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Table 1: Table of Notation

A Ÿ B fi union of two disjoint set A and B

Rd fi d-dimensional Euclidean space
Rd

` fi All points in Rd with nonnegative coordinates
x P Rd fi d-dimensional column vector
minpx, yq “

pminpx1, y1q, ..., minpxn, ynqq

fi component-wise minimum of two vectors

x` “ minpx, 0q fi component-wise minimum of a vector with zero
vector

AT fi transpose of matrix A

x ¨ y “ xTy fi inner (dot) product in Euclidean space
A “ 0 fi all the entities of the matrix (vector) A are zero
A ‰ 0 fi at least of the entities of the matrix (vector) A

is nonzero
A ě 0 (A ą 0) fi all the entities of the matrix (vector) A are non-

negative (positive)
∇f fi column vector of gradient for a differentiable

function f : Rd Ñ R
∇2f fi Hessian matrix for a twice differentiable function

f : Rd Ñ R
P or P̂ fi Probability
PpAq (resp. P̂pAq) fi Probability of an event A under probability P

(resp. P̂)
ErXs (resp. ÊrXs) fi Expected value of a random variable X under

probability P (resp. P̂)
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Preface

The story of this book started when I was assigned to teach an introductory financial math-
ematics course at Florida State University. Originally, this course was all measure theory,
integration and stochastic analysis. Then, it evolved to cover theory of measures, some
probability theory, and option pricing in the binomial model. When I took over this course,
I was not sure what I was going to do. However, I had a vision to educate students about
some new topics in financial mathematics, while keeping the classical risk management
material. My vision was to include some fundamental ideas that are shared between all
models in financial mathematics, such as martingale property, Makrovian property, time-
homogeneity, and the like, rather than studying a comprehensive list of models. To start,
I decided to seek advise from a colleague to use a textbook by two authors, a quantitative
financial analysts and a mathematician. The textbook was a little different and covered
various models that quants utilize in practice. The semester started, and as I was going
through the first couple of sections from the textbook, I realized that the book was unus-
able; many grave mistakes and wrong theorems, sloppy format, and coherency issues made
it impossible to learn from this textbook. It was my fault that I only skimmed the book
before the start of semester. A few months later, I learned that another school had had
the same experience with the book as they invited one of the authors to teach a similar
course. Therefore, I urgently needed a plan to save my course. So, I decided to write my
own lecture notes based on my vision, and, over the past three years, these lecture notes
grew and grew to include topics that I consider useful for students to learn. In 2018, the
Florida State University libraries awarded me the “Alternative Textbook Grant” to help
me make my lecture notes into an open access free textbook. This current first edition is
the result of many hours of effort by my library colleagues and myself.
Many successful textbooks on financial mathematics have been developed in the recent

decades. My favorite ones are the two volumes by Steven Shreve, Stochastic Calculus for
Finance I and II ; [27, 28]. They cover a large variety of topics in financial mathematics
with emphasis on the option pricing, the classical practice of quantitative financial analysts
(quants). It also covers a great deal of stochastic calculus which is a basis for modeling
almost all financial assets. Option pricing remains a must-know for every quant and stochas-
tic calculus is the language of the quantitative finance. However over time, a variety of
other subjects have been added to the list of what quants need to learn, including efficient
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computer programming, machine learning, data mining, big data, and so on. Many of
these topics were irrelevant in 70s, when the quantitative finance was initially introduced.
Since then, financial markets has changed in the tools that the traders use, and the speed
of transactions. This is a common feature of many disciplines that the amount of data that
can be used to make business decisions is too large to be handled by classical statistical
techniques. Also, financial regulations has been adjusted to the new market environment.
They now require financial institutions to provide structured measurements of some of their
risks that is not included in the classical risk management theory. For instance, after the
financial meltdown in 2007, systemic risk and central clearing became important research
areas for the regulator. In addition, a demand for more robust evaluation of risks led to
researches in the robust risk management and model risk evaluations.
As the financial mathematics career grows to cover the above-mentioned topics, the

prospect of the financial mathematics master’s programs must also become broader in
topics. In the current book, I tried to include some new topics in an introductory level.
Since this is an open access book, it has the ability to include more of the new topics in
financial mathematics.
One of the major challenges in teaching financial mathematics is the diverse background of

students, at least in some institutions such as Florida State University. For example, some
students whom I observed during the last five years, have broad finance background but
lack the necessary mathematical background. They very much want to learn the mathemat-
ical aspects, but with fewer details and stepping more quickly into the implementational
aspects. Other students have majors in mathematics, engineering or computer science who
need more basic knowledge in finance. One thing that both groups need is to develop
their problem-solving abilities. Current job market favors employees who can work inde-
pendently and solve hard problems, rather than those who simply take instructions and
implement them. Therefore, I designed this book to serve as an introductory course in
financial mathematics with focus on conceptual understanding of the models and problem
solving, in contrast to textbooks that include more details of the specific models. It includes
the mathematical background needed for risk management, such as probability theory, op-
timization, and the like. The goal of the book is to expose the reader to a wide range
of basic problems, some of which emphasize analytic ability, some requiring programming
techniques and others focusing on statistical data analysis. In addition, it covers some
areas which are outside the scope of mainstream financial mathematics textbooks. For
example, it presents marginal account setting by the CCP and systemic risk, and a brief
overview of the model risk.
One of the main drawbacks of commercial textbooks in financial mathematics is the lack

of flexibility to keep up with changes of the discipline. New editions often come far apart
and with few changes. Also, it is not possible to modify them into the course needed for
a specific program. The current book is a free, open textbook under a creative common
license with attribution. This allows instructors to use parts of this book to design their
own course in their own program, while adding new parts to keep up with the changes and
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the institutional goals of their program.
The first two chapters of this book only require calculus and introductory probability

and can be taught to senior undergraduate students. There is also a brief review of these
topics in Sections A.1 and B of the appendix. I tried to be as brief as possible in the
appendix; many books, including Stochastic Calculus for Finance I ([27, 28]) and Convex
Optimization ([8]), cover these topics extensively. My goal to include these topics is only
to make the current book self-sufficient. The main goal of Chapter 1 is to familiarize
the reader with the basic concepts of risk management in financial mathematics. All
these concepts are first introduced in a relatively nontechnical framework of one-period
such as Markowitz portfolio diversification or the Arrow-Debreu market model. Chapter
2 generalizes the crucial results of the Arrow-Debreu market model to the multiperiod
case and introduces the multiperiod binomial model and the numerical methods based on
it. Chapter 3 discusses more advanced subjects in probability, which are presented in the
remainder of Section B and Section C of the appendix. This chapter is more appropriate
for graduate students. In Section 3.2, we first build important concepts and computational
methods in continuous-time through the Bachelier model. Then, we provide the outline
for the more realistic Black-Scholes model in Section 3.3. Chapter 4 deals with pricing a
specific type of financial derivative: American options. Sections 4.0.1 and 4.1 can be studied
directly after finishing Chapter 2. The rest of this section requires an understanding of
Section 3.3 as a prerequisite. The inline exercises and various examples can help students
to prepare for the exams on this book. Many of the exercises and the examples are brand
new and are specifically created for the assignments and exams during the three last years
of teaching the course.
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1. PRELIMINARIES

1

Preliminaries of finance and risk
management

A risky asset is an asset with an uncertain future price, e.g. the stock of a company in an
exchange market. Unlike a risky asset, a bank account with a fixed interest rate has an ab-
solutely predictable value, and is called a risk-free asset. Risky assets are classified in many
different categories. Among them, financial securities, which constitute the largest body of
risky assets, are traded in the exchange markets and are divided into three subcategories:
equity, debt, and derivatives.
An equity is a claim of ownership of a company. If it is issued by a corporation, it is called

common stock, stock, or share. Debt, sometimes referred to as a fixed-income instrument,
promises a fixed cash flow until a time called maturity and is issued by an entity as a means
of borrowing through its sale. The cash flow from a fixed-income security is the return of
the borrowed cash plus interest and is subject to default of the issuer, i.e., if the issuer is
not able to pay the cash flow at any of the promised dates. A derivative is an asset whose
price depends on a certain event. For example, a derivative can promise a payment (payoff)
dependent on the price of a stock, the price of a fixed-income instrument, the default of a
company, or a climate event.
An important class of assets that are not financial securities are described as commodities.

Broadly speaking, a commodity is an asset which is not a financial security but is still
traded in a market, for example crops, energy, metals, and the like. Commodities are in
particular important because our daily life depends on them. Some of them are storable
such as crops, which some others, such as electricity, are not. Some of them are subject
to seasonality, such as crops or oil. The other have a constant demand throughout the
year, for instance aluminum or copper. These various features of commodities introduce
challenges in modeling commodity markets. There are other assets that are not usually
included in any of the above classes, for instance real estate.
If the asset is easily traded in an exchange market, it is called liquid. Equities are the
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1.1. BASIC FINANCIAL DERIVATIVES 1. PRELIMINARIES

most liquid of assets; fixed-income instruments and derivatives are less liquid. Commodities
have become very liquid, partly due to the introduction of emerging economies in the global
marketplace. Real estate is one of the most illiquid of assets.

Asset

Risky

Securities

Equity Debt Derivatives

Commodities Real estate ...

Risk free: Government bond

Figure 1.0.1: Classification of assets

1.1 Basic financial derivatives

Financial risk is defined as the risk of loss of investment in financial markets. Two of the
main categories of financial risk are market risk, causes by the changes in the price of
market equities, and credit risk, caused by the default of a party in meeting its obligations.
Financial derivatives are designed to cover the loss caused by the market risk and the credit
risk. There are other important forms of financial risk such as operational risk and systemic
risk. However, these are irrelevant to the study of financial derivatives. Therefore, in this
section, we cover the basics of some simple financial derivatives on the market risk, bonds
and some credit derivatives. In practice, bonds are not considered as derivative. However,
theoretically, a bond is a derivative on the interest rate.

1.1.1 Futures and forward contracts

Forward and futures contracts are the same in principle, but they differ in operational
aspects. In both contracts, the two parties are obliged to exchange a specific asset at a
specific date in the future at a fair price that they have agreed upon. The asset subject
to exchange is called the underlying asset; the date of exchange is called the maturity
date; and the price is called the forward/futures price. In other words, futures and forward
contracts lock the price at the moment of a deal in the future.
Forward contracts are simpler than futures. They are nontradable contracts between two

specific parties, one of whom is the buyer of the underlying asset, or the long position, and
the other is the seller of the underlying asset, or the short position. The buyer (seller) is

2



1. PRELIMINARIES 1.1. FINANCIAL DERIVATIVES

Risk

Financial

Market Credit Operational Systemic

Non-
financial

Insurance

Figure 1.1.1: A classification of risks

obliged to buy (sell) a determined number of units of the underlying asset from the seller
(to the buyer) at a price specified in the forward contract, called the forward price. The
forward price is usually agreed upon between two parties at the initiation of the contract.
The forward contract price is not universal and depend upon what the two parties agree
upon. Two forward contracts with the same maturity on the same underlying asset can
have two different forward prices. Usually, one party is the issuer of the forward contract
and quotes the forward price to the other party, or the holder, who faces a decision to
agree or decline to enter the deal. Generally, the issuer is a financial firm and the holder
is a financial or industrial firm. Unlike forward contracts, futures contracts are tradable

Over-the-counter: Long position Short position

Central clearing: Long position CCP Short position

Figure 1.1.2: Forward (top) versus futures (bottom). In futures markets, the CCP
regulates the contracts to eliminate the counterparty risk.

in specialized markets. Therefore, given a fixed underlying asset and a fixed maturity T ,
across the market there is only one futures price, a price listed in the futures market. In
other words, the futures price at time t for delivery date (maturity) T is not agreed upon
between two parties only; rather, it reflects the cumulative attitude of all investors toward
the price of the underlying asset at maturity T . The futures price is different from the
current price of the underlying, the spot price. For a specific underlying asset, we denote
by FtpT q the futures price at time t for delivery at T and by St the spot price at time t .

3



1.1. FINANCIAL DERIVATIVES 1. PRELIMINARIES

FtpT q and St are related through

lim
tÑT

FtpT q “ ST .

To avoid counterparty risk, i.e., the risk that either of the parties might be unable to meet
their obligation on the futures, the market has a central counterparty clearinghouse (CCP).
When a trader enters the futures market, per the CCP regulation, he or she is required
to open a marginal account that is managed by the CCP. The marginal account works as
collateral; if the holder cannot meet her obligation, the CCP closes the account to cover
the failure of the party. A holder of a futures contract is supposed to keep the amount
of money in the marginal account above a level variable with changes in the futures price.
To understand the operation of a marginal account, consider a long position, the party
who is obliged to buy the underlying at time T at price F0pT q. The financial gain/loss
from a derivative is called the payoff of the derivative. Her financial payoff at time T is
ST ´ F0pT q, because she is obliged to buy the underlying at price F0pT q while the market
price is ST . See Figure 1.1.3. While F0pT q is fixed and remains unchanged over the term
of the contract, the underlying price ST is unknown. If at time T , F0pT q ą ST , then she
loses the amount of F0pT q´ST . The aim of the CCP is to make sure that the long position

K

ST −K

ST
K

K − ST

ST

Figure 1.1.3: The payoff of forward/futures at maturity T as a function of the price of
underlying ST . K is the forward/futures price, i.e., K “ F0pT q. Left: long position. Right:
short position.

holds at least F0pT q ´ ST in her marginal account when is in the loosing position, i.e.,
F0pT q ą ST . To do this, the CCP asks her to always rebalance her marginal account to

4



1. PRELIMINARIES 1.1. FINANCIAL DERIVATIVES

keep it above pF0pT q ´ Stq`
1 at any day t “ 0, ..., T to cover the possible future loss. An

example of marginal account rebalancing is shown in Table 1.1.

Time t 0 1 2 3 4
Underlying asset price St 87.80 87.85 88.01 88.5 87.90
Marginal account .20 .15 0 0 .10
Changes to the marginal account – -.05 -.15 0 +.10

Table 1.1: Rebalancing the marginal account of a long position in futures with F0pT q=$88
in four days.

The marginal account can be subject to several regulations, including minimum cash
holdings. In this case, the marginal account holds the amount of pF0pT q ´ Stq` plus the
minimum cash requirement. For more information of the mechanism of futures markets,
see [16, Chapter 2].
The existence of the marginal account creates an opportunity cost; the fund in the

marginal account can alternatively be invested somewhere else for profit, at least in a
risk-free account with a fixed interest rate. The following example illustrates the opportu-
nity cost.

Example 1.1.1 (Futures opportunity cost). Consider a futures contract with maturity T
of 2 days, a futures price equal to $99.95, and a forward contract with the same maturity
but a forward price of $100. Both contracts are written on the same risky asset with spot
price S0 “ $99.94. The marginal account for the futures contract has a $10 minimum cash
requirement and should be rebalanced daily thereafter according to the closing price. We
denote the day-end price by S1 and S2 for day one and day two, respectively. Given that
the risk-free daily compound interest rate is 0.2%, we want to find out for which values
of the spot price of the underlying asset, pS1, S2q, the forward contract is more interesting
than the futures contract for long position.

Time t 0 1 2
Underlying asset price St 99.94 S1 S2
Marginal account 10.01 10+p99.95 ´ S1q` closed

The payoff of the forward contract for the long position is ST ´100, while the same quantity
for the futures is ST ´ 99.95. Therefore, the payoff of futures is worth .05 more than the
payoff of the forward on the maturity date T “ 2.
However, there is an opportunity cost associated with futures contract. On day one, the

marginal account must have $10.01; the opportunity cost of holding $10.01 in the marginal

1pxq` :“ maxtx, 0u
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1.1. FINANCIAL DERIVATIVES 1. PRELIMINARIES

account for day one is

p10.01qp1 ` .002q ´ 10.01 “ p10.01qp.002q “ .02002,

which is equivalent to p.02002qp1.002q “ .02006004 at the end of day two. On day two, we
have to keep $10 plus p99.95 ´ S1q` in the marginal account which creates an opportunity
cost of p.002qp10 ` p99.95 ´ S1q`q. Therefore, the actual payoff of the futures contract is
calculated at maturity as

ST ´ 99.95 ´ p1.002q p.002qp10.01q
loooooomoooooon

Opportunity cost of day 1

´p.002q p10 ` p99.95 ´ S1q`q
loooooooooooomoooooooooooon

Opportunity cost of day 2

“ ST ´ 99.99006004 ´ p.002qp99.95 ´ S1q`.

The total gain/loss of futures minus forward is

fpS1q :“ST ´ 99.99006004 ´ p.002qp99.95 ´ S1q` ´ ST ` 100
“.00993996 ´ p.002qp99.95 ´ S1q`

shown in Figure 1.1.4,

99.9594.98002−.18996004

.00993996

f(S1)

S1

Figure 1.1.4: The difference between the gain of the futures and forward in Example
1.1.1.

Exercise 1.1.1. Consider a futures contract with maturity T “ 2 days and futures price
equal to $100, and a forward contract with the same maturity and forward price of $99;
both are written on a risky asset with price S0 “ $99. The marginal account for the
futures contract needs at least $20 upon entering the contract and should be rebalanced
thereafter according to the spot price at the beginning of the day. Given that the risk-free
daily compound interest rate is 0.2%, for which values of the spot price of the underlying
asset, pS1, S2q, is the forward contract is more interesting than the futures contract for the
short position?
A futures market provides easy access to futures contracts for a variety of products and

for different maturities. In addition, it makes termination of a contract possible. A long
position in a futures can even out his position by entering a short position of the same
contract.
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1. PRELIMINARIES 1.1. FINANCIAL DERIVATIVES

One of the practices in the futures market is rolling over. Imagine a trader who needs
to have a contract on a product at a maturity T far in the future, such that there is no
contract in the futures market with such maturities. However, there is one with maturity
T1 ă T . The trader can enter the futures with maturity T1 and later close it when a
maturity T2 ą T1 become available. Then, he can continue thereafter until he reaches
certain maturity T .
It is well known that in an ideal situation, the spot price St of the underlying is less than or

equal to the forward/futures price FtpT q which is referred to as contango; see Proposition
1.3.1 for a logical explanation of this phenomena. In reality, this result can no longer be true;
especially for futures and forwards on commodities which typically incur storage cost or
may not even be storable. A situation in which the futures price of a commodity is less than
the spot price is called normal backwardation or simply backwardation. Backwardation is
more common in commodities with relatively high storage cost; therefore, a low futures
price provides an incentive to go into a futures contract. In contrast, when the storage cost
is negligible, then contango occurs. We close the discussion on futures and forward with

0 T

ST

Forward price (Contango)

Spot price

Forward price (Backwardation)

Figure 1.1.5: Contango vs backwardation. Recall that limtÑT FtpT q “ ST implies that
the forward price and spot price must converge at maturity.

a model for CCP to determine the marginal account. Notice that the material in 1.1.2 is
not restricted to futures market CCP and can be generalized to any market monitored by
the CCP.

1.1.2 Eisenberg-Noe model CCP

The CCP can be a useful tool to control and manage systemic risk by setting capital
requirements for the entities in a network of liabilities. Because if the marginal account

7
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is not set properly, default of one entity can lead directly to a cascade of defaults. Legal
action against a defaulted entity is the last thing the CCP wants to do.
Assume that there are N entities in a market and that Lij represents the amount that

entity i owes to entity j. Entity i has an equity (cash) balance of ci ě 0 in a marginal
account with the CCP. The CCP wants to mediate by billing entity i amount pi as a
clearing payment and use it to pay the debt of entity i to other entities. We introduce the
liability matrix L consisting of all mutual liabilities Lij . It is obvious that Lii “ 0, since
there is no self-liability.

L “

»

—

—

—

—

—

–

0 L1,2 ¨ ¨ ¨ L1,N´1 L1,N

L2,1 0 ¨ ¨ ¨ ¨ ¨ ¨ L2,N
... . . . ...

LN´1,1 ¨ ¨ ¨ ¨ ¨ ¨ 0 LN´1,N

LN,1 LN,2 ¨ ¨ ¨ LN,N´1 0

fi

ffi

ffi

ffi

ffi

ffi

fl

We define Lj :“
řN

i“1 Lji to be the total liability of entity j and define the weights πji :“ Lji

Lj

as the portion of total liability of entity j that is due to entity i. If a clearing payment pj

is made by entity j to the CCP, then entity i receives πjipj from the CCP. Therefore, after
all clearing payments p1, ..., pN are made, the entity i receives total of

řN
j“1 πjipj . In [11],

the authors argue that a clearing payment pi must not exceed either the total liability Li

or the total amount of cash available by entity i.
First, the Eisenberg-Noe model assume that the payment vector cannot increase the lia-

bility, i.e., pi ď Li for all i. Secondly, if the equity (cash) of entity i is given by ci, then
after the clearing payment, the balance of the entity i, i.e., ci `

řN
j“1 πjipj ´pi must remain

nonnegative. Therefore, the model suggests that the clearing payment p satisfies

pi “ min

#

Li , ci `

N
ÿ

j“1
πjipj

+

for all i.

In other word, the clearing payment vector p “ pp1, ..., pN q is therefore a fixed point of
the map Φppq “ pΦ1ppq, ..., ΦN ppN qq, where the function Φ : r0, L1s ˆ ¨ ¨ ¨ ˆ r0, LN s Ñ

r0, L1s ˆ ¨ ¨ ¨ ˆ r0, LN s is given by

Φippq :“ min

#

Li , ci `

N
ÿ

j“1
πjipj

+

for i “ 1, .., N.

In general, the clearing payment vector p “ pp1, ..., pN q is not unique. The following
theorem characterizes important properties of the clearing vector.

Theorem 1.1.1 ([11]). There are two clearing payment vectors pmax and pmin such that
for any clearing payment p, we have pmin

i ď pi ď pmax
i for all i “ 1, ..., N .

8
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In addition, the value of the equity of each entity remains unaffected by the choice of clearing
vector payment; i.e., for all i “ 1, ..., N and for all clearing vector payments p,

ci `

N
ÿ

j“1
πjipj ´ pi “ ci `

N
ÿ

j“1
πjip

max
j ´ pmax

i “ ci `

N
ÿ

j“1
πjip

min
j ´ pmin

i

Remark 1.1.1. The above theorem asserts that if by changing the clearing payment, entity
i pays more to other entities, it is going to receive more so the total balance of the equity
remains the same.

If an entity cannot clear all its liability with a payment vector, i.e., Li ą pi, then we say
that the entity has defaulted. Obviously, the equity of a defaulted entity vanishes. The
vanishing of an equity can also happen without default when ci `

řN
j“1 πjipj “ pi “ Li.

A condition for the uniqueness of the clearing payment vector is provided in the original
work of Eisenberg-Noe,[11]. However, the condition is restrictive and often hard to check
in a massive network of liabilities. On the other hand, the equity of each entity does not
depend on the choice of the payment vector. In a massive network, the problem of finding
at least one payment vector can also be challenging. One of the ways to find a payment
vector is through solving a linear programming problem.

Theorem 1.1.2 ([11]). Let f : RN Ñ R be a strictly increasing function. Then, the
minimizer of the following linear programming problem is a clearing payment vector.

max fppq subject to p ě 0, p ď L and p ď c ` pΠ, (1.1.1)

where c “ pc1, ..., cN q is the vector of the equities of the entities, L “ pL1, ..., LN q is the
vector of the total liability of the entities, and Π is given by

Π “

»

—

—

—

—

—

–

0 π1,2 ¨ ¨ ¨ π1,N´1 π1,N

π2,1 0 ¨ ¨ ¨ ¨ ¨ ¨ π2,N
... . . . ...

πN´1,1 ¨ ¨ ¨ ¨ ¨ ¨ 0 πN´1,N

πN,1 πN,2 ¨ ¨ ¨ πN,N´1 0

fi

ffi

ffi

ffi

ffi

ffi

fl

Exercise 1.1.2. Consider the liability matrix below by solving the linear programming
problem (1.1.1) with fppq “

řN
i“1 pi. Each row/column is an entity.

L “

»

—

—

–

0 1 0 1
0 0 2 0
2 0 0 1
0 5 0 0

fi

ffi

ffi

fl

The initial equities are given by c1 “ 1, c2 “ 2, c3 “ 0, and c4 “ 0.

9
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a) By using a linear programming package such as linprog in MatLab, find a clearing
payment vector.

b) Mark the entities that default after applying the clearing payment vector found in part
(a).

c) Increase the value of the equity of the defaulted entities just as much as they do not
default anymore.

1.1.3 Vanilla call and put options

A call option gives the holder the right but not the obligation to buy a certain asset at
a specified time in the future at a predetermined price. The specified time is called the
maturityoption!maturity and often is denoted by T , and the predetermined price is called
the strike price and is denoted by K. Therefore, a call option protects its owner against
any increase in the price of the underlying asset above the strike price at maturity. The
asset price at time t is denoted by St and at the maturity by ST . Call options are available
in the specialized options markets at a price that depends, among other factors, on time
t, T , K, and spot price at current time St “ S. To simplify, we denote the price of a
call option by CpT, K, S, tq2 to emphasize the main factors, i.e., t, T , K, and spot price at
current time S. Another type of vanilla option, the put option, protects its owner against
any increase in the price of the underlying asset above the strike price at the maturity; i.e.,
it promises the seller of the underlying asset at least the strike price at maturity. The price
of put option is denoted by P pT, K, S, tq, or simply P when appropriate.
The payoff of an option is the owner’s gain in a dollar amount. For instance, the payoff

of a call option is pST ´ Kq`. This is because, when the market price at maturity is ST

and the strike price is K, the holder of the option is buying the underlying asset at lower
price K and gains ST ´ K, provided ST ą K. Otherwise, when ST ď K, the holder does
not exercise the option and buys the asset from the market directly. Similarly, the payoff
of a put option is pK ´ ST q`.
Similar to futures, options are also traded in specialized markets. You can see option

chain for Tesla in Figure 1.1.7. The columns“bid” and “ask” indicate the best buy and sell
prices in the outstanding orders, and column“Open Int” (open interest) shows the total
volume of outstanding orders.
When the spot price St of the underlying asset is greater than K, we say that the call

options are in-the-money and the puts options are outof-the-money . Otherwise, when
St ă K, the put options are in-the-money and the call options are out-of-the-money. If the
strike price K is (approximately) the same as spot price St, we call the option at-the-money
(or ATM).

Far in-the-money call or put options are behave like forward contracts but with a wrong
forward price! Similarly, far out-of-the-money call or put options have negligible worth.

2We will see later that C only depends on T ´ t in many models.
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K K
ST ST

Figure 1.1.6: Left: the payoff pST ´Kq` of a call option with strike K. Right: the payoff
pK ´ ST q` of a put option with strike K.

Figure 1.1.7: Call and put option quotes on Tesla stocks on January 11, 2016. The first
column is the price of the underlying asset (NASDAQ:TSLA). The bid price is the price at
which trades are willing to buy the options and the ask price is the price at which trades
are willing to sell. The spot price at the time was $206.11. Source: Google Finance.

The holder of an option is called a long position, and the issuer of the option is called a
short position. While the holder has the privilege of exercising the option when profitable,
the issuer has the obligation to pay the holder the amount of payoff upon exercise.

A European option is an option whose payoff is a function gpST q of the asset price at
maturity ST . The function g : R` Ñ R is called a European payoff function. Call and
put options are particularly important because any piecewise linear continuous European
payoff can be written as a linear combination (possibly infinite!) of call option payoffs
with possibly different strikes but the same maturity and a constant cash amount; or,
equivalently, a linear combination of call option payoffs and a put option payoff. Therefore,

11
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Figure 1.1.8: Call and put option quotes on IBM stocks on January 13, 2016. In-the-
money options are highlighted. Source: Google Finance.

the price of payoff gpST q “ a0 `
ř

i aipST ´ Kiq` is given by

BtpT qa0 `
ÿ

i

aiCpT, Ki, St, tq.

In the above, a0 is the constant cash amount, and for each i, pST ´ Kiq` is the payoff of a
call option with the strike price Ki and the maturity T .

Remark 1.1.2. The underlying asset ST at time T is a call option with strike K “ 0.

Example 1.1.2. Put-call parity suggests that the payoff pK ´ ST q` of a put option can be
written as the summation of payoffs of a long position in K amount of cash, a long position
in a call option with payoff pST ´ Kq`, and a short position in an underlying asset. By
Remark 1.1.2, a long position in the underlying asset is a call option with strike 0. See
Figure 1.1.9.

K
ST

=
K

ST

+
K

ST

+
ST

Figure 1.1.9: pK ´ ST q` “ K ` pST ´ Kq` ´ ST .
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Example 1.1.3. An option that promises the payoff gpST q :“ |ST ´K|, as shown in Figure
1.1.10, is made of a long position in a call option with strike K, and long position in a
put with strike K, both with the same maturity. Equivalently, this payoff can be written as
K amount of cash, a short position in underlying, and two long positions in a call option
with strike K, all with the same maturity.

K

K

ST

Figure 1.1.10: Payoff gpST q “ |ST ´ K| from Example 1.1.3

Example 1.1.4. A put option with payoff pK ´ ST q` can be written as K amount of cash,
a short position in a call option with strike 0, and a long position on a call option with
strike K.

Exercise 1.1.3. Consider the payoff gpST q shown in Figure 1.1.6.

K1 K2K1+K2

2

K2−K1

2

ST

g(ST )

Figure 1.1.11: Payoff for Exercise 1.1.3

a) Write this payoff as a linear combination of the payoffs of some call options and a
put option with different strikes and the same maturity.

b) Repeat part (a) with call options and cash. (No put option is allowed.)

13
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1.1.4 American options

European options can only be exercised at a maturity for the payoff gpST q. An American
option gives its owner the right but not the obligation to exercise at any date before or
at maturity. Therefore, at the time of exercise τ P r0, T s, an American call option has an
exercise value equal to pSτ ´Kq`. We use the notation CAmpT, K, S, tq and PAmpT, K, S, tq
to denote the price of an American call and an American put, respectively.
The exercise time τ is not necessarily deterministic. More precisely, it can be a random

time that depends upon the occurrence of certain events in the market. An optimal exercise
time can be found among those of threshold type; the option is exercised before maturity
the first time the market price of option becomes equal to the exercise value, whereas the
option usually has a higher market value than the exercise value. Notice that both of these
quantities behave randomly over time.

1.1.5 Bond and forward rate agreements

A zero-coupon bond (or simply zero bond) is a fixed-income security that promises a fixed
amount of cash in a specified currency at a certain time in the future, e.g., $100 on January
30. The promised cash is called the principle, face value or bond!face value and the time
of delivery is called the maturity. All bonds are traded in specialized markets at a price
often lower than the principle3.
For simplicity, throughout this book, a zero bond means a zero bond with principle of $1,

unless the principle is specified; for example, a zero bond with principle of $10 is ten zero
bond s. At a time t, we denote the price of a zero bond maturing at T by BtpT q.
We can use the price of a zero bond to calculate the present value of a future payment

or cashflow. For example, if an amount of $x at time T is worth x
BtpT q

at an earlier time
t. This is because, if we invest $ x

BtpT q
in a zero bond with maturity T , at the maturity we

receive a dollar amount of x
BtpT q

BtpT q “ x.
The price of the zero bond is the main indicator of the interest rate. While the term

“interest rate” is used frequently in news and daily conversations, the precise definition
of the interest rate depends on the time horizon and the frequency of compounding. An
interest rate compounded yearly is simply related to the zero bond price by 1`R(yr) “ 1

B0p1q
,

while for an interest rate compounded monthly, we have
`

1 ` R(mo)

12
˘12

“ 1
B0p1q

. Therefore,

1 ` R(yr) “

´

1 `
R(mo)

12

¯12
.

Generally, an n-times compounded interest rate during the time interval rt, T s, denoted
by R

pnq
t pT q, satisfies

´

1 `
R

pnq
t pT q

n

¯n
“ 1

BtpT q
. When the frequency of compounding n

3There have been instances when this has not held, e.g., the financial crisis of 2007.
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approaches infinity, we obtain
BtpT q “ e´R

p8q
t pT q.

This motivates the definition of the zero-bond yield. The yield (or yield curve) RtpT q of
the zero bond BtpT q is defined by

BtpT q “ e´pT ´tqRtpT q or RtpT q :“ ´
1

T ´ t
ln BtpT q. (1.1.2)

The yield is a bivariate function R : pt, T q P D Ñ Rě0 where D is given by tpt, T q : T ą

0 and t ă T u. Yield is sometimes referred to as the term structure of the interest rate since
both variables t and T are time.
If the yield curve is a constant, i.e., RtpT q “ r for all pt, T q P D, then, BtpT q “ e´rpT ´tq.

In this case, r is called the continuously compounded, instantaneous, spot, or short rate.
However, the short rate does not need to be constant. A time-dependent short interest
rate is a function r : r0, T s Ñ R` such that for any T ą 0, and t P r0, T s we have
BtpT q “ e´

şT
t rsds; or equivalently, short rate can be defined as

rt :“ ´
B ln BtpT q

BT

ˇ

ˇ

ˇ

T “t
“

B ln BtpT q

Bt
.

The short rate r or rs is an abstract concept; it exists because it is easier to model the
short rate than the yield curve. In practice, the interest rate is usually given by the yield
curve.
Besides zero bonds, there are other bonds that pay coupons on a regular basis, for example

a bond that pays the principle of $100 in 12 months and $20 every quarter. A coupon-
carrying bond, or simply, a coupon bond, can often be described as a linear combination
of zero bonds; i.e., a bond with coupon payments of $ ci at date Ti with T1 ă ... ă Tn´1
and principle payment P at maturity Tn “ T is the same as a portfolio of zero bonds with
principle ci and maturity Ti for i “ 1, ..., n and is worth

n´1
ÿ

i“1
ciBtpTiq ` PBtpTnq “

n´1
ÿ

i“1
cie

´pTi´tqRtpTiq ` Pe´pTn´tqRtpTnq.

Therefore, zero bonds are the building blocks of all bonds, and the yield curve is the main
factor in determining the price of all bonds.
Example 1.1.5. A risk-free 1-year zero bond with $20 principle is priced B0p1q “ $19 and
a risk-free 2-year zero bond with $20 principle is priced B0p2q “ $17. Then, the yield R1p2q

is given by

R1p2q “ ln B0p1q ´ ln B0p2q ln B0p1q “ ln 19 ´ ln 17 « 0.1112,

and the price of a risk-free zero bond that start in one year and ends at in two years with
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principle $20 is given by

B1p2q “ 100e´R1p2q “
1700
19

« 89.47.

The price of a bond that pays a $30 coupon at the end of the current year and $100 as the
principle in two years equals to

30B0p1q

100
` 100B0p2q

100
“ 5.9 ` 17 “ 22.9.

Exercise 1.1.4. a) If a risk-free 1-year zero bond with $100 principle is priced B0p1q “

$96 and a risk-free 2-year zero bond with $100 principle is priced B0p2q “ $92, find
the price of a risk-free zero bond B1p2q and yield curve R1p2q.

b) What is the price of a bond that pays a $30 coupon at the end of the current year and
$100 as the principle in two years?

In the above discussion, we implicitly assumed that the issuer of the bond is not subject
to default on payment of coupons or principle. This type of bonds are called sovereign
bonds and are often issued by the Federal Reserve or central bank of a given country in
that country’s own currency. For example, sovereign bonds in the United States are T-bills,
T-notes, and T-bonds. T-bills are bonds that have a maturity of less than a year, T-notes
have a maturity of more than a year up to ten years, and T-bonds have maturity more than
ten years. Bonds issued by other entities or governments in a foreign currency are usually
called corporate bonds. The word “corporate” emphasizes the default risk of the issuer
on the payments. In addition, sovereign bonds in a foreign currency are subject to the
market risk that is caused by fluctuating exchange rates in the foreign exchange market4.
Therefore, what is considered a risk-free bond in the United States is not risk-free in the
European Union.
The zero bond price BtpT q can directly be used to discount a payment or a cashflow at

time T without appealing to a specific short rate model. For example, a cashflow of $10 at
time T “ 1 is worth $ 10B0p1q now.
Similar to the yield curve, the forward rate FtpT q5 of a zero bond is defined by

BtpT q “ e´
şT
t Ftpuqdu or FtpT q :“ ´

B ln BtpT q

BT
.

The forward rate reflects the current perception among traders about the future fluctuations
of the interest rates. More precisely, at time t, we foresee the continuously compounded

4The foreign exchange market is a decentralized over-the-counter market where traders across the world
use to trade currencies.

5The notation for forward rate is the same as the notation for futures price or forward price in Section
1.1.1.
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interest rates for N time intervals rt0, t1s, rt1, t2s, ..., rtN´1, T s in the future as Ftptq,
Ftpt1q, ..., FtptN´1q, respectively. Here, for n “ 0, ..., N , tn “ t ` nδ and δ “ T ´t

N .
Then, $1 at time T is worth e´FtptN´1qδq at time tN´1, e´pFtptN´1q`FtptN´2qqδ at time tN´2,
e´pFtptN´1q`...`Ftptnqqδ at time tn, and e´pFtptN´1q`...`Ftpt1q`Ftptqqδ at time t. As n goes to
infinity, the value BtpT q of the zero bond converges to

lim
nÑ8

e´
řN´1

n“0 Ftptnqδ “ e´
şT
t Ftpuqdu.

