5 are independent.

Exercise B.6. Show that in a random walk, W5 and Wg — Wi are independent provided
that the outcome of each round is independent of other rounds.

Defining independence for more than two events (equivalently random variables) is a little
tricky. We call X independent of the sequence of random variables X1, Xo, ..., X, if

P(X =T, X1 = ml,XQ = X2, 7Xn = :L'n) = P(X = :L')P(Xl = :L'I,XQ = T3, ...,Xn = xn).

This indicates that any event related to the values of X is independent of any event related
to the values of X1, Xo, ..., X,,, i.e.

P(X € A, (X1, Xs,...,X,) € B) = P(X € A)P((X1, X, ..., Xn) € B).

A finite sequence X1, Xo, ..., X, is called independent sequence of random variables if for
each i, X; and {X; : j#i} are independent.

As observed in the following exercise, to show the independence of a sequence of random
variables, it is not enough to check that each pair of random variables X; and X; are
independent.
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Exercise B.7. In two consecutive flips of a fair coin, let A be the event that the first flip
turns heads, B be the event that the second flip turns heads and C be the event that only
one of the flips turns heads. Show that A, B, and C are not an independent sequence of
random variables, but they are pairwise independent.

An equivalent definition of independence of a sequence of random variables is as follows.
A finite sequence X1, X, ..., X}, is called independent if for all subsets Ay, ..., A, of values
of X1, ..., X, respectively, we have

P(Xl € Al, ,Xn € An) = P(Xl € Al)P(Xn € An) (B3)

This can also be extended to an infinite sequence of random variables. An infinite sequence
X1, Xy, ... is called independent if each finite subset {Xj,,..., X;, } makes an independent
sequence. Having defined the notion of independence for a sequence of random variables,
we can now properly define a random walk, as the previous definition in Example B.13 is
more heuristic than rigorous.

Definition B.2. Let &,&,... be a sequence of independent and identically distributed
(i.i.d.) random variables such that P(§; = 1) = p and P(§ = —1) = 1 — p for some
pe (0,1). Forxz € Z, the sequence Wy = x, Wy, W, ... with

n
Wi :=x+2§i for n>=1,
i=1

is called a random walk. When p = %, we call it a symmetric random walk; otherwise, it
is called a biased random walk.

Let X be a random variable on a discrete sample space 2 with probability vector m(w)
for each w € Q. Then, the expectation or expected value of X is defined by

E[X]:= ) X(w)m(w). (B.4)

weN

If a random variable X takes values x1, x2, ... with probabilities pi, po, ..., respectively, then
the expectation of X can equivalently be given by

0
E[X] := Z TiDj-
=1

In particular, if values of X are finitely many x1, z9, ..., x,, with probabilities p1, p2, ..., Pn,
respectively, then the expectation of X is equivalently given by

=1

209



B. PROBABILITY

The advantage of (B.5) over (B.4) is that a sample space can be very large while the random
variable only takes small number of values. For example, in Example B.9, a single-asset
T-period binomial model generates a sample space of all paths of the asset price of size 27,
while the values of random variable Sy are only T' + 1.

By straightforward calculations, the expectation of a function f(x) of X is given by

E[f(X)] = f(@i)p:-
i=1

The variance of a random variable is defined by
var(X) := E[(X — E[X])?] = E[X?] — E[X]%

One of the important result in the expectation of random variables is the Jensen inequality
for convex functions.

Corollary B.1. Consider a probability space (Q,F,P) that hosts a Re-valued random
variable X and let f : R* — R be convex function f. Then, we have

SEIX]) <E[f(X)],
provided that both of the expectations exist.

Proof. By Corollary A.1, there exists a vector u € R? such that f(E[X])+ (X —E[X])-u <
f(X). By taking the expected value from both sides, we obtain the desired result. O

The Jensen inequality is reduced to the definition of convexity (A.2) when X is a random
variable with two values x; and x3. More precisely, if P(X = x1) = Aand P(X = z9) = 1—A,
we have

FEX]) = f(Azr + (1 = Azg)) < Af(21) + (1= A) f(22) = E[f(X)].

Let Y be another random variable with values y1, ..., ¥m. To write the expectation of a
function f(x,y) of two random variables X and Y, we need to know the joint (mutual)
probabilities of the pair (X,Y), i.e.,

pij =P(X =x;, Y =y;) for i=1,..,n, and j=1,...,m.

Notice that although P(X = ;) and P(Y = y;) are positive, p; j can be zero, which means
that if a value z; is realized for the random variable X, then y; cannot be realized for Y,
and vice versa. Then, we define the expected value of f(X,Y) by

E[f(X, V)] == > Y f(@i y)pi-
i=1j=1
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With the above definition, one show the Cauchy-Schwartz inequality.

Theorem B.1. For two random variables X and Y we have
E[XY] < VE[XZ]\/E[Y?2].

The equality holds if and only if X and Y are linearly dependent, i.e., if aX +bY +c¢c =0
for some constants a,b,c € R such that at least one of them is nonzero.

The covariance between two random variables is defined by
cov(X,Y) :=E[(X —E[X])(Y —E[Y])] = E[XY] - E[X]E[Y].

By applying the Cauchy-Schwartz inequality, we obtain

cov(X,Y) = E[(X — E[X])(Y ~E[Y])] < VE[(X — E[X]?]VE[(Y —E[Y])?].

In the above, the equality holds if and only if X and Y are linearly dependent. The
correlation between two random variables is defined by

cov(X,Y)

cor(X, ¥) = var(z)var(Y) '

The Cauchy-Schwartz inequality shows that —1 < cor(X,Y) < 1, and either of the equali-
ties holds if and only if if aX + bY + ¢ = 0 for some constants a, b, c € R such that at least
one of them is nonzero. In the case of equality, when ab < 0 (respectively ab > 0), then
cor(X,Y) =1 (respectively cor(X,Y) = —1).

We can define conditional expectation similarly by replacing the probabilities p; ; with
the conditional probabilities

Pi,j
pi; = P(X = 'Y =y;) = lY
J
with p}/ =P(Y = y;). More precisely,
0 1 0
E[f(X,Y) Y =y;] Z (i, pz\] = T Z (is Yj)Pi- (B.6)
iz Pj i3

Notice that if P(Y = y) = 0, then E[f(X,Y) | Y = y] in (B.6) is not defined. However, we
can define function h: y — E[f(X,Y) | Y = y] on the set of values of the random variable
Y. This in particular helps us to define the random variable

E[f(X,Y)|Y]:=h(Y).
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Remark B.3. Notice the difference between E[f(X,Y) | Y = y;], E[f(X,Y) | Y = y],
and E[f(X,Y) | Y]. E[f(X,Y) | Y = y;] is a real number, E[f(X,Y) | Y = y] is a real
function on variable y, and finally E[f(X,Y) | Y] is a random variable.

Example B.17. With regard to the above remark, we find P(X = 1|Y), P(X = —1|Y),
and E[X|Y] in Example B.16. It follows from (B.2) that h(y) = P(X = 1|Y = y) is given
by

h(y) =

t when y =1
1—t when y=-1

Thus, P(X =1|Y) =t51(Y) + (1 —¢t)6_1(Y). Here, 6,(y) is 1 when y = x and 0 otherwise.
Similarly, P(X = =1|Y) = (1 —t)01(Y) + to_1(Y"). Finally,

EXY]=P(X=1Y)-P(X =-1Y)=th(Y)+ (1 —t)_1(Y) — (1 = )01 (V) — td_1(Y)
= (2t —1)01(Y) + (1 —2t)6_1(Y).
As a particular case, when f(x,y) = =, we have
h(y) =E[X |Y =y] and E[X|Y]=h(Y).
Corollary B.2. If X and Y are random variables and f is a real function, then we have
E[/(V)X | Y] = f(Y)E[X | Y],

The following proposition, which is a direct result of (B.6), explains a very important
property of independent random variables.

Proposition B.1. X and Y are independent if and only if, for any real function f(x,y)
of X andY, we have

E[f(X,Y)|Y =y]| =E[f(X,y)] for ally in the set of values of Y.

Corollary B.3. If X and Y are independent and f is a real function, then we have

E[f(X) Y] =E[f(X)].

One of the important properties of conditional expectation is the tower property, which
is presented in the next proposition.

Proposition B.2 (Tower property of conditional expectation). Let X, Y and Z be random
variables. Then,

E[E[X | Y.2]| Y] =E[X | Y].

In particular,
E[E[X | Y]] = E[X].
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The following proposition provides an equivalent representation for independence through
the conditional expectation.

B.2 General probability spaces

Some random experiments can generate uncountable number of outcomes, e.g., choosing
a point in the unit interval [0, 1] or choosing a chord of a unit circle. In such cases, the
definitions in Section B.1 don’t make sense; e.g., the summation in (B.4) relies on the
countability of the sample space. The complexity of uncountable sample spaces is twofold.
First, the basic definitions, such as the expected value in (B.4), use summation, which
relies on countability of values. In Section B.2, we will consider the continuous random
variables in which the summations can be replaced by an integral, such as Example B.18.
Secondly, there is mathematical challenge in defining an event in an uncountable sample
space, which we will describe later in this section.

Example B.18. In choosing a random number uniformly inside [0, 1], the probability of
the following events can be calculated by integration.

i) The probability that the random number is in (a,b) < [0,1] equals SZf(:r)dx =b—
a. Here f(z) = 1jo1)(z) is called the uniform probability density function. This
probability is the area enclosed by f(x) and x axis above interval (a,b)

it) The probability that the random number is .5 equals 0 as the area described in (i) is
zero.

i1i) The probability that the random number is a rational number is 0. Rational numbers
are countable so the probability of this event is sum of the probability of each rational
number, which is summation of countable number of zeros.

iv) The probability that the random number is an irrational number is 1. This probability
is the complement of the probability of rationals, which is 0.

The random experiment in the above example is describing a continuous random vari-
able. In such random variables, the probability of events and expected values of random
variables can be calculated by integration. However, in general, there can be random
variables that are neither continuous nor discrete. In that case, concepts such as expec-
tation and conditional expectation should be defined differently; they requires advanced
techniques from measure theory. Measure theory was gradually developed as a theory for
integration by several mathematicians such as Emile Borel (1871-1956), Henri Lebesgue
(1875-1941), Johann Radon (1887-1956), and Maurice Fréchet (1878-1973). However, An-
drey Kolmogorov (1903-1987) was the first who noticed that this theory can be used as a
foundation for probability theory; a probability is a nonnegative finite measure (normalized
to mass one) and the expectation is an integral with respect to that measure.
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Figure B.3: Description of the transformations in Example B.19

Another difficulty that arises in uncountable sample spaces is the meaning of an event. In
discrete space, any subset of the sample space is an event and any function from sample
space to R? is a random variable. However, in uncountable sample spaces, there are some
subsets of the sample space for which no value as a probability can be assigned. Therefore,
an event and a random variable should be defined in a proper way by using the concept of
measurability; only measurable sets are events, and measurable real functions make random
variables. For more extensive study on the concept of probability measures and measurable
functions see [1] or [4]. Here, we address the issue briefly. First, we provide an example to
show how a nonmeasurable set looks like.

Example B.19 (A nonmeasurable set exists). Consider Q = [0, 1), identified by a unit
circle through the transformation w — €™ shown in Figure B.3. Here, i = n/—1. Now,
for any rational number r in [0,1), consider the rotational transformation on the circle
given by €™ . x = 2™ s 2™y If we consider the uniform probability on Q = [0, 1),
the induced probability on the circle is also uniform. The uniform probability on the circle

s invariant under rotations;
P(B) = P(e*™ B) for any subset B on the circle.

For x = €™ define the orbit of x by O(x) := {xe®™ : r e Qn[0,1)}. Since O(x)
is countable and the unit circle is uncountable, there are uncountably many disjoint orbits
with a union equal to the unit circle. Let A be a set that has exactly one point from each
distinct orbit. Then, one can see that the countable disjoint union

U ei271'r (A)

reQn[0,1)

covers the unit circle. Here, €*™ (A) means the image of A under the rotational transfor-
mation €™ . This is because: (1) If x € 2™ (A) n 2™ (A) for 0 < r <1’ < 1 rationals ,

we have then both 2717210 gnd e27="") g belonging to A and being members of O(x),

01 ¢ = €™z, then 2 = ye **™". But, since —r is not in [0, 1) and 1 = €**", we can write z = yei2m(=m),
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which contradicts the choice of A; and (2) For each x, there is a membery € O(x) € A; there
exists a rational v such that y = €2™ x. Thus, x = e27(1-")y ¢ i2r(1=7) (A). Therefore, we
have

Pl (] 7A@ ]= D) P(ePT(4).

reQnl0,1) reQnl0,1)

It follows from the invariance of uniform probability under rotation that the probability of
A is the same as the probability of 2™ (A) for allr € QN [0,1), if such a probability exists.

Pl | @@= > PMA).
reQn[0,1) reQnl0,1)

Now if A has probability 0 under uniform measure, then so does the countable union
Uregnio,n e?™"(A), which is a contradiction, because the union Uregnion €™ (A) makes
up the whole circle, which has probability 1. Otherwise, if A has a nonzero probability, then
the sum on the left-hand side is infinite. Either way, it is impossible to assign a probability
to A; A is nonmeasurable.

Uncountable sample spaces appear in probability even when the experiment is a discrete
one. For instance, consider the following version of the law of large numbers:

Theorem B.2 (Law of Large Numbers). Let {X,,}:°_; be a sequence of independent random
variables that take values 0 or 1 with equal likelihood. Then,

1< 1
lim — Z X, ==
n=1
except on a set of outcomes with probability zero.