The forward rates are related to so-called forward rate agreements. A forward rate agree-
ment is a contract between two parties both committed to exchanging a specific loan (a
zero bond with a specified principle and a specific maturity) in a future time (called the
delivery date) with a specific interest rate. We can denote the agreed rate by fpt0, t, T q

where t0 is the current time, t is the delivery date, and T is the maturity of the bond. As
always, we take principle to be $1. Then, the price of the underlying bond at time t should
equal BtpT q “

Bt0 pT q

Bt0 ptq
. This is because, if we invest $ x in Bt0ptq at time t0, we have x

Bt0 ptq
at

time t. Then, at time t, we reinvest this amount in BtpT q. At time T , we have x
Bt0 ptqBtpT q

.
Alternatively, if we invest in Bt0pT q from the beginning, we obtain x

Bt0 pT q
, which must be

the same as the value of the two-step investment described above6. Therefore, the fair
forward rate in a forward rate agreement must satisfy

ft0pt, T q “ ´
ln Bt0pT q ´ ln Bt0ptq

T ´ t
.

If we let T Ó t, we obtain limT Ót ft0pt, T q “ Ft0ptq. In terms of yield, we have

ft0pt, T q “
pT ´ t0qRt0pT q ´ pt ´ t0qRt0ptq

T ´ t
.

Ft0ptq is the instantaneous forward rate. However, ft0pt, T q is the forward rate at time t0
for time interval rt, T s and is related to the instantaneous forward rate by

ft0pt, T q “

ż T

t
Ft0puqdu.

Unlike the forward rate and short rate rt, yield curve RtpT q is accessible through market
data. For example, LIBOR7 is the rate at which banks worldwide agree to lend to each other
and is considered more or less a benchmark interest rate for international trade. Or, the
United States treasury yield curve is considered a risk-free rate for domestic transactions
within the United States. The quotes of yield curve RtpT q for LIBOR and the United

6A more rigorous argument is provided in Section 1.3 Example 1.3.2
7London Interbank Offered Rate
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States treasuries at different maturities are given in Tables 1.2 and 1.3, respectively.

Time-to-maturity T ´ t
Current date t

02-19-2016 02-18-2016 02-17-2016 02-16-2016 02-15-2016
USD LIBOR - overnight 0.37090 % 0.37140 % 0.37000% 0.37100 % -
USD LIBOR - 1 week 0.39305 % 0.39200 % 0.39160% 0.39050 % 0.39340 %
USD LIBOR - 1 month 0.43350 % 0.43200 % 0.43005 % 0.42950 % 0.42925 %
USD LIBOR - 2 months 0.51720 % 0.51895 % 0.51675 % 0.51605 % 0.51580 %
USD LIBOR - 3 months 0.61820 % 0.61820 % 0.61940 % 0.61820 % 0.61820 %
USD LIBOR - 6 months 0.86790 % 0.87040 % 0.86660 % 0.86585 % 0.86360 %
USD LIBOR - 12 months 1.13975 % 1.14200 % 1.13465 % 1.13215 % 1.12825 %

Table 1.2: LIBOR yield curve for US dollars. Source: www.global-rates.com. The the
date format in the table is DD-MM-YYYY, contrary to the date format MM/DD/YYYY
in the United States.

Date t
Time-to-maturity T ´ t

1 Mo 3 Mo 6 Mo 1 Yr 5 Yr 10 Yr 20 Yr 30 Yr
02/22/16 0.28% 0.33% 0.46% 0.55% 1.25% 1.77% 2.18% 2.62%
02/23/16 0.28% 0.32% 0.47% 0.55% 1.23% 1.74% 2.16% 2.60%
02/24/16 0.28% 0.33% 0.46% 0.55% 1.21% 1.75% 2.16% 2.61%

Table 1.3: Treasury yield curve for US dollar. Source: https://www.treasury.gov.

The forward rates ft0pt, T q can also be obtained from the data on forward rate agreements,
but this data is not publicly available.
We should clarify that there is a slight difference between the yield curve defined by (1.1.2)

and the yield curve data in Tables 1.2 and 1.3. The recorded data on the yield curve comes
from

BtpT q “ p1 ` ˆRtpT qqT ´t, or R̂tpT q :“
ˆ

1
BtpT q

˙
1

T ´t

´ 1, (1.1.3)

where the time-to-maturity T ´ t measured in years. Therefore,

R̂tpT q “

´

exp
´

RtpT qpT ´ tq
¯¯

1
T ´t

´ 1 “ exp
´

RtpT q

¯

´ 1 « RtpT q,

when RtpT q is small. For example, in Table 1.3, the yield of a zero bond that expires in one
month is given by 0.28% “ .0028 and the price of such a bond is equal to p1.0028q´1{12 “

0.9996.
It is also important to know that an interpolation method is used to generate some of

the yield curve data in Tables 1.2 and 1.3. This is because a bond that expires exactly
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in one month, three months, six months, or some other time does not necessarily always
exist. A bond that expires in a month will be a three-week maturity bond after a week.
Therefore, after calculating the yield for the available maturities, an interpolation gives
us the interpolated yields of the standard maturities in the yield charts. For example, in
Table 1.3, The Treasury Department uses the cubic Hermite spline method to generate
daily yield curve quotes.

Remark 1.1.3. While the market data on the yield of bonds with different maturity is
provided in the discrete-time sense, i.e., (1.1.3), the task of modeling a yield curve in
financial mathematics is often performed in continuous-time. Therefore, it is important to
learn both frameworks and the relation between them.

Sensitivity analysis of the bond price

We measure the sensitivity of the zero bond price with respect to changes in the yield
or errors in the estimation of the yields by dBtpT q

dRtpT q
“ ´pT ´ tqBtpT q. As expected, the

sensitivity is negative, which means that the increase (decrease) in yield is detrimental
(beneficial) to the bond price. It is also proportional to the time-to-maturity of the bond;
i.e., the duration of the zero bond is equal to ´

dBtpT q{dRtpT q

BtpT q
. For a coupon bond, the

sensitivity is measured after defining the yield of the bond; the yield of a coupon bond
with coupons payments of $ ci at date Ti with T1 ă ... ă Tn´1 and principle payment
P “ cn at maturity Tn “ T is a number ŷ such that ppŷq equals the price of the bond, and
ppyq is the function defined below:

ppyq :“
n
ÿ

i“1
cie

´pTi´tqy.

Therefore, the yield of a bond is the number y that satisfies
n
ÿ

i“1
cie

´pTi´tqŷ “

n
ÿ

i“1
ciBtpTiq.

The function ppyq is a strictly decreasing function with pp´8q “ 8, pp0q “
řn´1

i“1 ci ` P ,
and pp8q “ 0. Therefore, for a bond with a positive price, the yield of the bond exists as
a real number. In addition, if the price of the bond is in the range p0, pp0qq, the yield of
the bond is a positive number.
Therefore, the yield ŷ depends on all parameters t, ci, Ti, and RtpTiq, for i “ 1, ..., n.

Motivated from the zero bond, the duration the coupon bond is given by

D :“ ´
dp{dy

p
pŷq “

n
ÿ

i“1
pTi ´ tq

cie
´pTi´tqŷ

ppŷq
,
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a naturally weighted average of the duration of payments, with weights cie
´pTi´tqŷ

ppŷq
, for

i “ 1, ..., n.
The convexity of a zero bond is defined by using the second derivative C :“ d2BtpT q{dRtpT q2

BtpT q
“

pT ´ tq2, and for a coupon bond is expressed as

C :“ d2p{dy2

p
pŷq “

n
ÿ

i“1
pTi ´ tq2 cie

´pTi´tqŷ

ppŷq
.

Recall that a function f is convex if and only if fpλx ` p1 ´ λqyq ď

λfpxq ` p1 ´ λqfpyq for all λ P p0, 1q. If the function is twice dif-
ferentiable, convexity is equivalent to f2 ě 0. For more details on
convexity, see Section A.1.

While the duration indicates a negative relation between changes in yield ŷ and price of
the bond ppŷq, the convexity tells more about the magnitude of this change. For example,
considering two bonds with the same duration, the one with higher convexity is more
sensitive to changes in the yield. See Figure 1.1.12.

∆y

∆p(y)
p(y) Bond 1

Bond 2

∆y

∆p(y)
p(y) Bond 1

Bond 2

Figure 1.1.12: The relative price change of the bond ∆ppyq

ppŷq
“

ppyq´ppŷq

ppŷq
with change in the

yield ∆y “ y ´ ŷ. Left: Bond 1 is longer in duration and therefore less sensitive than bond
2. Right: Both bonds are the same duration, but bond 1 is less convex and more sensitive.

Remark 1.1.4. While in practice bonds are not considered derivatives, they are bets on
the interest rate and therefore can mathematically be considered as derivatives. Forward
interest agreements are derivatives on bond.

1.1.6 Credit derivatives

Financial instruments are issued by financial companies such as banks. There is always a
risk that the issuer will go bankrupt or at least default on some payments and be unable to
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Rating Moody’s S&P Fitch
Prime Aaa AAA AAA
Subprime Ba1 and lower BB+ and lower BB+ and lower
Default C D D

Table 1.4: A brief table of rating by Moody, S&P and Fitch.

meet its obligation. The same situation holds when a debt such as a mortgage is issued. In
such cases, the beneficiary of the issued security is exposed to credit risk. Therefore, it is
important to know about the creditworthiness of individual and corporate loan applicants.
There are three major credit rating companies for corporations and other institutions,
including governments: Moody’s, Standard and Poor’s (S&P), and Fitch. The rates are
usually shown by letters similar to letter grading of a university course. Regardless of
the notation used, the highest level of creditworthiness is called prime rating and the
lowest is given to a defaulted entity. Lower-half rates are usually referred to subprime
which indicates higher exposure to credit risk. See Table 1.4 for a sample of a ratings
table and its notations. To cover credit risk, financial institutes issue credit derivatives.
There are two well-known credit derivatives in the market: credit default swap (CDS) and
collateralized debt obligation (CDO). Both derivatives are written on defaultable loans
(such as bonds). For simplicity, we only consider CDOs and CDSs on defaultable zero
bonds, i.e., the simplest of all defaultable assets. First, we introduce defaultable zero
bonds and explain how the yield of a defaultable zero bond is calculated.

Defaultable zero bond

Consider a zero bond with a face value $1. If the bond is sovereign with the yield RtpT q,
then the value of the bond is

BtpT q “ e´RtpT qpT ´tq.

We assume that in case of default, the value of the bond vanishes instantly. The default
of a company and the time of default are random. If we denote the (random) time of the
default by τ and assume that the default has not occurred yet, i.e., τ ą t, we define the
survival rate of the defaultable bond by λtpT q, which satisfies

Ppτ ą T | τ ą tq “ 1 ´ Ppτ ď T | τ ą tq “ 1 ´ e´λtpT qpT ´tq.

In the above Pp¨ | τ ą tq represents the probability measure (function) conditional on
τ ą t, i.e., the default has not occurred until time t. Notice that λtpT q always exists as a
nonnegative number, or `8, and is given by

λtpT q “ ´
1

T ´ t
lnPpτ ď T | τ ą tq.
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If λtpT q “ 0, the bond is sovereign and never defaults. Otherwise, if λtpT q “ `8, the
probability of default is 1 and the default is a certain event. The payoff of a defaultable
bond is given by the indicator random variable below:

1tτąT u :“

#

1 when τ ą T,

0 when τ ď T.

A common formalism in pricing financial securities with a random payoff is to take expecta-
tion from the discounted payoff. More precisely, the value of the defaultable bond is given
by the expected value of the discounted payoff, i.e.,

Bλ
t pT q :“ E

“

BtpT q1tτąT u | τ ą t
‰

“ BtpT qPpτ ą T | τ ą tq “ e´RtpT qpT ´tq
´

1´e´λtpT qpT ´tq
¯

.

The risk-adjusted yield of a defaultable bond is defined by the value Rλ
t pT q such that

e´Rλ
t pT qpT ´tq “ Bλ

t pT q “ e´RtpT qpT ´tq
´

1 ´ e´λtpT qpT ´tq
¯

.

Equivalently,
Rλ

t pT q “ RtpT q ´
1

T ´ t
ln
´

1 ´ e´λtpT qpT ´tq
¯

For a defaultable bond, we always have Rλ
t pT q ą RtpT q. Notice that when λtpT q Ò 8,

Rλ
t pT q Ó RtpT q, and when λtpT q Ó 0, Rλ

t pT q Ò 8. .

The higher the probability of default, the higher the adjusted yield of
the bond.

Exercise 1.1.5. Consider a defaultable zero bond with T “ 1, face value $1, and survival
rate 0.5. If the current risk-free yield for maturity T “ 1 is 0.2, find the adjusted yield of
this bond.

Credit default swap (CDS)

A CDS is a swap that protects the holder of a defaultable asset against default before a
certain maturity time T by recovering a percentage of the nominal value specified in the
contract in case the default happens before maturity. Usually, some percentage of the
loss can be covered by collateral or other assets of the defaulted party, i.e., a recovery
rate denoted by R. The recovery rate R is normally a percentage of the face value of the
defaultable bond and is evaluated prior to the time of issue. Therefore, the CDS covers
1 ´ R percent of the value of the asset at the time of default. In return, the holder makes
regular, constant premium payments κ until the time of default or maturity, whichever
happens first. The maturity of a CDS is often the same as the maturity of the defaultable
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asset, if there is any. For example, a CDS on a bond with maturity T also expires at time
T .

To find out the fair premium payments κ for the CDS, let’s denote the time of the default
by τ and the face value of the defaultable bond by P . If the default happens at τ ď T , the
CDS pays the holder an amount of p1 ´ RqP . The present value of this amount is obtained
by discounting it with a sovereign zero bond, i.e., p1 ´ RqPB0pT ^ τq. If the issuer of the
bond defaults after time T , the CDS does not pay any amount. Thus, the payment of the
CDS is a random variable expressed as

p1 ´ RqPB0pT ^ τq1tτďT u.

The holder of the CDS makes regular payments of amount κ at points 0 “ T0 ă T1 ă ¨ ¨ ¨ ă

Tn in time with Tn ă T . Then, the present value of payment of amount κ, paid at time Ti

is
κ1tTiăτuB0pTiq.

The total number of premium payments is N :“ maxti ` 1 : Ti ă τ ^ T u, which is also
a random variable with values 1, ..., n ` 1. Therefore, the present value of all premium
payments is given by

κ
N
ÿ

i“1
B0pTiq.

The discounted payoff of the CDS starting at time t is given by

p1 ´ RqPB0pT ^ τq1tτďT u ´ κ
N
ÿ

i“1
B0pTiq (1.1.4)

The only source of randomness in the above payoff is the default time, i.e., τ . This makes
the terms B0pT ^ τq1tτďT u and

řN
i“1 B0pTiq random variables. Notice that, although each

individual term in the summation
řN

i“1 B0pTiq is not random, the number of terms N in
the summation is.

Because of the presence of randomness, we follow the formalism that evaluates the price
of an asset with random payoff by taking the expected value of the discounted payoff. In
case of a CDS, the price is known to be zero; either party in a CDS does not pay or receive
any amount by entering a CDS contract. Therefore, the premium payments κ should be
such that the expected value of the payoff (1.1.4) vanishes. To do so, first we need to know
the probability distribution of the time of default. The task of finding the distribution of
default can be performed through modeling the survival rate, which is defined in Section
1.1.6. Provided that the distribution of default is known, κ can be determined by taking
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the expected value as follows:

κ “ p1 ´ RqP
E
“

B0pT ^ τq1tτďT u

‰

E
“
ř

0ďTiăτ B0pTiq
‰ . (1.1.5)

Exercise 1.1.6. Consider a CDS on a defaultable bond with maturity T “ 1 year and
recovery rate R at 90%. Let the default time τ be a random variable with the Poisson
distribution with mean 6 months. Assume that the yield of a risk-free zero bond is a constant
1 for all maturities within a year. Find the monthly premium payments of the CDS in terms
of the principle of the defaultable bond P “ $1.

Collateralized debt obligation (CDO)

A CDO is a complicated financial instrument. For illustrative purposes, we present a sim-
plified structure of a CDO in this section. One leg of CDO is a special-purpose entity (SPE)
that holds a portfolio of defaultable assets such as mortgage-backed securities, commercial
real estate bonds, and corporate loans. These defaultable assets serve as collateral; there-
fore we call the portfolio of these assets a collateral portfolio. Then, SPE issues bonds,
which pay the cashflow of the assets to investors in these bonds. The holders of these
special bonds do not uniformly receive the cashflow. There are four types of bonds in
four trenches: senior, mezzanine, junior, and equity. The cashflow is distributed among
investors first to the holders of senior bonds, then mezzanine bond holders, then junior
bond holders, and finally equity bond holders. In case of default of some of the collateral
assets in the portfolio, equity holders are the first to lose income. Therefore, a senior trench
bond is the most expensive and an equity trench bond is the cheapest. CDOs are traded
in specialized debt markets, derivative markets, or over-the-counter (OTC).
A CDO can be structurally very complicated. For illustration purpose, in the next example

we focus on a CDO that is written only on zero bonds.

Example 1.1.6. Consider a collateral portfolio of 100 different defaultable zero bonds
with the same maturity. Let’s trenchize the CDO in four equally sized trenches as shown
in Figure 1.1.13. If none of the bonds in the collateral portfolio default, the total $100
cashflow will be evenly distributed among CDO bond holders. However, if ten bonds default,
then total cashflow is $90; an amount of $75 to be evenly distributed among the junior,
mezzanine, and senior holders, and the remaining amount of $15 dollars will be evenly
distributed among equity holders. If 30 bonds default, then total cashflow is $70; an amount
of $50 to be evenly distributed among the mezzanine and senior holders, and the remaining
amount of $5 dollars will be evenly distributed among mezzanine holders. Equity holders
receive $0. If there are at least 50 defaults, equity and junior holders receive nothing. The
mezzanine trench loses cashflow, if and only if the number of defaults exceed 50. The senior
trench receives full payment, if and only if the number of defaults remains at 75 or below.
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Figure 1.1.13: Simplification of CDO structure

Above 75 defaults, equity, junior, and mezzanine trenches totally lose their cashflow, and
senior trench experiences a partial loss.

Exercise 1.1.7. Consider a credit derivative on two independently defaultable zero bonds
with the same face value at the same maturity, which pays the face value of either bond in
case of default of that bond. A credit derivative of this type is written on two independently
bonds: one of the bonds has a risk-adjusted yield of 5% and the other has a risk-adjusted
yield of 15%. Another credit derivative of this type is written on two other independently
defaulted bonds, both with a risk-adjusted yield of 10%. If both credit derivatives are offered
at the same price, which one is better? Hint: The probability of default is Ppτ ď T | τ ą tq “

e´λtpT qpT ´tq and the risk-adjusted yield satisfies Rλ
t pT q “ RtpT q ´ 1

T ´t ln
´

1´e´λtpT qpT ´tq
¯

.

Therefore, the probability of default satisfies Ppτ ď T | τ ą tq “ 1 ´ e´pRλ
t pT q´RtpT qqpT ´tq.

Loss distribution and systemic risk

We learned from the 2007 financial crisis that even a senior trench bond of a CDO can yield
yield an unexpectedly low cashflow caused by an unexpectedly large number of defaults in
the collateral portfolio, especially when the structure of the collateral portfolio creates a
systemic risk. To explain the systemic risk, consider a collateral portfolio, which is made
up of mortgages and mortgage-based securities. These assets are linked through several
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common risk factors, some are related to the real estate market, and the others are related
to the overall situation of the economy. These risk factors create a correlation between
defaults of these assets. Most of the risk factor that were known before the 2007 financial
crisis can only cause a relatively small group of assets within the collateral portfolio to
default. If risk factor can significantly increase the chance of default of a large group of
assets within the collateral portfolio, then it is a systemic risk factor. If we only look at the
correlation between the defaults of the assets in the collateral portfolio, we can handle the
nonsystemic risk factors. However, a systemic risk factor can only be found by studying
the structure of the collateral portfolio beyond the correlation between the defaults.
A difference between systemic and nonsystemic risk can be illustrated by the severity of

loss. In Figure 1.1.14, we show the distribution of loss in three different cases: independent
defaultable assets, dependent defaultable assets without a systemic factor, and dependent
defaultable assets with systemic factor. The loss distribution, when a systemic risk factor
exists has at least one spike at a large loss level. It is important to emphasize that the
empirical distribution of loss does not show the above-mentioned spike and the systemic
risk factor does not leave a trace in a calm situation of a market. Relying on only a period of
market data, in which systemic losses have not occurred, leads us into a dangerous territory,
such as the financial meltdown of 2007–2008. Even having the data from a systemic event
may not help predict the next systemic event, unless we have a sound understanding of the
financial environment. Therefore, we can only find systemic risk factors through studying
the structure of a market.
Take the following example, as extreme and hypothetical as it is, as an illustration of

systemic risk. Consider a CDO made up of a thousand derivatives on a single defaultable
asset. If the asset does not default, all trenches collect even shares of the payoff of the
derivatives. However, in case of default, all trenches become worthless. Even if you increase
the number of assets to, ten, it only takes a few simultaneously defaulted assets to blow up
the CDO. Even when the number of assets becomes large, their default may only depend
on few factors; i.e., when a few things go wrong, the CDO can become worthless.

Exercise 1.1.8. Consider a portfolio of 1000 defaultable asset with the same future value
$1. Let Zi represent the loss from asset i which is 1 when asset i defaults and 0 otherwise.
Therefore, the total loss of the portfolio is equal to L :“

ř1000
i“1 Zi. Plot the probability

density function (pdf) of L in the following three cases.

a) Z1, ..., Z1000 are i.i.d. Bernoulli random variables with probability p “ .01.

b) Z1, ..., Z1000 are correlated in the following way. Given the number of defaults N ě 0,
the defaulted assets can with equal likelihood be any combination of N out of 100
assets, and N is distributed as a negative binomial with parameters pr, pq “ p90, .1q.
When N ě 1000, all assets have defaulted. See Example B.14. Plot the pdf of L.

c) Now let X be a Bernoulli random variable with probability p “ .005. Given X “ 0,
the new set of random variables Z1, ..., Z1000 are i.i.d. Bernoulli random variables

26



1. PRELIMINARIES 1.1. FINANCIAL DERIVATIVES

0 20 40 60 80 100

.05

.1

.15

SpikeyFat taily

Severity of total loss

Uncorrelated
Correlated

Correlated with systemic risk

22 24 26 28 30

.01

.02
·10−2

Spike

y

Fat tail

y

Fat tail of correlated losses

Uncorrelated
Correlated

Figure 1.1.14: Distribution of loss: Correlation increases the probability at the tail of the
distribution of loss. Systemic risk adds a spike to the loss distribution. All distributions
have the same mean. The fat-tailed loss distribution and the systemic risk loss distribution
have the same correlation of default.

with probability p “ .01, and given X “ 1, random variables Z1, ..., Z1000 are i.i.d.
Bernoulli random variables with probability p “ .3. The structure is illustrated in
Figure 1.1.15.
Plot the distribution of the loss.

X

Z1 Z2 Z3 · · · Z88 Z99 Z100

Figure 1.1.15: Variable X represents a systemic factor for variables Z1, ..., Z100. When
X “ 1, the chance of Zi “ 1 increases drastically. Since Zi “ 1 represents the loss from
asset i, when the systemic factor X is passive, i.e., X “ 0, the loss distribution is similar
to one for a portfolio of independent defaultable assets.

There are two main approaches to modeling a financial environment. Some studies, such
as (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Cont, Moussa, and Santos 2011; Amini,
Filipović, and Minca 2015), model a complex financial network of loans by a random
graph. Others, such as (Garnier, Papanicolaou, and Yang 2013), use the theory of mean
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field games to model the structure of a financial environment. While the former emphasizes
the contribution of the heterogeneity of the network in systemic risk, the latter shows that
systemic risk can also happen in a homogeneous environment. An example of such a
network method, that most central banks and central clearinghouses use to assess systemic
risk to the financial networks they oversee is the Eisenberg-Noe model, which is discussed
in Section 1.1.2.

1.2 Optimization in finance

Optimization is a regular practice in finance: a hedge fund wants to increase its profit,
a retirement fund wants to increase its long-term capital gain, a public company wants
to increase its share value, and so on. One of the early applications of optimization in
finance is the Markowitz mean-variance analysis on diversification; [20]. This leads to
quadratic programming and linear optimization with quadratic constraint. Once we define
the condition for the optimality of a portfolio in a reasonable sense, we can build an optimal
portfolio, or an efficient portfolio. Then, the efficient portfolio can be used to analyze
other investment strategies or price new assets. For example, in the capital asset pricing
model (CAPM), we evaluate an asset based on its correlation with the efficient market. In
this section, we present a mean-variance portfolio selection problem as a classical use of
optimization methods in finance.
Consider a market with N assets. Assume that we measure the profit of the asset over a

period r0, 1s by its return:

Ri “
S

piq
1 ´ S

piq
0

S
piq
0

.

Here, S
piq
0 and S

piq
1 are the current price and the future price of the asset i, respectively.

The return on an asset is the relative gain of the asset. For instance, if the price of an asset
increases by 10%, the return is 0.1. Since the future price is unknown, we take return as a
random variable and define the expected return by the expected value of the return, i.e.,

Ri :“ ErRis.

The risk of an asset is defined as the standard deviation of the return σi, where

σ2
i :“ varpRiq.

Expected return and risk are two important factors in investment decisions. An investor
with a fixed amount of money wants to distribute her wealth over different assets to make
an investment portfolio. In other words, she wants to choose weights pθ1, ..., θN q P RN

` such
that

řN
i“1 θi “ 1 and invest θi fraction of her wealth on asset i. Then, her expected return

28



1. PRELIMINARIES 1.2. OPTIMIZATION IN FINANCE

on this portfolio choice is given by

Rθ :“
N
ÿ

i“1
θiRi.

However, the risk of her portfolio is a little more complicated and depends on the correlation
between the assets

σ2
θ :“

N
ÿ

i“1
θ2

i σ2
i ` 2

ÿ

1ďiăjďN

θiθjϱijσiσ2.

Here ϱij is the correlation between the returns of assets i and j.

Example 1.2.1 (Two assets). Assume that N “ 2 and R1 and R2 are assets with correlated
returns, and that correlation is given by ϱ12. Thus, for θ P r0, 1s, we invest θ portion of
the wealth in asset 1 and the rest in asset 2. Then, the expected return and the risk of the
portfolio as a function of θ are given by

Rθ “ θR1 ` p1 ´ θqR2 and σ2
θ “ θ2σ2

1 ` p1 ´ θq2σ2
2 ` 2θp1 ´ θqϱ12σ1σ2.

Therefore, by eliminating θ, σ2
θ becomes a quadratic function of Rθ; see the red parabola in

Figure 1.2.1.

Exercise 1.2.1. Show that when θ “
σ2

2
σ2

1`σ2
2
, the portfolio with two uncorrelated assets in

Example 1.2.1 takes the minimum risk σ2
θ . Find the minimum value. Repeat the result for

the positively and negatively correlated assets.

As seen in Figure 1.2.1 and shown in Exercise 1.2.1, there is a portfolio with minimum
risk σmin and return R˚ that is higher than the minimum return between the two assets. If
the goal is to minimize risk regardless of the return of the portfolio, there is a better option
than fully investing in the lower-risk asset. Even if the assets are correlated, negatively or
positively, the minimum risk portfolio exists. The only exception is when the two assets
are positively correlated with ϱ12 “ 1, where the least risky option is to invest fully in
the asset with lower risk. Notice that in the dotted parts of the red and green curves, all
portfolios are worse than the minimum risk portfolio. In other words, the minimum risk
portfolio has higher return than all dotted portfolios while it maintains the lowest risk. By
choosing a portfolio in the solid part of the curve, we accept to take higher risk than the
minimum risk portfolio. In return, the return of the chosen portfolio also is higher than
the return of the minimum risk portfolio. The solid part of the curve is called the efficient
frontier.
The collection of all portfolios made up of more than two assets is not represented simply

by a one-dimensional curve; such a portfolio is represented by a point in a two-dimensional
region that is not always easy to find. However, Robert Merton in [21] shows that the
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Figure 1.2.1: The risk of a portfolio with two assets as a function of expected return.
σ2

θ as a function of Rθ is a quadratic curve. The green curve indicates when the returns
of assets are negatively correlated with correlation ´1, the green curve indicates when the
returns of assets are negatively correlated with correlation less than ´1, the red curve
indicates uncorrelated assets, the gray curve indicates when they are positively correlated,
and the black curve indicates when the returns of assets are positively correlated with
correlation 1.
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Figure 1.2.2: Left: the risk vs return of all portfolios on three assets. The assets are
marked by blue dots. The bi-asset risk-return curves are plotted with blue, green and red
colors. Right: The efficient frontier for three assets is shown in orange.

efficient frontier always exists regardless of the number of assets. In Figure 1.2.2, we
sketched the risk-return region for three assets and marked the efficient frontier for them.
To define the efficient frontier, we impose a natural partial order among all portfolios

based on their risk and return: θ ą θ̂ if and only if Rθ ą Rθ̂ and σθ ď σθ̂, or Rθ ě Rθ̂ and
σθ ă σθ̂. In other words, one portfolio is better than another if it has either a lower risk
with at least the same return, or a higher return with at most the same risk. The efficient
frontier is the set of all maximal portfolios under this order; i.e., there is no portfolio that
is better.

Minimum risk portfolio

The portfolio with the least risk σmin is located in the lowest end of the efficient frontier.
To find the lowest-risk portfolio, we solve the following problem.

min σθ subject to θ ě 0 and
ÿ

i

θi “ 1.

Notice that the above optimization problem is equivalent to solving the quadratic program-
ming problem.

min σ2
θ subject to θ ě 0 and

ÿ

i

θi “ 1. (1.2.1)

Recall that

σ2
θ :“

N
ÿ

i“1
θ2

i σ2
i ` 2

ÿ

1ďiăjďN

θiθjϱijσiσ2

which can be written in matrix form by θTCθ. Here, the matrix C is the variance-covariance
matrix between assets given by

Cij “ ϱijσiσj .
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If all assets are linearly uncorrelated, then C is positive-definite. Therefore, problem (1.2.1)
is similar to those studied in Section A.2.

Minimizing risk subject to return constraint

If we want to have a return higher than the return from the portfolio, we have to take more
risk than σmin. This can be achieved by adding the constraint of a minimum return.

min σθ subject to θ ě 0
ÿ

i

θi “ 1 and Rθ ě R0. (1.2.2)

The constant R0 is the desired return from the portfolio.

Exercise 1.2.2. Consider a portfolio of ten assets with the expected return given by
“

.1 .2 .3 .5 .2 .1 .05 .1 .2 .1
‰

and the variance-covariance matrix by
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 .2 0 0 0 0 0 0 0 0
.2 1 .2 0 0 0 0 0 0 0
0 .2 1 .2 0 0 0 0 0 0
0 0 .2 1 .2 0 0 0 0 0
0 0 0 .2 2 .1 0 0 0 0
0 0 0 0 .1 2 .1 0 0 0
0 0 0 0 0 .1 2 .1 0 0
0 0 0 0 0 0 .1 2 .1 0
0 0 0 0 0 0 0 .1 2 .1
0 0 0 0 0 0 0 0 .1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Use CVX under MatLab or CVXOPT under Python, introduced in Section A.2, to numerically
solve problems (1.2.1) and (1.2.2).

Maximizing return subject to risk constraint

It is obvious that the highest return comes from the asset with the highest return. However,
it may be too risky to invest all one’s resources in one risky asset. Therefore, there is usually
a risk constraint:

max Rθ subject to θ ě 0
ÿ

i

θi “ 1 and σ2
θ ď σ0. (1.2.3)

The constant σ0 is the maximum risk of the portfolio.
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Exercise 1.2.3. Assume that all assets are uncorrelated. Use the Cauchy-Schwartz in-
equality to show that an optimal solution for problem (1.2.3) is obtained when θi “ Ri

aσ2
i

where a “
ř

i
Ri

σ2
i
.

Now consider the general case where the assets are correlated with a positive-definite
variance-covariance matrix. Use the Cholesky decomposition for the positive-definite ma-
trices to find an optimal solution to the problem. Is the optimal solution unique?

1.3 No-dominance principle and model-independent arbitrage
In this section, we focus on the market properties that hold true objectively regardless
of the choice of the model. Therefore, here we do not make any assumption about the
dynamics of the assets, the yield of zero bonds, and the like. Instead, we only impose two
basic assumptions and ignore any friction in the market such as transaction cost, liquidity
restriction, and nontradability of assets. Some of the contents of this section can be found
in [30, Section 1.2].
We consider a sample space Ω that includes the collection of all possible events in the

market at future time T , and let χ be given set of portfolios (a collection of assets and
strategies on how to trade them dynamically) in the market. For any portfolio in χ, the
payoff of the portfolio is what it is worth at time T , and is a random variable from Ω to R.
We assume that there exists a pricing function Π : χ Ñ R; i.e., the price of portfolio P is
given by ΠpP q. We denote the payoff of portfolio P at the event ω P Ω by P pωq.
The first assumption that we impose is the following:

Assumption 1.3.1 (No-dominance). If P P χ has a nonnegative payoff, i.e., P pωq ě 0
for all ω P Ω, then the price ΠpP q of portfolio P is nonnegative.

Remark 1.3.1. No-dominance principle implies that two portfolios P1 and P2 with P1pωq “

P2pωq for all ω P Ω have the same price.

The second assumption is the linearity of the pricing function. For any two portfolios
P1 and P2, define P1 ‘ P2 is the portfolio made by combining the two. We impose the
following natural assumption of linearity.

Assumption 1.3.2. For P1, P2 P χ, we have

ΠpP1 ‘ P2q “ ΠpP1q ` ΠpP2q.

Let’s first fix some terminology that we’ll be using. By “being in a long position” in an
asset, a bond, or the like, we mean that we hold the asset, bond, etc. Similarly, by “being
in a short position” in an asset, a bond, or the like, we mean that we owe the asset, bond,
etc. For a bond or an option, the issuer is in the short position. Having a short position
in an asset means borrowing that asset and then selling it for cash or keeping it for other
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reasons. This is often referred to as short selling, which is a common practice in the market.
Usually, the borrower is obliged to pay the short-sold security back upon the request of the
lender or in an agreed time.

Example 1.3.1. The forward price K satisfies

FtpT q “
St

BtpT q
.

To see this, consider a portfolio made of a long position in the underlying asset and a
short position in a “ FtpT q zero bonds at time t. The value of this portfolio at time T is
ST ´ FtpT q. This value is the same as the payoff of a long position in forward contract.
Therefore, by the no-dominance principle (Remark 1.3.1), we obtain that the value of the
portfolio is the same as the price of the forward contract, which is zero; St´BtpT qFtpT q “ 0.
On the other hand, the price of the forward is zero and therefore we have the result.

Remark 1.3.2. Proposition 1.3.1 explains a market condition called contango in the fu-
tures markets; the futures price is larger than the spot price. If holding an underlying
asset incurs storage cost, then the result of Proposition 1.3.1 may be violated and we have
FtpT q ă St. This market condition is called backwardation. Backwardation can also occur
if the underlying of the futures contract is not even storable, for instance electricity.

Example 1.3.2. Forward rate f0pt, T q for delivery at time t of a zero bond with maturity
T satisfies

f0pt, T q “
ln B0ptq ´ ln B0pT q

T ´ t
.

To see this, consider a portfolio made of a zero bond with a principle of $1 at time T . The
price of this portfolio is B0pT q. On the other hand, consider another portfolio made of a for-
ward rate agreement on a bond with the principle of $1 starting at time t, maturing at time
T , and with a forward rate f0pt, T q; and a bond with a principle of $e´f0pt,T qpT ´tq maturing
at time t. The price of such a portfolio is $B0ptqe´f0pt,T qpT ´tq. Since both portfolios have
the same payoff of $1, they must have the same price. Thus, B0ptqe´f0pt,T qpT ´tq “ B0pT q.

Exercise 1.3.1. Consider a zero bond Bd
0pT q in the domestic currency and another zero

bond Bf
0pT q in a foreign currency. At the current time t “ 0, the domestic-to-foreign

exchange rate is denoted by r
d/f
0 , and the forward domestic-to-foreign exchange rate8 for

time T is denoted by f
d/f
0 pT q. Show that

Bd
0pT qr

d/f
0 “ Bf

0pT qf
d/f
0 pT q.

Proposition 1.3.1. The price of an American option is always greater than or equal to
the price of a European option with the same payoff.

8The forward exchange rate is guaranteed at maturity.
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Proof. An American option can always be exercised, but not necessarily optimally, at
maturity, and generates the same payoff as a European option.

Proposition 1.3.2. The price of vanilla options satisfies

CpT, K1, S, tq ď CpT, K2, S, tq and P pT, K1, S, tq ě P pT, K2, S, tq,

where K1 ě K2.

Proof. Consider a portfolio that consists of a long position in a call option with strike price
K2 and a short position in a call option with strike K1, both maturing at T . Then, the
terminal value of the portfolio is pST ´ K2q` ´ pST ´ K1q`, which is nonnegative. By the
no-dominance principle, we have CpT, K2, S, tq ´ CpT, K1, S, tq ě 0. For a put options, a
similar argument works.

Exercise 1.3.2. Show that the price of an American call or put option is an increasing
function of maturity T .

Exercise 1.3.3. Let λ P p0, 1q. Then,

CpT, λK1 ` p1 ´ λqK2, S, tq ď λCpT, K1, S, tq ` p1 ´ λqCpT, K2, S, tq.

In other words, the price of a call option is convex in K.
Show the same claim for the price of a put option, an American call option, and an Amer-
ican put option.

Exercise 1.3.4. It is well known that a convex function has right and left derivatives at
all points. From the above exercise it follows that the right and the left derivatives of a
call option price with respect to strike price, BK˘CpT, K, S, tq, exists. Use no-dominance
to show that

´BtpT q ď BK˘CpT, K, S, tq ď 0

Hint: Consider a portfolio made of a long position in a call with strike K2, a long position
in K2 ´ K1 bonds, and a short position in a call option with strike K1.

Proposition 1.3.3 (Put-call parity). The price of a call option and the price of a put
option with the same strike and maturity satisfy

CpT, K, S, tq ` KBtpT q “ S ` P pT, K, S, tq.

Proof. Since pST ´ Kq` ` K “ ST ` pK ´ ST q`, according to no-dominance principle, a
portfolio consisting of a call option and K units of zero bond BtpT q is worth as much as a
portfolio made of a put option and one unit of underlying asset.
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Exercise 1.3.5. A portfolio of long positions in call options with the same maturity and
strikes on different assets is worth more than a call option on a portfolio of the same assets
with the same weight; i.e.,

n
ÿ

i“1
λiCpT, Ki, Spiq, tq ě CpT, K̂, Ŝ, tq, (1.3.1)

where λi ě 0 is the number of units invested in the call option on the ith underlying asset,
Ki ě 0 is the strike of the call option on the ith underlying asset , Spiq denotes the current
price of the ith asset, K̂ “

řn
i“1 λiKi, and Ŝ “

řn
i“1 λiS

piq is the value of a portfolio that
has λi units of ith asset for i “ 1, ..., n.

Remark 1.3.3. Exercise 1.3.5 demonstrates an important implication about the risk of
a portfolio. A portfolio made of different assets can be insured against the risk of price
increase in two ways: by purchasing a call option for each unit of each asset or by purchasing
a call option on the whole portfolio. It follows from (1.3.1) that the latter choice is cheaper
than the former. An option on a portfolio is called a basket option.

Proposition 1.3.4 (Arbitrage bounds for the price of a call option). The price of a call
option should satisfy

pS ´ BtpT qKq` ď CpT, K, S, tq ď S.

Proof. Since pST ´ Kq` ď ST , no-dominance implies that CpT, K, S, tq ď S. To see the
right-hand side inequality, first notice that since 0 ď pST ´ Kq`, 0 ď CpT, K, S, tq. On the
other hand, a portfolio of along position in the underlying asset and a short position in K
units of zero bond has a payoff ST ´ K which is less than or equal to the payoff of call
option pST ´ Kq`. Therefore, S ´ KB0pT q ď CpT, K, S, tq. As a result, pS ´ BtpT qKq` “

maxt0, S ´ BtpT qKu ď CpT, K, S, tq.

The notion of model-specific arbitrage will later be explored in Section 2.1. However, in
this section, we present model-independent arbitrage, which is in the same context as the
no-dominance principle.

Definition 1.3.1. A portfolio P with a positive payoff and a zero price is called a model-
independent arbitrage. In other words, a portfolio P is called model-independent arbitrage
if P pωq ą 0 for all ω P Ω, and ΠpP q “ 0.

By Definition 1.3.1, a portfolio with χpω1q “ 0 for some ω1 P Ω and P pωq ą 0 ω ‰ ω1 is
not a model-independent arbitrage. This leads to a weaker notion of arbitrage.

Definition 1.3.2. A portfolio P with a nonnegative payoff such that for some ω P Ω
P pωq ą 0 and zero price is called a weak arbitrage. In other words, a portfolio P is called
a weak arbitrage if P pωq ě 0 for all ω P Ω, P pω1q ą 0 for some ω1 P Ω and ΠpP q “ 0.
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Example 1.3.3. Let K1 ą K2 and CpT, K1, S, tq ą CpT, K2, S, tq. A portfolio that consists
of a short position in a call with strike K1, a long position in a call with strike K2, and the
difference ofCpT, K1, S, tq ´ CpT, K2, S, tq in cash is a model-independent arbitrage. This
is because, the value of such a portfolio is zero. However, the payoff is pST ´ K2q ´ pST ´

K1q` ` CpT, K1, S, tq ´ CpT, K2, S, tq, which is strictly positive, and therefore we have a
model-independent arbitrage.
On the other hand, if CpT, K1, S, tq “ CpT, K2, S, tq, the same portfolio described in the

previous paragraph has a positive value whenever ST ą K2, and a zero value otherwise.
Therefore, it is only a weak arbitrage.

Example 1.3.4. As a result of Exercise 1.3.4, if the price of the option is smaller that
pS´BtpT qKq`, or larger than the asset price S, then there is a model-independent arbitrage.
For example, if CpT, K, S, tq ą S, one can have a portfolio of a short position in a call
and a long position in the underlying asset, and the difference CpT, K, S, tq ´ S in cash.
The value of this portfolio is zero. However, the payoff is strictly positive, i.e., ST ´ pST ´

Kq` ` CpT, K, S, tq ´ S ą 0.

Remark 1.3.4. When CpT, K, S, tq “ S and K ą 0, Example 1.3.4 suggests that we
still have a model-independent arbitrage, unless the event ST “ 0 is legitimate. Therefore,
choice between the model-independent arbitrage or weak arbitrage depends on whether the
event ST “ 0 is included in Ω or not.

Proposition 1.3.5. If there is no model-independent arbitrage, then the no-dominance
principle holds.

Proof. Assume that no-dominance does not hold; i.e., there is a portfolio P with nonneg-
ative payoff with a negative price ΠpP q. Then, consider a new portfolio made of a long
position in the old portfolio P and holding a zero bond with face value ´ΠpP q. The new
portfolio has a positive payoff of P pωq ´ ΠpP q for each ω P Ω and a zero price. Therefore,
it is a model-independent arbitrage.

Exercise 1.3.6. For 0 ă t ă T , show that if B0ptqBtpT q ą B0pT q (equiv. B0ptqBtpT q ă

B0pT q), there is a model-independent arbitrage.

Exercise 1.3.7. Consider a zero bond Bd
0pT q on the domestic currency and another zero

bond Bf
0pT q on a foreign currency. At the current time t “ 0, the domestic-to-foreign

exchange rate is denoted by r
d/f
0 and the forward domestic-to-foreign exchange rate for time

T is denoted by f
d/f
0 pT q. Show that if

Bd
0pT qr

d/f
0 ą Bf

0pT qf
d/f
0 pT q,

then there exists a model-independent arbitrage.
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2. DISCRETE-TIME MARKETS

2

Modeling financial assets in
discrete-time markets

Section 2.1 deals with a single-period market in which there are only two trading dates,
one at the beginning of the period and one at maturity. In this section, an introductory
knowledge of probability theory is required; more specifically, the reader needs the theory
of probability on discrete sample spaces that is provided in Section B.1. A few times in
Section 2.2, we mention concepts form the general theory of probability. However, these
cases are not crucial for understanding of the content of this sections and can simply be
skipped. In Section 2.3, we extend the results of Section 2.1 to a multiperiod market with
a focus on the binomial model. This is also important in our later study of continuous-time
markets, which can be seen as the limit of discrete-time markets. A key concept from the
appendix is the notion of martingales that is explained in Section B.3. The last section,
Section 2.4, deals with the problem of tuning the parameters of a model to match the data
in the specific context of binomial model.

2.1 Arrow-Debreu market model

The ideas and concepts behind pricing derivatives are easier to explain in a single-period
framework with finite number of outcomes, i.e., Arrow-Debreu market model. According
to the Arrow-Debreu market model, an asset has a given price and a set of possible values.
There are N assets with prices arranged in a column vector p “ pp1, ..., pN qT1. For each
i “ 1, ..., N , the possible future values or payoff of asset i is given by tPi,j : j “ 1, ..., Mu.
Pi,j is the jth state of future value of asset i and M is a universal number for all assets.

1AT is the transpose of matrix A.
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Then, one can encode the payoffs of all assets into a N -by-M matrix

P :“ rPi,jsi“1,...,N,j“1,...,M “

»

—

–

P1,1 ¨ ¨ ¨ P1,M
... . . . ...

PN,1 ¨ ¨ ¨ PN,M

fi

ffi

fl

.

In the Arrow-Debreu market model, row Pi,¨ of the matrix P represents all future prices
of asset i for different states of the market, and column P¨,j represents prices of all assets
in future state j of the market.

pi

Pi,1

Pi,2

...

Pi,M−1

Pi,M

Figure 2.1.1: Arrow-Debreu market model

Example 2.1.1 (Game of chance). Let N “ 1, M “ 2 and P1,1 “ ´P1,2 “ 1. In other
words, there is a fee p1 to enter a game of chance in which the player either gains or loses
a dollar based on the outcome of flipping a coin. Notice that for now we do not specify
the heads-tails probability for the coin. This probability determines whether the price of the
game p1 is a fair price or not.

p1

P1,1 = 1

P1,2 = −1

Figure 2.1.2: Game of chance described in the Arrow-Debreu market model
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2.1.1 Arbitrage portfolio and the fundamental theorem of asset pricing

A portfolio is a row vector θ “ pθ1, ¨ ¨ ¨ , θN q where θi P R which represents the number of
units of asset i in the portfolio. The total price of the portfolio is then given by

θp “

N
ÿ

i“1
θipi.

Here, the notation of product is simply the matrix product. Notice that if θi ą 0, the
position of the portfolio in asset i is called long, and otherwise if θi ă 0, it is called short.
Arbitrage is a portfolio that costs no money but gives a nonnegative future value and for

some states positive values. More precisely, we have the following definition.

Definition 2.1.1. θ is called a weak arbitrage portfolio or weak arbitrage opportunity if

a) θp “ 0

b) θP¨,j ě 0 for all j “ 1, ..., M

c) θP¨,j ą 0 for at least one j.

Notice that for a given θ “ pθ1, ¨ ¨ ¨ , θN q, the portfolio represented by θ is itself an asset
with value θP¨j at the state j of the market.
We say that a market model is free of weak arbitrage or that it satisfies no weak arbitrage

condition (NWA for short), if there is no weak arbitrage opportunity in this model.
Sometimes, an arbitrage opportunity starts with a zero-valued portfolio and ends up with

positive values at all states of the market. This defined an strong arbitrage:

Definition 2.1.2. θ is called a strong arbitrage portfolio or arbitrage opportunity if

a) θp ă 0

b) θP¨,j ě 0 for all j “ 1, ..., M

Remark 2.1.1. Notice that if we remove some of the states of the market, then weak
arbitrage can disappear. However, strong arbitrage does not.

Notice that model-independent arbitrage as defined in Definition 1.3.1 is even stronger
than strong arbitrage.
The following theorem is the most important in financial mathematics that characterizes

the notion of arbitrage in a simple way. Basically, it presents a simple criterion to determine
if a market model is free of weak or strong arbitrage.

Theorem 2.1.1 (Fundamental theorem of asset pricing (FTAP)). The Arrow-Debreu mar-
ket model is free of weak (respectively strong) arbitrage opportunity if and only if there exist
a column vector of positive (respectively nonnegative) numbers π “ pπ1, ..., πM qT such that

p “ Pπ. (2.1.1)
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Notice that Theorem 2.1.1 does not claim that the vector π is unique, and therefore there
can be several solutions π such that (2.1.1) holds.

Proof. The proof for the strong arbitrage case is the result of the so-called Farkas’ lemma
which asserts that

Given an n ˆ m matrix A and a vector b P Rm. Then, exactly one of
the following two statements is true:

1) There exists a π P Rn such that Aπ “ b and π ě 0.

2) There exists a θ P Rm such that θA ě 0 and θb ă 0.

We apply Farkas’ lemma for A “ P and b “ p. Strong arbitrage is equivalent to (2) in
Farkas’ lemma. Therefore, lack of strong arbitrage is equivalent to (1).
To show the result for weak arbitrage, we consider the following extension of Farkas’s

lemma.

Given an n ˆ m matrix A and a vector b P Rm. Then, exactly one of
the following two statements is true:

1’) There exists a π P Rn such that Aπ “ b and π ą 0.

2’) There exists a θ P Rm such that θA ě 0, θA ‰ 0 and θb ď 0.

For A “ P and b “ p, weak arbitrage is equivalent to (2’). Therefore, lack of weak
arbitrage is equivalent to (1’).

Remark 2.1.2. The Farkas’ lemma and its extension that are used in the proof of Theorem
2.1.1 are corollaries of the separating hyperplane theorem. For more details about separating
hyperplane theorem and Farkas’ lemma see [8, Section 5.8.3, Section 2.5.1 and Exercise
2.20].

Lack of strong arbitrage does not imply that the vector π in Theorem 2.1.1 has some
positive entities. For instance, when p “ 0, i.e., all the assets in the market have zero
price, there is no strong arbitrage. In such a case, a trivila solution to equation (2.1.1) is
π “ 0. If p ‰ 0, then no-arbitrage condition implies that π has at least a positive entity.
Therefore, one can normalize it by

π̂ “
1

řM
j“1 πj

π.

π̂ is a probability. The probability vector π̂ “ pπ̂1, ..., π̂M qT is referred to as a risk-neutral
or risk-adjusted probability.
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Example 2.1.2. Consider a game in which you pay a fee of $.20 to enter. Then, a coin flip
determines whether you win or lose a dollar. We also include a zero bond with a face value
of $1 and a price $.80. See Figure 2.1.3. It follows from the FTAP that the no-arbitrage
condition is equivalent to the existence of a positive vector pπ1, π2qT satisfying

#

π1 ´ π2 “ .2,

π1 ` π2 “ .8.

In fact, such a vector (uniquely) exists and is given by p5{8, 3{8q. If we exclude the zero

p1 = .2

P1,1 = 1

P1,2 = −1

p2 = .8

P2,1 = 1

P2,2 = 1

Figure 2.1.3: An Arrow-Debreu market model with two assets and two states representing
a coin game and a zero bond

bond from the market, the FTAP criterion for no-arbitrage is reduced to the existence of a
positive solution to π1 ´ π2 “ .2. There are obviously infinitely many positive solutions.

Example 2.1.3. Consider a game of chance using two coins; to enter the game, you pay
a $1 fee. If both coins turn heads (tails), you win (lose) a dollar. Otherwise, the gain is
zero. There is also a zero bond with a face value of $1 and a price of $.80. It follows from
FTAP that there is an arbitrage opportunity. Notice that the system of equation

#

π1 ´ π4 “ 1
π1 ` π2 ` π3 ` π4 “ .8

implies π3 “ ´π2´.2´2π4, which excludes the possibility of a positive solution. Therefore,
there is an arbitrage in this game.

FTAP predicts the existence of arbitrage but does not provide any. Knowing an arbitrage
opportunity exists, finding one is sometimes a challenging problem, even in the toy Arrow-
Debreu market model.

Exercise 2.1.1. Find an arbitrage opportunity in Example 2.1.3.

Remark 2.1.3. The weak and strong arbitrage are model specific. If we change the model,
the arbitrage opportunity can disappear. However, model-independent arbitrage remains a
strong arbitrage opportunity in any possible model.
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p1 = 1

P1,1 = 1

P1,2 = 0

P1,3 = 0

P1,4 = −1

p2 = .8

P2,1 = 1

P2,2 = 1

P2,3 = 1

P2,4 = 1

Figure 2.1.4: An Arrow-Debreu market model with two assets and four states represent-
ing a coin game and a zero bond

2.1.2 Arrow-Debreu market model with a risk-free bond

If we intend to add a new asset with price p1 and values P 1
1, ..., P 1

M to the current Arrow-
Debreu market model, the new asset does not create an arbitrage opportunity if and only
if at least one of the existing positive solutions π of (2.1.1) satisfies

p1 “

M
ÿ

j“1
P 1

jπj .

More specifically, assume that the new asset is a zero bond with yield (interest rate) R
and face value 1. Therefore, its price is given by p0 “ 1

1`R . See Figure 2.1.5. For no-

p0 = 1
1+R

P0,1 = 1

P0,2 = 1

.

.

.

P0,M−1 = 1

P0,M = 1

Figure 2.1.5: Risk-free asset in Arrow-Debreu market model

arbitrage condition to hold for the market with the new bond, at least one of the positive
solutions of (2.1.1) implies that p0 “ 1

1`R “
řM

j“1 πj . Therefore, no-arbitrage condition for
an Arrow-Debreu market model with a zero bond is equivalent to existence of a positive

44



2. DISCRETE-TIME MARKETS 2.1. ARROW-DEBREU

vector π such that (2.1.1) holds and

M
ÿ

j“1
πj “

1
1 ` R

,

holds for all such π. Therefore, any positive vector π can be normalized to a risk-neutral
probability through

π̂ “
π

řM
j“1 πj

“ p1 ` Rqπ.

Then, the price pi of each asset is given by

pi “

M
ÿ

j“1
Pi,jπj “

1
1 ` R

N
ÿ

j“1
Pi,j π̂j . (2.1.2)

The right-hand side above has an important interpretation: provided that the no-arbitrage
condition holds, the price of the asset is equal to the discounted expected payoff with respect
to risk-neutral probability, i.e.,

pi “
1

1 ` R
ÊrPi¨s.

Here, ÊrPi¨s :“
řM

j“1 π̂jPi,j is the expected payoff of asset i with respect to the risk-neutral
probability π̂. Factor 1

1`R is the discount factor.
By rearranging (2.1.2), one obtains

R “

M
ÿ

j“1

Pi,j ´ pi

pi
π̂j .

The term Pi,j

pi
´ 1 in RHS is the realized return of asset i if the state j of the market occurs.

Therefore, the interpretation of the above equality is that the expected return of each asset
under the risk-neutral probability π̂ is equal to the risk-free interest rate R.

Example 2.1.4. Consider an Arrow-Debreu market model with a risky asset shown below
and a risk-free asset with interest rate R “ .5. To see if there is no arbitrage in this model,

.3

1

.5

45



2.1. ARROW-DEBREU 2. DISCRETE-TIME MARKETS

we should investigate the solutions to the system
#

1 “ π̂1 ` π̂2

.3 “ 1
1.5 pπ̂1 ` .5π̂2q

The first equation accounts for that π̂ is a probability vector, and the second equation comes
from (2.1.2). However, the only solution is π̂ “ p´.1, 1.1qT, which is not a probability.

Example 2.1.5. Consider an Arrow-Debreu market model with a risky asset shown below
and a risk-free asset with interest rate R “ .5. To see if there is no arbitrage in this model,

1

2

1

.5

we should investigate the solutions to the system

1 “ π̂1 ` π̂2 ` π̂3

1 “
1

1.5
p2π̂1 ` π̂2 ` .5π̂3q

One of the infinitely many solutions to the above system is π̂ “ p.6, .2, .2qT, which implies
no-arbitrage condition.
If a second risky asset, shown below, is added to the market, we still do not have arbitrage

because vector π̂ “ p.6, .2, .2qT works for the new market.

.4

1

0

0

Exercise 2.1.2. Consider an Arrow-Debreu market model with two risky assets shown
below and a risk-free asset with interest rate R “ .5. Find all the values for p such that the
market is arbitrage free.

Remark 2.1.4. A zero bond is a risk-free asset in the currency of reference. For example,
a zero bond that pays $1 is risk-free under the dollar. However, it is not risk-free if the
currency of reference is the euro. In the latter case, a euro zero bond is subject to the risk
caused by the foreign exchange rate and is a risky asset. See Exercise (2.1.3) below.
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1

2

1

.5

p

1

0

0

Exercise 2.1.3. Consider an Arrow-Debreu market model with two assets and two states;
one is a zero bond in the domestic currency with interest rate Rd under the domestic
currency, and the other is a zero bond in a foreign currency with interest rate Rf under
foreign currency.

a) Given that the domestic-to-foreign exchange rate at time 0 is F0
2, and at time 1 takes

nonnegative values F1 and F2, what is the Arrow-Debreu market model description
of a foreign zero bond in the domestic currency?

b) A currency swap is a contract that guarantees a fixed domestic-to-foreign exchange
rate, or a forward exchange rate for maturity. The forward exchange rate is
agreed upon between two parties such that the value of the contract is zero. Express
the forward exchange rate of a currency swap maturing at 1 in terms of F0, Rd, F1,
Rf, and F2.

Remark 2.1.5. The risk-neutral probability π̂ has little to do with the actual probability
(or physical probability) with which each state of the market happens. The probabilities
fj :“ Pp state j occursq can be obtained through statistical analysis on historical market
data. However, the risk-neutral probability π̂ depends only on the matrix P and vector p
and not on historical market data. The one and only genuine relevance between physical
probability f “ pf1, ..., fmqT and risk-neutral probability π̂ “ pπ̂1, ..., π̂M qT is that they both
assign nonzero probability to each of the states of the market; i.e., fj ą 0 if and only if
π̂j ą 0 for at least one risk-neutral probabilities π̂.
One can interpret π̂ as an investor’s preference toward the different states of the market.

To see this, let’s rewrite (2.1.2) as the following

pi “
1

1 ` R

M
ÿ

j“1

´ π̂j

fj

¯

fjPi,j “
1

1 ` R
E
”´ π̂¨

f¨

¯

Pi,¨

ı

. (2.1.3)

Here, E is the expectation with respect to the physical probability. The quotient π̂j

fj
is the

risk preference of the investor toward the state j of the market, which is also referred to
as the state-price deflator. The state-price deflator shows that, apart from the physical
probability of a certain state, an investor may be keen or averse toward the appearance of
that state. For instance, fj can be a very high probability, but state-price deflator π̂j

fj
can be

21 unit of domestic is worth F0 units of foreign.
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small, which means that the probable event of appearance of state j has little value to the
investor.

One can analyze the Arrow-Debreu market model by introducing M new elementary
securities to the market; for i “ N ` 1, ..., N ` M , asset N ` j pays $1 if market state j
happens and pays $0 otherwise. See Figure 2.1.6. Then, it is straightforward to see that π̂j

is the arbitrage free price of asset N ` j. Therefore, the cashflow from asset i is equivalent
to the cashflow of a basket of Pi,1 units of asset N ` 1, Pi,2 units of asset N ` 2, ..., and
Pi,M asset sN`M . Recall from (2.1.2) that

pi “
1

1 ` R

M
ÿ

j“1
Pi,j π̂j .

π̂j

PN+j,1 = 0
...

PN+j,j = 1
...

PN+j,M = 0

Figure 2.1.6: Elementary asset sN`j

Example 2.1.6. Consider an Arrow-Debreu market model with a risky asset shown below
and a zero bond with interest rate R “ .5.

1

2

1

.5

−.5

a) A risk-neutral probability π̂ “ pπ̂1, π̂2, π̂3, π̂4qT must satisfy
#

π̂1 ` π̂2 ` π̂3 ` π̂4 “ 1
2π̂1 ` π̂2 ` 1

2 π̂3 ´ 1
2 π̂4 “ 3

2
.

Notice that we have two equations and four unknown; there are two more vari-
ables than equations. Therefore, we shall represent all risk-neutral probabilities as
a parametrized surface with two parameters. For example, we take π̂1 “ s and π̂2 “ t.
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.1 .5 1

.5

.8

1

2
3

s

t

Figure 2.1.7: The hatched region represents the values for t and s which gener-
ate all risk-neutral probabilities in Example 2.1.6. The specific risk-neutral probability
p0.7, 0.1, 0.1, 0.1qT is shown as a black dot. Each orange line corresponds to a arbitrage-
free price for the new asset that is described in Part (b) of the example.

Then, we write π̂3 and π̂4 is terms of t and s as follows:
#

π̂3 ` π̂4 “ 1 ´ t ´ s

π̂3 ´ π̂4 “ 3 ´ 4t ´ 2s.

You also have to specify the suitable range for the parameters t and s such that vector
π̂ is nonnegative. More specifically, we must have the following four inequalities

$

’

’

’

’

&

’

’

’

’

%

0 ď t

0 ď s

0 ď 2 ´ 5
2 t ´ 3

2s

0 ď ´1 ` 3
2 t ` 1

2s

,

which specify the region plotted in Figure 2.1.7. The region can also be specified in
the following simpler way:

#

0 ď s ď 1
2

2
3 ´ 1

3s ď t ď 4
5 ´ 3

5s
. (2.1.4)

b) We introduce the new asset below.
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p

1

1

−1

−1

We shall find the range for the price p of the new asset such that the market remains
free of arbitrage; strong or weak. By FTAP, Theorem 2.1.1, p must satisfy

p “
1

1.5

´

t ` s ´ 2 `
5
2

t `
3
2

s ` 1 ´
3
2

t ´
1
2

s
¯

“
2
3

´

2t ` 2s ´ 1
¯

,

for at least one value of pt, sq in the interior of the region found in Part (a). Therefore,
valid range for p is pA, Bq, where

A :“ min 2
3

´

2t ` 2s ´ 1
¯

subject to constraints (2.1.4)

and
B :“ max 2

3

´

2t ` 2s ´ 1
¯

subject to constraints (2.1.4).

Both of the above values are the values of linear programming problems which can
be solved by comparing the values of p2{3qp2t ` 2s ´ 1q at the three nodes of the
hatched triangle that represents all risk-neutral probabilities, i.e., p.5, .5q, p0, .7q, and
p0, 2{3q. The smallest value is 2{9 which is attained at p0, 2{3q, and the greatest value
is 2{3 which is attained at p.5, .5q. Therefore, (weak) no-arbitrage for the new asset
is equivalent to p P p2{9, 2{3q.

c) Lack of strong arbitrage is when the asset price is such that all the risk-neutral prob-
abilities have some zero component. In this case, price p should be such that the
risk-neutral probabilities are only on one of the edges of the hatched triangle and does
not include any interior point. In Figure 2.1.7, the orange lines are p “ 2

3

´

2t`2s´1
¯

for different values of p. The only values of p which does not have an intersection
with the interior of the triangle are p “ 2{9 and p “ 2{3. Therefore, the lack of
strong arbitrage implies that p P r2{9, 2{3s.

Exercise 2.1.4. Consider an Arrow-Debreu market model with N “ 3 and M “ 4 shown
in Figure 2.1.8 and take the bond yield R “ 0, where v1 and v2 are two (distinct) real
numbers.

a) Find all risk-neutral probabilities.

b) Recall the notion of independent random variables. Find a risk-neutral probability
that makes the random variables of the prices of two assets independent.
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p1 = v1+v2

2

P1,1 = v1

P1,2 = v2

P1,3 = v1

P1,4 = v2

p2 = v1+v2

2

P2,1 = v1

P2,2 = v1

P2,3 = v2

P2,4 = v2

Figure 2.1.8: Exercise 2.1.4

2.1.3 One-period binomial model

Let M “ 2 and N “ 2 with one risk-free zero bond and a risky asset with price S0 :“ p1,
and future cash flow given byP1,1 “ S0u and P1,2 “ S0ℓ where S0 and ℓ ă u are all positive
real numbers. By Theorem 2.1.1, in a one-period binomial model, no-arbitrage condition

S0

S0u

S0ℓ

Figure 2.1.9: One-period binomial model

is equivalent to ℓ ă 1 ` R ă u and π “ pπℓ, πuqT with πu “ 1`R´ℓ
pu´ℓqp1`Rq

and πℓ “ u´1´R
pu´ℓqp1`Rq

.
The risk-neutral probability is then given by π̂u “ 1`R´ℓ

u´ℓ and π̂ℓ “ u´1´R
u´ℓ .

Exercise 2.1.5. Show the above claims.

From FTAP, we know that ℓ ă 1`R ă u is equivalent to the no-arbitrage condition. But,
it is often insightful to construct an arbitrage portfolio when ℓ ă 1 ` R ă u is violated.
For example, consider the case when u ď 1 ` R. Then, consider a portfolio with a short
position in one unit of the asset and a long position in S0 units of bonds. To construct
this portfolio, no cash is needed, and it is worth zero. However, the two possible future
outcomes are either S0p1 ` Rq ´ S0u ě 0 or S0p1 ` Rq ´ S0ℓ ą 0, which matches with
the definition of (weak) arbitrage in Definition 2.1.1. If we assume the strict inequality
u ă 1 ` R, then the arbitrage is strong.
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Next, we consider the addition of a new asset into the market with payoff P1 and P2 in
states 1 and 2, respectively. Then, no-arbitrage condition implies that the price p of this
asset is must be given by

p “
1

1 ` R
pπ̂uP1 ` π̂ℓP2q .

In particular, if the new asset is an option with payoff function gpS1q, the no arbitrage
price V pS0q of the option is given by

V pS0q :“ 1
1 ` R

´

π̂ugpS0uq ` π̂ℓgpS0ℓq

¯

“
1

1 ` R
ÊrgpS1qs. (2.1.5)

Here, Ê is the expectation under probability π̂, and S1 is a random variable of the price
of asset at time t “ 1 that takes the values S0ℓ and S0u. For instance, a call option with
payoff pS ´ Kq` with ℓS0 ď K ă uS0, shown in figure 2.1.10, has a “no-arbitrage price”:

CpKq “
1 ` R ´ ℓ

pu ´ ℓqp1 ` Rq
puS0 ´ Kq.

C(K)

S0u−K

0

Figure 2.1.10: Cashflow of a call option in a one-period binomial model

We shall now see why any price other than puS0´Kq

p1`Rq
π̂u for the call option causes arbitrage

in the binomial market with a zero bond, a risky asset and a call option on the risky asset.
For this reason, we need to first introduce the notion of a replicating portfolio. Consider a
portfolio with θ0 investment in a zero bond and θ1 units of risky asset. Then, this portfolio
generates the cashflow shown in Figure 2.1.11. We want to choose pθ0, θ1q such that the
payoff of this portfolio matches the payoff of the call option, i.e.

#

θ0 ` θ1S0u “ S0u ´ K

θ0 ` θ1S0ℓ “ 0
(2.1.6)
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Therefore, we have to choose

θ0 “ ´
lpS0u ´ Kq

u ´ ℓ
and θ1 “

S0u ´ K

S0pu ´ ℓq
.

θ0
1+R + θ1S0

θ0 + θ1S0u = S0u−K

θ0 + θ1S0ℓ = 0

Figure 2.1.11: Replicating portfolio in a one-period binomial model

Then, one can see that the value of the replicating portfolio is equal to the price of the
call option, i.e.,

θ0
1 ` R

` θ1S0 “ ´
lpS0u ´ Kq

p1 ` Rqpu ´ ℓq
`

S0u ´ K

u ´ ℓ
“

1
1 ` R

pS0 ´ Kqπ̂u.

Now, we return to building an arbitrage in the case where the price of call option C is
different from puS0´Kq

p1`Rq
π̂u. We only cover the case C ă

puS0´Kq

p1`Rq
π̂u. Consider a portfolio that

consists of a long position in a call option and a short position in a replicating portfolio
on the same call option. Shorting a replicating portfolio is equivalent to a ´θ0 position
in cash, and a ´θ1 position in the underlying asset. Then, the value of such a portfolio
is equal to C ´

puS0´Kq

p1`Rq
π̂u ă 0. This means that there is some extra cash in the pocket,

while the payoff of the call option can be used to clear off the shorted replicating portfolio
in full. Here, the arbitrage is in the strong sense of Definition 2.1.2.
A replicating portfolio can be built for any payoff gpS1q by solving the system of equations

#

θ0 ` θ1S0u “ gpS0uq

θ0 ` θ1S0ℓ “ gpS0ℓq
(2.1.7)

to obtain
θ0 “

ugpS0ℓq ´ ℓgpS0uq

u ´ ℓ
and θ1 “

gpS0uq ´ gpS0ℓq

S0pu ´ ℓq
.

The value of the replicating portfolio is given by

θ0
1 ` R

` θ1S0 “
ugpS0ℓq ´ ℓgpS0uq

p1 ` Rqpu ´ ℓq
`

gpS0uq ´ gpS0ℓq

u ´ ℓ
“

1
1 ` R

pπ̂ugpS0uq ` π̂ℓgpS0ℓqq,
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which is equal to the expected value of the discounted payoff under risk-neutral probability.

Exercise 2.1.6. Consider a one-period binomial model with parameters ℓ, u and R and
let K P pS0ℓ, S0us. Find a replicating portfolio for a put option with strike K. Verify that
the value of the replicating portfolio is equal to the no-arbitrage price of the put option
P pKq “ πℓpK ´ S0ℓq. Then, find an arbitrage portfolio when the price of the put option
with strike K is less than P pKq.

Exercise 2.1.7. Consider an Arrow-Debreu market model with M “ 2 that consists of a
risk-free bond with interest rate R “ .01 and a forward contract3 on a nonstorable asset4

with forward price K and maturity of one period. Given that the payoff of the forward
contract for the long position takes values P1,1 “ 4, and P1,2 “ ´2 respective to the state
of the market at maturity, is there any arbitrage?
Now assume that the underlying asset is storable and has price p “ 10. Given that there is
no arbitrage, find K, and binomial model parameters u and d for the underlying asset.

Example 2.1.7. Consider the binomial model with S0 “ 4, R “ .05, u “ 1.45, and ℓ “ .85.
We shall price and replicate the payoff g in Figure 2.1.12 . To find the replicating portfolio,
we solve the system of equations (2.1.7)

#

θ0 ` 5.8θ1 “ gp5.8q “ .8
θ0 ` 3.4θ1 “ gp3.4q “ .6

to obtain θ0 “ 1.9
6 and θ1 “ 1

12 . The price can be found in two ways: either by using the

2 74 5

2

ST

g(ST )

Figure 2.1.12: Payoff of Example 2.1.7

replicating portfolio or by the risk-neutral probability. The former gives the price by the
3In the context of this exercise, the forward can be replaced by a futures contract.
4E.g. electricity.
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value of the replicating portfolio:

θ0
1 ` R

` θ1S0 “
1.9

6p1.05q
` p4q

1
12

“
2

3.15
.

For the latter, we use the risk-neutral probability π̂u “ 1
3 and π̂ℓ “ 2

3 to obtain

1
1 ` R

ÊrgpS1qs “
1

1 ` R
pπ̂ugpS0uq ` π̂ℓgpS0ℓqq “

1
1.05

ˆ

1
3

p.8q `
2
3

p.6q

˙

“
2

3.15
.

2.1.4 One-period trinomial model

In a one-period trinomial model, M “ 3, N “ 2, S0 :“ p1, u :“ P1,1{S0, m :“ P1,2{S0
and ℓ :“ P1,3{S0, where S0, P1,1, P1,2 and P1,3 are all positive real numbers. By Theorem

S0

S0u

S0m

S0ℓ

Figure 2.1.13: One-period trinomial model

2.1.1, no-arbitrage condition is equivalent to the existence of a positive probability vector
π̂ “ pπ̂ℓ, π̂m, π̂uq such that

"

ℓπ̂ℓ ` mπ̂m ` uπ̂u “ 1 ` R
π̂ℓ ` π̂m ` π̂u “ 1.

(2.1.8)

It is not hard to see that the no-arbitrage condition has the same condition as the one-
period binomial model, i.e., ℓ ă 1 ` R ă u. The intersection of two planes with equations
(2.1.8) in R3 is a line parametrized by

$

’

&

’

%

π̂ℓ “
u´p1`Rq

u´ℓ ´ m´ℓ
u´ℓ t

π̂m “ t

π̂u “ 1`R´ℓ
u´ℓ ´ u´m

u´ℓ t
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The no-arbitrage condition is equivalent to the existence of a segment of this line in the
positive octane; i.e., there exists a t such that

$

’

&

’

%

π̂ℓ “
u´p1`Rq

u´ℓ ´ m´ℓ
u´ℓ t ą 0

π̂m “ t ą 0
π̂u “ 1`R´ℓ

u´ℓ ´ u´m
u´ℓ t ą 0

,

which is guaranteed if and only if 0 ă min
!

1`R´ℓ
u´m , u´p1`Rq

m´ℓ

)

. Or equivalently, ℓ ă 1`R ă u.

Notice that the positive segment is given by 0 ă t ă min
!