In this theorem, we consider a sample space Qthat consists of all sequences w = (wy, ...)
such that w, = H or T based on the outcome of the nth coin flip. The random variable
X, is defined by 1 if w, = H and 0 if w, = T. This sample space is uncountable! To see
this, we construct a map which takes it into the interval [0, 1):

0
X
WHE 2:'
n=1

The right-hand-side above is the binary representation of a number in [0,1). Therefore,
the sample space €2 is uncountable and not significantly different from [0, 1).

Remark B.4. Notice that some numbers can have two different binary representations.
For example, .5 = % = Zf:z 2% However, the even in € that corresponds to all these
numbers has probability zero.
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o-field of events

One of the important notions in the probability theory is dealing with the definition of an
event, a random variable, and the information related to them, which is presented in the
following definition.

Definition B.3 (o-field). For a (possibly uncountable) sample space ), the set of events
should use the notion of o-field from measure theory. A o-field F is a collection of subsets
of Q1 that satisfies

a) & and Qe F.
b) If Ae F, then A' e F.

¢) For a sequence {Ap}X_ o S F, Up_gAn € F.

n=0 =
A sample space 2 along with a o-field is called a measurable space.

Usually, a o-field can be specified by defining a set of elementary events and expanding
this set to a whole o-field, which contains all events. For instance, in a discrete sample
space €2 = {wi,wy,...}, one can define the elementary events to be E,, = {w,}. Then, any
event is a countable union of elementary events.

In uncountable sample spaces, the methodology of working with elementary events is
inevitable. We consider a set of elementary events {E, : m > 1} and construct the
smallest o-field that contains all these elementary events, namely the o-field generated by
elementary sets {E, : n > 1} denoted by o(E, : n > 1).

Example B.20. Consider 2 = R and the elementary events given by the singleton sets
E, :={x,} forn =1,2,.... Then, by property (b) the complement of singleton elementary
events, E. = R\{x,} is in the o-field generated by E,s. Also, any finite or countable
number of x,s and the complement of it make events in this o-field. For instance, the
o-field generated by {1} is

{2 R {1} R\1}}.
The o-field generated by {1} and {2} is

{2 R {1}, {2}, (1.2} R\(1}, R\(2}, R\{1,2} .

Example B.21. The o-field generated by a single event, A has four distinct events: &,
Q, A, and A. For example, the o-field generated by the set of all rational numbers in R
consist of &, R, the set of rational numbers, and the set of irrational numbers.

In the discrete example from the last paragraph, the o-field is the same as the set of all
subsets of Q. In Chapter 2, the sample space is Q = (R*1)T. We consider each elementary

216



B. PROBABILITY

event given by an open set in (R9*1)T. Then, we work with the Borel o-field B(f2), the
o-field generated by all open subsets of {2. This method can be generalized to all samples
spaces that are topological spaces. The Borel o-field in R, B(R), is generated by the set of
all open intervals (a,b). It is not hard to see that all intervals, closed or semi-closed, are
also included in the Borel o-field. For instance,

(a,b] = ﬂ (a,b—i—%).

n=1

Also, all single points are in the Borel o-field; {b} = (J,>,[b,0 + 1). Also, B(R) can be
generated by half-open intervals of the form (a, b], because

* 1
b) = ( b— f].
(a,b) nL:J1 a,b——
Exercise B.8. Show that B(R) can be generated by half-open intervals of the form [a,b).

Exercise B.9. Check whether the following sets make a o-field. In case they are not a
o-field, find the missing events that makes them a o-field.

i) {R, {a}, {b}, {a, b}, R\{b},R\{a}} where a and b are two distinct real numbers.
i) {2,10,11,[0.2), (3, 11}.
i) {5, R}.
The Borel o-field on [0, 1], B([0, 1]), is the o-field generated by the intervals of the form

(a,b), [0,b), or (a,1], where 0 < a < b < 1. Equivalently, B([0,1]) is generated by the
half-open intervals of the form [a,b) or (a,b].

Example B.22. The Borel ofield B([0,1]) can be generated by either of the following
elementary events:

i) The set of intervals of the form (a,b), [0,b), or (a,1], where 0 < a < b <1,
it) The set of intervals of the form [a,b) or (a,b], where 0 <a <b< 1, and
iii) The set of intervals of the form [a,b], where 0 < a < b < 1.

To show this, we need to demonstrate that each elementary event of one set can be generated
by the elementary events from the other sets. In the set of elementary events in (i), the
interval (a,b) can be written as

(a,b) = G (a,b—%].
n=1
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Therefore, (a,b) can be generated by the events that are described in (ii). [0,b) and (a,1]
already belong to the set that are described in (ii). Therefore, all elementary events in (i)
can be generated by elementary events in (ii).

In addition, we have

0

[a,b) @[ab—i] and (a,b] U[a+—b]

which implies that all elementary events in (ii) can be generated by elementary events in

Finally, we have

0 0

[a,b]:ﬂ(a—;,bﬁ—?lz),(a,l]zﬁ(a—, ], and [0,b) ﬂ[0b+ )
n=1

Therefore, all elementary events in (iii) can be generated by elementary events in (i).

The Borel o-field on the half-line [0, ), B([0,0)), is the o-field generated by the sets of
the form (a,b) or [0,b), where 0 < a < b.

Exercise B.10. Show that B([0,0)) can be generated by either of the following elementary
events:

i) The set of intervals of the form (a,b) or [0,b), where 0 < a < b < 00, and
it) The set of intervals of the form [a,b), where 0 < a < b < .

Hint: Show that each elementary event of one set can be generated by the elementary events
from the other set.

The following example is a useful use of elementary events in analyzing an event of interest
and a method of finding the probability of such an event.

Example B.23. In Ezample B.13, let the event of ruin A be the collection of all outcomes
for which the gambler’s wealth eventually hits zero. For instance, if Wy = 10, any outcome
with ten loses in a row since the start of the game is in this set. Also, any outcome with the
number of losses at some time larger than the number of wins plus ten is in the ruin event
A. The ruin event is uncountable. We attempt to find the probability of this event later in
Ezxample B.25, namely the ruin probability. Before that, we need to write this event as a
union of disjoint simpler events for which the probability can easily be evaluated.

e}
:UA
n=1
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where A, is the event that the ruin happens exactly at the nth round. Notice that A, is
made of all outcomes such that (1) the nth round is a lost round, (2) in the first n — 1st

rounds there are x — 1 lost rounds more than the number of wins. Therefore, if m is the

number of won rounds in the n— 1st rounds, we must have 2m+xr—1=n—1, orm = *5*.

As a result, Ay, is a nonempty event if and only if n —x is an even number. Therefore, one
can write

ee]
A= U Aa:+2m-
m=1
Exercise B.11. Recall the sample space given by (B.1) for a random walk. Show that in
Ezxzample B.23 the event of ruin is uncountable.

Many complicated sets can be found in the Borel o-field. For more discussion of Borel
sets, see [3, Chapter 7]. However, in most cases, it is enough to work with the elementary
events that build the o-field.

Probability via measure theory
Given a o-field of events, we can define a probability measure in the most general form.

Definition B.4. A measure space is a (Q, F) such that Q is a sample space and F is a
o-field on Q. A measure on a measure space (0, F) is a function from P : F — R u {00}

such that for any sequence {An}y_o S F of disjoint events,

© 0
IP’( An> = > P(4y).
n=0 n=0
A probability measure is a measure with the following properties.
a) For any A € F then P(A) = 0.
b) P(Q2) = 1.
Notice that the above definition leads to many important properties of the probability:
a) P(AY) + P(A) = P(A° U A) = P(Q) = 1. Therefore, P(A%) =1 —P(A).
b) P(g) =1-P(Q) =0.

c) Continuity of probability. For any shrinking sequence of events A3 2 Ag 2 -+,

we have
6]
lim P(A,) = (OO An>

Exercise B.12. Show (c) in the above.
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Triple (2, F,P) is called a probability space. To define any other measure P on a mea-
surable space (€, F), it is sufficient to define it on the elementary sets that generate the
o-field F. For example, to define a uniform probability measure on [0,1] on the Borel
o-field B([0,1]), one only needs to define

P((a,b)) =b—a, for (a,b)e[0,1].
Since probability of singleton is zero, we have
P([0,0)) = P({0}) + P((0,0)) = 0 + .

Similarly, P((a,1]) = 1 —a.
Here is a more complicated example. The random variable in this example is not discrete
or continuous.

Example B.24. We choose a random number in [0, 1] in the following way. We flip a fair
coin. If the coin lands heads, we choose a number uniformly in [0,1]. If the coin lands tails,
we choose \/2/2. We define the corresponding probability measure on B([0,1]) by defining
it only on the elementary events:

(b—a) if v/2/2¢ (a,b) €[0,1]

P((a,b)) = { (b_a)Jr% if 2/2¢€ (a,b)e[0,1]

[T I

Notice that although the above probability is only defined on open intervals, one can find

probability of other events. For instance, P({v/2/2}) = lim, o (vV2/2 — 2,4/2/2 + 1) =

2 .1 _1
nta=a

Example B.25. In this example, we follow up on the probability of ruin in Example B.23.
Recall that the event of ruin is represented as the union of disjoint events:

If the chance of winning any round is p, then

r+2m—1
m

P(Ag+om) = ( )pm(l —p)rtm,
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Therefore,
o [+ 2m—1\ ,, otm
P = X (T g,

m=0
The above probability is not easy to calculate in this series form, and it is easier to find it
by using a conditioning technique.

Example B.26. In an infinite sequence of coin flips, we consider €1 to be the set of all
sequences (wy,wa,---) such that w; = H or T for n = 1. A o-field can be defined by
specifying some elementary events. For a finite sequence nq,...n.,, of positive integers, an
elementary event Ey, ., is defined to be the set of all (w1, ws,- ) such that wn; = H
for 5 =1,...,m. Then, on the o-field generated by a fair coin, we have the corresponding
probability measure given by P(Ey,  n,.) = (%)m For an unfair coin with the probability
of heads given by p, we have a different probability measure Q(Ey, . p,.) = p™. Based on
the assignment of probability , we can determine the probability of all events in the o-field
generated by the elementary events. For instance, let F,, _, be the event that the nth flip
s heads and the mth flip is tails. Then,

E, = m,n Y Em,—n-

Notice that Ey,, and E, _, are disjoint events. Thus, P(E,, /) = % — i = i. For an
unfair coin, we have Q(Ey, /) = p — p? = p(1 — p). Recalling the notion of independence
from (B.3), one can see that for n#m, E, and E,, are independent events, under both
measures P and Q. More precisely, since i, N E,, = Ep, », we have

P(Enn) = 1 = BERRED) and QEna) =1 = QUEDQE,).

Generally speaking, En,, n---nEy, = Ey,  n,., and therefore the o-field generated by the
sequence {E, : n = 1} is the same as the o-field generated by the elementary sets of the
form En, ...

Recall that mapping
a

E

n

[\]

0
w = (wi,wg, ) > Y]
n=1

with a, = 1 when w, = H and a, = 0 when w, =T maps Q to [0,1]. Under this mapping,
the elementary event E, is mapped to

n—1

27241 20+ 2
U [T "5 )
=0

Although tedious, one can find the exact intervals that make the image of Ey,  n,, under

m

this mapping and then use it to verify that the o-field generated by these events is exactly
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the Borel o-field B([0,1]). The following theorem is a helpful tool in that regard.

21 on
be written by a combination of a finite union, intersection and complement of the sets that
are image of the elementary events of the form E, under the mapping described in Example
B.26. Use this to show that the o-field generated by the elementary events of the form E,
correspond to the Borel o-field B([0,1]).

Exercise B.13. Show that any interval of the form [kl ]"l) with 0 < k1 < ko < 2™ can

Given a probability measure P, the events that have a probability of 0 under IP are called
null events. For instance, in choosing a point uniformly in [0, 1), the probability of any
single point is 0; therefore, the singleton {z} is a null event. In Example B.24, the only
singleton that is not a null event is {g} The set of all rational numbers is a null event in
both cases. In Example B.26, one can show that an event of a particular pattern appearing
periodically along a sequence of coin flips is a null event. For instance, the event of the
pattern THH appearing periodically along a sequence of coin flips is a null event.

Exercise B.14. Show that the event of all outcomes that have the pattern THH (or any
other particular pattern) appearing periodically along a sequence of coin flips is a null event.
Use the same idea to extend the result: the event of all outcomes that have a periodic pattern
is a null event. (Hint: the set of all patterns is a countable set.)

Random variables

In this section, we explain the definition of a random variable. Random variables represent
random quantities that are related to a random experiment. For example, in Example
B.13, the value W,, of a random walk at time n is a random variable.

Definition B.5. A random variable on a measure space (Q, F) is a function X : Q — R?
such that for any Borel set A € B(RY), the inverse image of A under X, X 1(A), belongs
to the set of events F.

In the sequel, we denote the inverse image of A under X, X 1(A), by {X € A}. Since
B(R?) is generated by open sets in R?, the condition “YA € B(R?), {X € A} € F” in
Definition B.5 needs to hold only for all open sets instead of all Borel sets; A € B(R?)
for all open sets A < R If Q = R and F = B(R?), a random variable is called a
Borel-measurable function.

In practice, important random quantities are described by random variables. See the
example below.

Example B.27. In an infinite sequence of coin flips, Fxample B.26, we define the random
variable X as follows. For w = (w1,wsa, ) €

& a
X(w) =) o
n=1
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such that a,, = 0 if w, = H, and a,, = 2 if w, = T. Here, Zflo:l g—ﬁ = 0.a1a9--- 1is the
ternary representation of a number in [0,1]. X maps Q to [0,1]. To check if X is a random
variable, we need to check that the inverse of an open interval is in the o-field generated by
the elementary sets Ay, .. n,, described in Example B.26. We leave this task to the following
ezrercise.