1`R´ℓ
u´m , u´p1`Rq

m´ℓ

)

.

u
1+R

1

m
1+R

1

ℓ
1+R

1

π̂ℓ

π̂m

π̂u

Figure 2.1.14: The positive segment of line given by (2.1.8) when ℓ ă 1 ` R ă u

Exercise 2.1.8. Derive the no-arbitrage condition for the multinomial model in Figure
2.1.15. Here, u1 ă u2 ă ¨ ¨ ¨ ă uM are positive numbers.

2.1.5 Replication and complete market

A contingent claim (or simply a claim) on an underlying asset S is a new asset with a
payoff given by a function g : R` Ñ R on the price ST of the underlying asset at maturity
T ; i.e., the payoff is gpST q. Call and put options are examples of contingent claims with
payoff functions gpST q :“ pST ´ Kq` and gpST q :“ pK ´ ST q`, respectively. A replicating
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S0

S0u1

S0u2

...
S0uM−1

S0uM

Figure 2.1.15: The description of the asset price in the multinomial model

(or hedging) portfolio for a contingent claim is a portfolio with the same future value as
the payoff of the claim at all states of the market. For example, in the binomial model in
Section 2.1.3, any arbitrary claim can be replicated. More precisely, a payoff gpS0uq and
gpS0ℓq for states u and ℓ, respectively, is replicated by a portfolio pθ0, θ1q, given by

θ0 “
ugpS0ℓq ´ ℓgpS0uq

u ´ ℓ
and θ1 “

gpS0uq ´ gpS0ℓq

S0pu ´ ℓq
.

Contrary to the binomial model, in the trinomial model, several claims may not be replica-
ble. For instance, the replication of a call option with K P rS0m, S0uq leads to the following
system of three equations and two unknowns:

$

’

&

’

%

θ0p1 ` Rq ` θ1S0u “ S0u ´ K

θ0p1 ` Rq ` θ1S0m “ 0
θ0p1 ` Rq ` θ1S0ℓ “ 0

,

which obviously does not have any solutions for pθ0, θ1q. A market model in which every
claim is replicable is called a complete market. A binomial model is a complete market,
whereas a trinomial model is an incomplete market.
For a general Arrow-Debreu market model, the condition of completeness is expressed in

the following theorem.

Theorem 2.1.2. Assume that there is no arbitrage, i.e., there exits a risk-neutral probabil-
ity π̂. Then, the market is complete if and only if there is a unique risk-neutral probability;
i.e., if and only if the system of linear equation (2.1.1)

p “ Pπ

has a unique positive solution.

While in the binomial model there is only one risk-neutral probability and therefore the
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market is complete, in the trinomial model there are infinitely many risk-neutral probabil-
ities and therefore the market is incomplete.

2.1.6 Superreplication and model risk

Replication (or hedging) is a normal practice for the issuer of an option to manage the risk
of issuing that option. When the market is not complete, one cannot perfectly replicate all
claims and the issuer of a claim should take another approach: a nonperfect replication.
In practice, the replication starts only after pricing the claim. The issuer first picks up
a pricing model, i.e., a risk-neutral probability π̂˚ “ pπ̂˚

1 , ..., π̂˚
M qT, to price the claim

by 1
1`R Ê˚rgpST qs. Then, she tries to use the fund raised by selling the option to find a

nonperfect replication strategy. Genuinely, the higher the price of the claim, the less the
issuer is exposed to the risk. Therefore, the chosen risk-neutral probability π̂˚ to price
the claims represents some level of exposure to the risk. In this section, we would like to
provide a method to measure this risk, namely model risk.

The choice of a replication strategy usually depends on many variables, including the
risk preference of the issuer, which are outside the context of this section. However, for
the purpose of model risk, we introduce one specific choice of a nonperfect replication
strategy, namely superreplication. A superreplication strategy prepares the issuer for the
worst-case scenario. The superreplication price of an option is defined as the cheapest price
of a portfolio that generates a payoff greater than or equal to the payoff the option for all
states of the market. In the Arrow-Debreu market model for asset shown in Figure 2.1.15,
we want to make a portfolio pθ0, θ1q such that

θ0 ` θ1S0uj ě gpS0ujq for all j “ 1, ..., M.

Then, among all such portfolios we want to choose the one that has the least cost, i.e.,
min θ0

1`R ` θ1S0. For instance, in the trinomial model, the superreplication price of an
option with payoff gpS1q is defined by

min θ0
1 ` R

` θ1S0 (2.1.9)

over all θ0 and θ1 subject to the constraints
$

’

&

’

%

θ0 ` θ1S0u ě gpS0uq

θ0 ` θ1S0m ě gpS0mq

θ0 ` θ1S0ℓ ě gpS0ℓq

. (2.1.10)
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The superreplication price of a claim is the smallest value that en-
ables the issuer to build a portfolio which dominates the payoff of
the claim, in other words, to remove all risk exposure from issuing
the claim.

For simplicity, we build the rest of this section in the context of the trinomial model.
However, extension to multinomial model is straightforward. Subreplication price can be
defined similarly by

max θ0
1 ` R

` θ1S0 (2.1.11)

over all θ0 and θ1 subject to the constraints
$

’

&

’

%

θ0 ` θ1S0u ď gpS0uq

θ0 ` θ1S0m ď gpS0mq

θ0 ` θ1S0ℓ ď gpS0ℓq

. (2.1.12)

Sub or superreplication is a linear programming problem that can be solved using some
standard algorithms. However, for the trinomial model, the solution is simple: for su-
perreplication the minimum is attained in one of the at most three points of intersection
between the lines

$

’

&

’

%

θ0 ` θ1S0u “ gpS0uq

θ0 ` θ1S0m “ gpS0mq

θ0 ` θ1S0ℓ “ gpS0ℓq

.

As shown in Figure 2.1.16, we only need to
(1) find these three points,

(2) exclude those that do not satisfy the inequalities (2.1.10), and

(3) check which one of the remaining yields the smallest value for θ0
1`R ` θ1S0.

Example 2.1.8. In trinomial model, let S0 “ 1, R “ .5, u “ 2, m “ 1, and ℓ “ 1{2.
Consider an option with payoff g shown in Figure 2.1.17.

a) Notice that payoff gp2q “ 0 and gp1q “ gp1{2q “ 1. We shall find the superreplication
price for this option.

min 2θ0
3

` θ1

over all θ0 and θ1 subject to the constraints
$

’

&

’

%

θ0 ` 2θ1 ě 0
θ0 ` θ1 ě 1
θ0 ` θ1

2 ě 1
.
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θ0

θ1

Figure 2.1.16: The linear programing problem for superhedging. The hatched region is
determined by constraints (2.1.10). The dashed lines are the contours of the linear function

θ0
1`R ` θ1S0 in (2.1.9). The point marked by ˛ is where the minimum is attained.

1

1

2
ST

g(ST )

Figure 2.1.17: Payoff of Example 2.1.8

This linear programing problem matches the one sketched in Figure 2.1.16 with the
minimizer given by p2, ´1q. Therefore, the superreplication price is given by 1

3 .

b) We next find all risk-neutral probabilities. Notice that any risk-neutral probability
π̂ “ pπ̂u, π̂m, π̂ℓq

T satisfies
$

’

&

’

%

2π̂u ` π̂m ` π̂ℓ
2 “ 3{2

π̂u ` π̂m ` π̂ℓ “ 1
π̂u, π̂m, π̂ℓ ą 0
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By eliminating π̂m, we obtain π̂u “ 1
2 ` π̂ℓ

2 . Then, we parametrize the line of inter-
section of the two planes 2πu ` πm ` πℓ

2 “ 3{2 and π̂u ` π̂m ` π̂ℓ “ 1.
$

’

&

’

%

π̂u “ 1
2 ` t

2
π̂m “ 1

2 ´ 3t
2

π̂ℓ “ t

It is easy to see that πu, πm, πℓ ą 0 if and only if t P p0, 1
3q. The positive segment is

shown in Figure 2.1.18.

.75

1

1.5

1

3

1

π̂ℓ

π̂m

π̂u

Figure 2.1.18: The positive segment of the intersection of two lines given by π̂uu`π̂mm`

π̂ℓℓ “ 1 ` R and π̂u ` π̂m ` π̂ℓ “ 1. The mark on the segment represents a chosen pricing
model π̂˚.

c) Next, we find the range of prices for the option described in Part (a) generated by
different risk-neutral probabilities. Notice that in Part (b), all risk-neutral probabili-
ties are generated by a single parameter t P p0, 1

3q. Thus, the risk-neutral price of this
option is given by

2
3

˜

´1
2

`
t

2

¯

gp2q `

´1
2

´
3t

2

¯

gp1q ` tgp1{2q

¸

“
1
3

´ t `
2t

3
“

1
3

´
t

3

As t changes in p0, 1
3q, the price changes in p2

9 , 1
3q.

Notice that in Example 2.1.8, the superreplication price 1
3 is the same as the supremum

of the price range given by risk-neutral probabilities p2
9 , 1

3q. This is not a coincidence. One
can see the relation between the superreplication problem and risk neural pricing through
the linear programming duality in Theorem A.3.
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The problem of superreplication is a linear programming problem (A.3) that has a dual
problem given by (A.4). Theorem A.3 suggests that both problems have the same value.
In the context of superreplication for the trinomial model, the dual problem is given by

max πugpS0uq ` πmgpS0mq ` πℓgpS0mq

over all πℓ, πm, and πu subject to the constraints
$

’

&

’

%

πuS0u ` πmS0m ` πℓS0m “ S0

πu ` πm ` πℓ “ 1
1`R

πu, πm, πℓ ě 0

By change of variable π̂ “ p1 ` Rqπ, the dual problem turns into

Ppgq :“ 1
1 ` R

max π̂ugpS0uq ` π̂mgpS0mq ` π̂ℓgpS0mq, subject to
$

’

&

’

%

π̂uu ` π̂mm ` π̂ℓℓ “ 1 ` R

π̂u ` π̂m ` π̂ℓ “ 1
π̂u, π̂m, π̂ℓ ě 0

.
(2.1.13)

Given no-arbitrage condition, the line of intersection of two planes π̂uu`π̂mm`π̂ℓℓ “ 1`R
and π̂u ` π̂m ` π̂ℓ “ 1 has a segment in the positive octane, shown in Figure 2.1.14. Then,
the value of Ppgq in (2.1.13) is attained at one of endpoints of this segment. This segment
represents the set of all risk-neutral probabilities. According to Theorem 2.1.1, the lack of
weak arbitrage implies that this segment is inside the first octane with to endpoints on two
different coordinate planes, and the lack of strong arbitrage only implies that the endpoints
of the segment are on the coordinate planes, possibly the same coordinate plane.

Let’s recall what we presented at the beginning of this section: the issuer of the option
chooses a risk-neutral probability π̂˚ inside the positive segment to price the option. The
endpoints of this segment, one of which maximizes and the other minimizes the value

1
1`R max π̂ugpS0uq ` π̂mgpS0mq ` π̂ℓgpS0mq, provide the super and subreplication price of
the option with payoff g, respectively. While the issuer has priced the claim by

1
1 ` R

Ê˚rgpS1qs,

to completely cover the risk, he needs P in (2.1.13). Therefore, he is short as much as

Θpπ̂˚q :“ Ppgq ´
1

1 ` R
Ê˚rgpS1qs

in order to cover the risk of issuing the claim. The value Θpπ̂˚q is called superreplication
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model risk measureindexsuperreplication model risk measure.

Example 2.1.9. In Example 2.1.8, if the pricing probability π̂˚ “ p7{12, 1{4, 1{6qT is
chosen, then the superreplication model risk is measured by

Ppgq ´
1

1 ` R
Ê˚rgpS1qs “

1
3

´
2
3

˜

7
12

gp2q `
1
4

gp1q `
1
6

gp1{2q

¸

“
1
3

´
5
18

“
1
18

.

Exercise 2.1.9. In the trinomial model, let S0 “ 1, R “ 0, u “ 2, m “ 1, and ℓ “ 1{2.

a) Find all the risk-neutral probabilities and the range of prices generated by them for a
call option with strike K “ 1.

b) Find the superreplication price and sub-replication price for this call option and com-
pare them to the lowest and highest prices in Part (a).

Example 2.1.10. In Example 2.1.8, if we modify the yield by setting R “ 1, then there
will be an arbitrage. This can be seen through the absence of risk-neutral probabilities. On
the other hand, the superreplication problem is still feasible, i.e., problem (2.1.11) with
constraint (2.1.10) still has a finite value. But this value is zero. This is because we
minimize θ0

2 ` θ1 subject to θ0 ` 2θ1 ě 0, θ0 ` θ1 ě 1 and θ0 ` θ1
2 ě 1, which obviously takes

minimum value zero.
On the other hand, if we set R ą 1, then the superreplication problem is not feasible

anymore and the minimum is ´8.

Example 2.1.11. Consider the trinomial model with S0 “ 4, R “ .05, u “ 1.45, m “

1.25 and ℓ “ .85. To price payoff g in Figure 2.1.12, the risk-neutral probability π̂ “

pπ̂u, π̂m, π̂ℓq
T “ p5{18, 1{12, 23{36qT has been chosen. In order to find the model risk, we

find the superreplication price by solving the following linear programming problem.

min θ0
1.05

` 4θ1 subject to

$

’

&

’

%

θ0 ` 5.8θ1 ě gp5.8q “ .8
θ0 ` 5θ1 ě gp5q “ 0
θ0 ` 3.4θ1 ě gp3.4q “ .6

The minimizer is given by θ0 “ 19
6 and θ1 “ 1

12 , and the superreplication price is given by
2

3.15 . Then, the model risk is Θpgq :“ 1
1`R ÊrgpS1qs ´ P.

Θpgq “
2

3.15
´

1
1 ` R

pπ̂ugpS0uq ` π̂mgpS0mq ` π̂ℓgpS0ℓqq “
2

3.15
´

1
1.05

ˆ

5
18

p.8q `
1
12

p0q `
23
36

p.6q

˙

We leave the treatment of the general multinomial model as an exercise.

Exercise 2.1.10. Write the linear programming problem associated with the superreplica-
tion of a contingent claim in the multinomial model in Exercise 2.1.8 and its dual.
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Remark 2.1.6. The superhedging price and therefore the model risk is not linear in the
payoff. The superreplication price of payoff g1 ` g2 is less than the sum of the superrepli-
cation price of payoff g1 and the superreplication price of payoff g2. To see this, recall that,
by Theorem A.3, the superreplication price of a payoff g is

Ppgq :“ sup
"

1
1 ` R

ÊrgpS1qs : over all risk-neutral probabilities π̂

*

.

Because suptfpxq ` gpxqu ď sup fpxq ` sup gpxq, we have

Ppg1 ` g2q ď Ppg1q ` Ppg2q.

2.2 Multiperiod discrete-time markets

2.2.1 A discussion on the sample space for multiperiod asset price pro-
cess

Consider a discrete-time market with time horizon T in which trading occurs only at time
t “ 0, ..., T , and there are d ` 1 assets. We shall denote the price of asset i at time
t “ 0, ..., T by S

piq
t , for i “ 0, ..., d. The price of each risky asset in a multiperiod market

model is a stochastic process; this means for each t “ 1, ..., T , the price at time t, denoted
by St is a random variable. In this section, we set up a sample space to host stochastic
processes that represent the price of assets in a discrete-time market.
For a single period market with one asset whose price is a random variable with discrete

values, a finite or countably infinite sample space which matches the states to the values
of a random variable may suffice. For instance, if the future price S1 of an asset is given
by three values 2, 1, and 0.5, one can assume a sample space with three outcomes, namely
Ω “ tω1, Ω2, ω3u with S1pω1q “ 2, S1pω2q “ 1, and S1pω3q “ 0.5. When we have a
multiperiod market with a single asset, the price of the asset is a stochastic process, more
than one random variable, and we need a more complicated construction for sample space.
The following examples elaborate on this situation.

Example 2.2.1. Let the price St of an asset at time t “ 1, 2 be given by the diagram in
the figure below. The random variable S1 takes values 1 and ´1 and the random variable

S1,1 = 1

S1,2 = 1

S1,3 = −1

S1,4 = −1

S2,1 = 2

S2,2 = 0

S2,3 = 0

S2,4 = −2

ω1

ω2

ω3

ω4
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S1 takes values 2, 0, and ´1. However, a suitable sample to host both random variables is
one with only four members, Ω “ tω1, ω2, ω3, ω4u with S1pω1q “ 1, S2pω1q “ 2, S1pω2q “ 1,
S2pω2q “ 0, S1pω3q “ ´1, S2pω3q “ 0, and S1pω4q “ ´1, S2pω4q “ ´2. This sample space
is made up of all possible states of the market; here there are four states that are shown
with arrows. These states are also called the paths of the price process, which represents
the evolution of the price process in time for each outcome.

The above example is a standard random walk with two periods; see Example B.13.

Example 2.2.2. We modify Example 2.2.1 as shown below. Unlike Example 2.2.1, a

S1,1 = 1

S1,2 = 1

S1,3 = −1

S1,4 = −1

S2,1 = 2

S2,2 = 0

S2,3 = 0

S2,4 = −2

ω1

ω2

ω3

ω4

ω 5

ω
6

sample space needs more than four members, exactly six. There are six different paths that
the price of the asset can evolve in time. Ω “ tω1, ω2, ω3, ω4, ω5, ω6u with S1pω1q “ 1,
S2pω1q “ 2, S1pω2q “ 1, S2pω2q “ 0, S1pω3q “ ´1, S2pω3q “ 0, and S1pω4q “ ´1,
S2pω4q “ ´2, S1pω5q “ ´1, S2pω5q “ 2, and S1pω6q “ 1, S2pω6q “ ´2.

In a more general case, a sample space needs to at least have the set of all probable sample
pathssuperreplication model risk measure. of the price process. In the Arrow-Debreu model,
the set of all sample paths is the set of all states of the market, regardless of the number
of assets. In a market with T periods and one asset that takes values Vt at time t with
t “ 0, ...T , we can have the sample space

Ω “
␣

px1, ..., xT q : xt P Vt, t “ 1, ..., T
(

.

This sample space have
śT

t“1 Vt samples paths. We can use the sample-path methodology
to write one single sample space for both Example 2.2.1 and Example 2.2.2, namely

Ω “
␣

pa, bq : a “ ´1 or 1, and b “ ´2, 0, or 2
(

.

For a market with T periods and d ` 1 assets such that at time t the vector of assets
pS

p0q
t , ..., S

pdq
t q takes values in the set Vt Ď Rd`1

` for each t “ 0, ...T , the set of all sample
paths is the collection of all functions of the form

ω : t1, ..., T u Ñ V1 ˆ ¨ ¨ ¨ ˆ VT
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Notice that some of the sample paths may have probability zero. In Example 2.2.1, the sam-
ple path p´1, 2q has probability zero, but in Example 2.2.2, no sample path has probability
zero.
A unifying approach to set a sample space for the asset price process is by extending the

set of values of the price to include all positive real numbers, Vt “ Rd`1
` , Ω “

śT
t“1 Vt “

pRd`1
` qT 5 equipped with the Borel σ-field BppRd`1

` qT q. The random variable S
piq
t which

represents the price of asset i at time t is then defined by the canonical mapping

S
piq
t : ω “ pω1, ..., ωT q P pRd`1

` qT ÞÑ ω
piq
t , where ωt “ pω

p0q
t , ..., ω

pdq
t q P Rd`1

` .

Here, we assume that the price of an asset only takes positive values ω
piq
t P R`. If it

takes negative values, then we can extend the sample space to Ω :“ pRd`1qT . If asset
0 is a risk-free asset, then we can remove its contribution in the sample space and write
Ω :“ pRd

`qT .
The choice of canonical space allows us to cover all types of models for asset price with

discrete or nondiscrete distribution. For the rest of this section, we do not need to empha-
size on choice the sample space, we assume that the sample space is finite. Some of
the result can be generalized to countably infinite or even uncountable sample spaces. But,
the treatment of such cases needs more advance tools form martingale theory.

2.2.2 Arbitrage and trading in multiperiod discrete-time markets

Consider a market with multiple assets. There are three ways to represent a portfolio
that is made up of these assets: based on the proportion of each asset in the portfolio,
the number of units of each asset in the portfolio, and the value invested in each asset.
We start to define a portfolio based on the proportion, because it is easier to understand,
then we provide the equivalent representations on the number of units of each asset in the
portfolio and the value invested in each asset.

Portfolio

A self-financing portfolio, or simply a portfolio, is represented by the sequence of vectors
θt “ pθ

p0q
t , ..., θ

pdq
t qT for t “ 0, ..., T ´ 1 with

řd
i“0 θ

piq
t “ 1, for t “ 0, ..., T ´ 1. Here, θ

piq
t

is the ratio of the value of portfolio invested in asset i at time t; θ
piq
t “ W piq

Wt
, where W

piq
t

is the proportion of the value of portfolio invested in asset i at time t and Wt is the total
value of the portfolio at time t. Equivalently, W

piq
t “ ∆piq

t S
piq
t , where ∆piq

t is the number of

5We prefer to write pRd`1
` qT and not Rpd`1qT

` .
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shares of asset i in the portfolio and S
piq
t is the current price of asset i. More precisely,

Wt “

d
ÿ

i“0
W

piq
t “

d
ÿ

i“0
∆piq

t S
piq
t and W

piq
t “ θ

piq
t Wt “ ∆piq

t S
piq
t .

θ
piq
t , ∆piq

t , and W
piq
t can be positive, negative, or zero, representing long, short, or no-

investment positions in asset i, respectively. In addition, they do not need to be determin-
istic; in general, a portfolio strategy can be a sequence of random vector that depends on
the information obtained from the assets’ prices before or at time t. In other words, θ

piq
t is

a function of random variables S
pjq
i for i “ 1, ..., t and j “ 1, ..., d. More rigorously:

Definition 2.2.1. A self-financing portfolio strategy is given by a sequence of vector func-
tions θt “ pθ

p0q
t , ..., θ

pdq
t qT such that θ0 P Rd is a real vector and for any t “ 1, ..., T ´ 1,

θt “ pθ
p0q
t , ..., θ

pdq
t qT is a function that maps

St :“

»

—

–

S0
1 ¨ ¨ ¨ S0

t
... . . . ...

Sd
1 ¨ ¨ ¨ Sd

t

fi

ffi

fl

(2.2.1)

into a vector in Rd that satisfies

d
ÿ

i“0
θ

piq
t “ 1, for t “ 0, ..., T ´ 1.

In other words, the function θ
piq
t depends only on the prices of all assets from time t “ 0

until time t, not the future prices at points t ` 1, ..., T in time. This is in line with the
intuition that a portfolio strategy can only depend on the information gathered up to the
present time.

In different applications, different representation of a portfolio strategy are proved useful.
For example in the portfolio theory, it is easier to write the portfolio in terms of the ratio,
while in the replicating portfolio of an option, the number of shares in each asset happens
to provide a more convenient representation. If ∆t is known, the value of portfolio at time
t is given by

Wt “

d
ÿ

i“0
∆piq

t S
piq
t .

Then, the value invested in asset i changes by ∆piq
t pS

piq
t`1 ´ S

piq
t q from time t to time t ` 1.
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Time # of units of asset (j) Value of the portfolio

t ∆pjq
t “

θ
pjq
t Wt

S
pjq
t

Wt “ ∆p0q
t S

p0q
t ` ¨ ¨ ¨ ` ∆pdq

t S
pdq
t

t ` 1 before rebalancing θ
pjq
t Wt`1

S
pjq
t`1

Wt`1 “ ∆p0q
t S

p0q
t`1 ` ¨ ¨ ¨ ` ∆pdq

t S
pdq
t`1

t ` 1 after rebalancing ∆pjq
t`1 “

θ
pjq
t`1Wt`1

S
pjq
t`1

Wt`1 “ ∆p0q
t`1S

p0q
t`1 ` ¨ ¨ ¨ ` ∆pdq

t`1S
pdq
t`1

Table 2.1: Rebalancing a portfolio strategy from time t to time t ` 1.

Therefore, the total wealth at time t ` 1 changes to

Wt`1 “

d
ÿ

i“0
∆piq

t S
piq
t`1,

and the change in the value of portfolio is given by

Wt`1 ´ Wt “

d
ÿ

i“0
∆piq

t pS
piq
t`1 ´ S

piq
t q, (2.2.2)

However, at time t ` 1, we need to change the investment ratio θt to a different value θt`1,
and as a consequence, ∆t should be changed to ∆t`1 accordingly. Since the sum of ratios
is always one,

d
ÿ

i“0
θ

piq
t`1 “ 1, for t “ 0, ..., T ´ 1,

and θ
piq
t “

∆piq
t S

piq
t

Wt
, the vector ∆t`1 must satisfy

d
ÿ

i“0
∆piq

t`1S
piq
t`1 “ Wt`1 “

d
ÿ

i“0
∆piq

t S
piq
t`1, for t “ 0, ..., T ´ 1.

Stochastic integral: discrete-time markets

For ease of calculation, we consider the case d “ 1, i.e., i “ 0 and 1. Recall from (2.2.2)
that the change in the value of the portfolio satisfies

Wt`1 ´ Wt
looooomooooon

change in the value of the portfolio

“ ∆p0q
t pS

p0q
t`1 ´ S

p0q
t q

loooooooooomoooooooooon

change due to risky asset (0)

` ∆p1q
t pS

p1q
t`1 ´ S

p1q
t q

loooooooooomoooooooooon

change due to risky asset (1)

.
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Given initial wealth W0, we sum up the above telescopic summation to obtain

Wt “ W0 `

t´1
ÿ

i“0
∆p0q

i pS
p0q
i`1 ´ S

p0q
i q `

t´1
ÿ

i“0
∆p1q

i pS
p1q
i`1 ´ S

p1q
i q.

In the right-hand side above, either of the summations corresponds to the cumulative
changes in the value of the portfolio due to investment in one of the assets.
If asset Sp0q denotes a risk-free asset with discrete yield R in the time period from i to

i ` 1, then S
p0q
i`1 ´ S

p0q
i “ RS

p1q
i . On the other hand, ∆p0q

i S
p0q
i “ Wi ´ ∆p1q

i S
p1q
i . Therefore,

∆p0q
i pS

p0q
i`1 ´ S

p0q
i q “ RpWi ´ ∆p1q

i S
p1q
i q.

In this case, we can simply drop the superscript of the risky asset to write

Wt`1 ´ Wt
looooomooooon

change in the value of the portfolio

“ RpWt ´ ∆tStq
looooooomooooooon

change due to risk-free asset

` ∆tpSt`1 ´ Stq
looooooomooooooon

change due to risky asset

.

Therefore, the total wealth satisfies

Wt “ W0 ` R
t´1
ÿ

i“0
pWi ´ ∆iSiq `

t´1
ÿ

i“0
∆ipSi`1 ´ Siq. (2.2.3)

In (2.2.3), the first summation is the cumulative changes in the value of the portfolio due
to investment in the risk-free asset, and the second summation is the cumulative investment
in the portfolio due to changes in the risky asset.
An important consequence of this formula is that a self-financing portfolio is only charac-

terized by trading strategy ∆ “ p∆0, ..., ∆T ´1q and the initial wealth W0, since there is no
inflow and outflow of cash to or from the portfolio. The term

p∆ ¨ Sqt :“
t´1
ÿ

i“0
∆ipSi`1 ´ Siq

is called a discrete stochastic integral6.

Exercise 2.2.1. Let W̃t :“ p1 ` Rq´tWt and S̃t :“ p1 ` Rq´tSt be, respectively, discounted
wealth process and discounted asset price.Then, show that

W̃t “ W0 `

t´1
ÿ

i“0
∆ipS̃i`1 ´ S̃iq, Ŵ0 “ W0.

6According to Philip Protter, this notation was devised by the prominent French probabilist Paul-André
Meyer to simplify the task of typing with old-fashioned typewriters.
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To understand the meaning of stochastic integral p∆ ¨ Sqt, we provide the following exam-
ple.
Example 2.2.3. Recall from Example B.13 that a random walk W is the wealth of a player
in a game of chance in which he wins or loses $1 in each round based on the outcome of
flipping a coin. If we denote the amount of bet of the player in round i by ∆i´1, then the
total wealth W∆ from the betting strategy ∆ “ p∆0, ∆1, ...q in t rounds is given by

W∆
t “ W∆

0 `

t´1
ÿ

i“0
∆iξi`1

where tξiui is a sequence of i.i.d. random variables with values 1 and ´1. Since ξi “

Wi`1 ´ Wi, we have

W∆
t “

t´1
ÿ

i“0
∆ipWi`1 ´ Wiq “ p∆ ¨ W qt.

In particular, if ∆i ” 1, W∆ “ W is merely a random walk.
Example 2.2.4 (Saint Petersburg paradox and doubling strategy). In the setting of Ex-
ample 2.2.3, we consider the following strategy: ∆0 “ 1 and ∆i “ 2i, for i ą 0, if the
player has lost all the past rounds from 1 to i ´ 1. Otherwise, if the first winning occurs
at round i, we set ∆j “ 0 for j ě i. For example, if the player’s outcome in the first five
rounds are given by "loss, loss, loss, loss, win", then his bets are given by "1, 2, 4, 8, 16, 0
, ...", respectively. Then, the wealth of the player after five rounds is given by

W5 “ 1p´1q ` 2p´1q ` 4p´1q ` 8p´1q ` 16p1q “ 1.

However, his wealth before the fifth round is always negative.

W1 “ ´1, W2 “ ´3, W3 “ ´7, W4 “ ´15.

More generally, if the player loses first i ´ 1st rounds and win the ith round, the wealth of
the player satisfies

W1 “ ´1, ..., Wi´1 “

i´1
ÿ

j“0
2j “ 2i ´ 1 and Wi´1 “ 1.

Exercise 2.2.2. In Example 2.2.4, we showed that if the player has the opportunity to
borrow with no limitation and continue the game until the first win, he will always end up
with terminal wealth equal to $1.

a) Assume that the player has a credit line, denoted by C. He stops playing if either he
reaches his credit limit or he wins for the first time. Find the possible values for the
terminal wealth of the player.
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b) Find the expected value of the terminal wealth of the player, given that the probability
of winning is p P p0, 1q.

Arbitrage strategy

In this section, we present the definition of an arbitrage opportunity and a version of the
FTAP7 for multistep discrete-time markets. In order to define arbitrage, we first fix the
sample space Ω of all samples paths of the price process and we define a σ-field F of all
events on the sample paths space. When Ω is a finite or countably infinite set, we can
choose F to be the σ-field of all subsets of Ω. When Ω “ pRd`1

` qT , we set F “ BppRd`1
` qT q.

To define arbitrage, it is crucial to to determine the set of all events on the sample paths
space that are believed to have a chance to occur. This is a part of modeling a financial
market. Relevant events are those that basically represent our beliefs about the market
behavior. Equivalently, one can determine the set of all events on the sample paths space
that are deemed impossible to occur. We define such events below.

Definition 2.2.2. We call a collection of events N Ď F a polar collection if it satisfies

a) H P N .

b) If B P N and A Ď B, then A P N .

c) If tAnu8
n“1 Ď N , then

Ť8
n“1 An P N .

The members of a polar collection are called polar sets .

As discussed in examples below, the polar collection depends on the choice of the space
sample paths.

Example 2.2.5 (polar set). In the binomial model in Section 2.1.3, if we set the sample
space to be Ω “ R`, the polar collection N is given by all subsets of Ω that do not contain
any of the points S0u or S0ℓ. However, if we set the sample space to Ω “ tu, ℓu, then
N “ tHu. Similarly, in the trinomial model in Section 2.1.4, Ω “ R` is the canonical
space and the polar collection N is the collection of all events A that do not contain any of
the points S0u, S0m, or S0ℓ. If we set the sample space to Ω “ tu, m, ℓu, then N “ tHu.

Example 2.2.6. In Example 2.2.1, consider the sample paths space given by Ω “ tpx, yq :
x “ ´1 or ` 1 and y “ ´2, 0, or 2u. Then, the set of polar collection is

!

H, tp1, ´2qu, tp´1, 2qu, tp1, ´2q, p´1, 2qu

)

.

The arbitrage relative to the polar collection N is defined below.
7A fundamental theorem of asset pricing
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Definition 2.2.3. A (weak) arbitrage opportunity is a portfolio ∆ such that

a) W0 “ 0,

b) tWT ă 0u P N , and

c) tWT ą 0u R N .

A strong arbitrage opportunity is a portfolio ∆ such that

a) W0 ă 0, and

b) tWT ă 0u P N .

By tWT ă 0u P N , we mean that the event tWT ě 0u will surely happen. tWT ą 0u R N
means that tWT ą 0u is likely to happen with a possibly small chance.
In the above, we did not assign any probability to the events, except the polar collection;

the polar collection is the collection of all events that are believe to have probability zero.
Outside polar collection, all the events have nonzero probability, which may not be known.
To extend FTAP to discrete-time multiperiod market models, we need the probabilistic

notion of martingale, which is introduced in Section B.3. Risk-neutral probability in a
multiperiod market can be defined in terms of the martingale property for the discounted
asset price: Ŝt :“ p1 ` Rq´tSt; we assume implicitly that there is a zero bond with yield R
in the market.

Definition 2.2.4. We call a probability P̂ a risk-neutral probability if the discounted asset
price is a martingale with respect to the σ-field generated by the price process tSt : t ě 0u

under the probability measure P̂; i.e.,

ÊrŜt`1 | St, St´1, ..., S1s “ Ŝt. (2.2.4)

Here, Ê is the expectation with respect to P̂.

We can also use the notion of σ-field FS
t :“ σpSt, ..., S0q generated by St, ..., S0 to write

ÊrŜt`1 | FS
t s “ Ŝt.

For a single-period binomial model, the martingale property with respect to risk-neutral
probability is expressed and verified in Section 2.1.3; see (2.1.5).

Exercise 2.2.3. Let t∆tu
8
t“0 be a bounded portfolio strategy; i.e., there exists a number

C such that |∆t| ă C for all t “ 0, 1, .... Show that if the discounted price Ŝt “ St
p1`Rqt

is a martingale with respect to probability P̂, then the stochastic integral p∆ ¨ Ŝqt and the
discounted wealth process W̃t are martingales with respect to P̂.
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The following result extends Theorem 2.1.1 into multiple periods. In order to have a
fundamental theorem of asset pricing in a general form, we need to impose the following
assumption.

Assumption 2.2.1 (Dominating probability). There exists a probability P such that A P N
if and only if PpAq “ 0.

Assumption 2.2.1 holds trivially if the sample space of all paths are finite or countably
infinite. It is a nontrivial assumption when the sample path space is uncountable.
The probability P can be regarded as the physical probability in the market. Therefore,

one can equivalently define the collection of all polar sets as the set of all events that have
zero probability under P. However, as seen in Theorem 2.2.1, the only relevant information
about probability P is the no-arbitrage condition is the polar collection; the actual value
of the probability of an event does not matter as long as it has a nonzero probability. In
this case, we say that the polar sets are generated by P.

Definition 2.2.5. Two probabilities P and P̂ are called equivalent if they generate the same
polar sets. We denote the equivalency by P ” P̂.

Theorem 2.2.1 (Fundamental theorem of asset pricing (FTAP)). Let Assumption 2.2.1
hold. Then, there is no weak arbitrage opportunity in the discrete-time market model if
and only if there exists a probability measure P̂ such that

a) P̂ ” P, and

b) the discounted asset price Ŝt is a (local) martingale(local) martingale8 under P̂.

The probability measure P̂ is called a risk-neutral probability.
A market model with no arbitrage is called a complete market model if any contingent

claim is replicable. In other words, for a contingent claim with payoff g : pRd`1
` qT Ñ R

which maps the history of an underlying asset price, S0, S1, ..., ST into gpS0, S1, ..., ST q,
there exists a portfolio ∆0, ..., ∆T ´1 such that

p∆ ¨ SqT “ gpS0, S1, ..., ST q.

As an extension to Theorem 2.2.1, we have the following condition for the completeness of
a market.

Corollary 2.2.1. Let Assumption 2.2.1 and no-weak-arbitrage condition hold. Then, The
market is complete if and only if there is a unique risk-neutral probability measure.

8local martingale is roughly a martingale without condition (a) in Definition B.15.
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One direction of Theorem 2.2.1 is easy to prove. Here is a glimpse of the proof. Assume
that a risk-neutral probability P̂ exists, and consider an arbitrage strategy ∆ with the
corresponding discounted wealth process Wt integrable. Then,

Ŵt “ p∆ ¨ Ŝqt. pRecall that W0 “ 0.q

Since Ŝt is a P̂-martingale, then by Exercise 2.2.1, Ŵt is a martingale and we have

ÊrŴts “ W0 “ 0.

This is in contradiction to condition (c) in the definition of arbitrage 2.2.3. For a complete
proof of this result, see [13, Pg. 7, Theorem 1.7]. A very general form of this theorem can
be found in a seminal paper by Delbaen and Schachermayer [9].