Remark B.5. The image of X in Example B.27 is called a Cantor set.

Exercise B.15. Show that the mapping X defined in Example B.27 is a random variable.
Hint: Assume a ternary representation for the endpoints of the interval (a,b).

Let X be a random variable. The o-field generated by X is the smallest o-field that
contains all events {X € A} for all Borel sets A, and is denoted by ¢(X). In other words,
it is the o(X) that contains all events related to X. o(X) can equivalently be expressed
as the smallest o-field that contains all events {X € A} for all open sets A.

Independence

It is possible to define the notion of independence for two random variables X and Y by
using the inverse images {X € A} and {Y € B}.

Definition B.6. A sequence of random variables {X,, : n = 1} are called independent if for
any sequence of Borel sets {A,, : n = 1} € B(R), the sequence of events {X;*(A,) : n > 1}
are independent.

In particular, two random variables X and 'Y are called independent if for any two Borel
sets A and B, {X € A} and {Y € B} are independent,

P(Xe A&Y eB)=P(X e AP € B).

The following proposition can be used as an alternative definition of independence of two
random variables.

Proposition B.3. Two random variables X andY are independent if and only if for any
two bounded Borel-measurable functions hi(x) and he(y) we have

E[h1(X)ha(Y)] = E[h1 (X)]E[h2(Y)]. (B.7)

As a consequence of the above proposition, if X and Y are independent, then for any two
bounded Borel-measurable functions hq(x) and he(y), hi1(X) and he(Y') are also indepen-
dent.

Example B.28. In Exzample B.13, consider random variables W,, and W,, — W,, with
m > n. These random variables are independent. This is because, W,, = Wo + > & and
Win — Wy = 2300 11 &, and the vectors (&1, ...,&,) and (§nq1, ..., &m) are independent. As
a result hi(&1, ..., &) := Wo + 2511 & and ho(Eny1, - &m) = D,y & are independent.
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One can assert the independence of a sequence of random variables in terms of the sequence
of o-fields generated by them.

Proposition B.4. A sequence of random variables {X,, : n = 1} are independent if any
sequence of events {E, : n = 1} such that E, € o(X,) for alln > 1 is an independent
sequence.

In particular, two random variables X and Y are independent if for any two events Fi €
o(X) and Fy € 0(Y), Fy and Fy are independent,

]P)(Fl M FQ) = P(FI)IP)(FQ)

The above proposition gives rise to the notion of independent o-fields of events.

Definition B.7. A sequence of random variables o-fields {F, : n = 1} are called inde-
pendent if any sequence of events {F, : n > 1} such that F, € F, is an independent
sequence.
In particular, two o-fields F and G are called independent if for any two events F € F
and G € G, we have
P(F nG) =P(F)P(G).

Example B.29. In Example B.13, consider the o-field generated by the outcomes of the
even rounds and the o-field generated by the outcomes of the odd rounds; denote them by
F and G, respectively. Since, the outcomes of each round in independent others, F and G
are independent o-fields.

Expected value and integration

Before Andrey Kolmogorov used the concept of a measure to define probability, measures
were used to extend the notion of integration. Integration with respect to measures is also
important in probability theory to define the expected value of random variables. Here,
we define the expected value of a random variable by the integral of that random variable
with respect to a probability measure in the most general form, which included uncountable
sample spaces.

If a random variable X is defined on a probability space (2, F,P), the expected value of
X is defined as an integral of X with respect to measure P, denoted by

E[X] := fXdIP’.

The definition of the integral is a little cumbersome. Thus, we only outline the steps.

Step 1) For an indicator random variable X = 14 where A is an event in F, we have
E[X] ;:f dP — P(A).
A
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Step 2) For step random variable X, a finite linear combination of indicator random
variables X = Zjvzl ajla;, we have

N
E[X] := Z a;P(A;).

Step 3) If the random variable X is nonnegative,X > 0, then X can be approximated
from below by an increasing sequence of step random variables; X,, 1 X. Then,

E[X]:= sup E[X,].

Notice that one can show that the value E[X] is independent of the choice of
the increasing sequence of step random variables and thus is well defined.

Step 4) For a general random variable X, we decompose X into positive and negative
parts; X = Xy — X_ with X; = max0, X and X_ = max0, —X. Then,

E[X] := E[X,] — E[X_].

In Step (4) in the above, the expected value E[X] is 00 when E[X ] = o0 and E[X_] < o0,
and it is —o0 when E[X ] < o0 and E[X_] = c0. However, E[X] cannot be defined when
we have both E[X ] = c0 and E[X_] = co. This motivates the following definition.

Definition B.8. A random variable is called integrable if E[|X|] = E[X 4] + E[X_] < o0.

The following example shows why we need to separate the positive part and the negative
part of a random variable in Step 4 above.

Example B.30. Consider the uniform probability measure on probability space given by
Q = [~1,1]?, the two dimensional square, and a random variable X given by X (x,y) =
%11. The positive part of X is [0,1]* U [~1,0]2. It is easy (by switching to polar
coordinates) to see that

1 r1 Ty 0 0 Ty
X,dP = Y dady + Y dedy = oo,
| xoar= | || Gt [ || ot = =
[0,1]2

and therefore, X is not integrable. We conclude that E[X] does not exist. However, the
iterated integral below exists and is equal to zero, i.e.

1l
f J X(z,y)dzdy = 0.
—1J-1

11X is undefined at the single point (0,0). But, the probability of a single point is 0. Therefore, we can
define X (0,0) by any value of choice; for example, X (0,0) = 0.
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Therefore, for random wvariable X, the iterated integral is not a well defined notion of
expectation.

There are three main convergence theorems for integrals with respect to a measure, which
are very useful in the probability theory. We conclude this section by presenting them.

Theorem B.3 (Monotone convergence theorem). Let {X,,},>1 be a sequence of nonneg-

ative and increasing random variables. Then, X := lim, . X, is a random variable and
E[X] = limy,— o E[X,].

Example B.31. In Example B.27, we assume the coin is a fair coin. We shall find the
expected value of the introduced random wvariable by introducing the sequence of random
variables { X, }°_, defined by

such that a; = 0 if w; = H, and aj = 2 ifw; = T. Notice that by the monotone convergence
theorem, lim,,_,o, E[X,,] = E[X]. Observe that X,, = X,—1 + &,, where &, takes two values
0 and 2 with equal probabilities 5. Therefore, E[X,] = E[X,_1]+E[&,]. Since E[&,] = 5,
we have E[X,] = E[X,—1] + 3. By solving E[X,] = E[X,—1] + 3= recursively, we obtain

E[X,] = Z?Zl 3% As n — oo, if follows from the monotone convergence theorem that

E[X] = Z;il 3% = %

Exercise B.16. Repeat the calculation in Example B.31 for an unfair coin with a proba-
bility p of heads.

Theorem B.4 (Fatou’s lemma). Let {X,},>1 be a nonnegative sequence of random vari-
ables. Then, X = liminf, .o X, is a random variable, and E[X] < liminf, o E[X,].

Example B.32. On the sample space Q = [0, 1) equipped with uniform probability measure,
define the sequence of random variables {Y,}2_; by

Yo(w) =

)

1 when forj=1,...,n, aj =0 or2
0 otherwise

where w = 2]0-0:1 g—fl 1s the ternary expansion of w € . Define

Y(w) := lim Y, (w).

n—o0

It is straightforward to see that

Y (w) = {1 when aj = 0 or2 for allj?l.

0 otherwise
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In other words, Y is the indicator random variable of the event that contains all numbers
in [0,1) whose ternary representation has only digits 0 or 2. This event is the same as the
Cantor set in Remark B.5 and is denoted by C. Therefore, Y = 1¢ and E[Y] = P(C). To
find the P(C), we use Fatou’s lemma, Theorem B.4, and write
E[Y] =P(C) < lim iorole[Yn].
n—
Next, we will show that liminf,, o E[Y,] = 0. To see this, first observe that Y, is also
an indicator random variable. For example for n = 1, Y1 = 19 1/3)0[2/3,1) and Y2 =
L10,1/9)0[2/9,1/3)0[2/3,7/9)u[8/9,1), and so on. Generally speaking,

Yn = 1An7
where A, is the union of 2" intervals each of size 3% Therefore, under uniform probability,
2?’L
E[Y,] =P(4,) = 3 0, asn — o0.

This means that the Cantor set has a probability of 0 under uniform probability.

Theorem B.5 (Lebesgue convergence theorem). Let {X,},>1 be a convergent sequence of
random variables and & be an integrable random variable such that | X, | < [£| for alln = 1.
Then, X :=limy, o X,, is a random variable, and E[X] = lim,_,o E[X,,].

Remark B.6. In Example B.32, we could use Lebesgue convergence theorem, Therem
B.5, to show that E[Y] = 0. This is because all random variables Yy, are indicators, and
therefore, their absolute values are bounded by the constant random variable & = 1.

Equality of random variables

Recall the simple version of the law of large numbers in Theorem B.2. Here, we put the
emphasis on the exception set, where the limit inside the theorem does not converge to %
One possible outcome inside this set is given by X,, = 0 for n = 0 (mod 3), and X,, =1
for n =1 or 2(mod 3). Then, the limit on the left-hand side converges to %, not 3. The
law of large numbers in Theorem B.2 asserts that the collection of all outcomes such that
lmpy_ e % Zﬁle X, exists and is equal to % is an event with a probability of 1. In other
words, the random variable limy_, % 22;1 X, is defined to be the constant % except on
an event with probability 0.

Definition B.9. Two random variables X and Y are considered equal if the event
{weQ: X(w)#Y (w)}

has a probability of zero. Then, we write X =Y P almost surely; X =Y P-a.s. for short;
or just a.s. whenever the probability measure is assumed.
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For instance, Theorem B.2 indicates that the random variable on the left-hand side,
limpy o0 %Zf;l X, is equal to the random variable on the right-hand side, %, a.s. In
addition, it also implies that the limit limpy_, o %Zle X, exists a.s., which is not an
obvious fact.

As a result of the following Lemma, Theorem B.2 shows that the random variable X (w) =

lim o0 27]:[:1 X, — % is zero a.s.: a very fancy representation for zero!
Lemma B.1. For a nonnegative random variable X, E[X] = 0 if and only if X =0 a.s.
As a consequence, we can define the convergence of a sequence of random variables.

Definition B.10. A sequence {X,},>_, of random variables is called convergent a.s. if the
event

{weQ: T}irrolo Xp(w) does not exist}

has a probability of 0. Then, the limit random variable X := lim,_,o, X,, exists a.s. and is
called the limit of {X,}o .
Law of a random variable

In the remainder of this section, we show how to define expectation for general random vari-
ables by means of the distribution function, without appealing to the notion of integration
with respect to a measure.

Definition B.11. For a random variable X with real values, the cumulative distribution
function (or cdf or simply “distribution function”) Fx(z) is defined by

Fx(z):=P(X < z).

The definition of a distribution function is related to the probability measure P by P(X €
(a,b]) = Fx(b) — Fx(a). In fact, the distribution function induces a probability measure
on R, denoted by Px, which is defined on open intervals by

Px((a,b]) = Fx(b) — Fx(a).

recall that to define a probability measure on B(R), we only need to define it on the open
intervals, or equivalently on the half-open intervals of the form (a, b].

Example B.33. Let X = 14. Then, Fx(z) =0 ifx <1 and Fx(z) =1 if x = 1; see
Figure B.4.

Example B.34. In Ezample B.2/, define a random variable that is equal to the value of
the picked random number. Then, the law of X is shown in Figure B.5.
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Fx(x)
1| —
]P’(:A)
— O b
1- ]:P(A)
: ‘ T
1

Figure B.4: The distribution function for an indicator.

Fx(l')

m_r
%‘&
\

=

Figure B.5: The distribution function for the random number chosen in Example B.24.

For a discrete random, Fx is a step function. For nondiscrete random variables Fx (z) is
not a step function. The distribution function of random variable X in Example B.27 is

illustrated in Figure B.6'2.
In general, the distribution function of a random variable X satisfies the following prop-

erties.

12T6 be precise, the distribution function of random variable X in Example B.27 is approximated by the
distribution function of random variable X,, with a large n.
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0.8 1

0.6 |- 1

0.4 .

0.2 .

0 0.2 0.4 0.6 0.8 1

Figure B.6: Devil’s Staircase: the distribution function of the random variable X in
Example B.27.

a) F'x(—o0) =0 and Fx(o0) = 1.
b) Fx is an increasing right-continuous function with a left-limit at all points.

Exercise B.17. Show that P(X € [a,b]) = Fx(b) — Fx(a—), where Fx(a—) is the left
limit of Fx at a.

It is also well known that if a function F' satisfies the properties (a) and (b) of a distribution
function, then there is always a random variable X in a proper sample space such that
Fy =F.

The probability Px is called the law of X. Notice that knowing F'x and knowing the law
of X are equivalent, but they are not equivalent to knowing IP. In fact, we shall see that in
many important calculations about random variables, we do not exactly need to know P;
in most applications, the law of a random variable is all we need. Therefore, we will now
introduce expected value in terms of the law of the random variable.

Notice that F'x is an increasing function, and therefore one can define the Riemann-
Stieltjes integral with respect to Fx as an alternative to the more complicated notion of
integration with respect to measure PP. In this case, the integral with respect to measure
Py is also simplified to a Riemann-Stieltjes'® integral.

Proposition B.5. For an integrable random variable X the expectation of X satisfies

E[X] - f Py ().

—00

13Read“Steel-chess”.
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In particular, for any function g,

given E[|g(X)|] < o0.

Similarly, for a random vector X = (X7, ..., X4), the distribution function is defined by
Fx(z1,...,2q) :=P(X1 < 21, ..., Xg < x9).
The law of X is a probability measure Px on R¢ such that
Px((—o0,z1] x -+ x (—00,24]) = Fx (21, ..., 24).

Then, the expectation of g(Xji, ..., X4) is given by

0 Q0
E[g(Xla aXd)] = J o J g('xla ...,JJd)FX(dIl, "'adl‘d)v
—a0 —0o0
given E[|g(X7, ..., Xq)|] < .

Exercise B.18. If {X;}, is a sequence of independent Bernoulli random variables with

equally likely values 0 and 1, show that U = >,.° % is uniformly distributed on [0, 1].

Conditional expectation

Conditional expectation cannot simply be defined in terms of the distribution function;
more advanced methods are needed. Unlike discrete probability setting, (B.6) in Section B,
we need to define E[X | Y] in general form by using a powerful tool in analysis, namely the
Radon-Nikodym theorem. To give you a glimpse of the definition, we recall from Remark
B.3 in the discrete setting that E[X | Y = y] is a function of the variable y, denoted
by h(y). Then, we use this function to define E[X | Y] by A(Y). Similarly, we try to
find E[X | Y] among the random variables of the form h(Y") for some (Borel measurable)
function h: R — R.

Definition B.12 (Conditional expectation). Let X be an integrable random wvariable.
E[X | Y] is the unique random variable of the form h(Y'), where h : R — R is a Borel
measurable function that satisfies

E[r(Y)g(Y)] = E[Xg(Y)], (B.8)
for all bounded real functions g with the domain containing the set of values of Y.
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The Radon-Nikodym theorem from measure theory guarantees the existence and the
uniqueness of an integrable random variable E[X | Y] in the a.s. sense. Given Defini-
tion B.12 for conditional expectation, all the results of Corollary B.2, Proposition B.1, and
Proposition B.3 hold for general random variables.

Corollary B.4. Let X and Y be random wvariables and f be a real function, such that
f(Y)X is integrable. Then,

E[f(Y)X | Y] = f(Y)E[X | Y] a.s..

We only provide a proof for the above corollary and leave the rest of the result of this
section to the reader.

Proof. By uniqueness of conditional expectation, it is sufficient to show that both E[ f(Y)X |
Y] and f(Y)E[X | Y] satisfy the Definition B.12. In other words, for any bounded real
functions g with the domain containing the set of values of Y, we have

E[p(Y)g(Y)] = E[Xg(Y)],

with h(Y) = E[f(Y)X | Y] or h(Y) = f(Y)E[X | Y]. Without lack of generality, we as-
sume that f is a bounded function. Then, f(Y)g(Y) is also a bounded function. Therefore,

E[E[X | Y]f(Y)g(Y)] = E[XF(Y)g(Y)]-

On the other hand,
E[E[f(Y)X | Y]g(Y)] = E[X f(Y)g(Y)].

Therefore, the uniqueness of conditional expectation implies the desired result. O

Proposition B.6. X and Y are independent if and only if for any real function f(x,y)
of X and Y, we have

E[f(X,Y)|Y =y] =E[f(X,y)] for ally in the set of values of Y,

provided that both f(X,Y) and f(X,y) are integrable for all y in the set of values of Y.

Corollary B.5. Two random variables X and Y are independent if and only if for any a
real function f such that f(X) is integrable, we have

E[f(X) | Y] = E[f(X)] ..

Proposition B.7 (Tower property of conditional expectation). Let X, Y, and Z be inte-
grable random variables. Then,

E[E[X |Y,Z] | Y] = E[X | Y] a.s..

232



B. PROBABILITY

In particular,

E[E[X | Y]] = E[X].

Remark B.7. The two following comments often help in finding conditional expectation
in general form.

1) One can verify (B.12) over a smaller set of functions to guarantee E[X | Y] = h(Y).
For instance, if for any bounded function g we have E[h(Y)g(Y)] = E[Xg(Y)], then
E[X | Y] = h(Y) holds true. Equivalently, if for any Borel set (or open set) A we
have E[h(Y)1lyeca] = E[X1yea], then E[X | Y] = h(Y).

2) If for a constant a, A, = {Y = a} is an event with positive probability, then E[X |
Y = a] = h(a) and is also constant. Then, one can find constant h(a) by using
E[h(Y)lyea,] = E[X1yea,]| in the following.

E[X1yea,y]

E[h(Y)liyean] = Ma)P(Y = a) = EXyeay] = hla) = 55— 3

This means that the conditional expectation E[X | Y] on the event {Y=a} is constant
and is equal to the average of X over the event {Y = a}.

Exercise B.19. Use Remark B.7-(1) to show Corollary B.4, Proposition B.6 and Propo-
sition B.S.

Recall that X be a random variable. The o-field generated by X is the smallest o-field
that contains all events {X € A} for all Borel sets A, and is denoted by o(X). In other
words, it is the o(X) that contains all events related to X. o(X) can equivalently be
expressed as the smallest o-field that contains all events {X € A} for all open sets A. We
say that a random variable Z is o(X)-measurable, or measurable with respect to o(X), if
for any Borel set A, the event {Z € A} isin o(X). It is known that if Z is o(X )-measurable,
then there exists a Borel function h : R — R such that Z = h(X). In particular, since
E[X | Y] is o(Y)-measurable, E[X | Y] = h(Y).

More generally, for a o-field G € F, we say that a random variable Z is G-measurable,
or measurable with respect to G, if for any Borel set A, the event {Z € A} is in G. One
can define E[X | G], the conditional expectation of X given the events in G, in a similar
fashion as Definition B.12, for which existence and uniqueness are guaranteed by the Radon-
Nykodim theorem.

Definition B.13 (Conditional expectation with respect to o-field). Let X be an integrable
random variable and G be a sub o-field of F. E[X | G] is the unique random variable Z
that satisfies

E[ZY] = E[XY], (B.9)

for all G-measurable random variables Y such that XY is integrable.

233



B. PROBABILITY

Remark B.7 holds also for (B.13): one only needs to verify E[Z1¢] = E[X 1], for all
G € G, to show that Z = E[X | G]. If G is generated by a set of elementary events &, then
one only needs to verify that E[Z1g] = E[X1g] for all E € £. In addition, let A is an event
in G such that P(A) > 0 and for any events B € G such that B € A, we have P(B) = P(A)
or P(B) = 0. Then, we have

E[X1{yeay]

PiA) n A.

E[X | g] =

Example B.35. Consider the probability space ((0,1),8((0,1))),P) where P is umform
probability measure, and let G be the o-field generated by the intervals (1, ﬂ) for i =
0, 1,2,3. Define the random variable X : w € (0,1) — R to be X(w) = 1(132/3) — L(0,1/3) —

Liasz)- We would like to find E[X|G]. The key observation here is that the o-field G
can be generated by a random variable that takes a constant value in interval (’ ’+1) for

=0,1,2,3. For instance, one can choose (among all other valid choices)

- S

and E[X|G] = E[X|Y]. Therefore, since Y is constant in each interval (%,™2), so is
E[X|G], and we can write

Ns

E[X]6] = Z“Z (4,50

In Definition B.13, one can take Y = 1(1 i1y to obtain
4

4

—1 i=0
L L=
: iz !
_i i =
Therefore,
-1 =0
1 .
= /L:
a; = if . )
3 =
-1 +=3
and

1
E[X|G] = _1(07%) + gl(ié) + 1(1 3~ 1(3 1)

The conditional expectation E[X | G] can be understood by using the concept of regression.
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Figure B.7: Geometric interpretation of conditional expectation with respect to a o-field.

Consider the vector space of square integrable random variables; V = {¢ : E[¢?] < oo}
and a linear subspace W of V including all G-measurable random variables. Then, for a
random variable X € V, the conditional expectation Z := E[X|G] is the closest point in
W to X; E[X|G] minimizes

E[|X - VP

over all Y € W ( G-measurable square-integrable random variables). See Figure B.7.

Remark B.8. Any o(Y)-measurable random variable Y can be written as h(Y) such that
h:R — R is a Borel function. Therefore, we have E[X | Y] by E[X | o(Y)].

Having the conditional expectation defined, one can expand the notion of independence
to a general case. One can show, as in Proposition B.9, that two random variables X
and Y are independent if and only if E[g(X) | o(Y)] = E[g(X)] for any Borel function ¢
(or, equivalently, E[A(Y) | o(X)] = E[h(Y)] for any Borel function h), provided that the
expectations exist.

Now, one can define the independence between two o-fields: two o-fields G and H are
independent if for any G-measurable random variable Z, E[Z|H] = E[Z] (or, equivalently,
for any H-measurable random variable Z, E[Z|G] = E[Z]). Given Definition B.13 for
conditional expectation, all the results of Corollary B.4, Proposition B.5 and Proposition
B.7 hold for general random variables.

Corollary B.6. Let X andY be random variables. Then, provided that'Y is G-measurable,
we have
E[YX |G] =YE[X | G] a.s.,

given that X and XY are integrable.

Proposition B.8 (Tower property of conditional expectation). Let X be an integrable
random variable and F and G be two o-fields such that G < F. Then,

E[E[X | F]| G] = E[X | G] a.s.
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In particular,

E[E[X | F]] = E[X].

Proposition B.9. X is independent of all G-measurable random variables if and only if
for any bounded real function f such that f(X) is integrable, we have

E[f(X) 6] = E[f(X)] a-s.
In particular, X is independent of Y if and only if E[f(X) | o(Y)] = E[f(X)].

Corollary B.7. Consider a probability space (2, F,P) that hosts an integrable random
variable X, and let G be a o-field such that G € F. Then, for any convex function f, we
have

fE[X | G]) <E[f(X) | G],
provided that f(X) is integrable.

The proof of this corollary is exactly the same line of argument as in Corollary B.1.

Continuous random variables

In this section, we review the basic concepts of continuous random variables without refer-
ring to measurability issues.

Definition B.14. A random variable X is called continuous if there exits a monnegative
measurable function fx : R — R such that

Fx(z) := f; e f:o fx(y)dy.

In this case, the function fx is called the probability density function (pdf) of the continuous
random variable X .

Working with continuous random variables is often computationally convenient; one can
accurately approximate the integrals to estimate relevant quantities such as probability of
certain events and expected value of certain random variables. For example, when X is a
univariate continuous random variable with pdf fx, the expected value of X is given by

0

E[X] = J xfx(r)dz.
—Q0

More generally, for a function A : R — R, we have

Q0

BIH(0] = | h(o)fx (@)

—00
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If I € R, then
P(Xel)= f fx(x)dx.
I

Example B.36 (Normal distribution). A continuous random variable X with density

1 2
fx(x) = —=—=e"2 forall zeR

V2T
is called a standard Gaussian random variable. By using integration techniques, one can
see that E[X] = 0 and var(X) := E[X?] = 1.
IfY =0cX +p foro >0 and p € R, then'Y is also a continuous random variable with

density
1 _—w?
fr(z) = \/2776 27 forall xeR.
o

Then, Y is called a normal random variable with mean p and variance o® and is denoted

by Y ~ N (u,0?).

Exercise B.20. Show that when X ~ N(0,1), we have E[X] = 0 and var(X) := E[X?] =
1.

When X = (X7, ..., Xy) is a jointly continuous random vector, we refer to its pdf fx as the
joint probability density function of X1, ..., X4 to emphasize its multi-dimensionality. For
simplicity, let’s focus on two random variables. Let the joint pdf of (X,Y) be fxy(z,y).
Then, it is easy to see that

a) The pdf of X, fx, satisfies

oe]

fx(x) = f Ixy(z,y)dy.

—00

A similar formula holds for the pdf of Y.

b) For a function h : R? — R, we have
Q0 0
B0 = || heg)fxy (o )dady
—00 J—00
c) If K < R?, then

P(XY) € K) = [[ fer(oa)da,
K
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Example B.37 (Bivariate normal distribution). Let C' be a symmetric positive-definite
matriz and p = (p1, ..., ng) € R A jointly continuous random vector X = (X1, ..., Xy)
with density

1 G_M
(2w det(C))4/2

is called a multi-variate normal random vector. For each j = 1,...,d, E[X;] = pj. The ma-
trixz C is called the covariance matriz of X, because its entities correspond to the covariance
of components of X, i.e.,

fx(x) = for all zeR?

Cij = E[(Xi — pa) (X5 — py)]-

In particular, for d = 2, for a positive-definite matriz'*

¢ [ % 122]
12 (o))
and on = 0, we have

_ 0312720121y+o€y2

2(0‘20'270

1
e i1 forall xeR.

X, Y&, = —————

Here by evaluating double integrals, we can see that o? and o3 are variances of X and Y,
respectively, and that o12 is the covariance of X and Y .

Exercise B.21. In Ezample B.37, show that cov(X,Y) := E[(X; — us)(X; — p5)] = Ci ;.

Exercise B.22. In Ezample B.37, show that 0% and o3 are variance of X and Y respec-
tively, and o192 is the covariance of X and Y.