Remark 2.2.1. Assumption 2.2.1 can be relaxed by assuming that the polar sets are gener-
ate by a convex collection of probabilities P. More precisely A P N if and only if PpAq “ 0
for all P P P. Then, the fundamental theorem of asset pricing should be modified: there is
no weak arbitrage opportunity in the discrete-time model if and only if

a) Q :“ tP̂ : Ŝt is a P̂-martingaleu is nonempty, and

b) P and Q generate the same polar sets.

For more on the relaxation of Assumption 2.2.1, see [6].

By Theorem 2.2.1, the existence of risk-neutral probability eliminates the possibility of
arbitrage. However when T “ 8, the Saint Petersburg Paradox still holds even though a
risk-neutral probability exists. This is a different issue and is related to the notion of an
admissible portfolio strategy. The following corollary suggest a practical way around this
paradox.

Corollary 2.2.2. Let tMtu
8
t“0 be a martingale, t∆tu

8
t“0 a portfolio strategy, and C be a

constant such that p∆ ¨ Mqt ě C for all t ě 0. Then, for any stopping time τ such that
τ ă 8 a.s., we have

Erp∆ ¨ Mqτ | Fts “ p∆ ¨ Mqτ^t.

In particular, Erp∆ ¨ Mqτ s ď 0.

Definition 2.2.6 (Admissible strategy). A portfolio strategy is called admissible if there
exists a C be a constant such that p∆ ¨ Sqt ě C for all t ě 0.

restriction to admissible strategies is not necessary when there are only finite number
of periods, T ă 8. For T “ 8, we need to restrict the portfolio strategy choices to
admissible strategies. In addition, this happens to be necessary when we pass to a limit
from a discrete-time market to a continuous-time market by sending the number of periods
to infinity.
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2.3 Binomial model

Let H1, H2, ... be an i.i.d.9 sequence of random variables with values u and ℓ10. Let T be
the maturity, and let the time variable t take values 0, 1, ..., T . At time 0, the price of the
asset is S0. At time t “ 1, ..., T , the price of the asset satisfies St “ St´1Ht. The binomial
model is shown in Figure 2.3.1.

S0

S0u

S0ℓ

S0u
2

S0uℓ

S0ℓ
2

S0u
3

S0u
2ℓ

S0uℓ
2

S0ℓ
3

S0u
T

S0u
T−1ℓ

S0u
T−2ℓ2

...

S0u
2ℓT−2

S0uℓ
T−1

S0ℓ
T

Figure 2.3.1: Asset price in the binomial model

We label the nodes of the binomial model by the time and the state of the asset price. For
example, at time t when the asset price is equal to St,j`1 :“ S0ujℓt´j , the node is labeled
pt, j ` 1q. The only node at time 0 is labeled 0 for simplicity. See Figure 2.3.2.

9Independent identically distributed
10The probabilities of these values are irrelevant at this moment.
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(0)

(1, 2)

(1, 1)

(2, 3)

(2, 2)

(2, 1)

(3, 4)

(3, 3)

(3, 2)

(3, 1)

Figure 2.3.2: Label of the nodes in a three-period binomial model

2.3.1 No-arbitrage condition

The no-arbitrage condition for the multiperiod binomial model is the same as for the single-
period. There is no arbitrage in the multiperiod binomial model if and only if there is no
arbitrage for the single-period model with the same parameters.

Proposition 2.3.1. There is no arbitrage in the multiperiod binomial model if and only
if ℓ ă 1 ` R ă u. In this case, the multiperiod binomial market is complete, and the
risk-neutral probability is given by assigning the following distribution to each Hi.

P̂pHi “ uq “
1 ` R ´ ℓ

u ´ ℓ
and P̂pHi “ ℓq “

u ´ 1 ´ R

u ´ ℓ
.

Proof. By Theorem 2.2.1 (FTAP), no-arbitrage condition is equivalent to the existence of
a risk-neutral probability. We first show that given ℓ ă 1 ` R ă u, the probability P̂
defined in the theorem is a risk-neutral probability. In other words, we shall show that
the discounted asset price is a martingale. Notice that since St`1 “ Ht`1St, we have
Ŝt`1 “

Ht`1
1`R Ŝt. Therefore,

ÊrŜt`1 | FS
t s “

1
1 ` R

ÊrŜtHt`1 | FS
t s,

where FS
t “ σpŜt, ..., Ŝ0q. Since Ŝt is known given FS

t , if follows from Corollary B.6 that

ÊrŜtHt`1 | FS
t s “

Ŝt

1 ` R
ÊrĤt`1 | FS

t s.

On the other hand, since H1, H2, ... is a sequence of independent random variables, Ht`1
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is independent of FS
t , and we have

ÊrĤt`1 | FS
t s “ ÊrĤt`1s “ π̂uu ` π̂ℓℓ “ 1 ` R.

Thus,
ÊrŜt`1 | FS

t s “ Ŝt.

For the other direction, assume by contraposition that either u ď 1 ` R or ℓ ě 1 ` R.
Then, Section 2.1.3 shows that there is an arbitrage in the first period. Then, one can
liquidate the position to cash after the first period to carry over the arbitrage until time
T .

The above proof is also presented in Example B.41 in a different way.
As shown in Figure 2.3.1, the random variable Sn only takes values S0un´kℓk for k “

0, ..., n. Under the risk-neutral probability,

P̂pSn “ S0un´kℓkq “

ˆ

n

k

˙

pπ̂uq
n´k

pπ̂ℓq
k .

To see this, notice that in the binomial model in Figure 2.3.1, there are
`

n
k

˘

paths from
the node S0 to node S0un´kℓk, and the probability of each path is pπ̂uq

n´k
pπ̂ℓq

k11. For
simplicity, we denote S0ut´iℓi by Stpiq.

Remark 2.3.1 (Recombination in the binomialmodel). The binomial model has a feature
that allows reduce the number of values that Sn can take. For example, consider a two
period market with one asset whose price process is given below:

S0 “ 1, S1 “ H1, and S2 “ H1H2,

where Hi takes values ui and ℓi for i “ 1, 2. At time t “ 2, the S2 takes values u1u2,
u1ℓ2, u2ℓ1, and ℓ1ℓ2. All these values are distinct unless u1ℓ2 “ u2ℓ1. In the binomial
model u1 “ u2 “ u and ℓ1 “ ℓ2 “ ℓ. Therefore, u1ℓ2 “ u2ℓ1 “ uℓ. Therefore, the values
for S2 binomial model reduces to three, because the values u1ℓ2 and u2ℓ1 recombine. See
Figure 2.3.3. In general for a T period binomial market model, the recombination allows
that the price St takes only t ` 1 values, whereas in a nonrecombining market model, there
are potentially 2t distinct values for St.

2.3.2 Basic properties of the binomial model

The binomial model described above has some properties that are the common features in
many models in finance. These features allows to perform risk management evaluations in
a reasonable time. In this section, we discuss these properties.

11This is an elementary combinatorics problem.
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S0 = 1

u1

ℓ1

u1u2

u1ℓ2

ℓ1u2

ℓ1ℓ2

S0 = 1

u1

ℓ1

u1u2

u1ℓ2 = ℓ1u2

ℓ1ℓ2

Figure 2.3.3: Recombining binomial market model (right) versus a nonrecombining one
(left).

Time homogeneity

Since tHiu
8
t“1 is an i.i.d. sequence of random variables, then for t ą s,

śt
i“s`1 Hi has the

same distribution as
śt´s

i“1 Hi. Therefore, given Ss “ S, St “ Ss
śt

i“s`1 Hi has the same
distribution as St´s “ S

śt´s
i“1 Hi. In other words, the conditional distribution of St given

Ss “ S is the same as conditional distribution of St´s “ S0
śt´s

i“1 Hi given S0 “ S.

Markovian property

The Markovian property for a stochastic process asserts that in order to determine the
probability of future scenarios of the value of the process, for example the value at a time
in the future, the only relevant information from the past history of the price process is the
most recent one. In other words,

Definition 2.3.1. A stochastic process tXt : t ě 0u with values in Rd is called Markovian
if for any A Ă R and s ą t, we have

PpXs P A | Xt, ..., X0q “ PpXs P A | Xts.

Equivalently, one can write the Markovian property of in terms of conditional expectation:

ErgpXsq | Xt, ..., X0s “ ErgpXsq | Xts. (2.3.1)

The binomial model is Markovian under risk-neutral probability; given St, ..., S1, S0

ÊrgpSsq | St, ..., S0s “ Ê
”

g
´

St

s
ź

i“t`1
Hi

¯

| St, ..., S0

ı

.
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Since
s
ś

i“t`1
Hi is independent of St, ..., S0, by Proposition B.6, we have

Ê
”

g
´

St

s
ź

i“t`1
Hi

¯

| St “ st, ..., S0 “ s0

ı

“ Ê
”

g
´

st

s
ź

i“t`1
Hi

¯ı

“ Ê
”

g
´

St

s
ź

i“t`1
Hi

¯

| St “ st

ı

.

Therefore,
ÊrgpSsq | St, ..., S0s “ ÊrgpSsq | Sts.

See Figure2.3.4 for the illustration of the Markovian property in the binomial model in one
period. Given St “ Stpiq, the probability that St`1 “ St`1pi ` 1q is π̂u, and the probability
that St`1 “ St`1piq is π̂ℓ. Given St ‰ Stpiq, both of the probabilities are 0.

St(i)

St+1(i+ 1) := St(i)u

St+1(i) := St(i)ℓ

Figure 2.3.4: Conditioning of the binomial model

Why is Markovian property important? The Markovian property is often useful in reduc-
ing the computational effort, and models with the Markovian property are computationally
efficient. A reason for this reduction lies in the solution to the exercise below.

Exercise 2.3.1. How many paths are there in a binomial model from time t “ 0 to time
t “ n? How many nodes (values of asset price process at all points in time) are there?

If we don’t have Markovian property, we need to evaluate the conditional expectation
ÊrgpSsq | St, ..., S0s once for each sample path; ÊrgpSsq | St, ..., S0s is a random variable
that has as many values as the process pS0, ..., Stq does. However, Markov property allows
us to reduce the conditional expectation to ÊrgpSsq | Sts, and therefore, the number of
values that ÊrgpSsq | Sts can take is as many as the number of values of the ranvom
variable St.
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2.3.3 Arbitrage pricing and replicating European contingent claims in
the binomial model

As in Section 2.1, the introduction of a new asset can create arbitrage if and only if the
discounted price of the new asset does not satisfy

1
1 ` R

ÊrP1
¨js “ p1,

for at least one risk-neutral probability. In the one-period binomial model, since there is
only one risk-neutral probability provided that there is no arbitrage, one can readily find
the no-arbitrage price of any new asset including all derivatives.
The same methodology applies to the multiperiod binomial model, with a slight difference:

the discounted price of the newly introduced asset must be a martingale with respect to
the risk-neutral probability.
We start by illustrating the idea in a two-period binomial model in the following example.

Example 2.3.1. Consider a two-period binomial model with S0 “ 1, u “ 2, ℓ “ 1
2 , and

R “ .5 (for simplicity). We consider a European call option with strike K “ .8; the payoff
is gpS2q “ pS2 ´ .8q`. Therefore, π̂u “ 2

3 and π̂ℓ “ 1
3 .

S0 = 1

S1(2) = 2

S1(1) = 1
2

S2(3) = 4

S2(2) = 1

S2(1) = 1
4

V0

V1,2

V1,1

(4 − K)+ = 3.2

(1 − K)+ = .2

( 1
4

− K)+ = 0

Figure 2.3.5: European call option in a two-period binomial model. Left: asset price.
Right: option price

We first argue that the price of the European call option mimics the binomial model for
the asset and takes a similar form shown on the right-hand-side in Figure 2.3.5. At the
maturity, the value of the option is given by V2 “ pS2 ´ Kq`. Since S2 takes three values,
so does V2. At time t “ 1,
We assume that there is no arbitrage. Therefore, the discounted price of the option must

be a martingale with respect to the asset price under the risk-neutral probability:

V1 “
1

1 ` R
ÊrV2 | S1, S0s “

1
1 ` R

ÊrpS2 ´ Kq` | S1, S0s.
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By the Markovian property of the asset price, we have,

V1 “
1

1 ` R
ÊrpS2 ´ Kq` | S1s.

Therefore, V1 is a function of S1, and since S1 takes two values, the value V1 of the op-
tion takes two values V1,2 and V1,1 when S1 takes values S1p2q “ S0u and S1p1q “ S0ℓ,
respectively. More precisely,

V1,2 “
1

1 ` R
ÊrpS2 ´ Kq` | S1 “ S0us “

1
1 ` R

pπ̂upS1u ´ Kq` ` π̂ℓpS1ℓ ´ Kq`q

ˇ

ˇ

ˇ

S1“S0u

“
1

1.5

ˆ

2
3

p3.2q `
1
3

p.2q

˙

“
4.4
3

« 1.4666.

Similarly at node p1, 1q, where t “ 1 and state is 1, we have

V1,1 “
1

1 ` R
ÊrpS2 ´ Kq` | S1 “ S0ℓs “

1
1 ` R

pπ̂upS1u ´ Kq` ` π̂ℓpS1l ´ Kq`q

ˇ

ˇ

ˇ

S1“S0ℓ

“
1

1.5

ˆ

2
3

p.2q `
1
3

p0q

˙

“
.8
9

« 0.8888.

To evaluate the option price V0 at time t “ 0, we use that the no-arbitrage implies the
martingale property for the option:

V0 “
1

1 ` R
ÊrV1s “

1
1 ` R

pπ̂uV1,2 ` π̂ℓV1,1q “
2
3

ˆ

2
3

p
4.4
3

q `
1
3

p
.8
9

q

˙

« .6716.

To replicate the option, we need to solve the same system of equations as in 2.1.7 at each
node of the binomial model in a backward manner. At node p1, 2q,

#

θ0p1 ` Rq ` θ1S1p2qu “ p4 ´ Kq`

θ0p1 ` Rq ` θ1S1p2qℓ “ p1 ´ Kq`

or

#

1.5θ0 ` 4θ1 “ 3.2
1.5θ0 ` θ1 “ .2

.

Thus, θ1 “ 1 and θ0 “ ´1.6
3 . In other words, to replicate the claim at node p1, 2q we need

to keep one unit of the risky asset and borrow 1.6
3 units of the risk-free zero bond. This

leads to the price θ0 ` θ1S1p2q “ 2 ´ 1.6
3 “ 4.4

3 , the same price we found with risk-neutral
probability.
The same method should be used in the other node, p1, 1q, to obtain the system of equation

#

θ0p1 ` Rq ` θ1 “ .2
θ0p1 ` Rq ` 1

4θ1 “ 0
.

Thus, θ1 “ .8
3 and θ0 “ ´ .4

9 . The price θ0θ1S1p1q “ 1
2
`

.8
3
˘

´ .4
9 “ .8

9 is again the same as
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the risk-neutral price.

At node 0, the replicating portfolio needs to reach the target prices of the claim at time
t “ 1, i.e.

#

θ0 ` θ1S0u “ V1,2 “ 4.4
3

θ0 ` θ1S0ℓ “ V1,1 “ .8
9

or

#

θ0p1 ` Rq ` 2θ1 “ 4.4
3

θ0p1 ` Rq ` 1
2θ1 “ .8

9
.

By solving the above system, we obtain θ1 “ 24.8
27 units of the risky asset and θ0 “ ´20

81
units of the risk-free bond in the replicating portfolio. This is the structure of the replicating
portfolio at the beginning of the replication. If the price moves up, we have to restructure
the portfolio to keep one unit of the risky asset and ´1.6

3 units of the risk-free bond. If it
moves down, we need to readjust the position to .8

3 units of the risky asset and ´ .4
9 units

of the risk-free bond.

Next, consider a general European claim with payoff gpST q, where g : R` Ñ R is a
function that assigns a value to the payoff based on the price ST of the asset at terminal
time T . Such European claims are also called Markovian claims. Let V0, ..., VT be random
variables representing the price of this European claim at time t “ 0, ..., T , respectively.
Then, in order to avoid arbitrage, the derivative price must remain martingale, i.e.

Vt “
1

1 ` R
ÊrVt`1 | St, ..., S0s.

Let’s assume that at time t ` 1, Vt`1 is a function V pt ` 1, ¨q and St`1. This assumption
is true for T , where VT “ gpST q. We use induction to show that Vt is a function of St.
It follows from the Markovian property of the binomial model that ÊrVt`1 | St, ..., S0s “

ÊrV pt ` 1, St`1q | St, ..., S0s “ ÊrV pt ` 1, St`1q | Sts, and therefore

V pt, Stq :“ 1
1 ` R

ÊrV pt ` 1, St`1q | Sts. (2.3.2)

Therefore, one needs to evaluate function V pt, Sq over the binomial model, as shown in
Figure 2.3.6.

We can also show bu induction that

V pt, Stq “
1

p1 ` RqT ´t
ÊrÊrgpST q | Sts.

This holds for t “ T ´ 1:

V pT ´ 1, ST ´1q “
1

1 ` R
ÊrgpST q | ST ´1s.
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V0

V
(
1, S1(2)

)

V
(
1, S1(1)

)

V
(
2, S2(3)

)

V
(
2, S2(2)

)

V
(
2, S2(1)

)

V
(
3, S3(4)

)

V
(
3, S3(3)

)

V
(
3, S3(2)

)

V
(
3, S3(1)

)

g
(
S0u

T
)

g
(
S0u

T−1ℓ
)

g
(
S0u

T−2ℓ2
)

...

g
(
S0u

2ℓT−2
)

g
(
S0uℓ

T−1
)

g
(
S0ℓ

T
)

V0 V1 V2 V3 · · · VT = g(ST )

Figure 2.3.6: The price of a Markovian European contingent claim in the binomialmodel

Now assume that

V pt ` 1, St`1q “
1

p1 ` RqT ´pt`1q
ÊrÊrgpST q | St`1s.

Then, by the tower property of the conditional expectation, we can write

V pt, Stq :“ 1
1 ` R

ÊrV pt ` 1, St`1q | Sts

“
1

1 ` R
Ê
” 1

p1 ` RqT ´pt`1q
ÊrgpST q | St`1, ..., S0s | St

ı

“
1

p1 ` RqT ´t
ÊrgpST q | Sts.
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Therefore, for any t “ 0, ..., T ´ 1, we have

V pt, Stq “
1

p1 ` RqT ´t
ÊrgpST q | Sts. (2.3.3)

Remark 2.3.2. Since the binomial model is time homogeneous, ÊrgpST q | St “ Ss in
(2.3.3) is equal to ÊrgpST ´tq | S0 “ Ss. This suggests that the price function V pt, Sq is a
function of S and time-to-maturity τ :“ T ´ t, V pτ, Sq. Time-to-maturity is often used
instead of time in financial literature regarding the evaluation of contingent claims.

Example 2.3.2. Consider a four-period binomial model for a risky asset with each period
equal to a year, and take S0 “ $10, u “ 1.06, ℓ “ 0.98, and R “ .02. We shall find the
price V0 of the option with the payoff shown in figure below. By 2.3.3, the value V p0, S0q

0 10 11 12

1

ST

g(ST )

of the option is the expected value of the discounted payoff under risk-neutral probability;

V p0, S0q “
1

p1 ` Rq4 ÊrgpS4qs.

Since the random variable S4 takes values 9.2236816, 9.9766352, 10.7910544, 11.6719568,
and 12.6247696. Therefore, the only nonzero value of the payoff is obtained when S4 “

10.7910544 and is gp10.7910544q “ 1. The risk-neutral probability of ST “ 10.7910544 is
simply

`2
4
˘

pπ̂uq2pπ̂ℓq
2 “ 3

8 . Thus,

V p0, S0q “
3

8p1.02q4 « 0.34644203476.

Replication of European option in the binomial model

We show that any European contingent claim (even non-Markovian ones) are perfectly
replicable in the binomial model. The argument follows inductively: let the replicating
portfolio is built at each node of the binomial model at all points t ` 1 or later in time. As
a result of this assumption, at each node the value of the replicating portfolio is the same
as the value of the option. We continue by replicating the price of the option at time t ` 1;
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i.e., we need to solve the following system of equations for each i “ 1, ..., t ` 1:
#

θ0p1 ` Rq ` θ1St`1pi ` 1q “ V pt ` 1, St`1pi ` 1qq

θ0p1 ` Rq ` θ1St`1piq “ V pt ` 1, St`1pi ` 1qq
.

The solution is given by

θ0 “
uV pt ` 1, Stpiqlq ´ lV pt ` 1, Stpiquq

pu ´ ℓqp1 ` Rq
and θ1 “

V pt ` 1, Stpiquq ´ V pt ` 1, Stpiqlq

Stpiqpu ´ ℓq
.

θ1 is the number of units of the risky asset in the replicating portfolio, and θ0 is the number
of units of the risk-free bond in the replicating portfolio. In other words, the replicating
portfolio is a self-financing portfolio given by (2.2.3) with initial wealth V0 and portfolio
strategy given by t∆pt, StquT ´1

t“0 .

∆pt, Sq :“ V pt ` 1, Suq ´ V pt ` 1, Sℓq

Spu ´ ℓq
. (2.3.4)

The number of units of the risky asset in the replicating portfolio, given by (2.3.4), is called
the Delta of the contingent claim at time t. Basically, (2.3.4) suggests that the Delta of a
European Markovian contingent claim is a function of time t and the price of the underlying
asset at time t.

Remark 2.3.3. As you can see from (2.3.4), the Delta of the contingent claim at time t
measures the sensitivity of the value of the contingent claim with respect to changes in the
price of the underlying asset, i.e., changes in the price of the option due to changes in the
price of the underlying asset.

By (2.2.3), the replicating portfolio for the binomial model takes the form

V pt, Stq “ V p0, S0q ` R
t´1
ÿ

i“0
pV pi, Siq ´ ∆pi, SiqSiq `

t´1
ÿ

i“0
∆pi, SiqpSi`1 ´ Siq,

where V pi, Siq is the price of the contingent claim at time i when the underlying price
is Si. The term R

řt´1
i“0pV pi, Siq ´ ∆ipSiqSiq represents accumulated changes in the risk-

free zero bond in the replicating portfolio caused by compounding of the interest, and
řt´1

i“0 ∆ipSiqpSi`1 ´ Siq represents the accumulated changes in the replicating portfolio
caused by changes in the risky asset price. The act of constructing a replicating portfolio
for a contingent claim is ofter referred to as Delta hedging.
The above discussion is summarized in the following algorithm.

Remark 2.3.4. Given that functions ∆ and V are calculated, one has to plug time t
and asset price St into the function to find the price and adjust the replicating portfolio
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Backward pricing and replicating European options in the binomialmodel
1: At time T , the value of the option is gpST pjqq.
2: for each t “ T ´ 1, ..., 0 do
3: for each j “ 1, ..., t ` 1 do
4: The value of the option V pt, Stpjqq “ 1

1`R ÊrV pt ` 1, St`1q | St “ Stpjqs.
5: The replicating portfolio is made of ∆pt, Stpjqq units of the risky asset and V pt, Stpjqq´

Stpjq∆pt, Stpjqq is the risk-free bond.
6: end for
7: end for

of the contingent claim. However, there is no guarantee that quoted prices in the market
will match the prices in the binomial (or any other) model. In such case, interpolation
techniques can be exploited to find the price and adjust the replicating portfolio.

Exercise 2.3.2. In the binomial model, show that the Delta of a call option ∆call and the
Delta of a put option ∆put with the same maturity and strike satisfy

∆call
t ´ ∆put

t “ 1, for all t “ 0, ..., T ´ 1.

Is this result model-independent? Hint: consider the put-call parity.

Exercise 2.3.3. Consider a two-period binomial model for a risky asset with each period
equal to a year and take S0 “ $1, u “ 1.03 and ℓ “ 0.98.

a) If the interest rate for both periods is R “ 0.01, find the price of the option with
the payoff shown in Figure 2.3.7 with K1 “ 1.00 and K2 “ 1.05 at all nodes of the
binomial model.

K1 K2

K2 −K1

ST

g(ST )

Figure 2.3.7: Payoff of Exercise 2.3.3

b) Find the replicating portfolio at each node of the binomial model.

Exercise 2.3.4. Consider a two-period binomial model for a risky asset with each period
equal to a year and take S0 “ $1 u “ 1.05 and ℓ “ 1.00. Each year’s interest rate comes
from Exercise 1.1.4.
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a) Is there any arbitrage? Why or why not? Give an arbitrage portfolio if you find out
there is one.

b) Now consider a two-period binomial model for a risky asset with each period equal to
a year and take S0 “ $1 u “ 1.05 and ℓ “ 0.95.

Find the price of the option with the payoff shown in Figure 2.3.7 with K1 “ 1.00
and K2 “ 1.05 at all nodes of the binomial model. Find the interest rates for each
period from information in Part (a).

c) Find the replicating portfolio and specifically ∆ at all nodes of the binomial model.

Remark 2.3.5. 2.3.2 suggests that the price of a Markovian claim in a binomial model does
not depend on past movements of the price and only depends on the current price S. This
is not indeed true for non-Markovian claims. For example, a look-back option with payoff
`

maxt“0,...,T St ´K
˘

`
or an Asian option

` 1
T `1

řT
t“0 St ´K

˘

`
are non-Markovian options

with the price depending to some extent on the past history of the price movement rather
than only the current price of the underlying. Evaluation of these type of non-Markovian
payoffs, namely path-dependent payoffs, cannot benefit fully from the Markovian property
of the model.

Example 2.3.3. Consider the setting of Exercise 2.3.3: R “ 0.01, S0 “ $1, u “ 1.03
and ℓ “ 0.98 To price a look-back option with payoff

`

maxt“0,1,2 St ´ 1
˘

`
, first notice that

the payoff of the option at time T “ 2 is path-dependent: the paths pS0, S0u, S0uℓq and
pS0, S0ℓ, S0uℓq generate the same value S0uℓ for S2. However, the payoff for the former is

`

maxtS0, S0u, S0uℓu ´ 1
˘

`
“
`

maxt1, 1.03, 1.0094u ´ 1
˘

`
“ 0.03;

while the latter has payoff
`

maxtS0, S0ℓ, S0uℓu ´ 1
˘

`
“
`

maxt1, 0.98, 1.0094u ´ 1
˘

`
“ 0.0094.

Therefore, the binomial model should be shown as in Figure 2.3.8 It follows from no arbi-
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S0 = 1

u

ℓ

u2

uℓ

ℓu

ℓ2

V0

V (1, u)

V (1, ℓ)

(
max{S0, S0u, S0u

2} − 1
)
+
= 0.0609

(
max{S0, S0u, S0uℓ} − 1

)
+
= 0.03

(
max{S0, S0ℓ, S0uℓ} − 1

)
+
= 0.0094

(
max{S0, S0ℓ, S0ℓ

2} − 1
)
+
= 0

Figure 2.3.8: Look-back option in the binomial model in Example 2.3.3

trage that the price of the look-back option must be a martingale, and therefore,

V p1, uq “
1

1 ` R
Ê
“

gpS0, S1, S2q | S1 “ u, S0 “ 1
‰

“
1

1.01

´

π̂up0.0609q ` π̂ℓp0.03q

¯

« 0.0480594,

V p1, ℓq “
1

1 ` R
Ê
“

gpS0, S1, S2q | S1 “ ℓ, S0 “ 1
‰

“
1

1.01

´

π̂up0.0094q ` π̂ℓp0q

¯

« 0.0055841, and

V0 “
1

p1 ` Rq2 Ê
“

gpS0, S1, S2q | S0 “ 1
‰

“
1

p1.01q2

´

π̂2
up0.0609q ` π̂uπ̂ℓp0.03q ` π̂ℓπ̂up0.0094q ` π̂2

ℓ p0q

¯

« 0.0307617.

Replication is similar to the markovian case. For instance, to replicated the look-back option
at S1 “ u, we first need to solve the system of equations

#

θ0p1 ` Rq ` θ1u “ 0.0609
θ0p1 ` Rq ` θ1ℓ “ 0.03

.

However, since the binomial model does not recombine, the number such systems of equa-
tions to solve grows exponentially in the number of periods; whereas, in Markovian case the
number of such systems of equations grows quadratic.

Exercise 2.3.5. Consider the setting of Exercise 2.3.3. Price and replicate an Asian
option with payoff

` 1
T `1

řT
t“0 St ´ K

˘

`
with K “ 10. Hint: The price is path dependent

and each path has a payoff.
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Example 2.3.4 (Call and put option). Consider a call option with strike K and maturity
T . Let the nonnegative integer k0 be such that S0uk0´1ℓT ´k0`1 ă K ď S0uk0ℓT ´k0. Then,

V0

V1,2

V1,1

Vt,t+1

Vt,t

...

Vt,2

Vt,1

VT,T+1 = S0u
T −K

...

VT,k0+1 = S0u
k0 lT−k0 −K

0

...

0

Figure 2.3.9: Payoff of a call option in a binomial model; k0 is such that
S0uk0´1ℓT ´k0`1 ă K ď S0uk0ℓT ´k0 .

by (2.3.3), we have

V call
0 “

1
p1 ` RqT

T
ÿ

k“k0

ˆ

n

k

˙

pπ̂uq
n´k

pπ̂ℓq
k

pSk
T ´ Kq.

Similarly, one can use (2.3.3) to obtain the price of a put option. However, given that we
already have the price of a call option in the above, one can find the price of a put option
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by using the put-call parity (Proposition 1.3.3):

V put
0 “ V call

0 `
K

p1 ` RqT
´ S0

“
1

p1 ` RqT

T
ÿ

k“k0

ˆ

n

k

˙

pπ̂uq
n´k

pπ̂ℓq
k

pSk
T ´ Kq `

K ´ ÊrST s

p1 ` RqT

“

k0´1
ÿ

k“0

ˆ

n

k

˙

pπ̂uq
n´k

pπ̂ℓq
k

pK ´ Sk
T q.

In the above, we used the martingale property of the discounted asset price, (2.2.4), to write
S0 “ ÊrŜT s “

ÊrST s

p1`RqT . Then, we expanded the expectation to write

K ´ ÊrST s “ ÊrK ´ ST s “

T
ÿ

k“0

ˆ

n

k

˙

pπ̂uq
n´k

pπ̂ℓq
k

pK ´ Sk
T q.

2.3.4 Dividend-paying stock

Stocks usually pay cash dividends to the shareholders. Then, it is up to the individual
shareholders to decide whether to consume the cash dividend or invest it back into the
market. The dividend policy is determined by the management of the company, but it
is also influenced by the preference of the shareholders. Dividends are usually announced
in advanced and are paid in a regular basis, quarterly, semiannually, annually and the
like. However, when the company announces unexpected high earnings, a special dividend
can be paid. Also, a regular dividend can be stopped if the earnings are unexpectedly
low. Dividends are announced as a cash amounts; however, for the ease of calculation, we
model them as a percentage of the asset price, which is referred to as dividend yield and
is a number in r0, 1q. If the asset price at time t is St, then, after paying a dividend yield
of dt P r0, 1q, the asset price is reduced to p1 ´ dtqSt. Therefore, under the dividend policy
d1, ..., dn, the asset price dynamics in the binomial model follows

St “ S0H1...Ht

t
ź

i“1
p1 ´ diq,

where Hi is a sequence of i.i.d. random variables with distribution

P̂pHi “ uq “
1 ` R ´ ℓ

u ´ ℓ
and P̂pHi “ ℓq “

u ´ 1 ´ R

u ´ ℓ
.
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If we define H̃i “ Hip1 ´ diq, the dividend policy makes the binomial model look like

St “ S0H̃1...H̃t.

See Figure 2.3.10. Then, H̃i is distributed as

P̂pH̃i “ up1 ´ diqq “
1 ` R ´ ℓ

u ´ ℓ
and P̂pH̃i “ ℓp1 ´ diqq “

u ´ 1 ´ R

u ´ ℓ
.

Remark 2.3.6. It is important to notice that in this case, the no-arbitrage condition
remains the same as ℓ ă 1 ` R ă u, the case where the underlying asset does not pay
any dividend. Regarding the effect of dividend on the replicating portfolio, each dividend
payment transfers the value invested in the risky asset into the risk-free zero bond. A period
before a dividend yield of d P r0, 1q, if the asset price is S, the investment in the risk-free
zero bond is θ0, and the investment in the risky asset is θ1, the replicating portfolio solves
a similar system of equations as for the case of no-dividend:

$

’

’

’

&

’

’

’

%

θ0p1 ` Rq ` θ1dSu
loooooooooomoooooooooon

risk-free

` θ1p1 ´ dqSu
loooooomoooooon

risky

“ V pt ` 1, Sup1 ´ dqq

θ0p1 ` Rq ` θ1dSℓ
loooooooooomoooooooooon

risk-free

` θ1p1 ´ dqSℓ
looooomooooon

risky

“ V pt ` 1, Sℓp1 ´ dqq
.

One way of pricing contingent claims on dividend-paying assets is to introduce an adjusted
asset price with no dividend and transform the payoff in terms of the adjusted asset price.
If we define the adjusted asset price by S̃t :“ S0H1...Ht, then St “ S̃t

śT
i“1p1 ´ diq. Then,

the payoff of a European contingent claim given by gpST q is given in terms of S̃T by
g
`

S̃T
śT

i“1p1 ´ diq
˘

on the adjusted binomial asset S̃T . Then, the pricing of a contingent
claim with payoff gpST q at time t given St “ S is given by

V pt, Sq :“ 1
p1 ` RqT ´t

ÊrgpST q | St “ Ss “
1

p1 ` RqT ´t
Ê
”

g
`

S̃T

T
ź

j“t`1
p1 ´ diq

˘

| St “ S
ı

“
1

p1 ` RqT ´t

T
ÿ

i“t

ˆ

T ´ t

i

˙

π̂i
uπ̂T ´t´i

ℓ g
´

SuiℓT ´t´i
T
ź

j“t`1
p1 ´ djq

¯

.

(2.3.5)

Remark 2.3.7. Notice that the price V pt, Sq of a European contingent claim gpST q on a
dividend-paying underlying asset S is no longer a function of time-to-maturity τ “ T ´ t.
This is due to the term

śT
j“t`1p1 ´ diq in (2.3.5), which cannot be expressed as a function

of τ , unless di “ d for all i “ 1, ..., T ; then,
śT

j“t`1p1 ´ diq “ p1 ´ dqτ .
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S0

S0u(1 − d1)

S0ℓ(1 − d1)

S0u2(1 − d1)(1 − d2)

S0uℓ(1 − d1)(1 − d2)

S0ℓ2(1 − d1)(1 − d2)

S0u3(1 − d1)(1 − d2)(1 − d3)

S0u2ℓ(1 − d1)(1 − d2)(1 − d3)

S0uℓ2(1 − d1)(1 − d2)(1 − d3)

S0ℓ3(1 − d1)(1 − d2)(1 − d3)

S0un(1 − d1)...(1 − dn)

S0un−1ℓ(1 − d1)...(1 − dn)

S0un−2ℓ2(1 − d1)...(1 − dn)

.

.

.

S0u2ℓn−2(1 − d1)...(1 − dn)

S0uℓn−1(1 − d1)...(1 − dn)

S0ℓn(1 − d1)...(1 − dn)

Figure 2.3.10: Dividend-paying asset in a binomial model

Remark 2.3.8. Recall that a regular dividend policy is announced in cash and not the
dividend yield. This means for a high (low) asset price the cash dividend is equivalent to a
small (large) dividend yield. A dividend cash of $D corresponds to a dividend yield of D

S ,
where S is the predividend asset price. In addition, a bigger picture of dividend payments
also suggests that the companies can change their dividend policies based on certain random
events. Therefore, it is natural to assume that the divided policy is random. If the dividend
policy is Markovian, at each node of the binomial model at time t and price Stpjq, the
divided is a random variable dpt, Stpjqq, for j “ 1, ..., t ` 1, the pricing methodology is
similar to the Markovian European option. In the two-period binomial model in of Exercise
2.3.6, Part (b) and Part (c) are special instances of Markovian dividends.
If the dividend policy is not Markovian, even for a Markovian asset-price model and a

Markovian contingent claim with payoff gpST q, the pricing is similar to pricing methodology
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of path-dependent options. This is because the modified payoff takes the form g
`

S̃T
śT

t“1p1´

dtq
˘

, where dt depends on St, ..., S0. Therefore, pricing and hedging must be conducted
similar to Remark 2.3.5, Example 2.3.3 and Exercise 2.3.5.

Exercise 2.3.6. Consider a two-period binomial model for a risky asset with each period
equal to a year and take S0 “ $10, u “ 1.15 and ℓ “ 0.95. The interest rate for both periods
is R “ .05.

a) If the asset pays a 10% dividend yield in the first period and 20% in the second period,
find the price of a call option with strike K “ 8.

b) Consider a more complicated dividend policy that pays a10% dividend yield only if
the price moves up and no dividend if the price moves down in each period. Find the
price of a call option with strike K “ 8.

c) Finally, consider a dividend policy that pays $1 divided in the first period in each
period. Find the price of a call option with strike K “ 8.