Defining and calculating conditional probability and conditional expectation is also done
through integral definition for continuous random variables. Let (X,Y’) be a jointly con-
tinuous random variable with density fx y (x,y). Then, the conditional density of X given
Y = y is defined by

fX|Y(95 |y) =

)

fX,Y(x7y)
fy ()

provided that y is in the set of values of Y, {y : f(y) # 0}. Using the above definition, the
conditional probability of X € I given Y = y is given by

_ §; fxy(zy)de
f()

Similarly, if A : R — R is a function, then the conditional expectation of h(X) given Y =y

PXell|lY=y): (B.10)

Y11 order for C' to be positive-definite, is necessary and sufficient to have o1, 02 # 0, and o703 — 025 > 0.
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is given by
§2, h(@) fxy (z,y)da
Elh(X)|Y =y| := B.11
[2(X) | | f(y) (B.11)
In particular, the conditional expectation of X given Y = y is given by
Q0
T r,y)dr
EX Y =y]:= Vo 1y (0,9) (B.12)

fr(y)

Notice that conditional expectation and conditional probability in (B.10), (B.11), and(B.12)
are functions of the variable y. The domain of all these is the set of values of YV, i.e., {y :
fy(y) # 0}. This, in particular, can be useful in defining conditional distribution and condi-
tional probability given Y. Let’s first make the definition for conditional probability of X € 1

given Y. Consider a function ) that maps y onto Y(y) :=P(X el |Y =y) = Slfxfii(),y)dw
Then, one can define

SI nyy(:/v, Y)dl:
YY)

Notice that, unlike P(X € I | Y = y) which is a real function, P(X € I | Y) is a random
variable that is completely dependent on random variable Y. Similarly, we have

S, fX Y(-T Y)d Si $fxy(:C Y)d
E[X |Y]:=
fY( ) fr(Y)
For continuous random variables independence can be defined in terms of the joint pdf

f(z,y); let X and Y be jointly continuous. Then, X and Y are called independent if f is
a separable function, i.e.

P(XellY)=Y(Y)=

E[r(X) | Y] :=

Ixy(z,y) = g(x)h(y).

Notice that the choice of h and ¢ is not unique and varies by multiplying or dividing
constants. In this case, one can write the separation in a standard form

fxvy(z,y) = fx(z)fv(y), (B.13)

where fx(z) and fy(y) are, respectively, the pdf of x and the pdf of Y.

Example B.38. From Ezample B.37 and (B.13), one can see that bivariate normal ran-
dom wvariables are independent if and only if they are uncorrelated, i.e., they have zero
correlation or simply o123 = 0.

Exercise B.23. Show that (B.7) and (B.13) are equivalent.
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B.3 Martingales

The conditional expectation defined in the previous section is required in the definition of
a martingale. Consider a probability space (2, F,P), i.e., a sample space 0, a o-field F,
and a probability measure P and let X := {X;}/_, (possibly T = o) be a discrete-time
stochastic process. Here, a stochastic process is simply a sequence of random variables
indexed by time; for any t = 0,1, ..., X; is a random variable.

Definition B.15. A discrete-time stochastic process { M;}}_, on a probability space (2, F,P)
1s called a martingale with respect to X if

a) My is integrable for allt = 0,...,T, E[|M|] < 0.

b) The conditional expectation My given X, Xs_1,..., Xo is equal to Ms,

E[M| Xs, Xs—1, ..., Xo| = My, fors <t.

Condition (a) in the definition of martingale is technical and guarantees the existence of
the conditional expectation in condition (b). Condition (b) in the definition of martingale
implies that M, is a o(Xjy,..., Xs)-measurable random variable, for all s > 0. This is
because the conditional expectation E[M;|Xs, Xs_1, ..., Xo] is a (X, ..., Xs)-measurable
random variable.

Condition (b) can also be given equivalently by

b,) E[Mt|Xt_1, ...,X()] = M;_q, fort = 1.

Notice that, as a result of the tower property for conditional expectation, if (b’) holds, we
can write

E[E[M; | X, 1, .. Xo]| X, ., Xo] = E[M;_1|Xs, .., Xo.
By applying the tower property inductively, we obtain
E[M|Xs, ..., Xo] = E[M;—1| X5, ..., Xo] = -+ - = E[Ms41| X, ..., Xo] = M.

Example B.39. Let Y be an arbitrary integrable random variable. Then, M; := E[Y |
Xi, ..., Xo] is a martingale with respect to X .

Example B.40 (Symmetric random walk). The symmetric random walk in Definition B.2
is a martingale. Since W; — W;_1 = &;, we have

E[Wt+l|Wt7 ceey WO] = E[Wt + €t+1‘£t7 sy 51) WO]
= E[Wt|€t7 ceey 517 WU] + E[£t+1|€t7 ceey 517 WO]

E[Wi &, ..., &1, Wo] is simply E[W Wy, ..., Wy]| = Wy. On the other hand, since {&,}0_, is

an independent sequence of random variables, it follows from Corollary B.3 that

E[& 41/ .-, &1, Wo] = E[&41] = 0,
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and therefore, E[Wy1|Wy, ..., Wo| = W,.

Example B.41 (Multiperiod binomial model). Under the risk-neutral probability, the dis-

counted price of the asset, Sy = (lfitR)t is a martingale. Recall from Section 11.2.3 that

St = Si—1Hy,
where H; is a sequence of i.i.d. random variables under the risk-neutral probability that is
given by
1+R—-¢ u—1—R
_ d P"(Hi=1)= ——.
u—4 an (H: =1) u—4

Thus, Hy is independent of Sy—1 = SoH¢—1--- H1 and

PW(HZ = u) =

E[S¢|St-1, ..., So] = E[St—1H¢|Hy—-1, ..., H1, So]
= St_lE[Ht|Ht_1, ...,H1,S()] = St_lE[Ht] = (1 + R)St_l.

In the second equality above, we used Corollary B.2 and the third equality is the result of
Corollary B.3.

Remark B.9. As a result of tower property of conditional expectation, the expectation of
a martingale remain constant with time, i.e., E[M;] = E[Mpy].

Example B.42. Let {W.}2, be a symmetric random walk from Ezample B.2 and define
My := W2 —t. Then, Wy is a martingale with respect to {&}2,. To see this, we need to
show

E[WA, — (t+1)[&,....&] = W2 —t.
Recall that Wiy1 = Wy + &41. Thus,

E[W2 11, . &0] = E[(We + &41)2 &, o &1
= EB(W7|&, .., &a] + E[&F 114, - &) + 2E[Wiisa | oo ]

1t follows from Corollary B.2 that

E[WZ&, ... &1] = WP
E[Wiii1l6t, -, §1] = WiE[&41]&t, -, &1

On the other hand, by Corollary B.3, we have

E[&11&, . &] =E[¢2,,] =1
E[&41/&, -, 6] = E[&41] = 0

Thus, E[X21|&, ..., &) = W2 + 1, and therefore,
E[Mpg1|&, . &1] = WP + 1= (t+1) = M,
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In the definition of a martingale, Definition B.15, process X models the dynamics of the
information as time passes. At time ¢, the occurrence or absence of all events related to
X4, ..., Xo are known. The conditional expectation E[M;| X5, Xs_1, ..., Xo] should be read
as expectation of M; given the information gathered from the realization of process X until
time s. It follows from Remark B.8 that if we denote F2X := o(Xj, ..., Xo), then part (b)
in Definition B.15 of martingale can be written as

E[M|FX] = M.
This motivates the definition of a filtration.

Definition B.16. A filtration is a sequence of o-fields F := {Fs}L, such that Fs < F; for
t = s.

For example, if we set FX := (X, ..., Xo), then
FX = o0(Xg, Xo1,..,X0) € F~X = 0(Xp, oo X, Xo_1, ..., X0).

In this case, we call FX the filtration generated by X. FX represents the accumulated
information that are revealed by the process X as time passes.

We a filtration {F;}{2 is given, a stochastic process {Y;}72 is called adapted with respect
to the filtration if for all ¢, Y; is an JF;-measurable random variables. For instance, in
Example B.13, the random walk {W;} is adapted with respect to {FF 12 0. Here, Wy is
a constant and F¢ = o(&1, ..., &).

Given Definition B.13 of conditional expectation with respect to a o-field, one can now
define a martingale with respect to a given filtration without appealing to a process X.
A probability space (2, F,P) equipped with a filtration F := {F}%, is called a filtered
probability space.

Definition B.17. Consider a filtered probability space, i.e., (Q, F,F := {Fs}Z,,P). A
discrete-time stochastic process {My;}}_, is called a martingale with respect to filtration F if

a) The expected value of | M| is finite for allt =0,...,T, i.e., E[|M|] < 0.
b) The conditional expectation My given Fy is equal to Mg, E[M,; | Fs] = Ms for s < t.
We can equivalently present (b) as
E[M; | Fi—1] = M.
By applying the tower property in Proposition B.8 inductively, we obtain
E[E[M; | Fya] [ Fs] =+ = E[Msy1 | Fs] = Ms;  and  E[M;] = Mo.
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Super/submartingales

Motivated by American option pricing and many other applications, we define a super-
martingale and a submartingales

Definition B.18. A discrete-time stochastic process {Mt}tT:o on a filtered probability space
(Q, F,P) is called a supermartingale (or, respectively, a submartingale) with respect to a
filtration F if

a) My is integrable for allt =0,...,T, i.e., E[|M|] < c0.
b) E[M; | Fs] < Mg, for s <t (or, respectively, E[M; | F5] = M, for s <t).

M; is a supermartingale if and only if —M; is a submartingale. So, we can only focus
our study of supermartingales. A martingale is simultaneously a submartingale and a
supermartingale. The supermartingale property can equivalently be given by

E[M; | Fi—1] < My—q.

Example B.43 (asymmetric random walk). An asymmetric random walk with P(§, =
1)=p< % is a strict supermartingale.

E[Wt+1 ’ §t7 -"751] = E[Wt + §t+1 ‘ §t7 "'7§1]
= E[Wt | 5757 "'761] + E[gt—i-l ‘ §t7 "'761]-

E[W; | &, ..., &1] s simply Wy. On the other hand, since {§;}i=1 is an independent sequence
of random wvariables, it follows from Corollary B.3 that

E[&11 | &y &1] = E[&+1] =2p—1 < 0.
Thus; ]E[WtJrl ‘ é-ta "'aél] < Wi.

The following corollary shows how submartingales naturally show up from convex trans-
formation of martingales.

Lemma B.2. Let {M;};>0 be a martingale with respect to filtration F and f be a convex
function, and define Yy := f(My). Then, {Y;}i>0 is a submartingale with respect to filtration
F if E[|f(My)|] < o for allt = 0.

Proof. By corollary B.7, we know that
E[f(Mt) | ‘Fs] = f(E[Mt | JT"S]) = f(Ms)
In the above, the equality comes from the martingale property of {M}7,. O
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If {M}, is a submartingale, we can still have a slightly weaker version of the above
corollary.

Lemma B.3. Let {M;}i>0 be a submartingale with respect to filtration F and f be a convex
nondecreasing function such that B[|f(M;)|] < oo for allt = 0. Define Y; := f(My). Then,
{Yi}i=0 is a submartingale with respect to filtration F.

Proof. By corollary B.7, we know that
E[f(Mt) | ‘Fs] = f(E[Mt | JT"S]) = f(Ms)

In the above, the second inequality comes from the submartingale property of {M}? ), i.e.,
E[M; | Fs] = M; and nondecreasingness property of f. O

The following corollaries are the result of Lemmas B.2 and B.3

Corollary B.8. If M = {M;}i>0 is a martingale, then M, = {max{0, M;}}i=0, |M| :=
{IM¢|}i=0 , and |[M|P := {|M[P}i=0 for p > 1 are submartingales; for the last one we need
the assumption that E[|M;|P] < oo for all t = 0.

Stopping time and optional sampling theorem

Definition B.19. A stopping time with respect to filtration {F}{2 is a random variables
7:Q —{0,1,...} such that for anyt, the even {T <t} belongs to F;.

A stopping time is a random time that does not anticipate the release of information that
is defined by a filtration. For instance, recall that the filtration generated by the process
X is given by {F}%,, where F{X = o(Xo,..., X;) increases as time ¢ passes. Then, the
event that 7 happened before or at ¢ should belong to o(Xj, ..., X¢) to make tau a stopping
time. Some examples of a stopping time are presented below.

i) A deterministic time 7 = ty is a stopping time. Then, the event {ty < t} is either
or &, if ty < t or ty > t, respectively.

ii) Let 7, be the first time that a stochastic process {X }{°, such as the price of an asset
is greater than or equal to a. Then, the event {7 < t} can also be represented by al
the outcomes such that X,, > a for some u < ¢. Therefore, it belongs to o(Xj, ..., X).

iii) Assume that {Y;};>0) be a stochastic process which is measurable with respect to
o(Xo, ..., Xt). Let 7 be the first time that a stochastic process {Y;};>0) enters the
interval (a,b). Then, 7 is a stopping time.

iv) If {Yi}i=0) is predictable, i.e., measurable with respect to o(Xo, ..., X;—1), then the
stopping time in (iii) is called a predictable stopping time. In other words, we know
that the event {7 < t} is going to happen one period ahead of time t.
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v) If Y} is not measurable with respect to o(Xj,..., X¢); but it is measurable with re-
spect to o(Xp, ..., X¢+1), then 7 is not a stopping time. Because we know about the
occurrence of {7 <t} not any time sooner than ¢ + 1.

Lemma B.4. If 7 and ¢ are two stopping times with respect to a filtration {F;}i2, then
T v 0 := max{T, o}, and T A ¢ := min{T, 0} are stopping times with respect to filtration
{Fe}l0- In particular, for a deterministic time to, T A to is a stopping time bounded by tg
with respect to filtration {F}2,.

Proof. We only present the proof for 7 v g as the rest of the proof follows through a similar
line of arguments. The event {7 v ¢ < t} is equal to {7 < t} n {o < t}. Since, we have
{r<tleFrand {p <t}e F, {Tvo<t}={r<t}n{o<t}eF, and therefore, 7 v g is
a stopping time with respect to a filtration {F3}72,. O

For the simplicity, a stopping time with respect to a known filtration is called a stopping
time, whenever there is no confusion.

Definition B.20 (Stopped process). For a process {X:};2 that is adapted to a filtration
and a stopping time T with respect to the same filtration, the random variable X, is defined
to be equal X; on the event T =t.

Example B.44. Consider a random walk W, and let the stopping time 71, be the first time
the random walk is greater than or equal to a. Since the random walk moves one step at
a time, T, is the first time the random walk hits a. One can see this as the first time the
wealth of a gambler who bets only one dollar at each round becomes equal to a. Therefore,
W, =a.

Let {M}, is a martingale and 7 be a stopping time with respect to filtration F such that
T = to for some deterministic time tp, it is natural to ask whether E[M; | Fi,] = My,. In
particular when ¢y = 0, we want to see whether E[M,] = My. The answer in general case
is no according to the next example.

Example B.45. Recall the Saint Petersburg paradox in Example 2.2.4. Let T be the first
time that the gambler wins a round, i.e.,

T:=inf{t : & = 1}.

Notice that the doubling strateqy always generates exactly one dollar more than the initial
wealth, i.e., Wy = Wy + 1. Let tg = 0. If the game is fair, i.e., P(§ =1) =P({ = —1) = %,
the random walk, and therefore, the doubling strateqy make the wealth process a martingale.
However, E)W.] =Wy +1>W,.

Under some additional condition, we may hope for E[M, | F3,] and E[M;] = M to hold
true. The following Theorem is providing a set of sufficient conditions.
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Theorem B.6 (Optional sampling). Let T be stopping time bounded by a deterministic
time T, i.e., 7 <T and {M}}, be a supermartingale. Then for anyt < T,

E[M, | F] < My .
In particular, E[M;] < M.
It is obvious that for a martingale, the inequalities in the assertion of Theorem B.6 turns
to equalities, i.e., E[M; | F] = M; ¢ and E[M,] < M.

To show Theorem B.6, we need the following lemma.

Lemma B.5. Let {M}{°, be a supermartingale. Then, the stopped process

Mt T>1
MT/\t:{
M, T<t

s also a supermartingale.

Proof of Theorem B.6. Notice that because 7 < T, 7 AT = 7 and by Lemma B.5, one can
write
E[MT | Ft] = E[MT/\T | Ft] = MT/\t-

Proof of Lemma B.5. Tt suffices to show E[|M; A¢|] < o0 and
E[M:at | Feo1] = My, (1-1)-

Notice that Mr ¢ = Mr:1¢; oy + Mili;>4y. Therefore,

E[Mra¢ | Fior] = E[Mr [ 1oty | Feor] + E[Milgrnyy | Fia]
Since {r <t} ={r<t—1}e F_1and {r >t} = {7 <t}* € F,_1, we have

E[M7a | Froa] = E[Mr 1oy | Feo1] + Lirog B[My | Fa].
By supermartingale property of {M};2, we have E[M; | F;_1] < M;—; and

E[M;a¢ | Fioa] S E[M:loyy | Fio1] + Mioalzzgy-

On the other hand,

t—1 t—1
Ly B[M: | Fioa] = D B[M 1y | Fooa] = D B[Milgr—yy | Fioal.
=0 1=0
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Since Lir—iyM; isF;_1-measurable for i <t — 1, we have

E[M;1;—iy | Fi1] = 1rmiy M;,

and i
Ly E[M; | Feoa] = Z Milg—iy = Mrlirgi1y-
i=0
Therefore,

E[MT/\t | ]:tfl] < Mrl{rgt—l} + Mtfll{TBt} = MT/\(t—l)'

B.4 Characteristic functions and weak convergence

The characteristic function of a (univariate) random variable is a complex function defined
by '

xx(0) := E[e9X].
When X is a discrete random variable, then yx () = .72, e%ip;, and when X is con-
tinuous with pdf f, then xx(0) = {* e f(z)dz. In the latter case, the characteristic

e
—Q0
function is the Fourier transform of the pdf f.

If F' is the distribution function of X, the characteristic function can be equivalently given
by

xx(0) = JR ewxdF(x),

where the above integral should be interpreted as Reimann-Stieltjes integral. Especially
for continuous random variables we have

() = | e pa)da.

Therefore, for a continuous random variable, the characteristic function is the Fourier
transform of the pdf. Therefore, if we know the characteristic function of a distribution,
then one can find the distribution function by inverse Fourier transform.

Example B.46. We want to find the characteristic function of Y ~ N(u, o). First tale
the standard case of X ~ N(0,1).

_e2

) 1 J 0,2 g _ €7 f e e
= — e e r = —F/—— e r = € .
XX V2T JR V2T Jr
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Now, since Y = p+ X, we have

A A A 2
Yy (0) = E[ezG(M-‘:-UX)] - GWHXX(UH) — (inf—T

For the inversion theorem, see [10, Theorem 3.3.4], the characteristic function uniquely
determines the distribution of the random variable. Therefore, all the information
For a random vector (X,Y"), the characteristic function is defined as

X(Qla 02) = ]E[ei(elX+02Y)].

One of the important implications of definition of independent random variable in Remark
B.3 is that if X and Y are independent, then for any (6;,602) we have

x(01,02) = Mx (61) My (62). (B.14)

The inverse is also true; see [10, Theorem 3.3.2]. This provides an easy way to formulate
and verify the independence of random variable in theory.

Proposition B.10. X and Y are independent if and only if (B.14) holds true.

Weak convergence

The most well-known place where the weak convergence comes to play is the central limit
theorem (CLT).

Theorem B.7. Let X1, Xs,... be a sequence of i.i.d. random wvariables with expectation

p = E[X1] and standard deviation o := \/E[X?] — u? and define W,, := Z?:}T(iw Then,

P(W, <z)— e zdy,
—o V2T

as n — 0.

The appellation “weak” is originated from the fact that this convergence is weaker that the
concept of pointwise or almost sure (shortly a.s.) convergence. The pointwise convergence
indicates that the sequence of random variables{W,,(w)},, converges for all w € €; while
almost sure convergence means the probability of the event

Ay i={w : Wy (w)}, does not converge}

converges to zero as n — 0. Almost sure convergence, for instance, appears in the law of
large numbers (LLN).
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Theorem B.8. Let X1, Xo,... be a sequence of i.i.d. random wvariables with expectation
p = E[X1] and standard deviation o := A/E[X?] — u?. Then,

n
oo
M — 0 almost surely,
n

as n — 00. Here almost surely means that the probability that this convergence does not
happen is zero.

n

In other words, the statistical average %XZ converges to the expectation (mean), when
n — o0, except for a set of outcomes with zero total probability. For example in the
context of flipping a fair coin, the fraction of flips that the coin turns heads converges to %
exclusively. However, one can simply construct infinite sequences of heads and tails such
as H,T,T H,T,T,... with statistical average converging to some value other than %

In the weak sense of convergence in CLT, the sequence of random variables{W,,(w)}, do
not actually converge to a normal random variable over a significantly large part of the
sample space, as a result of law of iterated logarithms, i.e.

W,

limsup —————=—==—= =1 almost surely.
n—w +/2log(log(n))

Instead, the probability distribution function of W, can be approximated by normal dis-

S Xi—np

tribution function for large n. In this case, we say that ==L G converges weakly or in

distribution to standard Gaussian.

Definition B.21. We say the sequence {Y,}°_; of random variables converges weakly (or
in distribution) to random variable Y if for the distribution functions we have

Fy, (y) —» Fy(y) for anyy such that Fy is continuous at y.

We denote the weak convergence by Y, =Y.

The following example reveals a different aspect of weak convergence in regard to com-
parison with a.s. convergence.

Example B.47. On a probability space (Q,P), let the random variable Y, (w) = y, for all
w (a.s.), i.e., Y, is a constant random variable equal to yy. If y, — vy, then Y, > Y =y
pointwise (a.s., respectively).

Now, consider a sequence of possibly different probability space (2 = {0,1},P,) such that
P,({0}) = 1 if n is odd and P,({0}) = 0 if n is even. For each n, let the random variable
Zy : 2 — R be defined by

() % (w=0 andn is odd) or (w=1 andn is even)
n\W) =
1 otherwise.
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In particular, the distribution of Z, is a Dirac distribution located at %;

1 z>1

0 otherwise.

Fo(z) =P,(Z, <x) = {

Zy, does not converge pointwise, since Zn(0) alternates between % and 1 as n increases
successively. However, the distribution function F,(xz) of Z, converges to the distribution

function
1 >0
F(zx):= { v

0  otherwise.
The following proposition is one of the equivalent conditions of weak convergence.

Proposition B.11. Y, = Y if and only if for any bounded continuous function f :
R — R we have

lim E[f(Y,)] = E[f(Y)]

n—0o0

Notice that the expectation in E[Y,] and E[Y] are to be interpreted in different sample
spaces with different probabilities.

One of the ways to establish weak convergence results is to use characteristic functions;
see [10, Theorem 3.3.6]

Theorem B.9. Let {X,,} be a sequence of random variables such that for any 0, xx, (6)
converges to a function x(0) which is continuous at 0 = 0. Then, X,, converges weakly to
a random variable X with characteristic function x.

As a consequence of the this Theorem, one can easily provide a formal derivation for

central limit theorem. Let S, 2117\)}”” Thanks to the properties of characteristic

function and (B.14), the characterlstlc function of S, is given by
n
x5.(8) = | [xxi—u(6/(0v/n)) = (xx,-u(6/(0v/n)))
i=1

Here we used identical distribution of sequence {X,} to write the last equality. Since
= l—l—m———i-o( %), we can write

292

o
XXZ.,#(Q) = 1 — T + 0(92).

Therefore,

2 n 52
x5, (0) = (Xx,-0 (8 (ov/m))" = (1 gt 0<n1>> -
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2
as n — 00. This finished the argument since e~ is the characteristic function of standard
Gaussian.

Remark B.10. In the Definition B.21 of weak convergence, only the distribution of random
variables matters, and not the sample space of each random variable. Therefore, in weak
convergence, the random variables in sequence {Y,}y_ can live in different sample spaces.
However, one can make one universal sample space for all Y,’s and Y ; more precisely, if
Y, and Y are defined on probability space (Q, Fn,Pn) and (Q, F,P), then Q = Q x ], U
is a universal sample space. The random variables Y, and Y are redefined on by

Y (w,wi,wa,...) =Y (W), and Y(w,wi,ws,...) = Yn(wy).

The distribution of random variables on Q is determined by the probability P := P® [1,Pn.
Therefore, the weak convergence of random variables can be reduced to weak convergence
of probabilities on a single sample space.

Weak convergence of probabilities

If the sample space is a Polish space (complete metrizable topological space), then one can
define weak convergence of probabilities (or even measures). Sample spaces with a topology
contribute to the richness of the probabilistic structure; the concept of convergence of
probabilities can be defined.

Definition B.22. Consider a sequence of probabilities {P,},, on a Polish probability space
(Q,F). We say P, converges weakly to a probability P on (Q, F), denoted by P,, = P, if
for any bounded continuous function f:Q — R we have

lim E*[f] = E[f]

n—0o0

Notice that in the above definition topology of 2 has been used in the continuity of
function f.

One can always reduce the weak convergence of random variables to weak convergence of
probabilities in the Polish space R%. Let {Y;,}%_; be a sequence of random variables and Y’
be a random variable all with values in R?. Then, the distributions of ¥;,’s and Y defined
probability measures in R as follows.

P,(A) =P,(Y € A) and P(A) = P(Y € A).

Notice that, as emphasized in Remark B.10, ¥, and Y live in different probability spaces
(Q, Fn, Pp) and (9, F,P), respectively. However, the probabilities P,, and P are defined
on the same sample space R%.

Corollary B.9. Y, = Y if and only if P,, = P.
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Time Time

Figure B.8: Left: Sample path of a random walk. Right: Interpolated sample path of a
random walk

B.5 Donsker Invariance Principle and Brownian motion

In this section, we heuristically construct Brownian motion (or Wiener process) as the
weak limit of symmetric discrete-time random walk in Definition B.2. First, we make
the sample paths of random walk continuous by linear interpolation. For t € [0,0), we
define the interpolated random walk by W; := Wiy + (t — [t])W41; see Figure B.8. Then,
{W, : t = 0} becomes a continuous-time stochastic process with continuous sample paths,
i.e., for each t = 0, W; is a random variable and for any realization w of random walk,
Wi(w) is continuous in .
Motivated by central limit theorem, we defined normalized random walk by

1

Wy for all te [0,0).

Time

S

3

A sample path of a normalized random walk X (™)
Then, we define Brownian motion is the weak limit of Xt(n) as n — 0. Indeed, a rigorous
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definition of the Brownian motion is way more technical and requires advanced techniques
from analysis and measure theory. Here we only need the properties which characterize a
Brownian motion.

Remark B.11. In the above construction, one can take any sequence of i.i.d. random
variables {€n}n=0 with finite variance o® and define Xt(n) = g—\l/ﬁWnt. The rest of the

arguments in this section can be easily modified for this case.
o0 ;s _k L (n) _ y(n)
Because {{;};2, areii.d., forany t = © and s = - with t > 5, X Xs "’ has mean zero
and variance t — s. If t > s are real numbers, then the mean is still zero but the variance is

L ([tn]—[sn]) which converges to t—s. In addition, Xt(") — X is independent of X{" when

u < s. By central limit theorem, Xt(n) —xM o N (0,t — s), a normal distribution with
mean zero and variance ¢t — s. This suggests that Brownian motion inherits the following

properties in the limit from Xt(n):

a) B has continuous sample paths,
b) By =0,

c) when s < ¢, the increment B; — By is a normally distributed random variables with
mean ( and variance ¢t — s and is independent of B,; for all v < s.