2.4 Calibrating the parameters of the model to market data:
the binomial model

Calibration is the practice of matching the parameters of a model to data. In the binomial
model, the parameters are interest rate R, u, and ℓ. Calibrating the risk-free interest rate
R is a separate job and usually uses the price quotes of risk-free (sovereign) zero bonds. For
the purposes of this section, we assume that the yield of a zero bond is already calibrated
and satisfies Rtpt ` δq “ rδ ` opδq, where short rate r is constant and δ represents the
duration of one period in the binomial market. δ is usually small relative to the maturity
T .

Data: price quote and return

Assume that the asset price quotes are collected at δ time lapse; S´mδ, ..., S0 tabulates the
past quotes of the asset price from time ´mδ until the present time t “ 0. We denote the
quoted price by S to distinguish it from the random variable S for future price.
The arithmetic return and the logarithmic return at time t are defined by

Rarth
t :“ St`δ ´ St

St
,

and
Rlog

t :“ ln
ˆ

St`δ

St

˙

,
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respectively. If the time step δ is small, then the price movement St`δ ´ St is also small,
and Rlog

t and Rarth
t are very close12. However, we will see that the small difference between

the two returns will show up in the parameter estimation. For the moment, we focus on the
arithmetic return and drop the superscript "arth" for simplicity. We discuss the logarithmic
return (or log return) at the end of this section.
From the data points S´mδ, ..., S0, we obtain data points for the return, R´m, ..., R´1

given by

R´k :“
Sp´k`1qδ ´ S´kδ

S´kδ
.

Next, we will use this data to estimate some parameters of the market that are important
in the calibration process.

Binomial model with physical probability

The data on the quoted prices comes from the physical probability and not the risk-neutral
probability; see Remark 2.1.5. Therefore, for calibration, we need to present the binomial
model with physical probability rather than the risk-neutral probability. While the nodes
of the binomial model will not change, the probability must change; St`1 “ StHt`1 and
tHtu

8
t“1 is a sequence of i.i.d. random variables with the following distribution under

physical measure

Ht “

#

u with probability p

ℓ with probability 1 ´ p
, for all t “ 0, 1, .... (2.4.1)

In the binomial model under physical probability measure, the sequence of returns tRtu
8
t“0

also makes a sequence of i.i.d. random variables. So, to proceed with calibration, we need
to impose the same assumption on the data.

Assumption 2.4.1. The return tRtu
8
t“0 is a sequence of i.i.d. random variables with the

mean and the variance given by by µδ ` opδq and σ2δ ` opδq, respectively.

The dimensionless quantities σ and µ are respectively called the volatility and mean return
rate of the price.

Remark 2.4.1. The assumption that volatility is a constant is not very realistic. However,
this assumption, which was widely used in practice in the 1970s and 1980s, makes the prob-
lems more tractable. We will try later to test some approaches that relax this assumption
in different directions.

12lnp1 ` xq « x for small x
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S0

S0u

S0ℓ

p

1− p

Rt = Ht − 1 =


U := u− 1 with probability p

L := ℓ− 1 with probability 1− p

Figure 2.4.1: Left: binomial model under physical probability. Right: arithmetic return
Rt.

Statistical estimation of return and volatility

We proceed by introducing some basic statistical methods to estimate µ and σ. The
simplest estimators for these parameters come from Assumption 2.4.1:

µ̂ “
1

δm

m
ÿ

k“1
R̂´k and σ̂2 “

1
δpm ´ 1q

m
ÿ

k“1
pR̂´k ´ µ̂δq2.

Exercise 2.4.1 (Project). Go to Google Finance, Yahoo Finance, or any other free database
that provides free asset price quotes. Download a spreadsheet giving the daily price of a
highly liquid asset such as IBM, Apple, Alphabet, etc. Assuming Assumption 2.4.1, find the
volatility σ and the average return rate µ of the asset. Then, use these quantities to find
the daily, weekly, and yearly standard deviation and mean of the return.

A calibration of the model parameters u, ℓ, and p

We match the first and second momentum of the binomial model with the mean return
rate and volatility:

#

pU ` p1 ´ pqL “ µδ ` opδq

pU2 ` p1 ´ pqL2 ´ ppU ` p1 ´ pqLq2 “ σ2δ ` opδq

Or, equivalently,
#

pU ` p1 ´ pqL “ µδ ` opδq

pp1 ´ pqpU ´ Lq2 “ σ2δ ` opδq
(2.4.2)

In the above system of two equations, there are three unknowns U , L, and p, which give
us one degree of freedom. We are going to use this degree of freedom by assuming that
the variance of return Rt under risk-neutral probability is also σ2δ ` opδq;

π̂uπ̂ℓpU ´ Lq2 “ σ2δ ` opδq, (2.4.3)
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where π̂u “ 1`R´ℓ
u´ℓ “ R´L

U´L .

Remark 2.4.2. This assumption suggests that the variance of return under the risk-neutral
probability measure does not deviate significantly from the physical probability measure.
Whether we are allowed to make such a strong assumption or not is debatable. However, ev-
idences from financial economics as well as statistical modeling of financial markets suggest
that this assumption is practical and significantly useful. In addition, in the continuous-time
modeling of financial markets, the assertion of this assumption becomes a conceptually deep
result. The reason this assumption will become clear later when we study continuous-time
models, specifically the Black-Scholes model.

To simplify further, we also drop the opδq term from the equations. Therefore, we have a
system of three equations and three unknowns.

$

’

&

’

%

pU ` p1 ´ pqL “ µδ

pp1 ´ pqpU ´ Lq2 “ σ2δ

pU ´ RqpR ´ Lq “ σ2δ

For the sake of simplicity, we set new variables

α “
U ´ R
?

δσ
, β “

R ´ L
?

δσ
, and r “

R

δ
, (2.4.4)

where r is the annual interest rate (APR) calculated at periods δ. Thus, we have
$

’

&

’

%

pα ´ p1 ´ pqβ “ λ
?

δ
a

pp1 ´ pqpα ` βq “ 1
αβ “ 1

(2.4.5)

Here λ :“ µ´r
σ .

Remark 2.4.3 (Risk premium). The quantity µ´r
σ is referred to as the risk premium of the

asset and measures the excess mean return of the asset adjusted with its level of riskiness
measured by its volatility.

The solution to (2.4.5) is given by

α “

c

1 ´ p

p
` λ

?
δ, β “

c

p

1 ´ p
´ λ

?
δ, and p “

1
1 ` x2

0
, (2.4.6)

where x0 is the unique positive solution to the equation (see Figure 2.4.2)

x ´
1
x

“ λ
?

δ. (2.4.7)
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x0

λ
√
δ

x

x− x−1

Figure 2.4.2: Positive solution to equation x ´ 1
x “ λ

?
δ.

Then, u and ℓ are given by

u “ 1 ` δr `
?

δσα, and ℓ “ 1 ` δr ´
?

δσβ. (2.4.8)

Remark 2.4.4. The above calibration is well posed in the sense that, for any possible value
of parameters σ ą 0, µ, and r, one can find proper u and ℓ such that ℓ ă 1 ` R ă u in a
unique fashion. Notice that in (2.3.3), the pricing of contingent claims is not affected by p,
and thus p is the least important parameter in this context.

Example 2.4.1 (Symmetric probabilities). We shall show that the following choice of
parameters for the binomial model also provides a calibration; it satisfies the Assumption
2.4.1.

u “ eδpr´ σ2
2 q`

?
δσ, ℓ “ eδpr´ σ2

2 q´
?

δσ and p “
1
2

´

1 ` λ
?

δ
¯

.

First notice that

Rt “

$

&

%

eδpr´ σ2
2 q`

?
δσ ´ 1 with probability 1

2

´

1 ` λ
?

δ
¯

eδpr´ σ2
2 q´

?
δσ ´ 1 with probability 1

2

´

1 ´ λ
?

δ
¯

Therefore,

ErRts “
1
2

ˆ

´

eδpr´ σ2
2 q`

?
δσ ´ 1

¯´

1 ` λ
?

δ
¯

`

´

eδpr´ σ2
2 q´

?
δσ ´ 1

¯´

1 ´ λ
?

δ
¯

˙

.
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We use ex “ 1 ` x ` x2

2! ` x3

3! ` ¨ ¨ ¨ , to write

ErRts “
1
2

ˆ

´

δpr ´
σ2

2
q `

?
δσ `

δσ2

2
` opδq

¯´

1 ` λ
?

δ
¯

`

´

δpr ´
σ2

2
q ´

?
δσ `

δσ2

2
` opδq

¯´

1 ´ λ
?

δ
¯

˙

“δpr ´
σ2

2
`

σ2

2
` λσq ` opδq “ µδ ` opδq

Recall that λσ “ µ ´ r. On the other hand,

ErR2
t s “

1
2

ˆ

´

eδpr´ σ2
2 q`

?
δσ ´ 1

¯2´
1 ` λ

?
δ
¯

`

´

eδpr´ σ2
2 q´

?
δσ ´ 1

¯2´
1 ´ λ

?
δ
¯

˙

“
1
2

ˆ

´

δσ2 ` opδq

¯´

1 ` λ
?

δ
¯

`

´

δσ2 ` opδq

¯´

1 ´ λ
?

δ
¯

˙

“ σ2δ ` opδq.

Exercise 2.4.2 (Subjective return). Show that the following choice of parameters for the
binomial model also provides a calibration; it satisfies the Assumption 2.4.1.

u “ eδν`
?

δσ, ℓ “ eδν´
?

δσ and p “
1
2

´

1 `
`µ ´ ν

σ
´

σ

2
˘

?
δ
¯

,

where ν is a real number. Find the range of ν in terms of other parameters such that there
is no arbitrage.

Calibration the binomial model for the purpose of pricing contingent claims

Estimating rate of return is often a more difficult task than estimating volatility. Methods
such as the CAPM13 have been developed to approximate the rate of return. However,
if the calibration is only used for option pricing, we often do not need the rate of return.
Recall that under risk-neutral probability, the return of a binomial asset is equal to the
yield of a zero bond, which is already estimated through the bond market data;

ÊrRts “ ÊrHt ´ 1s “ pu ´ 1qπ̂u ` pℓ ´ 1qπ̂ℓ “
pu ´ 1qp1 ` R ´ ℓq ` pℓ ´ 1qpu ´ 1 ´ Rq

u ´ ℓ
“ R.

Therefore, if we only calibrate the binomial model under risk-neutral probability, the rate
of return under physical probability is irrelevant.
We impose the following assumption on the distribution of the return process under the

risk-neutral probability and use it to calibrate the binomial model under risk-neutral prob-
ability using data to estimate the volatility only.

13the capital asset pricing model
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Assumption 2.4.2. The arithmetic return tRtu
8
t“0 is a sequence of independent random

variables under risk-neutral probability P̂ with mean ÊrRts “ rδ ` opδq and v̂arpRtq “

σ2δ ` opδq.

This assumption implies the assumption that we imposed earlier in (2.4.3).
Given r and R “ rδ ` opδq, the only equation that we obtain is

pU ´ RqpR ´ Lq “ σ2δ.

Here, we drop the opδq term for simplicity. If we define α “ U´R?
δσ

and β “ R´L?
δσ

, we have
αβ “ 1. Any choice for α leads to β “ 1

α , and therefore, is a calibration of the binomial
model. We obtain a calibration similar to (2.4.8):

u “ 1 ` δr `
?

δσα, and ℓ “ 1 ` δr ´
?

δσβ.

Here, α and β are different than in 2.4.8.

Remark 2.4.5. In practice, Assumption 2.4.2 is too good to be true. In fact, most of
the arguments for calibration of the parameters hold without appealing to such a strong
assumption. The main use of this assumption in this section is to estimate parameters
µ and σ, the mean return and volatility. One can find estimation of these parameters by
assuming that there exists a martingale tMtu

8
t“0 such that Rt ´ rδ “ Mt`1 ´ Mt.

Time-varying return and volatility

Assumption 2.4.1, which asserts that tRtut is a sequence of i.i.d. random variables, is not
realistic in some situations and must be relaxed. Several empirical studies show that the
volatility is not constant. This removes the "identical distribution" of the return sequence.
The independence condition also does not have an empirical basis. In this section, we keep
the independence assumption but remove the part that says tRtut is identically distributed.
We also allow for the interest rate to depend on time Rt “ rtδ. Under either of the following
assumptions, we can derive a calibration of the form

ut “ 1 ` δrt `
?

δσtαt, and ℓt “ 1 ` δrt ´
?

δσtβt. (2.4.9)

Assumption 2.4.3. The arithmetic return tRtut is a sequence of independent random
variables with mean ErRts “ µtδ ` opδq and varpRtq “ σ2

t δ ` opδq.

Assumption 2.4.4. The arithmetic return tRtut is a sequence of independent random
variables under risk-neutral probability P̂ with mean ÊrRts “ µtδ ` opδq and v̂arpRtq “

σ2
t δ ` opδq.
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Assumption 2.4.3 allows for the parameters µ and σ to vary over time. Therefore, the
calibration in Section 2.4, should be modified such that α, β, and p vary in time and satisfy

$

’

&

’

%

ptαt ´ p1 ´ ptqβt “ λt

?
δ

a

ptp1 ´ ptqpαt ` βtq “ 1
αtβt “ 1

.

Here λt :“ µt´rt

σt
. If µ, σ, and r vary with time but λ remain does not, the calibration in

(2.4.9), becomes slightly simpler, because α and β does not depend on time.

ut “ 1 ` δrt `
?

δσtα, and ℓt “ 1 ` δrt ´
?

δσtβ. (2.4.10)

Assumption 2.4.4 provides a different calibration of the same form as (2.4.10) but without
assuming that λ is time-invariant. Here, we can arbitrarily choose α and β “ 1

α .
Estimating time-varying parameters falls into the time series analysis which is beyond the

scope of this book. For more details on the estimation of financial time series, see [14].
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3. CONTINUOUS MARKETS

3

Modeling financial assets in
continuous-time

In 1900, Louis Bachelier introduced the first asset price model and pricing method for
derivatives in his Ph.D. dissertation titled “The theory of speculation” [2]. Although this
model is now considered impractical, its educational implications of this model are still im-
portant. Bachelier modeled the discounted asset price by a Brownian motion. As seen in
Section B.5, the Brownian motion is the weak limit of a normalized random walk. In Bache-
lier’s time, the Brownian motion had not yet been rigorously defined. However, many of its
properties were well understood. Bachelier’s contribution to the theory of probability and
stochastic processes was to use heat equation in derivative pricing. However, this contribu-
tion was neglected for about thirty years, until Andrey Nikolaevich Kolmogorov employed
partial differential equations to describe a class of stochastic processes called diffusion pro-
cesses. Kolmogorov is the first mathematician to bring probability into rigor by establishing
its mathematical foundation. Other mathematicians who built upon Kolmogorov’s work
include Norbert Wiener, the first to discover the path properties of Brownian motion, Paul
Lévy, who provided a simple characterization of Brownian motion, and Kiyosi Itô1, who
introduced a simple representation of diffusion processes in terms of Brownian motion.
The Bachelier model has a major drawback: asset price in this model can take negative

values, which will be discussed in more details in Section 3.2.3. Almost fifty years after
Bachelier, Paul Samuelson, an economist, suggested to use geometric Brownian motion
(GBM) to model the price of assets. GBM never takes nonpositive values for the asset
price, and therefore, does not suffer from the major drawback of Bachelier model. GBM is
also known as Black-Scholes model, named after Fischer Black and Myron Scholes. Black
and Scholes in [5] and Robert Merton in [22] independently developed a pricing method for
derivatives under the GBM. For a through review of Bachelier’s efforts and contribution

1You may find different romanization of Kiyosi such as Kiyoshi, and different romanization Itô such as
Itō, Itoh, or Ito. According to Wikipedia, he himself ued the spelling Kiyosi Itô.
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see [26]. For a brief history of asset price models, see [25]. For Bachelier’s biography of see
[29].

3.1 Trading and arbitrage in continuous-time markets

Recall from Section II.2.2.2 that in a discrete-time market, where trading occurs at points
t0 “ 0 ă t1 ă ... ă tN “ T in time, the value of the portfolio generated by the strategy
∆0, ∆t1 , ..., ∆tN´1 is given by

Wtn “ W0 `

n´1
ÿ

i“0
RipWti ´ ∆tiStiq `

n´1
ÿ

i“0
∆tipSti`1 ´ Stiq.

Here, Ri is the interest rate for the period of time rti, ti`1s which can be taken to be
rpti`1 ´ tiq, where r is the short rate. For i “ 0, ..., N ´ 1, the strategy ∆ti is a function of
the history of the asset price, tSu : u ď tiu. Therefore,

Wtn “ W0 ` r
n´1
ÿ

i“0
pWti ´ ∆tiStiqpti`1 ´ tiq `

n´1
ÿ

i“0
∆tipSti`1 ´ Stiq.

If we take ti`1 ´ ti :“ δ “ T
N and let δ Ñ 0, we obtain the Riemann integral

lim
δÑ0

r
N´1
ÿ

i“0
pWti ´ ∆tiStiqpti`1 ´ tiq “ r

ż T

0
pWt ´ ∆tStqdt,

which is the accumulated net change in the portfolio due to investment in the risk-free
asset. The limit of the second term

n´1
ÿ

i“0
∆tipSti`1 ´ Stiq

does not necessarily exist unless we enforce proper assumptions on the asset price S. For
instance if the asset price follows Brownian motion (the Bachelier model) or GBM (the
Black-Scholes model), then the limit exists and is interpreted as a stochastic Itô integral. If
the stochastic integral above is well defined, the wealth generated by the trading strategy
t∆utě0 follows

Wt “ W0 ` r

ż t

0
pWs ´ ∆sSsqds `

ż t

0
∆sdSs. (3.1.1)

We choose the same notion p∆ ¨ Sqt :“
şt
0 ∆sdSs for the stochastic integral in continuous

time. Notice that in the discrete-time setting, the strategy ∆ at time ti is a function of the
past history of the asset price S0, ..., Sti . When we pass to the limit, the trading strategy
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∆t at time t, depends only on the paths of the asset until time t, tSu : u ď tu. In other
words, a trading strategy does not use any information from the future.
Following the discussion in Section C.1, specifically (C.1), the stochastic integral is defined

only in the almost surely sense and can only be defined on the sample paths of the asset
price model S. Therefore, a probability space pΩ, F ,Pq is needed. It is convenient to take
the sample path space with a proper σ-field and a probability measure:

Ω :“ tS : t Ñ Stpωq : for each outcome ωu

Then, the notion of arbitrage is defined as follows:

Definition 3.1.1. A (weak) arbitrage opportunity is a portfolio ∆ such that

a) W0 “ 0,

b) WT ě 0 a.s., and

c) WT ą 0 on a set of sample paths with positive P probability.

A strong arbitrage opportunity is a portfolio ∆ such that

a) W0 ă 0 a.s., and

b) WT ě 0 a.s.

Given that the stochastic integral p∆ ¨ Sqt “
şt
0 ∆sdSs is defined in a probability space

pΩ,Pq, the fundamental theorem of asset pricing (FTAP) for continuous time is as follows.
Two probabilities P̂ and P are called equivalent if any event with probability zero under
one of them has probability zero under the other, i.e., P̂pAq “ 0 if and only if PpAq “ 0.

Theorem 3.1.1 (Fundamental theorem of asset pricing (FTAP)). There is no weak ar-
bitrage opportunity in a continuous-time model if and only if there exists a probability P̂,
namely risk-neutral probability or martingale probability, equivalent to P such that S is a
P̂-(local) martingale2.

Recall that a market model is called complete if any contingent claim is replicable, i.e.,
for any F-measurable payoff X, there exists a strategy ∆ :“ t∆tu

T
t“0 such that the wealth

W generated by ∆ in (3.1.1) satisfies WT “ X.

Corollary 3.1.1. Under the same setting as in Theorem 3.1.1, the market is complete if
and only if there is a unique risk-neutral probability.

2local martingale is roughly a martingale without condition (a) in Definition B.15.
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3.2 Bachelier’s continuous-time market

We start by recalling the properties of a Brownian motion from Section B.5. A standard
Brownian motion is a stochastic process such that B0 “ x P Rd and characterized by the
following properties.

1) B has continuous sample paths.

2) When s ă t, the increment Bt ´ Bs is a normally distributed random variable with
mean 0 and variance t ´ s and is independent of tBu : for all u ď su.

The Bachelier model is based on an assumption made by Bachelier himself in his PhD
dissertation“Théorie de la spèculation” ([2]):

L’espèrance mathématique de l’acheteur de prime est nulle (page 33) (3.2.1)

which translates as “The mathematical expectation of the buyer of the asset is zero”. In the
modern probabilistic language, what Bachelier meant is that the discounted asset price is
a martingale under a unique risk-neutral probability, which is equivalent to no arbitrage
condition by the FTAP in [9]. Without any discussion on the physical probability mea-
sure, the Bachelier model simply takes the discounted asset price under the risk-neutral
probability as a factor of a standard Brownian motion, i.e.

Ŝt “ e´rtSt “ S0 ` σBt, σ ą 0. (3.2.2)

Therefore under risk-neutral probability, Ŝt has a Gaussian distribution with mean S0 and
variance σ2t, and the pdf of Ŝt is given by

fŜt
pxq “

1
σ

?
2πt

exp
ˆ

´
px ´ S0q2

2σ2t

˙

for x P R and t ą 0. (3.2.3)

The price of the underlying asset in the Bachelier model is given by St “ ertpS0 ` σBtq.
Under risk-neutral probability, St is also a Gaussian random variable with

ÊrSts “ S0ert, and varpStq “ σ2e2rtt.

Therefore, the risk-neutral expected value of the asset price increases in a similar fashion as
a risk-free asset. The variance of St increases exponentially quickly in time, too. It follows
from applying the Itô formula (C.4) to fpt, xq “ ertpS0 ` σxq that St satisfies the SDE

dSt “ rStdt ` σertdBt. (3.2.4)

Inherited from the Brownian motion, the Bachelier model possesses the same properties
as the binomial model in Section 2.3.2:
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1) time homogeneity and

The conditional distribution of Ŝt given Ŝs “ S equals the distri-
bution of Ŝt´s with Ŝ0 “ S

2) Markovian.

In using the available information up to time s to make
projections about the future, the only relevant part is
the asset price at current time Ŝs (or, equivalently Ss).

ÊrfpŜtq | Ŝu, u ď ss “ ErfpŜtq | Ŝss, @0 ď s ă t.

The condition tŜu, u ď su (or Ŝs) in the above conditional expectations can simply be
replaced by tSu, u ď su (or Ss). Because both sets of random variables generate the same
σ-field Fs :“ σ

`

Su : u ď s
˘

:
Êr¨ | Fss “ Êr¨ | Sss.

It is important to know that the Bachelier model is not practically interesting in modeling
financial markets. However, for educational purposes, it has all the basic components of
the more practical Black-Scholes model. Pricing a European option in the Bachelier model
is equivalent to solving a heat equation, a simple parabolic partial differential equation. On
one hand, the heat equation also appears in the simplification of the Black-Scholes model.
On the other hand, most of the knowledge and techniques used in the heat equation can
also be applied to other forms of parabolic partial differential equations that appear in
more general models.

3.2.1 Pricing and replicating contingent claims in the Bachelier model

As a result of quote (3.2.1), Bachelier concluded that the price of a European contingent
claim with payoff gpST q is simply the discounted expectation of the payoff under the risk-
neutral probability, i.e.

V0 “ e´rT ÊrgpST qs. (3.2.5)

In addition, given the past history of asset price Ft :“ σ
`

Su : u ď t
˘

, the price of this
option at time t is given by

Vt “ e´rpT ´tqÊrgpST q | Fts. (3.2.6)

This is inline with the fundamental theorem of asset pricing that asserts the equivalency
of no arbitrage condition with the existence of a risk-neutral probability. Precisely, the
discounted price of an option with payoff gpST q must be a martingale:

e´rtVt “ e´rT ÊrVT | Fts “ e´rT ÊrgpST q | Fts. (3.2.7)
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Price of a contingent claim at time zero

Since under risk-neutral probability ST “ erT ŜT is a Gaussian random variable with mean
erT S0 and variance e2rT σ2T , one can explicitly calculate V0 in cases where the following
integral can be given in a closed-form:

V0 “
e´rT

σ
?

2πT

ż 8

´8

g
`

erT x
˘

e´
px´S0q2

2σ2T dx. (3.2.8)

We start off by providing a closed-form solution for the Bachelier price of vanilla options.

Example 3.2.1 (Price of call and put in the Bachelier model). Let gpST q “ pST ´ Kq` “

erT pŜT ´K̂q`, where K̂ “ e´rT K. Since ŜT „ NpS0, σ2T q, the price V call
0 can be calculated

in closed form.

V call
0 “

e´rT

σ
?

2πT

ż 8

´8

`

erT x ´ K
˘

`
e´

px´S0q2

2σ2T dx

“
1

σ
?

2πT

ż 8

´8

´

x ´ K̂
¯

`
e´

px´S0q2

2σ2T dx

“
1

σ
?

2πT

ż 8

K̂

´

x ´ K̂
¯

e´
px´S0q2

2σ2T dx.

By the change of variable y “ x´S0
σ

?
T

, we obtain

V call
0 “

1
?

2π

ż 8

pK̂´S0q{pσ
?

T q

´

σ
?

Ty ` S0 ´ K̂
¯

e´
y2
2 dy

“
σ

?
T

?
2π

ż 8

pK̂´S0q{pσ
?

T q

ye´
y2
2 dy `

S0 ´ K̂
?

2π

ż 8

pK̂´S0q{pσ
?

T q

e´
y2
2 dy

The second integral above can be calculated in terms of the standard Gaussian cdf Φpxq :“
1?
2π

şx
´8

e´y2{2dy:

1
σ

?
2πT

ż 8

pK̂´S0q{pσ
?

T q

e´
y2
2 dy “ 1 ´ Φ

´K̂ ´ S0

σ
?

T

¯

“ Φ
´S0 ´ K̂

σ
?

T

¯

.

Here, we used Φpxq “ 1 ´ Φp´xq.
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The first integral can be evaluated by the change of variable u “
y2

2 .

1
?

2π

ż 8

pK̂´S0q{pσ
?

T q

ye´
y2
2 dy “

1
?

2π

ż 8

|S0´K̂|{pσ
?

T q

ye´
y2
2 dy

“ ´
1

?
2π

e´
y2
2

ˇ

ˇ

ˇ

ˇ

8

|S0´K̂|{pσ
?

T q

“
1

?
2π

e´
pS0´K̂q2

2σ2T “ Φ1
´S0 ´ K̂

σ
?

T

¯

,

where Φ1pxq “ 1?
2π

e´ x2
2 is the standard Gaussian pdf.

To summarize, we have

V call
0 “ σ

?
T
`

Φ1pdq ` dΦpdq
˘

, (3.2.9)

where d “ S0´K̂
σ

?
T

. By the put-call parity, we have

V put
0 “ K̂ ´ S0 ` V call

0 “ σ
?

T
`

Φ1pdq ´ dΦp´dq
˘

.

Example 3.2.2. A digital call option is an option with payoff

gpST q “ 1tST ěKu “

#

1 ST ě K

0 ST ă K
.

A digital put has payoff 1tST ďKu.
The Bachelier price of a digital call option with strike K is given by

V digit-c
0 “ e´rT Ê

”

1tST ěKu

ı

“ e´rT P̂
´

ST ě K
¯

.

Notice that ST ě K is equivalent to Bt?
t

“ Ŝt´S0
σ

?
t

ě e´rtK´S0
σ

?
t

, where Bt is the Brownian

motion at time t. Therefore, Ŝt´S0?
t

“ Bt?
t

is a standard Gaussian random variable. We can
write

V digit-c
0 “ e´rT

´

1 ´ Φ
`

´ d
˘

¯

“ e´rT Φ
`

d
˘

.

Here, d “ S0´K̂
σ

?
T

is the same as in Example 3.2.1.

Exercise 3.2.1. Find a closed-form solution for the Bachelier price of a digital put option
with strike K.

Exercise 3.2.2. Find a closed-form solution for the Bachelier price of a European option
with payoff in Figure (3.2.1)
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a

15

K
S

g(S)

Figure 3.2.1: All slopes are -1 or 1.

The price at an arbitrary point in time: the Markovian property of the option
price

Recall from (3.2.6) that the option price Vt at time t is a random variable given by

Vt “ e´rpT ´tqÊrgperT ŜT q | Fts “ e´rpT ´tqÊrgperT ŜT q | Su : u ď ts.

Since Brownian motion B is a Markovian process, the only relevant information from the
past is the most recent asset price, St. Therefore,

Vt “ e´rpT ´tqÊrgperT ŜT q | Ŝts “: V pt, Ŝtq,

where the function V pt, xq is given by

V pt, xq “ e´rpT ´tqÊrgperT ŜT q | Ŝt “ xs

“
e´rτ

a

2πpT ´ tq

ż 8

´8

g
`

erT y
˘

e´
px´yq2

2σ2τ dy.
(3.2.10)

The second equality in the above is because given Ŝt “ x, ŜT is a Gaussian random variable
with pdf

fŜT
py | Ŝt “ xq “

1
a

2πpT ´ tq
e

´
px´yq2

2σ2pT ´tq .

The function V pt, xq is called a pricing function, which provides the price of the contingent
claim in terms of time t and the discounted price St.

Remark 3.2.1. It is simpler in the Bachelier model to write the pricing function V as a
function of the discounted asset price, which is a Brownian motion, rather than the asset
price.
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Time homogeneity of the option price

By the time homogeneity of the Brownian motion, the pricing function is actually a function
of time-to-maturity τ “ T ´ t and the discounted underlying price Ŝt “ x. Because, ŜT

conditional on Ŝt “ x has the same distribution as Ŝτ conditional on Ŝ0 “ x, then

V pt, xq “ e´rτ ÊrgperT Ŝτ q | Ŝ0 “ xs “: Upτ, xq. (3.2.11)

Example 3.2.3 (Vanilla options). Recall that in the Bachelier model, we have ŜT “

Ŝt ` σpBT ´ Btq. The payoff of the call option can be written as

pST ´ Kq` “ erT pŜT ´ K̂q` “ erT pŜt ` σpBT ´ Btq ´ K̂q`.

Here, K̂ “ e´rT K. Given Ŝt “ x,

U callpτ, xq “ e´rτ ÊrerT pŜt ` σpBT ´ Btq ´ K̂q` | Ŝt “ xs.

Since BT ´ Bt and Ŝt “ σBt are independent random variables, we have

U callpτ, xq “ e´rτ ÊrerT px ` σpBT ´ Btq ´ K̂q`s.

Because BT ´ Bt is a Gaussian random variable with mean zero and variance τ “ T ´ t,
we have

U callpτ, xq “
e´rτ

σ
?

2πτ

ż 8

´8

erT
´

x ` y ´ K̂
¯

`
e´

y2

2σ2τ dy

“
e´rτ

σ
?

2πτ

ż 8

K̂´x
erT

´

x ` y ´ K̂
¯

`
e´

y2

2σ2τ dy

“ erT

ˆ

px ´ K̂q
e´rτ

σ
?

2πτ

ż 8

K̂´x
e´

y2

2σ2τ dy `

ż 8

K̂´x
ye´

y2

2σ2τ dy.

˙

Similar to the calculations in Example 3.2.1, a closed-form solution for the Bachelier price
of a call option with strike K and maturity T at time t as a function of τ “ T ´ t and
Ŝt “ x is given by

U callpτ, xq “ erT e´rτ σ
?

τ
`

Φ1
`

dpτ, xq
˘

` dpτ, xqΦ
`

dpτ, xq
˘˘

,

where

dpτ, xq :“ x ´ K̂

σ
?

τ
.
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Exercise 3.2.3. By mimicking the method in Example 3.2.3, show that

Udigit-cpτ, xq “ erT e´rτ Φ
`

dpτ, xq
˘

is a closed form for the Bachelier price of a digital call option.

Exercise 3.2.4. Use the put-call parity to find a closed form for the Bachelier price
Uputpτ, xq of a put option with strike K and maturity T .

Exercise 3.2.5. What is the Bachelier price of at-the-money put option (K “ S0) with
T “ 10, σ “ .5, R0p10q “ .025 (yield), and S0 “ 1? What is the probability that the asset
price takes a negative value at T?

Exercise 3.2.6. What is the Bachelier price of the payoff in Figure 3.2.6 with T “ 1,
σ “ .1, R0p1q “ .2 (yield), and S0 “ 2? What is the probability that the option ends up
out of the money?

1 2

1

ST

g(ST )

Figure 3.2.2: Payoff of Exercise 3.2.6.

Martingale property of the option price and heat equation

No arbitrage condition assures that the discounted price of an option is also a martingale,
e´rtV pt, Ŝtq is a martingale. If we assume that the pricing function V pt, xq is continuously
differentiable on t and twice continuously differentiable on x, by the Itô formula we obtain

d
´

e´rtV pt, Ŝtq

¯

“ e´rt

ˆ

BtV `
σ2

2
BxxV ´ rV

˙

pt, Ŝtqdt ` e´rtBxV pt, ŜtqdŜt

“ e´rt

ˆ

BtV `
σ2

2
BxxV ´ rV

˙

pt, Ŝtqdt ` σe´rtBxV pt, ŜtqdBt

(3.2.12)

Notice that in the above, we used Bt

´

e´rtV
¯

“ e´rt
´

BtV ´ rV
¯

and dŜt “ σdBt.

Then, it follows from Section C.3 that e´rtV pt, Ŝtq is a martingale if and only if V satisfied
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the following partial differential equation (PDE):

BtV `
σ2

2
BxxV ´ rV “ 0.

This is because d
´

e´rtV pt, Ŝtq

¯

reduces to the stochastic integral σe´rtBxV pt, ŜtqdBt.
A PDE needs appropriate boundary conditions be well-posed. The boundary conditions

here include the terminal condition given by the payoff g of the contingent claim

V pT, xq “ g
`

erT x
˘

and proper growth conditions as x Ñ ˘83. The PDE above, always hold regardless of the
payoff of the option. The option payoff only appears as the terminal condition. Therefore,
the problem of finding the pricing function V pt, xq reduces to solving the boundary value
problem (BVP) below.

#

BtV ` σ2

2 BxxV ´ rV “ 0
V pT, xq “ g

`

erT x
˘ (3.2.13)

and the growth condition at infinity: |V pt, xq| ď C|gpxq| for some constant C, as x Ñ ˘8.
The BVP (3.2.13) is a backward heat equation; i.e., we video record the evolution of the
heat over time and play it back in reverse. If we do the change of variable τ “ T ´ t and
Upτ, xq “ V pt, xq, then U satisfies the forward heat equation

#

Bτ U “ σ2

2 BxxU ´ rU

Up0, xq “ g
`

erT x
˘ (3.2.14)

Therefore, the price of a contingent claim at any time can be obtained by solving the BVP
(3.2.14).

Example 3.2.4. By bare-handed calculations, we can show that the function

Upτ, xq “ erpT ´τqσ
?

τ
`

Φ1
`

dpτ, xq
˘

` dpτ, xqΦ
`

dpτ, xq
˘˘

,

where

dpτ, xq :“ x ´ K̂

σ
?

τ
.

satisfies

Bτ U “
σ2

2
BxxU ´ rU.

3In order for a PDE to have a unique solution, it is necessary to impose proper boundary conditions.
The terminal condition is not sufficient to make the boundary value problem well posed. We always need
boundary conditions at other boundaries; here they are growth conditions at infinity.
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Exercise 3.2.7. Show that the pricing function on nondiscounted price St :“ erpT ´tqŜt,
Ũpτ, xq :“ Upτ, erτ xq, satisfies

#

Bτ Ũ “ rxBxŨ ` e2rtσ2

2 BxxŨ ´ rŨ

Ũp0, xq “ gpxq

Exercise 3.2.8. Show that the discounted pricing function upτ, xq “ e´rτ Upτ, xq satisfies
the standard form of the heat equation below

#

Bτ u “ σ2

2 Bxxu

up0, xq “ g
`

erT x
˘ . (3.2.15)

Remark 3.2.2 (On regularity of the pricing function). To be able to apply Itô formula in
(3.2.12), the pricing function V pt, xq needs to be continuously differentiable on t and twice
continuously differentiable on x. While the payoff of the option may not be differentiable
or value function n continuous, the V pt, xq is infinitely differentiable for all t ă T and all
x.

Replication in the Bachelier model: Delta hedging

By (3.1.1), the dynamics of a portfolio in the Bachelier model are given by

Wt “ W0 ` r

ż t

0
pWs ´ ∆sSsqds `

ż t

0
∆sdSs.

Similar to Exercise I.2.2.1, the discounted wealth from a portfolio strategy ∆ satisfies

Ŵt “ e´rtWt “ W0 `

ż t

0
∆sdŜs,

and is a martingale. On the other hand, by applying the Itô formula to the discounted
option price e´rtV pt, Ŝtq, we obtain (3.2.12)

e´rtV pt, Ŝtq “V p0, S0q `

ż t

0
e´rs

ˆ

BtV `
σ2

2
BxxV ´ rV

˙

ps, Ŝsqds

`

ż t

0
e´rsBxV ps, ŜsqdŜs

“V p0, S0q `

ż t

0
e´rsBxV ps, ŜsqdŜs.

The last inequality above comes from the martingale property of discounted option price
and (3.2.13).
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A replicating portfolio is a portfolio that generates the terminal wealth WT equal to
the payoff V pT, ŜT q “ g

`

erT Ŝ
˘

. Since both Ŵt and e´rtV pt, Ŝtq are martingales with
ŴT “ e´rT V pT, ŜT q “ e´rT g

`

erT Ŝ
˘

, then we must have Ŵt “ e´rtV pt, Ŝtq “: V̂ pt, Ŝtq for
all t P r0, T s, V p0, S0q “ W0, and ∆t “ e´rtBxV pt, Ŝtq “ BxV̂ pt, Ŝtq.
∆t represents the number of units of the underlying in the replicating portfolio. It follows

from (3.2.12) that ∆t is a function of t and Ŝt and is given by

∆pt, Ŝtq “ e´rtBxV pt, Ŝtq.

Notice that since V is a function of τ “ T ´ t, so is ∆:

∆pτ, Ŝtq “ e´rtBxV pt, Ŝtq “ e´rpT ´τqBxUpτ, Ŝtq.

To summarize, the issuer of the option must trade continuously in time to keep exactly
∆t “ e´rtBxV pt, Ŝtq number of units of the underlying asset at time t in the replicating
portfolio. ∆t also accounts for the sensitivity of the option price with respect to the change
in the price of the underlying.

Example 3.2.5. The replicating portfolio for a call option in the Bachelier model is ob-
tained by taking the partial derivative Bx of the function

V callpt, xq “ U callpτ, xq “ erpT ´τqσ
?

τ
`

Φ1
`

dpτ, xq
˘

` dpτ, xqΦ
`

dpτ, xq
˘˘

,

with

dpτ, xq :“ x ´ K̂

σ
?

τ
.

We have

∆pτ, xq “ erpT ´τqBxU callpτ, xq

“ σ
?

τ
´

Bxdpτ, xqΦ2
`

dpτ, xq
˘

` Bxdpτ, xqΦ
`

dpτ, xq
˘

` dpτ, xqBxdpτ, xqΦ1
`

dpτ, xq
˘

¯

“ Φ2
`

dpτ, xq
˘

` Φ
`

dpτ, xq
˘

` dpτ, xqΦ1
`

dpτ, xq
˘

“ Φ
`

dpτ, xq
˘

.

(3.2.16)

Here, Φ1pxq “ 1?
2π

e´ x2
2 is the pdf of the standard Gaussian, and we used Φ2pxq “ ´x?

2π
e´ x2

2 “

´xΦ1pxq and Bxdpτ, xq “ 1
σ

?
τ
.

Example 3.2.6. To find the Bachelier price of an option with payoff gpxq “ ex, we need
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to find the the pricing function U , which solves the following BVP:
#

Bτ U “ σ2

2 BxxU ´ rU

Up0, xq “ exp
`

erT x
˘ .

We shall verify that the solution to this problem is if the form Upτ, xq “ eλτ exp
`

erT x
¯

,
and find the constant λ by plugging it into the equation:

Bτ U ´
σ2

2
BxxU ` rU “

ˆ

λ ´ e2rT σ2

2
` r

˙

Upτ, xq “ 0.

Thus, for λ “ e2rT σ2

2 ´ r, Upτ, xq satisfies the equation and the initial condition. Delta
hedging is obtained by

∆pτ, xq “ e´rT erτ BxUpτ, xq “ epλ`rqτ exp
`

erT x
˘

“ exp
´

e2rT σ2

2
τ
¯

exp
´

erT x
¯

.

Exercise 3.2.9. Find a closed-form solution for the Bachelier price of an option with
payoff gpxq “ 2 cosp

?
2xq ´ 3 sinp´xq. Hint: Search for the solution of the form Upτ, xq “

α1eλ1τ cosp
?

2xq ` α2eλ2τ sinp´xq.

Example 3.2.7. Let S0 “ $10, σ “ .03, and r “ 0.03. The Bachelier Delta of the following
portfolio of vanilla options given in the table below is the linear combination of the Deltas,
3∆callpτ “ .5, K “ 10q ´ 3∆putpτ “ 1, K “ 10q ´ ∆callpτ “ 2, K “ 8q.

position units type strike maturity
long 3 call $8 .5
short 3 put $10 1
short 1 call $8 2

The maturities are given in years. Then, (3.2.16) for the Delta of the call option in Example
3.2.5 should be used to evaluate ∆callpτ “ .5, K “ 10q, 3∆putpτ “ 1, K “ 10q and ∆callpτ “

2, K “ 8q.

Exercise 3.2.10. Let S0 “ 10, σ “ .03, and r “ 0.03. Consider the portfolio below.

position units type strike maturity
long 3 call $10 .25 yrs
long 4 put $5 .5 yrs

How many units x of the underlying are required to eliminate any sensitivity in the portfolio
with respect to changes in the price of the underlying?

Example 3.2.8. Let S0 “ 10, r “ .01, σ “ .02, and T “ 1. Consider the payoff in Figure
3.2.3.
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1

9 10 11 12
ST

g(ST )

Figure 3.2.3: Payoff in Exercise 3.2.8.

a) Find the Delta of the payoff gpST q at t “ 0.

b) Find an appropriate portfolio of call options, put options and a short position in an
option with payoff gpST q such that the portfolio has a constant ∆ at all points in time.

(a) The payoff gpST q can be written as the following combination of call options

gpST q “ pST ´ 9q` ´ pST ´ 10q` ´ pST ´ 11q` ` pST ´ 12q`.

Therefore,

∆gpt “ 0, x “ 10q “∆callpτ “ 1, K “ 9q ´ ∆callpτ “ 1, K “ 10q ´ ∆callpτ “ 1, K “ 11q

` ∆callpτ “ 1, K “ 12q.

Then, (3.2.16) for the Delta of the call option in Example 3.2.5 should be used to evaluate
∆callpτ “ 1, Kq, for K “ 9, 10, 11, and 12.
(b) By part (a), if we add a long position in a put option with strike K “ 9, a long position

in a put option with strike K “ 12, a short positions in a put option with strike K “ 10,
and a short positions in a put option with strike K “ 11 all with maturity T “ 1, then the
total payoff of the portfolio will be

p9´ST q`´p10´ST q`´p11´ST q``p12´ST q`´gpST q “ 9´ST `ST ´10`ST ´11`12´ST “ 0.

Thus, the above portfolio is equivalent to zero position in cash and zero position in the
underlying over time, which has a Delta of zero.

Exercise 3.2.11. Let S0 “ 9, r “ .01, σ “ .05 and T “ 1. Consider the payoff gpST q

shown in Figure 3.2.4.

a) Find the Delta of the payoff gpST q at time t “ 0.
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8 10
9

1

ST

g(ST )

Figure 3.2.4: Payoff in Exercise 3.2.11.

b) Find an appropriate portfolio of call options, put options, and a short position in an
option with payoff gpST q such that the portfolio has ∆ of 0 at all points in time.

Example 3.2.9. Consider the payoff gpST q shown in Figure 3.2.5. Take T “ 10, σ “ 0.05,

K1 K2

K2 −K1

ST

g(ST )

Figure 3.2.5: Payoff in Example 3.2.9.

R0p10q “ 0.01 (yield), and S0 “ 1. In addition, we assume that K1 “ 0.8, but K2 is
unknown. However, assume that the Bachelier Delta of the contingent claim at time 0 is
(approximately) equal to ´0.385. From this we shall find K2. Notice that

gpST q “ pST ´ K1q` ´ 2pST ´ K2q`.
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Therefore,

∆gpτ “ 10, x “ 1q “ ∆callpτ “ 10, K “ K1, x “ 1q ´ 2∆callpτ “ 10, K “ K2, x “ 1q

“ Φ
`1 ´ 0.8e´0.1

0.05
?

10
q
˘

´ 2Φ
`1 ´ K2e´0.1

0.05
?

10
˘

“ 0.9596 ´ 2Φ
`1 ´ K2e´0.1

0.05
?

10
˘

.

Thus,
K2 “ 1.0963.

To find the Bachelier price of the contingent claim at time 0, we simply use

Upτ “ 10, x “ 1q “ U callpτ “ 10, K “ 0.8, x “ 1q ´ 2U callpτ “ 10, K “ 1.0963, x “ 1q.

Exercise 3.2.12. Consider the payoff gpST q shown in Figure 3.2.6.

1 K

K − 1

ST

g(ST )

Figure 3.2.6: Payoff in Exercise 3.2.12. All the slopes are 0, 1, or ´1.

Part a) Take T “ 10, σ “ .05, R0p10q “ .01 (yield), and S0 “ 1. Find K such that the
Bachelier Delta of the contingent claim at time 0 is (approximately) equal to ´0.385

Part b) Find the Bachelier price of the contingent claim at time 0.

3.2.2 Numerical methods for option pricing in the Bachelier model

The BVP for the heat equation in (3.2.13), or, equivalently, (3.2.14) or (3.2.15), generates
closed-form solutions in some specific cases, such as a linear combination of call or put
options, an exponential payoff in Example 3.2.6, or a sin-cos payoff in Exercise 3.2.9. In
general, a closed-form solution can be obtained if the integral in (3.2.8) can precisely be
evaluated, or, equivalently, if the BVP for the heat equation has a closed-form solution.
The class of payoffs with closed-form solutions is narrow, and therefore one needs to study
numerical methods for solving the heat equation in the Bachelier model. Even though
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the Bachelier model is very far from being practically valuable, the numerical methods
presented in this section can be applied indirectly to the Black-Scholes model in the next
section. In addition, studying this numerical models for the BVP for the heat equation
establishes the methodology for evaluations of more complicated models. Therefore, the
reader is recommended to read this section to obtain a background on different methods
of the evaluation for the BVPs in finance.

Fourier transform

In this section, we interpret that (3.2.11) as the Fourier transform of a function. The
advantage of such interpretation is that a class of methods called fast Fourier transform
(FFT) algorithms can be deployed to efficiently approximate the Fourier transform and its
inverse with highly accurately. The Fourier transform of a function upxq is defined by

pupθq :“ F ruspθq :“ 1
?

2π

ż 8

´8

upxqe´xθidx,

and the inverse Fourier transform of a function pupθq is given by

F ´1rpuspxq :“ 1
?

2π

ż 8

´8

pupθqexθidx,

If u is integrable, i.e.,
ş8

´8
|upxq|dx ă 8, then the Fourier transform F ruspθq exists and

is bounded uniformly on θ. However, the inverse Fourier transform of a bounded function
does not necessarily exists. If, in addition, we assume that u is square integrable, i.e.,
ş8

´8
|upxq|2dx ă 8, then the Fourier transform F ruspθq is also square integrable and

F ´1rF russpxq “ upxq and F rF ´1rpusspθq “ pupθq. For a twice continuously differentiable
square integrable function u, the Fourier transform of Bxxupxq equals ´θ2

pupθq.
In specific payoffs, one can apply Fourier transform and then inverse Fourier transform to

find a closed-from solution to the heat equation. However, for a wider class of payoffs, one
can only obtain a closed form only for the Fourier transform of the solution to the heat
equation. Then, the inverse Fourier transform can be achieved numerically through a class
of efficient algorithms, namely fast Fourier transform. Since these algorithms are numeri-
cally highly efficient, a closed-form for the Fourier transform of the solution is as good as
a closed-form for the solution. Assuming that Upτ, xq is twice continuously differentiable
and square integrable on x, the Fourier transform of BxxUpτ, xq equals ´pθq2

pUpτ, θq and
pUpτ, θq satisfies the ordinary differential equation (ODE)

#

dpU
dτ “ ´σ2θ2

pU ´ r pU
pUp0, θq “ e´rT

pgpe´rT θq “ 1?
2π

ş8

´8
gperT xqe´xθidx

.
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Notice that in the above ODE, θ is a parameter and therefore, the solution is given by

pUpτ, θq “ e´rT e´rτ e´σ2θ2τ
pgpe´rT θq.

If Upτ, ¨q is square integrable, the inverse Fourier transform of pUpτ, θq recovers the solution
Upτ, xq, i.e.

Upτ, xq “ F ´1rpUpτ, ¨qspxq “ e´rT e´rτF ´1
”

e´σ2θ2τ
pgpe´rT θq

ı

pxq. (3.2.17)

It follows from the convolution rule in Fourier transform that,

F ´1
”

e´σ2θ2τ e´rT
pgpe´rT θq

ı

“ e´rT

˜

F ´1
”

e´σ2θ2τ
ı

¸

˚

˜

F ´1
”

pgpe´rT θq

ı

¸

.

Here ˚ is the convolution operator defined by

f ˚ gpxq :“
ż 8

´8

fpyqgpx ´ yqdy.

Since F ´1
”

e´σ2θ2τ
ı

pxq “ 1
σ

?
2πτ

e´ x2
2σ2τ , we derive the formula

Upτ, xq “
e´rτ

?
2πτ

ż 8

´8

g
`

erT y
˘

e´
px´yq2

2σ2τ dy,

which is the same as (3.2.10).

Finite-difference scheme for the heat equation

In this section, we introduce the finite-difference method for the classical heat equation
(3.2.15), that is

#

Bτ u “ σ2

2 Bxxu

up0, xq “ g̃pxq :“ g
´

erT x
¯

For educational purposes, despite the availability of analytical formulas, we restrict the
discussion to call and put options only. Other types of payoffs should be treated with a
similar but yet different analysis. We denote the price of a call (put) option with strike
K as a function of time-to-maturity τ and the current discounted price of underlying x as
upτ, xq “ Cpτ, xq (upτ, xq “ P pτ, xq), which is the solution to the heat equation (3.2.14)
with initial condition up0, xq “

`

erT x ´ K
˘

`
(up0, xq “

`

K ´ erT x
˘

`
). Finally, we set

S0 “ 0 by considering the change of variable Xt “ Ŝt ´ S0, i.e., the shifted price equal to
the difference between the discounted price Ŝt and the initial price S0.
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As the actual domain of the heat equation is infinite, in order to apply the finite-difference
scheme, first we need to choose a finite computational domain pτ, xq P r0, T sˆr´xmax, xmaxs,
for a suitable choice of xmax ą 0. Now, since the computational domain is bounded,
it induces more boundary conditions to the problem at the boundaries x “ xmax and
x “ ´xmax. Recall that to solve a BVP analytically or numerically, the boundary condition
is necessary at all the boundaries. We should find appropriate boundary conditions at both
points xmax and ´xmax, which usually rely on the terminal payoff of the option. These
types of boundary conditions, which are induced by the computational domain and do not
exist in the original problem are called artificial boundary conditions, or in short ABC.
To learn how to set the ABC, let’s study the case of a call option with payoff gpxq “
`

erT x ´ pK ` erT S0q
˘

`, i.e., up0, xq “ perT x ´ pK ` erT S0qq`. The idea is simply as
follows. If x is a very small negative number, then up0, xq “ 0. If the current discounted
price of the underlying is a sufficiently small negative number, the probability that the
price at maturity enters the in-the-money region rpK ` erT S0q, 8q is significantly small.
For instance, since the discounted price St “ S0 ` σBt is a Gaussian random variable, for
A ą 0 the probability that St ě A (or equivalently St ď ´A) is given by

1
σ

?
2τπ

ż 8

A
e´

y2

2τσ2 dy „
1
2

e´ A2
2τσ2 , as A Ñ 8,

which is smaller than .006 for A ą 3σ
?

T . In other words, far out-of-money options should
have almost zero price. On the other hand, when St “ x is sufficiently large, the probability
that the discounted price of the underlying will drop below K`erT S0 at maturity T (out-of-
money) is significantly small, and therefore perT ŜT ´ Kq` « erT ŜT ´ K. Far in-the-money
options should have almost the same price as the price of payoff ST ´ K, that is one unit
of asset minus K units of cash.
More rigorously, we need the following estimation:

1
σ

?
2τπ

ż 8

A
ye´

y2

2τσ2 dy „
σ

?
τ

?
2π

e´ A2
2τσ2 , as A Ñ 8.

If we set A :“ e´rT K ` S0 ` e´rT xmax, for sufficiently large xmax, we have

upτ, ´xmaxq “
e´rτ

σ
?

2τπ

ż 8

´8

perT y ´ pK ` erT S0qq`e´
py`xmaxq2

2τσ2 dy

“
e´rτ

σ
?

2τπ

ż 8

e´rT K`S0

perT y ´ pK ` erT S0qqe´
py`xmaxq2

2τσ2 dy

“
erpT ´τq

σ
?

2τπ

ż 8

A
py ´ Aqe´

y2

2τσ2 dy

ď
erpT ´τq

σ
?

2τπ

ż 8

A
ye´

y2

2τσ2 dy „
erpT ´τqσ

?
τ

?
2π

e´ A2
2τσ2 , as A Ñ 8.
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In other words, far out-of-money options should have zero price. This suggests that
upτ, ´xmaxq « 0 for sufficiently large xmax.
On the other hand, if we set B :“ e´rT K ` S0 ´ e´rT xmax, we obtain

upτ, xmaxq “
e´rτ

σ
?

2τπ

ż 8

´8

perT y ´ pK ` erT S0qq`e´
py´xmaxq2

2τσ2 dy

“
erpT ´τq

σ
?

2τπ

ż 8

B
py ´ Bqe´

y2

2τσ2 dy.

Notice that since

1
σ

?
2τπ

ż 8

B
ye´

y2

2τσ2 dy “
1

σ
?

2τπ

ż B

´8

ye´
y2

2τσ2 dy „
σ

?
τ

?
2π

e´ B2
2τσ2 ,

and
1

σ
?

2τπ

ż 8

B
e´

y2

2τσ2 dy „ 1

as B Ñ ´8, we have

upτ, xmaxq „ ´erpT ´τqB “ e´rτ pxmax ´ pK ` erT S0qq.

Following this observation, we choose ABC for (3.2.18) for the call option given by

upτ, xmaxq “ e´rτ perT xmax ´ pK ` erT S0qq and upτ, ´xmaxq “ 0.

For put option, put-call parity Proposition 1.3.3 implies that the ABC is given by upτ, xmaxq “

0 and upτ, ´xmaxq “ e´rτ ppK ` erT S0q ´ erT xmaxq.
To summarize, we must solve the following BVP to numerically price a call option.

$

’

’

’

’

&

’

’

’

’

%

Bτ upτ, xq “ σ2

2 Bxxupτ, xq for x P p´xamx, xmaxq, t ą 0
up0, xq “ perT x ´ pK ` erT S0qq` for x P p´xamx, xmaxq

upτ, xmaxq “ e´rτ perT xmax ´ pK ` erT S0qq for t ą 0
upτ, ´xmaxq “ 0 for τ ą 0

. (3.2.18)

The next step is to discretize the BVP (3.2.18) in time and space. For time discretization,
we choose N as the number of time intervals and introduce the time step h :“ T

N and
discrete points τi in time for i “ 0, ..., N ´ 1, N . Then, we choose a computational domain
r´xmax, xmaxs. We discretize the computational domain by xj :“ kj with k :“ xmax

M for
j “ ´M, ..., M . The discretization leads to a grid including points pti, xjq for i “ 0, ..., N
and j “ ´M, ..., M , shown in Figure 3.2.7.
Next, we need to introduce derivative approximation. There are two ways to do this:

explicit and implicit. In both methods, the first derivative of a function upτi, xjq with

121



3.2. BACHELIER MODEL 3. CONTINUOUS MARKETS

xmax

−xmax

x

τ
T

k

h

Figure 3.2.7: Finite difference grid for the heat equation. In the explicit scheme the CFL
condition should be satisfied, i.e., h

k2 ď 1
σ . Artificial boundary conditions are necessary on

both xmax and ´xmax.

respect to time τ atanydiscretetimepτi, xjq, is approximated by

Btupτi, xjq «
upτi`1, xjq ´ upτi, xjq

h

Then, the second derivative with respect to x can be approximated by

Bxxupτi, xjq «
upτi, xj`1q ` upτi, xj´1q ´ 2upτi, xjq

k2 .

Now, we have all the ingredients to present the explicit scheme for the heat equation.
The scheme is obtained from the heat equation (3.3.25) by simply plugging the above
approximations for derivatives, i.e.

upτi`1, xjq ´ upτi, xjq

h
“

σ2

2
¨

upτi, xj`1q ` upτi, xj´1q ´ 2upτi, xjq

k2 .
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τi τi+1

xj+1

xj

xj−1

x

t

Figure 3.2.8: Possible active points in the finite-difference scheme to evaluate upτi`1, xjq,
marked with a square. The function u is unknown at dark nodes and known at light nodes.
All six nodes are active for implicit scheme with θ‰1. For explicit scheme, θ “ 1, only
filled-in nodes are active.

We can simplify the scheme by writing

upτi`1, xjq “

ˆ

1 ´
hσ2

k2

˙

upτi, xjq `
hσ2

2k2 pupτi, xj`1q ` upτi, xj´1qq . (3.2.19)

In order to use explicit finite-difference scheme in (3.2.19), we need to have the CFL4

condition
h

k2 ď
1
σ2 .

Otherwise, the scheme does not converge. The right-hand side of the CFL condition is
always 1

2 times the inverse of the coefficient of the second derivative in the equation. For
implicit schemes, this condition can be relaxed.
Notice that in problem (3.2.18), at τ0 “ 0, the initial condition is known. Therefore, we

set
up0, xjq :“ e´rT gperT xjq for j “ ´M, ..., M.

Then, if upτi, xjq is known for all j “ ´M, ..., M , the explicit scheme (3.2.19) suggests that
upτj`1, xjq can be found for all j “ ´M ` 1, ..., M ´ 1. For j “ ´M and M , one can use
ABC to assign values to upτi, x´M q and upτi, xM q.

4Courant-Friedrichs-Lewy
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The implicit scheme is a little more difficult than explicit scheme to implement. But it
has its own advantages; e.g., the CFL condition is not necessary. To present the implicit
method we need to modify the approximation of the second derivative as follows.

Bxxupτi, xjq « p1 ´ θq
upτi, xj`1q ` upτi, xj´1q ´ 2upτi, xjq

k2

` θ
upτi`1, xj`1q ` upτi`1, xj´1q ´ 2upτi`1, xjq

k2 .

In the above, θ P r0, 1s is a parameter. If θ “ 0, then the scheme is the same as the explicit
scheme. If θ “ 1, we call it a pure implicit scheme. Then for θ ‰ 0, we can present the
implicit scheme as follows.

ˆ

1 ` θ
hσ2

k2

˙

upτi`1, xjq ´ θ
hσ2

2k2 pupτi`1, xj`1q ` upτi`1, xj´1qq “

ˆ

1 ´ p1 ´ θq
hσ2

k2

˙

upτi, xjq ` p1 ´ θq
hσ2

2k2 pupτi, xj`1q ` upτi, xj´1qq .

(3.2.20)

If upτi, xjq is known for all j “ ´M, ..., M , then the right-hand side above is known. Lets
denote the right-hand side by

Rpτi, xjq :“
ˆ

1 ´ p1 ´ θq
hσ2

k2

˙

upτi, xjq ` p1 ´ θq
hσ2

2k2 pupτi, xj`1q ` upτi, xj´1qq .

For j “ M ´ 1, upτi`1, xj`1q on the left-hand side is known. Thus, we move this term to
the other side

ˆ

1 ` θ
hσ2

k2

˙

upτi`1, xM´1q ´ θ
hσ2

2k2 upτi`1, xM´2q “

Rpτi, xM´1q ` θ
hσ2

2k2 upτi`1, xM q.

Similarly for j “ ´M ` 1 we have
ˆ

1 ` θ
hσ2

k2

˙

upτi`1, x´M`1q ´ θ
hσ2

2k2 upτi`1, x´M`2q “

Rpτi, x´M`1q ` θ
hσ2

2k2 upτi`1, x´M q.

To find upτi`1, xjq, one needs to solve the following tridiagonal equation for upτi`1, xjq,
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j “ ´M ` 1, ..., M ´ 1.
AUi`1 “ Ri ´ Yi (3.2.21)

where A is a 2M ´ 1-by-2M ´ 1 matrix given by

A :“

»

—

—

—

—

—

—

—

—

—

—

–

1 ` θ hσ2

k2 ´θ hσ2

2k2 0 0 ¨ ¨ ¨ 0
´θ hσ2

2k2 1 ` θ hσ2

k2 ´θ hσ2

2k2 0 ¨ ¨ ¨ 0
0 ´θ hσ2

2k2 1 ` θ hσ2

k2 ´θ hσ2

2k2 ¨ ¨ ¨ 0
... . . . ...
0 ¨ ¨ ¨ ´θ hσ2

2k2 1 ` θ hσ2

k2 ´θ hσ2

2k2 0
0 ¨ ¨ ¨ 0 ´θ hσ2

2k2 1 ` θ hσ2

k2 ´θ hσ2

2k2

0 ¨ ¨ ¨ 0 0 ´θ hσ2

2k2 1 ` θ hσ2

k2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Yi is the column 2M ´ 1-vector

Yi :“ θ
hσ2

2k2 pupτi`1, x´M q, 0, ¨ ¨ ¨ , 0, upτi`1, xM qqT,

Ri is the column 2M ´ 1-vector

Ri :“ pRpτi, x´M`1q, ¨ ¨ ¨ , Rpτi, xM´1qqT,

and the unknown is the column 2M ´ 1-vector

Ui`1 :“ pupτi`1, x´M`1q, ¨ ¨ ¨ , upτi`1, xM´1qqT.

Notice that the endpoints upτi`1, x´M q and upτi`1, xM q are given by the ABC:

upτi`1, xM q “ e´rτ perT xM ´ pK ` erT S0qq and upt, x´M q “ 0.

The CFL condition for the implicit scheme with θ P r0, 1q is given by

h

k2 ď
1

p1 ´ θqσ2 .

For the pure implicit scheme (θ “ 1), no condition is necessary for convergence.

Monte Carlo approximation for the Bachelier model

Recall that in the Bachelier model Gaussian distribution with mean S0 and variance σ2T ,
Ŝτ is N px, σ2τq, and the pricing formula is given by

Upτ, xq “ e´rτ ÊrgperT Ŝτ q | Ŝ0 “ xs.
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In the Monte Carlo method, we generate samples based on the underlying probability
distribution to approximate the above expectation. Let the i.i.d. samples txj : j “

1, ..., Nu be taken from N p0, 1q. Then, the expectation ÊrgperT Ŝτ q | Ŝ0 “ xs can be
approximated by

1
N

N
ÿ

j“1
gperT px ` σ

?
τxiqq.

Hence, the price of the option Upτ, t, xq can be approximated by

Uapproxpτ, xq “
e´rpT ´tq

N

N
ÿ

j“1
gperT px ` σ

?
τxiqq. (3.2.22)

The larger the number of samples N is, the more accurate the approximation Uapproxpτ, xq

is obtained. The plain Monte Carlo method is not as efficient as the finite-difference, at
least when there is only a single risky asset. However, some methods such as variance
reduction or quasi Monte Carlo can be used to increase its performance.

Quadrature approximation for the Bachelier model

Quadrature methods are based on a deterministic (nonrandom) approximation of the inte-
gral. In the Bachelier model the price of the option is given by

Upτ, xq “
e´rτ

σ
?

2πτ

ż 8

´8

g
`

erT y
˘

e´
py´xq2

2σ2τ dy.

As an example of the quadrature method, one can first approximate the improper integral
above with the proper integral

e´rτ

σ
?

2πτ

ż x`A

x´A
g
`

erT y
˘

e´
py´xq2

2σ2τ dy

and then use Riemann sums to approximate the price of option by

Uapproxpτ, xq “
e´rτ

σ
?

2πτ

N´1
ÿ

j“0
g
`

erT y˚
j

˘

e´
py˚

j
´xq2

2σ2τ pyj`1 ´ yjq,

where y0 “ x ´ A ă y1 ă ¨ ¨ ¨ ă yN “ x ` A. If the discrete points yj for j “ 0, ..., N are
carefully chosen, the quadrature method outperforms the plain Monte Carlo method.

Exercise 3.2.13 (Project). Consider the initial price S0, σ, r and payoff assigned to your
group.

126



3. CONTINUOUS MARKETS 3.2. BACHELIER MODEL

Group 1 T S0 r σ

1 1 10 .2 1
2 10 100 .1 5
3 1 2 .2 .5
4 2 2 .5 .5
5 2 2 .5 .5
6 1 .5 .1 .001

Step 1. Choose a computational domain around the initial price, rS0 ´ xmax, S0 ` xmaxs.

Step 2. Set appropriate artificial boundary conditions (ABC) at the boundary points S0´xmax
and S0 ` xmax.

Step 3. Write a program that implements the implicit finite-difference code. The time and
space discretization parameters ph, kq must be set to satisfy

h

k2 ď
1

p1 ´ θqσ2 .

Step 4. To make sure that your code is correct, run the program for a call (or a put) option
and compare it to the closed-form solution in (3.2.9).

Step 5. Run the program for θ “ 0 (explicit), θ “ 1
2 (semi-implicit) and θ “ 1 (implicit) and

record the results.

Step 6. Simulate a discrete sample path of the price of the underlying asset with the same
time discretization parameter h. Use the following algorithm:

Simulating a sample paths of underlying in the Bachelier model
1: Discretize time by t0 “ 0, ti “ ih, and T “ hN .
2: for each j “ 1, ..., N do
3: Generate a random number wj from standard Gaussian distribution Np0, 1q to repre-

sent pBtj ´ Bjq{
?

h

4: Ŝj “ Ŝj´1 ` σ
?

hwj

5: sj “ ertj Ŝj

6: end for
Output: vector ps0 “ S0, st1 , ..., stN´1 , sT q is a discretely generated sample path of the
Bachelier model.

Step 7. Recall that the hedging is given by the derivative BxV̄ pt, Ŝtq “ ertBxV pt, ertStq. Eval-
uate the hedging strategy discretely at each node of the discretely generated sample
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path ps0 “ S0, st1 , ..., stN´1q in Step 7, i.e.,

pBxV p0, erts0q, BxV pt1, ert1st1q, ..., ertN´1BxV ptN´1, ertN´1stN´1qq.

Note that some interpolation may be needed in this step.

Submit the following outputs:

Output 1. The program

Output 2. A comparison with the closed-form solution for a call at p0, S0q.

Output 3. The price and hedging strategy at the points of the discrete grid.
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Figure 3.2.9: Different payoffs of the group project
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3.2.3 Discussion: drawbacks of the Bachelier model

One of the drawbacks of the Bachelier model is the possibility of negative realization of the
asset price. However, this is not the main concern, as in many other applications; Gaussian
random variables are used to model positive quantities such as human weight. The negative
asset price can be problematic if the ratio S0

σ
?

T
is not sufficiently large. For instance, if the

ratio S0
σ

?
T

“ 1, then the chance of a negative price at maturity T is significant, i.e., higher
than .3.
In addition, the return of an asset in the Bachelier model is not integrable. The return of

an asset in the Bachelier model is given by

Rarth
t :“ erpt`δqŜt`δ ´ ertŜt

ertŜt

“
erδBt`δ ´ Bt

Bt
“

erδpBt`δ ´ Btq

Bt
` erδ ´ 1.

Given Bt, the return in the Bachelier model is a Gaussian random variable. Some empirical
studies support the Gaussian distribution for the return. However, the random variable 1

Bt

is not integrable:

Ê
„

1
|Bt|

ȷ

“
1

?
2tπ

ż

R

1
|x|

e´ x2
2t dx “ 8.

3.3 Continuous-time market of Black-Scholes

The Black-Scholes model can be obtained by asymptotic methods from the binomial model.
To do this, we first present some asymptotic properties of the binomial model.

3.3.1 The Black-Scholes model: limit of binomial under risk-neutral
probability

Let T ą 0 be a real number and N be a positive integer. We divide T units of time into
N time intervals, each of size δ :“ T

N
5. Then, consider a binomial model with N periods

given by the times t0 “ 0 ă t1 “ δ, ..., tk “ kδ, ...tN “ T . Recall from binomial model that

Spk`1qδ “ SkδHk`1, for k “ 0, ..., N ´ 1

where, in accordance with Assumption 2.4.1, tHkuN
k“1 is a sequence of i.i.d. random vari-

ables with the following distribution

Hk “

#

u with probability π̂

ℓ with probability 1 ´ π̂

5Each time unit is divided into 1{δ small time intervals.
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Asymptotics of parameters u, ℓ, and p

The goal of this section is to show the following approximation:

u “ 1 ` δr `
?

δσα “ eδpr´ σ2
2 q`

?
δσα ` opδq,

ℓ “ 1 ` δr ´
?

δσβ “ eδpr´ σ2
2 q´

?
δσβ ` opδq.

(3.3.1)

To obtain this approximation, one should notice that from (2.4.7), we have x0 “ 1 ` λ
?

δ
2 `

op
?

δq. Thus, it follows from (2.4.6) that

1 ´ p

p
“ x2

0 “ 1 ` λ
?

δ ` op
?

δq and p “
1
2

´
λ

?
δ

4
` op

?
δq.

Then,

α2 “
1 ´ p

p
` 2λ

?
δ

c

1 ´ p

p
` op

?
δq “ x2

0 “ 1 ` 3λ
?

δ ` op
?

δq. (3.3.2)

On the other hand, one can easily see that6

eδpr´ σ2
2 q`

?
δσα “ 1 ` δpr ´

σ2

2
q `

?
δσα `

pδpr ´ σ2

2 q `
?

δσαq2

2
` opδq

“ 1 ` δpr ´
σ2

2
q `

?
δσα `

δσ2α2

2
` opδq

“ 1 ` δr `
?

δσα `
δpσ2 ´ 1qα2

2
` opδq

“ 1 ` δr `
?

δσα ` opδq.

In the above we used (3.3.2), i.e., σ2 ´ 1 “ Op
?

δq.
Similarly, we have β2 “ 1 ´ 3λ

?
δ ` op

?
δq and

eδpr´ σ2
2 q´

?
δσβ “ 1 ` δr ´

?
δσβ ` opδq.

Arithmetic return versus log return

This asymptotics yields to the relation between the arithmetic return and the log return
in the binomial model. While the arithmetic return is given by

Rarth
t “

#

δr `
?

δσα

δr ´
?

δσβ

6ex “ 1 ` x ` x2

2 ` opx2q
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the log return is given by

Rlog
t “

#

δpr ´ σ2

2 q `
?

δσα ` opδq

δpr ´ σ2

2 q ´
?

δσβ ` opδq
.

The probabilities of the values in both returns are given by pπ̂, 1 ´ π̂q for risk-neutral
probability and pp, 1 ´ pq for physical probability. In particular, if Ê and E are respectively
expectations with respect to risk-neutral probability and physical probability, then we have

ÊrRarth
t s “ rδ, and ÊrpRarth

t q2s “ σ2δ ` opδq

ErRarth
t s “ µδ, and ErpRarth

t q2s “ σ2δ ` opδq

ÊrRlog
t s “ pr ´

1
2

σ2qδ, and ÊrpRlog
t q2s “ σ2δ ` opδq

ErRlog
t s “ pµ ´

1
2

σ2qδ, and ErpRlog
t q2s “ σ2δ ` opδq.

(3.3.3)

Weak convergence of the binomial model: the geometric Brownian motion

From the asymptotics in (3.3.3), the log return of the calibrated binomial model is given
by

Rlog
t “ lnpHkq “

#

δpr ´ σ2

2 q `
?

δσα with probability π̂

δpr ´ σ2

2 q ´
?

δσβ with probability 1 ´ π̂

Indeed,
lnpSpk`1qδq “ lnpSkδq ` lnpHk`1q,

or

lnpStq “ lnpS0q `

N
ÿ

k“1
lnpHkq.

Let tZkuN
k“1 be a sequence of i.i.d. random variables with the following distribution

Zk “

#

α with probability π̂

´β with probability 1 ´ π̂

Then, we have

lnpST q “ lnpS0q ` pr ´
σ2

2
qT ` σ

?
T ¨

1
?

N

N
ÿ

k“1
Zk. (3.3.4)

Next, we want to show that the normalized summation 1?
N

řN
k“1 Zk converges weakly to
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a random variable (distribution) as the number of time intervals N approaches infinity7.
To show this, from Theorem B.9 from the appendix, we only need to find

lim
NÑ8

χ 1?
N

řN
k“1 Zk

pθq.

Notice that here the characteristic function is under the risk-neutral probability, χXpθq “

ÊreiθXs.
Since tZtu

N
k“1 is a sequence of i.i.d. random variables, we have

χ 1?
N

řN
k“1 Zk

pθq “

N
ź

k“1
χZ1

ˆ

θ
?

N

˙

.

On the other hand,

χZ1pθq “ ÊreiθZ1s “ 1 ` iθÊrZ1s ´
θ2ÊrZ2

1 s

2
` opθ2q.