The properties above fully characterize the Brownian motion.

Definition B.23. A stochastic process is a Brownian motion if it satisfies the properties

(a)-(c) above.

Property (c) in the definition of Brownian motion also implies some new properties for
the Brownian motion which will be useful in modeling financial asset prices.

- Time-homogeneity. Brownian motion is time homogeneous, i.e., B; — B has the
same distribution as B;_g.

- Markovian. The distribution of B; given {B,, : u < s} has the same distribution as
By given Bg, i.e., the most recent past is the only relevant information. Notice that
B, = Bs+ By— Bs. Since by property (c¢) B;— Bs is independent of F := {B,, : u < s},
the distribution of By = Bs + By — By given Fs = {B,, : u < s} is normal with mean
B and variance t — s, which only depends on the most recent past Bs. In other word,
by Proposition B.6

E[f(By) | Fs] = E[f (Bt — Bs + Bs) | Fs] = E[f(Bt — Bs + Bs) | B]
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- Martingale. Finally, the conditional expectation E[B; | B, : u < s] can be shown
to be equal to B;.

E[B, | B, : u<s| = E[B; | Bs] = E[B, | B] + E[B; — B, | B,] = B,.
In the above we used property (c) to conclude that E[B; — Bs | Bs] = 0.

A typical sample paths of Brownian motion is shown in Figure B.9.

Figure B.9: A sample paths of Brownian motion

Sample space for Brownian motion

In order to construct a Brownian motion, we need to specify the sample space. In the early
work of Kolmogorov, we choose the sample space to be (Rd)[o’m), i.e., space of all functions
from [0,00) to R?. This is motivated by the fact that for any w € Q, the sample path of
Brownian motion associated with sample w is given by the function By(w) : [0,0) — R
See Figure B.9. Kolmogorov made a theory which in particular resulted in the existence
of Brownian motion. While it is not hard to show property (c), in his theory it is not easy
to show property (a) of Brownian motion, i.e., the sample paths are continuous. By using
the weak convergence result of Yuri Prokhorov, Norbert Wiener take the construction of
Brownian motion to a new level by taking the sample space €2 := C([0, c0); R?), the space
of all continuous functions. This way property (a) becomes trivial, while, property (c) is
more challenging.

Among all the continuous functions in C([0,0); R?) only a small set can be a sample
paths of a Brownian motion. In the following, we present some of the characteristics of the
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paths of Brownian motion.

i) Sample paths of Brownian motion are nowhere differentiable. In addition,

Biys— B By.s— B
lim sup e B o0, and liminf 0 — 20 o,
§—0 1) 0—0 1)

ii) Sample paths of Brownian motion are of bounded quadratic variation variations.
More precisely, the quadratic variation of the path of Brownian motion until time ¢,
equals ¢, i.e.,

N—1

lim Y (B, —Bi,)*=t, as., (B.15)
-0 =

where for the partition IT := {tc = 0 < t; < --- <ty = t}, |[II| = max;—o,. ~N—1(tit1—

t;)
iii) Sample paths of Brownian motion are not of bounded variations almost surely, i.e.,
for
N-1
sup Z |By,,, — By;| = ©, a.s.,
I izo

where the supremum is over all partitions IT:= {tx =0 < t; < --- <ty = t}.

In the above, property (iii) is a result of (ii). More precisely, for a a continuous function
g : [a,b] = R, a nonzero quadratic variation implies infinite bounded variation. To show
this, let’s assume that ¢ is continuous and bounded variation B. Then, g is uniformly
continuous on [a, b], i.e., for any € > 0, there exists a § > 0 such that if |II| < 9, then

maX71{|g(ti+1) —gt)|} <e

i=0,...N
Thus,
N—-1 N—-1
Diglti) —gti)® < max {|g(tip1) — gt} Y, lg(tin1) — g(ti)] < eB.
izo 1=0,...,N—1 e

By sending € — 0, we obtain that the quadratic variation vanishes.
The following exercise shows the relation between the quadratic variation is martingale
properties of Brownian motion.

Exercise B.24. Show that B? —t is a martingale, i.e.
E[Bf,, — (t+s) | Bs] = B2 — s.
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C Stochastic analysis

Calculus is the study of derivative (not financial) and integral. Stochastic calculus is
therefore the study of integrals and differentials of stochastic objects such as Brownian
motion. In this section, we provide a brief overview of the stochastic integral and It6
formula (stochastic chain rule). The application to finance is provided in Part 3.

In calculus, the Riemann integral Ss f(t)dt is defined by the limit of Riemann sums:
N
lim 0 tr
lim ;lf (t5),

where § = b_T“, to = a, t; = to + 6, and t is an arbitrary point in interval [t;_1,¢;]. The
Reiman integral can be defined for a limited class of integrands, i.e., the real functions f is
Riemann integrable on [a, b] if and only if it is bounded and continuous almost everywhere.
A natural extension of Riemann integral is Lebesgue integral, which can be defined on a
large class of real functions, i.e., bounded measurable function on [a, b].

A more general form of Riemann integral, Riemann-Stieltjes integral is defined in a similar
fashion. For two real functions f, g : [a,b] — R, the integral of the integrand f with respect
to integrator g is defined by

b N
| #erdgte) i 3 76 0(8) (6.
a =1

For Riemann-Stieltjes integral, and its extension, Lebegue-Stieltjes integral, to be well-
defined, we need some conditions on f and g.

The condition on the integrand f is similar to the those in Riemann and Lebesgue integrals.
For example if f is continuous almost everywhere and at the points of discontinuity of g,
then no further condition needs to be imposed on f in the Riemann-Stieltjes integral. For
the Lebesgue-Stieltjes integral, f only needs to be measurable. However, for g a very crucial
condition is needed to make the integral well-defined. g must be of bounded variation, i.e.

N
}ii%;) lg(tiv1) — g(t:)| < .
1=

No matter how nice the function f is, if g is unbounded variation, Riemann-Stieltjes or
Lebesgue-Stieltjes integral cannot be defined. As seen in Section B.5, the sample paths of
Brownian motion are of unbounded variation, which makes it impossible to use them as
the integrator. Therefore, the integral SZ f(t)dB; with respect to Brownian motion cannot
be defined pathwise in the sense of the Riemann-Stitljes or Lebesgue-Stieltjes integrals.
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In this section, we define a new notion of integral, It6 integral'®, which makes sense of
SZ f(t)dBy in a useful way for some applications, including finance.

One of the major tools in stochastic analysis is the stochastic chain rule. Recall that the
chain rule in the differential form is written as dh(g(t)) = ¢'(t)h'(g(t))dt, which can be
used in the change of variable in integral. If v(t) = h(g(t)) and h and g are differentiable

functions, then
[ 10t = [ s onoma

The right-hand side above is a Riemann (Lebesgue) integral. As a matter of fact, change
of variable formula for Reimann (Lebesgue) integral is the integral format of the chain rule.
For bounded variation but not necessarily differentiable function g, the chain rule in the
change of variable for Riemann-Stieltjes (Lebesgue-Stieltjes) integral can be written in a
slightly different way. More precisely, if v(t) = h(g(t)) and h is a differentiable function
and g is of bounded variation, then

ffdv ffh' dg(1).

In the chain rule for It6 stochastic integral, an extra term appears. If v(t) = h(B;) and h
is a twice differentiable function, then

Jf t)dv(t ff '(B,)dB; + - ff )W (By)dt.

As expected the term Sb f(&)W' (By)dBy shows up like in chain rule. However, the term

5 S f(&)h"(By)dt, which is a simple Riemann integral, is unprecedented. In the remaining
of this sectlon, we provide a heuristic argument why this term should be in the chain rule
for It6 stochastic integral.

C.1 Stochastic integral with respect to Brownian motion and It6 formula

We first introduce a special case of It6 integral, called Wiener integral'S. In Wiener integral,
we assume that the integrand f is simply a real function and is not stochastic. The the

partial sums
N

55 = Z f(ti—l)(Bti - Bti—l)’

i=1

15Named after Japanese mathematician Kiyosi Itd, 1915-2008.
Named after American mathematician Norbert Wiener, 1894-1964.
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is a Gaussian random variable with mean zero and variance

N
5 f2(tic).
i=1

Exercise C.1. Show that S5 is a Gaussian random variable with mean zero and variance

0y A (ti-1).

Therefore, it follows form

N b
ws Y ) = | P
=1 a

li
6—0

that S5 = X where X is a normal random variable with mean zero and variance SZ f2(t)dt.

Notice that in the partial sum for S5, we choose t;_1, i.e., the left endpoint on the interval
[ti—1,t;]. This choice is not crucial to achieve the limit. If we would choose different points
on the interval, we still obtain the same limiting distributions. See Exercise C.2.

Exercise C.2. Calculate that the mean and the variance of partial sums below:
N
a) Zizl f(tl)(Btz - Bti71)'
b) Zz]\il f<%)(3tz - Bti—l)'
N
C) Zi:l f(ti—l)(Bti - Bti—l)’
Then, show that in each case the limit of the calculated quantities as § — 0 is the same.

1t6 integral extends Wiener integral to stochastic integrands. The integrand f is now a
function of time ¢ € [a, b] and w in sample space 2. For our analysis in this notes, we only
need to define Itd integral on the integrands of the form f(¢, B;) where f : [a,b] x R > R
is a measurable function. Similar to the Winer integral we start with the partial sum

N—-1
Z f(tiv Bti)(Bti+1 - Bti)‘
=0

Exercise C.3. Cualculate that the mean and the variance of partial sums below:
a) Zz]\il Bti(Bti - Bti—l)'

b) Zz]\il Bti*;ifl (Bti - Bti—l)'
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C) Ziil Btifl(Bti - Bti—l)'

Then, show that in all cases the limits of the calculated quantities as § — 0 are different.

T N-1
f f(u, By)dBy := P —lim > f(ti, By,)(By,,, — Bu,). (C.1)
0 5—>0 i=0

The notation P — lim means the limit is in probability, i.e., for any € > 0,

N-—1 T
P (‘ Z f(ti7Bti>(Bti+1 - Bti) _JO f(uvBu)dBu

>a>—>0 as 0 — 0.
i=0

The choice of starting point ¢; in the interval [¢;,¢;41] in f(¢;, By,) is crucial. This is because
choosing other point in the interval [¢;,¢;11] leads to different limits. Fo instance,

N-—1
ti +ti1 By,
Zf<l 21+17 t;t+l><Bti+l_Bti)
1=0

converges to

T T
0 0

Martingale property of stochastic integral

Consider the discrete sum which converges to the stochastic integral, i.e.
N—-1
My = Z f(ti’Bti)(Bti+1 - Bti)
i=0

Assume that the values of By, ..., B, are given. We want to evaluate the conditional
expectation of the stochastic sum Mr, i.e.

E[Mr | Bo, ..., By,]-

Then, we split the stochastic sum into to parts

7j—1 N—-1
My = Z f(tivBti)(Btiﬂ - Bti) + Z f(tia Bti)(BtH»l - Btz‘)'
i=0 i=j
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The first summation of the right-hand side above is known given By, ..., By,. Thus,

7j—1 N—-1
E[MT ‘ BOv "'7Btj] = f(tiaBti)(BtiJrl - Btl) + E Z f(ti7Bti)(Bti+1 - Btz) | BO, "'aBt]‘
=0 i=j
j—1 N—
= Z t”L?Bt z+1 - 2 tlaBt Bti+1 - Btz) ’ B07 "'7Btj]

Each term in the second summation of right-hand side above can be calculated by tower
property of conditional expectation

E [ f(ti, B,)(Bt,,, — B,) | Bo, ...,Btj] = E|[f(ti, B,)E[B,,, — By, | Bo, ..., B,] | Bo, ...,Bt].].

Since By,,, — By, is independent of By, ..., B,

i+1

E[By,,, — B, | Bo, .., Bt,] = E[By,,, — B,] = 0.

This implies that the second summation vanishes and we have

E[Mr | Bo, ..., By,] = > f(ti, Bi,)(Bu,,, — Br,) = My,.

In other words, given the Brownian motion up to time ¢;, the expected values of M is
equal to M. In probability terms, we call this a martingale. By some more technical tools,
one can show that given the path of a Brownian motion until time ¢ < T, the expected
value of the stochastic integral Sg f(s, Bs)dBs is equal to Sé f(s, Bs)dBs, i.e.

T t
E [f f(s,Bs)dBs|Bs for se [O,t]} = f f(s, Bs)dBs
0 0

One of the consequence of martingale property is that the expectation of stochastic integral

is zero, i.c.
UfsBdB] stB ~ 0.

Remark C.1. The martingale property of the stochastic integral with respect to Brownian
motion is basically a result of martingale property of Brownian motion. Riemann integral
So s, Bs)ds is a martingale if and only if f = 0. Intuitively, if we assume So Bs)ds is
a martmgale we have

E[ twf(s,BS)ds‘ft] —0
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By dividing both sides by § and then sending § — 0, we obtain

t+-0

i[5 | f(s Boas|F] = Er(e.5) | 7 - 0B

C.2 Ito formula

One of the important implications of Itd integral is a very powerful tool called Ité formula.
It6 formula is the stochastic version of Taylor expansion. To understand this better let’s
try to write Taylor expansion for V(¢ + d, Byys) about the point V (¢, By).

V(t+ 9, Birs) = V(t,Bt) + 00V (t, By) + 05V (t, Bt)(Bi+s — Bt) + %é’mV(t, By)(Biys — Bi)* + 0(0).
(C.2)
The remaining term in of order o(4) since By5 — By ~ O(\/6). Also, we know that
(Biys — Bt)? — 6 ~ 0(8), (Biys — Bi)d ~ 0(8), and trivially 6% ~ o(4). (C.3)
If we take conditional expectation with respect to By, we obtain
E[V(t+ 6, Biys) | Be] =V (¢, Be) + 00,V (t, By) + 0,V (t, By)E[(Bi+s — Bt) | B
b 50V (1, BIS + o).

_V(t,B)) + (8V(t, By) + %GMV(t, B)S + o(5)

Notice that here, by the martingale property of Brownian motion, we have E[(B;,s — By) |
Bi] = 0. Then, we obtain

N-1 1
> (2V (i, By,) + 5 0aaV (ti, Br,))
=0

E[V(T,Br)] = V(0,By) + E [ + o(1),

which in the limit converges to

T 1
E[V(T,Br)| =V (0,By) + E UO (0:V (t;, By) + 5aMV(t, Bt))dt] .

The above formula is called Dynkin formula. If we don’t take conditional expectation, we
can write

1
V(t+6,Biis) =V (t,B) + (0 V(t, By) + §amv<t, By))d + 0,V (t, By)(Biys — Bt) + 0(9).
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Then, we obtain

N— N-1
V (T, Br) = V(0, Bo)+ Z (0:V (ti, By,)+ = 8mV(tl,Bt )0+ > .V (ti, By,) (B, —Bi,)+o(1).
i=0 =0

which in the limit converges to

T

VT, Br) = V(0, By) +j @V (L B) + %GMV(t, B)))dt + L LoV BB, (C4)

0

In the above, (C.4) is referred to as Itd formula.
In a less formal way, Utd formula is given by

AV (t, B)) = (V(t, By) + %6sz(t,Bt))dt + 6,V (t, B,)dB,.
However, it has to be interpreted as (C.4).
Exercise C.4. Use Ito formula to calculate dV (t, By) in the following cases.
a. V(t,x) =e*
b. V(t,z) = e e
c. V(t,z) = e tcos(z)
d. V(t,z) = e t2®

where a is a given constant.

C.3 Martingale property of stochastic integral and partial differential
equations

Why martingale property of stochastic integral is important? Recall the It6 formula
AV (t B = (BV (L By) + %amwt, B))dt + 8,V (t, B1)dB,.
Assume that V (¢, z) satisfies the PDE
AV () + %amvu,x) _o. (C.5)

Then,
dV (t, By) = 0,V (t, By)dB.
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and thus V (¢, By) is a martingale, i.e.
V(t,By) =E[V(T,Br) | Bs for se][0,t]].

Conversely, if V (¢, B;) is a martingale, then V (¢, z) must satisfy the PDE (C.5).

C.4 Stochastic integral and Stochastic differential equation

Riemann integral allows us to write a differential equation ‘fl—’f = f(t,z(t)), z(0) = z¢ as an
integral equation

¢
() = 20 + f F(s,2(s))ds. (C.6)
0
Integral equations are more general because the solution does not necessarily need to be
differentiable. For instance if
1 t=21
t,xr) = .
ft,2) {0 t<1

The solution to the integral equation is x(t) = xg + (¢ — 1), which is not differentiable at
t = 1. While dx = f(¢,z(t))dt should be interpreted as (C.6).

It6 integral allows us to define stochastic differential equations (SDE for short) in integral
form. For example, the Black-Scholes differential equation is given by

dS;

?t = rdt + UdBt.

The true meaning of this term is
t t
Sy = Sp + TJ Sudu + O’J SudB,,.
0 0

The solution is a stochastic process Sy which satisfies the SDE. In the above case, it is easy
to verify, by means of It6 formula, that the geometric Brownian motion

Sy = Spexp ((r — %O’Q)t + aBt> )

Take V (t,2) = Soexp ((r — 0%t + o). It follows from Itd formula that
t

V(t,B) = V (0, By) + J

t
(0V (s, By) +%8mV(s,BS))dt+ J 0,V (s, B.)dB,.
0 0

Since V(0,2) = Sp, &V (s,z) = (r — 302)V(s,2), &V (s,z) = oV (s,z), and 0y, V (s,2) =
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o2V (s,x), we have

t

V(t, Bt) = S() + T‘f

t
V (s, Bs)ds + Uj V (s, Bs)dBs.
0 0

In general for a pair of given functions u(t,z) and o(t, z), an equation of the form
dSt = ,u(t, St)dt + O'(t, St)dBt (C?)

is called a stochastic differential equation (SDE). A solution S; is a process such that the
Lebesgue integral

Jot,u(s,Ss)ds < o P-as.,
the It6 integral

Jot o(s,Ss)dBs
is well-defined, and the following is satisfied:

t t

w(s,Ss)ds + J o(s,Ss)dBs.

StZSo—i-f
0

0

For CEV model in Section 77, SDE is written as

d
Bt _ gt + 08P dB,
St

or in integral form

t t
Sy = So + rj Sydu + af S+haB,.
0 0

One of the most important applications of the Itos formula is the chain rule in the stochas-
tic form. Consider SDE

dSt = ,ll(t, St)dt + O'(t, St)dBt (CS)

and V (t, S;) where V (¢, z) is a function one time continuously differentiable in ¢ and twice
continuously differentiable on x. Then we can write

1
V(t + 6, St+5) = V(t, St) + 8tV(t, St)(s + (3;,;V(t, St)(St+6 — St) + anxV(t, St)(St+5 — St)z + 0(5)
Notice that by (C.8), we have
St+5 — S~ [L(t, St)5 + O'(t, St)(Bt_Hg — Bt)
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Therefore, we have
(Strs — S1)? = 02 (t, 90) (Brys — By)® + 0(0).
and
VIt +6,8s) = V(t,8)) + AV (t,S)8 + 0.V (¢, S) (u(t, St)8 + o(t, St)(Biys — Br))
+ S0V (S (lt, S5 + 01,5 (Buvs — B))? + 0(d)
—V(t, ) + &V (t, S1)6 + .V (L, Sp) (u(t, S1)8 + o(t, ) (Bess — By))
+ %%V(t, Si)a%(t, S:)6 + o(6)

—V(t,S) + BV (t,S) + 8.V (¢, S)u(t, Sp) + %GMV(t, S))o2(t, )8
+ o (t, SV (L, S)(Biss — Br)) + 0(6).

Or in the integral form we have

t

V(E S) =V(0, So) + f (0V (0. 2) + 2V (. Su)pa(w, S,) + %amvm,su)a?(u, 5.))du

0

T
+ J o(u,Sy) 0,V (u, Sy)dBy,.
’ (C.9)

Proposition C.1. If the function V (t,S) is twice continuously differentiable and {V (t, S¢)}1_,
s a martingale, then

AV (LS) + AV (8, S)ult, S) + %amm, $)02(t, S) — 0

for allte[0,T] and S.

Proof. By the It6 formula (C.9), we have

t
| (0,80 + 0V (s St )+ 5000V (. 8,)0% (0, 52) )
0

T

_ VS — V(0,S0) L o (1, S2),V (11, Su)d By

Since the right-hand side is a martingale, so is the left-hand side. However, a Riemann
integral on the left cannot be a martingale unless

OV (1,S,) + 0.V (¢, St Se) + %amwt, S)o2(t, Sh) = 0.
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This is because if the above term is not zero at some time ¢, e.g. positive, the Riemann
integral becomes increasing for a short interval [t,t + 0], which contradicts the martingale
property. ]

C.5 1It0 calculus

The calculations in the previous section can be obtained from a formal calculus. First, we
formally write (C.2) as

dV (t,By) = 0;V(t, By)dt + 0,V (t, B;)dB; + %8me(t, B;)(dBy)?2.
Then, we present (C.3) in formal form of
(dBy)? = dt, dBdt = dtdB; =0 , and (dt)>=0. (C.10)
which implies the It6 formula for Brownian motion.
AV (t B = (BV (L By) + %6MV(1€, B))dt + 8,V (t, B1)dB,.
For the It6 formula for process S; in (C.8), we can formally write
AV (£, ) = 8,V (£, Sp)dt + O,V (£, Si)dS + %amvu, S,)(dS))2.
Then, we use (C.10) to obtain
(dS;)? = p2(dt)? + 2uodtdB; + o*(dB;)? = o2dt.

Thus,

tu St)

2
dV(t, St) = (6tV(t, St) + 0-(263735‘/(75, St))dt + (%V(t, St)dSt

Theorem C.1 (It6 formula). Consider S; given by (C.8) and assume that function V is
once continuously differentiable in t and twice continuously differentiable in x. Then, we
have

I O'Z(t, St)

dV(f, St) = ((M/(t, St) + ,u(t, St)é’xV(t, St) axIV(t, St))dt +O’(7f, St)(?mV(t, St)dBt

Similar to Section C.3, we can use martingale property of stochastic integral to obtain a
PDE. More precisely, V (¢, S¢) is a martingale if and only if V (¢, z) satisfies

1
OV (t,x) + pu(t,x)0.V (¢, ) + o2(t, x)i&pwV(t,x) = 0.
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Exercise C.5. Let
dSy = Sydt + 25:dBy.

Calculate dV (t, St) in the following cases.

where a 1s a constant.

Exercise C.6. In each of the following SDE, find the PDE for the function V(t,z) such
that V(t,S¢) is a martingale.

a. dS; = odB; where o is constants.

b. dSy = k(m — S)dt + odB; where k, m and o are constants.

c. dSt = k(m — St)dt + o+/S¢dBy where k, m and o are constants.
d. dS; = rSidt + aSthBt where r and o are constants.

Exercise C.7. Consider the SDE
dS; = rSidt + 05;dB;  where r and o are constants.

a. Find the ODE for the function V(x) such that e "'V (S;) is a martingale.

b. Find all the solutions to the ODE in (a).
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Index

a.s., see almost surely
ABC, 120
almost surely, 103
arbitrage

arbitrage bounds, 36

model-independent arbitrage, 36
no weak arbitrage condition, 41

strong arbitrage, 41

weak arbitrage, 36, 41

Arrow-Debreu model, 39

artificial boundary conditions, see ABC

asset, 1
liquid, 1
return, 28
realized, 45
risk-free, 1
risky, 1
underlying, 2, 10

Bachelier model, 104
backwardation, 7
binomial model, 75

Black-Scholes equation, 157

Black-Scholes model, 135
bond, 14
convexity, 20
corporate, 16
coupon, 15
coupon-carrying, 15
duration, 19
face value, 14
maturity, 14
present value, 14

principle, 14

sovereign, 16

yield, 15
Brownian motion, 104

calibration, 93
binomial model
physical probability, 94
risk-neutral probability, 98
canonoical mapping, 66
CDO, seecollateralized debt obligation24
collateral portfolio, 24
trenches, 24
equity, 24
junior, 24
mezzanine, 24
senior, 24
central counterparty clearinghouse (CCP), 4
clearing payment, 8
collateralized debt obligation, 24
commodity, 1
computational domain, 120
contango, 7
contingent claim, 56
European, see Markovion82
Markovion, 82
continuously compounded rate, see short rate
credit risk, 2

debt, 1

Delta, 85

derivative, 1
maturity, 2
payoft, 4
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INDEX

dividend yield, 90

FEisenberg-Noe model, 7
elementary securities, 48
equity, 1

financial risk, 2
financial security, 1
fixed point, 8
fixed-income, 1

maturity, 1
fixed-income security, 14
forward contract, 2

long position, 2

short position, 2
forward price, 3
forward rate, 16

instantaneous, 17
forward rate agreement, 17
free boundary problem, 179
FTAP, 104

fundamental theorem of asset pricing, see

FTAP
futures contract, 2
futures prices, 3

GBM, 135
geometric Brownian motion, see GBM
Greeks, 140

Delta, 142

Gamma, 142

Theta, 142

heat equation
backward, 111
forward, 111
hedging
Delta, 85, 137

instantaneous rate, see short rate

marginal account, 4
market
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complete, 57
incomplete, 57
martingale, 72
maturity, 2
Monte Carlo method, 126

no weak arbitrage condition, 41
no-dominance principle, 33

option, 10
American, 14, 167
call, 14, 182
continuation value, 173
exercise value, 173
put, 14, 182
straddle, 182
asian, 137
at-the-money, 10
basket option, 36
call, 10
digital, 107
call, 107
put, 107
European, 11
in-the-money, 10
long position, 11
look-back, 137
outof-the-money, 10
put, 10
short position, 11
vanilla, 10

payoff
Bear-spread call, 148
Bull-spread call, 148
FEuropean, 11
path-dependent, 87
straddle, 148
strangle, 148

payoff function, see payoff

polar collection, 71

polar sets, 71
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generated, 73
portfolio, 28, 41
of bonds, 15
admissible, 74
collateral portfolio, 24
efficient portfolio, 28
investment portfolio, 28
long position, 41
of defaultable assets, 24
replicating, 52
self-financing, 66
short position, 41
pricing model, 58
prime rating, 21

quadrature method, 126

rate of return, 94
replication

perfect, 58
return

Arithmetic, 93

logarithmic, 93
risk

market, 2

model risk, 58

operational, 2

systemic, 2, 25
risk premium, 96
risk-adjusted probability

risk-neutral probability, 42
risk-neutral probability, 42, 58

sample path, 65
security, 1

short rate, 15

short selling, 34

Snell envelope, 176
spot price, 3

spot rate, see short rate
state-price deflator, 47
stochastic process, 64

diffusion, 101
Markovian, 78
strike price, 10
subprime rating, 21
superreplication, 58
superreplication price, 58
survival rate, 21

underlying, see asset2
volatility, 94

weak convergence
binomial to GBM, 129

yield
risk-adjusted yield, 22

zero bond, see zero-coupon bond
maturity, 14
principle, 14

zero-coupon bond, 14
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