Notice that by (2.4.4), we can write

π̂ “
R ´ L

U ´ L
“

β

α ` β
. (3.3.5)

Therefore, straightforward calculations show that ÊrZ1s “ 0, and ÊrZ2
1 s “ 1. By using the

Taylor expansion of the characteristic function, we obtain

χZ1

ˆ

θ
?

N

˙

“ 1 ´
θ2

2N
` op

1
N

q,

and

χ 1?
N

řN
k“1 Zk

pθq “

ˆ

1 ´
θ2

2N
` op

1
N

q

˙N

.

By sending n Ñ 8, we obtain

lim
NÑ8

χ 1?
N

řN
k“1 Zk

pθq “ lim
NÑ8

ˆ

1 ´
θ2

2N
` op

1
N

q

˙N

“ e´ θ2
2 .

Since e´ θ2
2 is the characteristic function of a standard Gaussian random variable, we con-

clude that 1?
N

řN
k“1 Zk converges weakly to N p0, 1q.

Exercise 3.3.1. In the above calculations, explain why we cannot apply the central limit
theorem (Theorem B.7) directly.

7Or equivalently δ Ñ 0.
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(3.3.4) suggests that we define a continuous-time model for price St of the asset at time
T as the weak limit of the binomial model by

lnpST q “ lnpS0q ` pr ´
σ2

2
qT ` σN p0, T q

or equivalently

ST “ S0 exp
ˆ

pr ´
σ2

2
qT ` σN p0, T q

˙

.

Calibrating binomial model: revised

In the above, we see that the choice of parameters u, ℓ, and R leads to a perfect choice
of ÊrZ1s “ 0 and ÊrZ2

1 s “ 1. However, in (3.3.4), the only criteria for the convergence of
binomial model to Black-Scholes model is that the random variables Zk, k “ 1, ..., N must
satisfy ÊrZ1s “ opδq and ÊrZ2

1 s “ 1 ` op1q;

If ÊrZ1s “ opδq, and ÊrZ2
1 s “ 1 ` op1q,

then 1
?

N

N
ÿ

k“1
Zk converges to N p0, 1q weakly.

(3.3.6)

To avoid the calculation of α and β, one can choose different parameters for the bino-
mial model. Notice that the binomial model has three parameters u, ℓ and R while the
Black-Scholes parameters are only two. This degree of freedom provides us with some mod-
ifications of the binomial model which still converges to the Black-Scholes formula. This
also simplifies the calibration process in Section 2.4 significantly. Here are some choices:

1) Symmetric probabilities:

u “ eδpr´ σ2
2 q`

?
δσ, ℓ “ eδpr´ σ2

2 q´
?

δσ, and R “ rδ,

Then
π̂u “ π̂ℓ “

1
2

.

Notice that (3.3.4) should be modified by setting thetZkuN
k“1 distribution of the i.i.d.

sequence

Z1 “

#

1 with probability 1
2

´1 with probability 1
2

and ÊrZ1s “ 0 and ÊrZ2
1 s “ 1.
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2) Subjective return:

u “ eδν`
?

δσ, ℓ “ eδν´
?

δσ, and R “ rδ,

Then

π̂u “
1
2

˜

1 `
?

δ
r ´ ν ´ 1

2σ2

σ

¸

and π̂ℓ “
1
2

˜

1 ´
?

δ
r ´ ν ´ 1

2σ2

σ

¸

.

In this case, (3.3.4) should be modified by setting thetZkuN
k“1 distribution of the i.i.d.

sequence

Z1 “

$

&

%

?
δ

ν´r` 1
2 σ2

σ ` 1 with probability π̂u
?

δ
ν´r` 1

2 σ2

σ ´ 1 with probability π̂ℓ

and ÊrZ1s “ 0 and ÊrZ2
1 s “ 1 `

´

ν´r` 1
2 σ2

σ

¯2
δ.

Exercise 3.3.2. Show

ÊrZ1s “ opδq, and ÊrZ2
1 s “ 1 ` op1q

in the following cases:

a) symmetric probabilities

b) subjective return

Exercise 3.3.3. Consider a risk-neutral trinomial model with N periods presented by

Spk`1qδ “ SkδHk`1, for k “ 0, ..., N ´ 1

where δ :“ T
N and tHkuN

k“1 is a sequence of i.i.d. random variables with distribution

Hk “

$

’

’

&

’

’

%

eδpr´ σ2
2 q`

?
3δσ with probability π̂ “ 1

6

eδpr´ σ2
2 q with probability 1 ´ 2π̂ “ 2

3

eδpr´ σ2
2 q´

?
3δσ with probability π̂ “ 1

6

and π̂ ă 1
2 . Show that as δ Ñ 0, this trinomial model converges to the Black-Scholes model

in the weak sense.
Hint: Find Zk such that lnpHkq “ pr ´ σ2

2 qδ ` σ
?

δZk. Then, show (3.3.6)
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3.3.2 Pricing contingent claims in the Black-Scholes model

Recall from the last section that the limit of the binomial model under risk-neutral proba-
bility yields the geometric Brownian motion (GBM)

St “ S0 exp
ˆ

pr ´
σ2

2
qt ` σBt

˙

. (3.3.7)

We can use this random variable St to price an option in this continuous setting. We start
with a call option with maturity T and strike price K.

Inspired by the geometric Brownian motion market model, the price of this call option is
the discounted expected value of pST ´ Kq` under risk-neutral probability. To calculate
this price, we only need to know the distribution of St under risk-neutral probability, which
is given by (3.3.7). Since St is a function of a standard Gaussian random variable, we obtain

ÊrpST ´ Kq`s “
1

?
2π

ż 8

´8

ˆ

S0 exp
ˆ

pr ´
σ2

2
qT ` σ

?
Tx

˙

´ K

˙

`

exp
ˆ

´
x2

2

˙

dx.

Notice that when x ď x˚ :“ 1
σ

?
T

´

lnpK{S0q ´ pr ´ σ2

2 qT
¯

, the integrand is zero and
otherwise pST ´ Kq` “ St ´ K. Therefore,

ÊrpST ´ Kq`s “ S0epr´ σ2
2 qT

ż 8

x˚

eσ
?

T x´ x2
2

?
2π

dx ´ K

ż 8

x˚

e´ x2
2

?
2π

dx

“ S0erT

ż 8

x˚

e´
px´σ

?
T q2

2
?

2π
dx ´ K

ż 8

x˚

e´ x2
2

?
2π

dx

“ S0erT

ż 8

x˚`σ
?

T

e´ x2
2

?
2π

dx ´ K

ż 8

x˚

e´ x2
2

?
2π

dx

Notice that
ş8

x˚
e´ x2

2
?

2π
dx is the probability that a standard Gaussian random variable is

greater than x˚ and
ş8

x˚`σ
?

T
e´ x2

2
?

2π
dx is the probability that a standard Gaussian random

variable is greater than x˚ ` σ
?

T . Simple calculation shows that

x˚ ` σ
?

T “
1

σ
?

T

ˆ

lnpK{S0q ´ pr `
σ2

2
qT

˙

.

In other words, the price of a European call option is given by

CpT, K, S0, 0q :“ e´rT ÊrpSt ´ Kq`s “ S0Φ pd1q ´ e´rT KΦ pd2q , (3.3.8)
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where

d1 “
1

σ
?

T

´

lnpS0{Kq `
`

r `
σ2

2
˘

T
¯

and d2 “
1

σ
?

T

´

lnpS0{Kq `
`

r ´
σ2

2
˘

T
¯

. (3.3.9)

Here Φpxq “
şx

´8
e´

y2
2

?
2π

dy is the standard Gaussian distribution function.8

Exercise 3.3.4. Use put-call parity to show that the Black-Scholes formula for the price
of a put option with maturity T and strike K is given by

P pT, K, S0, 0q :“ e´rT KΦ p´d2q ´ S0Φ p´d1q .

For a general contingent claim, the price of a derivative with payoff gpStq in the Black-
Scholes model is given by

V0pS0q :“ e´rT ÊrgpST qs “ e´rT Ê
„

g

ˆ

epr´ σ2
2 qT `σ

?
T N p0,1q

˙ȷ

“
1

?
2π

ż 8

´8

g

ˆ

epr´ σ2
2 qT `σ

?
T x

˙

e´ x2
2 dx.

As a consequence of Assumption 2.4.1, if we repeat the calculations in Section 3.3.1, we
obtain

St “ S0 exp
ˆ

pr ´
σ2

2
qt ` σN p0, tq

˙

and ST “ St exp
ˆ

pr ´
σ2

2
qpT ´ tq ` σN p0, T ´ tq

˙

.

Now we would like to explain the relation between the two normal random variables
N p0, T ´ tq and N p0, tq in the above. In the Black-Scholes model, ST

St
is independent

of St. This, in particular, implies that the Black-Scholes model is Markovian9 and
given that the price of the underlying asset at time t is equal to St, the price of a call
option with strike K and maturity T is a function of St and t but not Su for u ă t. As a
result, the price of a call option at time t given St “ S is given by

CpT, K, S, tq :“ e´rpT ´tqÊrpST ´ Kq` | St “ Ss “ SΦ pd1q ´ e´rpT ´tqKΦ pd2q ,

d1 “
1

σ
?

T ´ t

ˆ

lnpS{Kq ` pr `
σ2

2
qpT ´ tq

˙

and

d2 “
1

σ
?

T ´ t

ˆ

lnpS{Kq ` pr ´
σ2

2
qpT ´ tq

˙

.

In general, the Markovian property implies that for a general contingent claim with payoff
8In the above calculations, we use 1 ´ Φpxq “ Φp´xq.
9Given the current asset price, future movements of the price are independent of past movements.
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gpStq, the Black-Scholes price at time t is V pt, Stq :“ e´rpT ´tqÊrgpST q | Sts. We will study
some more properties of this function V : r0, T s ˆ R` Ñ R later in the chapter. In the
Black-Scholes market, a contingent claim that has payoff gpST q, a function of the price of
the underlying asset at time T , is called a Markovian claim, and the price of a Markovian
claim is given by

V pt, Sq :“ e´rpT ´tqÊrgpST q | St “ Ss “ e´rpT ´tqÊ
„

g

ˆ

epr´ σ2
2 qpT ´tq`σ

?
T ´tN p0,1q

˙ȷ

“
e´rpT ´tq

?
2π

ż 8

´8

g

ˆ

S
`

epr´ σ2
2 qpT ´tq`σ

?
T ´tx

˘

˙

e´ x2
2 dx.

(3.3.10)

Remark 3.3.1. The price of a Markovian claim in the Black-Scholes model does not de-
pend on past movements of the price; it only depends on the current price St. This is not
true for non-Markovian claims. For example, a look-back option with payoff pmax0ďtďT St ´ Kq`

or an Asian option
´

1
T

şT
0 St ´ K

¯

`
are non-Markovian options with a price that depends

to some extent on the history of price movements rather than only on the current price of
the underlying.

As seen in (3.3.10), the Black-Scholes price of a Markovian European option is always
a function of T ´ t rather than t and T separately. Therefore, we can introduce a new
variable τ :“ T ´ t, time-to-maturity. Then, one can write the value of the Markovian
European option as a function of τ and S by

V pτ, Sq :“ e´rτ ÊrgpSτ q | S0 “ Ss “
e´rτ

?
2π

ż 8

´8

g

ˆ

S
`

epr´ σ2
2 qτ`σ

?
τx
˘

˙

e´ x2
2 dx.

For call option the Black-Scholes formula in terms of τ is given by

Cpτ, K, Sq “ SΦ pd1q ´ e´rτ KΦ pd2q ,

d1 “
1

σ
?

τ

ˆ

lnpS{Kq ` pr `
σ2

2
qτ

˙

and d2 “
1

σ
?

τ

ˆ

lnpS{Kq ` pr ´
σ2

2
qτ

˙

.
(3.3.11)

3.3.3 Delta hedging

As seen in the binomial model, to hedge the risk of issuing an option, one has to construct
a replicating portfolio. The replicating portfolio contains ∆tpStq units of risky asset at
time t. If the price of the asset at time t is given by St “ S, the ∆tpStq in the binomial
model is given by (2.3.4);

∆tpSq :“ V pt ` δ, Suq ´ V pt ` δ, Sℓq

Spu ´ ℓq
.
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Using the asymptotic formula for u and ℓ from (3.3.1), we have

∆tpSq “
V pt ` δ, S ` Spδr `

?
δσαqq ´ V pt ` δ, S ` Sp1 ` δr ´

?
δσβqq

S
?

δσpα ` βq

By expanding V pt ` δ, S ` Spδr `
?

δσαqq and V pt ` δ, S ` Sp1 ` δr ´
?

δσβqq about the
point pt, Sq and sending δ Ñ 0, we obtain the Delta of the Black-Scholes model as

∆BS
t pSq “ BSV pt, Sq, (3.3.12)

where V pt, Sq is the Black-Scholes price of a general contingent claim with any given payoff.
As for a call option with maturity T and strike K, by taking derivative with respect to S

from (3.3.11), we obtain
∆BS

t pSq “ Φpd1q.

Here we used
SBSd1Φ1pd1q ´ e´rpT ´tqKBSd2Φ1pd2q “ 0.

Exercise 3.3.5. Let S0 “ $10, σ “ .03, and r “ 0.03. Find the Black-Scholes Delta of the
following portfolio.

position units type strike maturity
long 3 call $10 60 days
short 3 put $10 90 days
short 1 call $10 120 days

The maturities are given in business days.
Exercise 3.3.6. Let S0 “ 10, σ “ .03, and r “ 0.03. Consider the portfolio below.

position units type strike maturity
long 3 call $10 60 days
long 4 put $5 90 days

? x underlying NA NA
How many units x of the underlying are required to eliminate any sensitivity of the portfolio
with respect to the changes in the price of the underlying?

Another derivation of the Delta in the Black-Scholes model

Another heuristic derivation of this result is as follows. In the binomial model, we can
write

ÊrgpST q | St`δ “ Sus “ ÊrgpST ´δuq | St “ Ss and
ÊrgpST q | St`δ “ Sℓs “ ÊrgpST ´δlq | St “ Ss.
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This is because the binomial model is time homogeneous. Therefore,

∆tpSq “
V pt ` δ, Suq ´ V pt ` δ, Sℓq

Spu ´ ℓq

“ e´rpT ´tq ÊrgpST q | St`δ “ Sus ´ ÊrgpST q | St`δ “ Sℓs

Spu ´ ℓq
` Opδq

“ e´rpT ´tq ÊrgpST ´δuq | St “ Ss ´ ÊrgpST ´δlq | St “ Ss

Spu ´ ℓq
` Opδq

“ e´rpT ´tq ÊrST ´δg1pST ´δq | St “ Sspu ´ ℓq

Spu ´ ℓq
` Opδq.

In the above, we used (3.3.1) to obtain pu ´ ℓq2 “ Opδq, and we used

gpxq ´ gpyq “ g1pxqpy ´ xq ` Oppx ´ yq2q

to obtain the last equality. Hence,

∆tpSq “
e´rpT ´tq

S
ÊrST ´δg1pST ´δq | St “ Ss ` Opδq

Now, by the weak convergence of the underlying asset price in the binomial model to the
asset price in the Black-Scholes model, as δ Ñ 0, we obtain

∆BS
t pSq “

e´rpT ´tq

S
ÊrST g1pST q | St “ Ss.

Notice that given St “ S, we have

ST “ S exp
ˆ

pr ´
σ2

2
qpT ´ tq ` σN p0, T ´ tq

˙

.

Therefore,

d

dS

´

gpST q

¯

“ exp
ˆ

pr ´
σ2

2
qpT ´ tq ` σN p0, T ´ tq

˙

g1pST q “
ST

S
g1pST q.

This implies that

∆BS
t pSq “ e´rpT ´tqÊ

”ST

S
g1pST q | St “ S

ı

“ e´rpT ´tqÊ
” d

dS

´

gpST q

¯

| St “ S
ı

“
d

dS

´

e´rpT ´tqÊrgpST q | St “ Ss

¯

“ BSV pt, Sq.
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3.3.4 Completeness of the Black-Scholes model

Similar to the binomial model, the Black-Scholes market is complete; every contingent claim
is replicable. For the moment, it is not our concern to show this rigorously. Instead, we
accept this fact and would rather emphasize how to replicate a contingent claim. In order
to replicate a Markovian contingent claim with payoff gpST q in the Black-Scholes model,
we start by recalling from Section 2.3.3 that the replicating portfolio in the binomial model
is determined by ∆bi

ti
pStiq given by (2.3.4) and the replicating portfolio is written as

V bipt, Stq “ V bip0, S0q ` R
t´1
ÿ

i“0
pV bipi, Siq ´ ∆bi

i pSiqSiq `

t´1
ÿ

i“0
∆bi

i pSiqpSi`1 ´ Siq. (3.3.13)

Notice that R “ rδ ` opδq. By taking the limit from (3.3.13), we obtain

V pT, ST q “ V p0, S0q ` r

ż T

0
pV pt, Stq ´ ∆tpStqStqdt `

ż T

0
∆tpStqdSt. (3.3.14)

In the above V pt, Sq is the Black-Scholes price of the contingent claim, and ∆tpStq satisfies
(3.3.12). The first integral in (3.3.14) is a simple Riemann integral. The second integral
is a more complicated stochastic integral; the integrator dSt is an Itô stochastic, which is
presented in Section C.4. But for the moment, you can interpret the It0̂ integral in (3.3.14)
as the limit of the discrete stochastic integral

řN´1
i“0 ∆tipStiqpSti`1 ´ Stiq.

Exercise 3.3.7. Repeat the above calculation to show that the discounted value of the
option p1 ` Rq´tV bipt, Stq converges to

e´rT V pT, ST q “ V p0, S0q `

ż T

0
e´rt∆tpStqdSt.

3.3.5 Error of discrete hedging in the Black-Scholes model and Greeks

Equation (3.3.14) suggests adjusting the Delta continuously in time to replicate the contin-
gent claim. On one hand, this is a useful formula, because in reality trading can happen
with enormous speed which makes continuous time a fine approximation. However, in prac-
tice, the time is still discrete, and hedging is only a time lapse. Therefore, it is important to
have some estimation of the error of discrete-time hedging in the Black-Scholes framework.
Let us consider that the Black-Scholes model is running continuously in time, but we

only adjust our position on the approximately replicating portfolio at times ti :“ δi where
δ “ T

N and i “ 0, 1, ..., N . By setting aside the accumulated error until time ti, we can
assume that our hedge has been perfect until time ti, for some i, i.e.

V pti, Stiq “ ∆BS
ti

pStiqSti ` Yti ,
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where V pt, Sq is the Black-Scholes value of the contingent claim and Yt is the position in
cash. At time ti`1 “ ti ` δ, the value of the portfolio is

∆BS
ti

pStiqSti`δ ` erδYti .

Since by (3.3.12), ∆BS
ti

pStiq “ BSV pti, Stiq, the error is given by

Errtipδq :“Ê
”

V pti ` δ, Sti`δq ´ BSV pti, StiqSti`δ ´ erδYti | Sti

ı

“Ê
”

V pti ` δ, Sti`δq ´ BSV pti, StiqSti`δ ´ erδpV pti, Stiq ´ BSV pti, StiqStiq | Sti

ı

“Ê
”

V pti ` δ, Sti`δq ´ V pti, Stiq ´ BSV pti, StiqpSti`δ ´ Stiq

` perδ ´ 1qpV pti, Stiq ´ BSV pti, StiqStiq | Sti

ı

“Ê
”

V pti ` δ, Sti`δq ´ V pti, Stiq ´ BSV pti, StiqpSti`δ ´ Stiq

´ δrpV pti, Stiq ´ BSV pti, StiqStiqq | Sti

ı

` Opδ2q

By the Taylor formula, the price of the option is

V pti ` δ, Sti`δq “ V pti, Stiq ` BtV pti, Stiqδ ` BSV pti, StiqpSti`δ ´ Stiq

`
1
2

BSSV pti, StiqpSti`δ ´ Stiq
2 `

1
2

BttV pti, Stiqδ
2

` BStV pti, StiqpSti`δ ´ Stiqδ ` opδq.

Notice that since

Sti`δ ´ Sti “ σSti

?
δN p0, 1q ` Opδq, with N p0, 1q independent of Sti , (3.3.15)

the conditional expectation ÊrpSti`δ ´ Stiq
2 | Stis “ σ2S2

ti
δ ` Opδ

3
2 q. Therefore, by the

properties of the conditional expectation, we have

ÊrBSV pti, StiqpSti`δ ´ Stiq | Stis “ BSV pti, StiqÊrSti`δ ´ Sti | Stis “ 0
ÊrBSSV pti, StiqpSti`δ ´ Stiq

2 | Stis “ BSSV pti, StiqÊrpSti`δ ´ Stiq
2 | Stis

“ σ2S2
ti

BSSV pti, Stiqδ ` Opδ
3
2 q,
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and we can write the error term10 by

Errtipδq :“ δpBtV pti, Stiq `
σ2S2

ti

2
BSSV pti, Stiq ` rBSV pti, StiqStiq ´ rV pti, Stiqq ` Opδ

3
2 q.

(3.3.16)

where the term Opδ
3
2 q depends on the higher derivative BtSV , σ, Sti , and r.

Before finishing the error estimation, let us briefly explain some of the important terms
which show up in (3.3.16).

1) The first derivative BSV of the option price, Delta, is denoted by ∆pt, Sq and de-
termines the sensitivity of the value of the option with respect to the price of the
underlying.

2) The second derivative BSSV of the option price, which is called Gamma and denoted
by Γpt, Sq and determines the convexity of the option value on the price of underlying.

3) The time derivative BtV , which is called time decay factor or Theta and is denoted
by Θpt, Sq, determines how the price of option evolves over time.

As a function of time-to-maturity τ “ T ´ t, by the abuse of notation, we define V pτ, Sq :“
V pt, Sq and therefore we have

∆pτ, Sq “ BSV pτ, Sq

Γpτ, Sq “ BSSV pτ, Sq

Θpτ, Sq “ ´Bτ V pτ, Sq

For example in the case of call option with strike K and maturity T , by taking derivatives
BSS and Bτ in (3.3.11), we have

∆pτ, Sq “ Φpd1q, Γpτ, Sq “
1

Sσ
?

τ
Φ1pd1q and Θpτ, Sq “ ´

Sσ

2
?

τ
Φ1pd1q ´ rKe´rτ Φpd2q.

(3.3.17)
The ∆, Γ, and Θ of a call option in the Black-Scholes model is shown in Figure 3.3.1.
To continue with the error estimation, we need the following proposition.

Proposition 3.3.1. For a European Markovian contingent claim, the Black-Scholes price
satisfies

Θpτ, Sq “ ´
σ2S2

2
Γpτ, Sq ´ rS∆pτ, Sq ` rV pτ, Sq.

Proof. Apple Proposition (C.1) to the martingale e´rtV pt, Stq.
10Here we heuristically assumed N p0, 1q „ 1. A more rigorous treatment of this error is in by calculating

the L2 error by calculating ÊrpErrti pδqq2s
1
2 .
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Figure 3.3.1: Greeks of a call option with τ “ 1, σ “ .1, r “ .05, and K “ 10. As you
see the significant sensitivity is near the ATM.

As a result of this proposition, the term of order δ in (3.3.16) vanishes, and thus one step
error is of order Opδ

3
2 q. Since δ “ T

N , we have

Errpδq :“ Ê

«

N´1
ÿ

i“0
Errtipδq

ff

“ Op
?

δq,

which converges to 0 as quickly as
?

δ when δ Ñ 0.

Discrete hedging without a money market account

One reason to completely disregard the money market account is because the risk-free
interest rate r is not exactly constant. The money market is also under several risks which
is a different topic. One way to tackle the interest rate risks is to completely exclude the
risk-free money market account from the hedging portfolio, and try to measure the hedging
error in this case. To understand this better, let us first consider the issuer of an option
that is long in ∆BSpti, Stiq units of the underlying. Then the change in the portfolio from
time ti to time ti ` δ is

ÊrV pti ` δ, Sti`δq ´ V pti, Stiq ´ ∆BSpti, StiqpSti`δ ´ Stiqs

“ pBtV pti, Stiq `
σ2S2

ti

2
BSSV pti, Stiqqδ ` opδq,
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where we use (3.3.15) on the right-hand side. This error is related to the loss/profit of not
perfectly hedging and is called a slippage error ; see Figure 3.3.2.

Sti Sti+δ

V (ti,Sti)

V (ti + δ,Sti+δ)

S

V (t, S)

Figure 3.3.2: The red curve is the value of the option at time ti, the blue curve is the
value of the option at time ti`1. The slippage error is shown in burgundy.

The loss/profit from slippage can be calculated by using the same technology as in the
previous section; the slippage error during the time interval rti, ti ` δs is given by

pΘpti, Stiq `
σ2S2

ti

2
Γpti, Stiqqδ ` opδq

As illustrated in Figure 3.3.4, when, for instance, the time decay factor is negative and
Gamma is positive, for small changes in the price of the asset, we lose, and for larger
changes we gain. As seen in (3.3.17), it is a typical situation to have negative Θ and
positive Γ for call options (or put options or any European Markovian option with a
convex payoff function). See Figure 3.3.3.
Exercise 3.3.8. Show that if the payoff function gpST q is a convex function on ST , then
the Markovian European contingent claim with payoff gpST q has nonnegative Γ; V pτ, Sq is
convex on S for all τ .
Let S̃t “ e´rtSt and Ṽ pt, S̃tq “ e´rtV pt, Stq “ e´rtV pt, ertS̃tq be respectively the dis-

counted underlying price and discounted option price. Then, we can show that

BtṼ pt, S̃q “ ´
σ2S̃2

2
BS̃S̃Ṽ pt, S̃q.
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Figure 3.3.3: The time decay for the price of call option in the Black-Scholes model. As
τ Ñ 0, the color becomes darker.

Exercise 3.3.9. Use Proposition 3.3.1 to show the above equality.

This suggests that if the interest rate is nearly zero, then the lack of a money market in
the replication does not impose any error. Otherwise, when the interest rate is large, the
slippage error is significant and is equal to

pΘpti, Stiq `
σ2S2

ti

2
Γpti, Stiqqδ ` opδq “ rpV pti, Stiq ´ S2

ti
∆pti, Stiqqδ ` opδq,

which can accumulate to a large number.

Other Greeks

Two other Greeks are Rho, denoted by ρ, and Vega, denoted by V, which respectively
measure the sensitivity with respect to interest rate r and volatility σ, i.e.,

ρpτ, Sq :“ Br

´

e´rτ ÊrgpSτ q | S0 “ ss

¯

and Vpτ, Sq :“ Bσ

´

e´rτ ÊrgpSτ q | S0 “ ss

¯

.
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∆S

Profit/Loss

Figure 3.3.4: The loss/profit of the discrete hedging in the Black-Scholes model. The
red graph shows the loss/profit without the time decay factor. The blue includes the time
decay factor, too.

For a call option, these derivatives are given by

ρpτ, Sq “ e´rτ KτΦpd2q and Vpτ, Sq “ S
?

τΦ1pd1q.

Figures (3.3.1) and 3.3.5 show the Greeks ∆, Γ, Θ, ρ and V for a call option as a function
of S.

Exercise 3.3.10. The third derivative of the Black-Scholes price with respect to S is called
speed. Find a closed-form solution for speed.

Example 3.3.1. The payoff in Figure 3.3.6 can be written as pST ´ K1q` ´ pST ´ K2q` ´

pST ´ K3q` ` pST ´ K4q`. Therefore, the closed-form solution for the Black-Scholes price
of the option is given by

V pτ, Sq “ Cpτ, K1, Sq ´ Cpτ, K2, Sq ´ Cpτ, K3, Sq ` Cpτ, K4, Sq.

All the Greeks of the option are also a linear combination of the Greeks of these call
options. For instance,

∆pt, Sq “ Φpd1pτ, K1, Sqq ´ Φpd1pτ, K2, Sqq ´ Φpd1pτ, K3, Sqq ` Φpd1pτ, K4, Sqq.
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Figure 3.3.5: ρ and V of a call option with τ “ 1, σ “ .1, r “ .05, and K “ 10.

K1 K2 K3 K4
ST

g(ST )

Figure 3.3.6: Payoff of Example 3.3.1 gpST q “ pST ´ K1q` ´ pST ´ K2q` ´ pST ´ K3q` `

pST ´ K4q`.

Exercise 3.3.11. Write the payoffs in Figure 3.3.7 as a linear combination of call options
and derive a closed-form formula for the Black-Scholes price, the Delta, the Gamma, and
the time decay of options with these payoffs.

Exercise 3.3.12 (Bull and bear call spreads). Write the payoffs in Figure 3.3.8 as linear
combination of call options with different strikes and possibly some cash and give the closed
form formula for them.

3.3.6 Time-varying Black-Scholes model

Recall from Section 2.4 that the binomial model can be calibrated to time-dependent
parameters. Let δ “ T

N and consider the discrete time instances ti “ iδ. The time-varying
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K
ST

g(ST )

K1 K2 ST

g(ST )

Figure 3.3.7: Left: payoff of straddle. Right: payoff of strangle.

K1 K2
ST

g(ST )

Figure 3.3.8: Red: Bull-spread call. Blue: Bear-spread call

binomial can be given by

lnpStk`1q “ lnpSkδq ` lnpHk`1q,

where tHkuN
k“1 is a sequence of independent random variables with the following distribu-

tion under the risk-neutral probability

Hk “

#

1 ` δrtk
`

?
δσtk

αk with probability π̂k

1 ` δrtk
´

?
δσtk

βk with probability 1 ´ π̂k

,
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where αk, βk are given by (2.4.6) and (2.4.7) for time-dependent λt. Therefore, equation
(3.3.4) takes the following time-dependent form:

lnpStk
q “ lnpS0q `

k´1
ÿ

i“0
prti ´

σ2
ti

2
qδ `

?
δ

N
ÿ

k“1
σtk

Zk. (3.3.18)

Analogous to (3.3.5), we have πk “
βk

αk`βk
and

ÊrZks “ 0 and ÊrZ2
ks “ 1.

Therefore,

χ?
δσtk

Zk
pθq “ Êreiθσtk

Zk s “ 1 ` iθσtk
δÊrZ1s ´

θ2σ2
tk

δÊrZ2
1 s

2
` opδq.

This implies that

χ?
δ
řN

k“1 σtk
Zk

pθq “

N
ź

k“1

ˆ

1 ´
1
2

δθ2σ2
tk

` opδ2q

˙

“

N
ź

k“1
e

´ 1
2 θ2σ2

tk
δ
`opδq “ e

´ θ2
2
řN

i“1 σ2
tk

δ
`opδq.

As δ Ñ 0,
χ?

δ
řN

k“1 σtk
Zk

pθq Ñ e´ θ2
2
şT
0 σ2

t dt,

which is the characteristic function of N p0,
şT
0 σ2

t dtq. Thus in the limit, we have

ST “ S0 exp
ˆ
ż T

0
prt ´

σ2
t

2
qdt `

ż T

0
σ2

t dtN p0, 1q

˙

.

As a matter of fact, for any t we have

St “ S0 exp
ˆ
ż t

0
pru ´

σ2
u

2
qdu ` N

ˆ

0,

ż t

0
σ2

udu

˙˙

ST “ St exp
ˆ
ż T

t
pru ´

σ2
u

2
qdu ` N

ˆ

0,

ż T

t
σ2

udu

˙˙

.

and the random variables N
´

0,
şT
t σ2

udu
¯

and N
´

0,
şt
0 σ2

udu
¯

are independent.

Usually the interest rate rt and the volatility σt are not given and we have to estimate
them from the data. In the next section, we discuss some estimation methods for these
two parameters.
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Using the variable r and σ, we can rewrite the Black-Scholes formula for a call option by

CpT, K, S, tq :“ e´
şT
t ruduÊrpST ´ Kq` | St “ Ss “ SΦ pd1q ´ e´

şT
t ruduKΦ pd2q ,

d1 “
1

b

şT
t σ2

udu

ˆ

lnpS{Kq `

ż T

t

ˆ

ru `
σ2

u

2

˙

du

˙

and

d2 “
1

b

şT
t σ2

udu

ˆ

lnpS{Kq `

ż T

t

ˆ

ru ´
σ2

u

2

˙

du

˙

.

For a general European payoff gpST q we have the Black-Scholes price given by

V pt, Sq :“ e´
şT
t ruduÊrgpSτ q | S0 “ Ss

“
e´

şT
t rudu

?
2π

ż 8

´8

g

ˆ

S
`

e´
şT
t pru´

σ2
u
2 qdu`x

b

şT
t σ2

uudu˘
˙

e´ x2
2 dx.

3.3.7 Black-Scholes with yield curve and forward interest rate

Recall from Section 1.1.5 that the yield curve RtpT q and forward curve FtpT q of a zero
bond are defined by

BtpT q “ e´pT ´tqRtpT q “ e´
şT
t Ftpuqdu or or RtpT q :“ ´

1
T ´ t

ln BtpT q FtpT q :“ ´
d ln BtpT q

dT
.

Since setting a model for the forward rate is equivalent to setting a model for the short
rate rt, in the Black-Scholes formula with a time-varying interest rate, one can equivalently
use the forward rate or the yield curve. Assume that σ is constant. Then, the Black-Scholes
pricing formula becomes

CpT, K, S, tq :“ e´
şT
t FtpuqduÊrpST ´ Kq` | St “ Ss “ SΦ pd1q ´ e´

şT
t FtpuqduKΦ pd2q ,

d1 “
1

a

σ2pT ´ tq

ˆ

lnpS{Kq `

ż T

t
Ftpuqdu `

σ2

2
pT ´ tq

˙

and

d2 “
1

a

σ2pT ´ tq

ˆ

lnpS{Kq `

ż T

t
Ftpuqdu ´

σ2

2
pT ´ tq

˙

.
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and

CpT, K, S, tq :“ e´RtpT qpT ´tqÊrpST ´ Kq` | St “ Ss “ SΦ pd1q ´ e´RtpT qpT ´tqKΦ pd2q ,

d1 “
1

a

σ2pT ´ tq

ˆ

lnpS{Kq ` RtpT qpT ´ tq `
σ2

2
pT ´ tq

˙

and

d2 “
1

a

σ2pT ´ tq

ˆ

lnpS{Kq ` RtpT qpT ´ tq ´
σ2

2
pT ´ tq

˙

.

(3.3.19)

3.3.8 Black-Scholes model and Brownian motion

In Section B.5, we show that the symmetric random walk converges to the Brownian motion
Bt. The same principle shows that the linear interpolation of the summation

řN
k“1 Zk in

the logarithm of the asset price in the binomial model in (3.3.4) also converges to the
Brownian motion. Therefore, one can write the Black-Scholes model (3.3.7) by using the
Brownian motion Bt;

St “ S0 exp
ˆ

pr ´
σ2

2
qt ` σBt

˙

. (3.3.20)

Here Bt is a Gaussian random variable with mean zero and variance t. The above process
is called a geometric Brownian motion (GBM for short)11.

Markovian property of the Black-Scholes model

Since for Brownian motion the increment Bs`t ´ Bt is independent of Bt,

St “ S0 exp
ˆ

pr ´
σ2

2
qt ` σBt

˙

and St`s “ St exp
ˆ

pr ´
σ2

2
qs ` σpBt`s ´ Btq

˙

are independent. Verbally, this means that future price movements are independent of past
movements. In other words, given the history of the movement of an asset’s price until
time t, i.e., Su for all u P r0, ts, the distribution of St`s only depends on St and that part
of history during r0, tq is irrelevant. As a result, for any function g : R` Ñ R, we have

ÊrgpSt`sq | Su : @u P r0, tss “ ÊrgpSt`sq | Sts “ Ê
„

g

ˆ

St exp
ˆ

pr ´
σ2

2
qs ` σpBt`s ´ Btq

˙˙ȷ

.

The pricing formula (3.3.10) is precisely derived from the Markovian property of the Black-
Scholes model.

11Paul Samuelson, in the 1950’s, first came up with the idea of using GBM to model the risky asset
price. His primary motivation is that GBM never generates negative prices, which overcomes one of the
drawbacks of Bachelier model, negative prices for an asset.
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As a result of the Markovian property of GBM, one can write

St`dt ´ St “ St

ˆ

exp
ˆ

pr ´
σ2

2
qdt ` σpBt`dt ´ Btq

˙

´ 1
˙

“ St

´

pr ´
σ2

2
qdt ` σpBt`dt ´ Btq `

1
2

σ2pBt`dt ´ Btq
2
¯

` opdtq.

Therefore, the short-term return of an asset in the Black-Scholes model is given by

St`dt ´ St

St
“ pr ´

σ2

2
qdt ` σpBt`dt ´ Btq `

1
2

σ2pBt`dt ´ Btq
2 ` opdtq.

This is, in particular, consistent with Assumption 2.4.1 and the definition of mean return
and volatility, i.e.

Ê
„

St`dt ´ St

St

ȷ

“ pr ´
σ2

2
qdt ` σÊrBt`dt ´ Bts `

1
2

σ2ÊrpBt`dt ´ Btq
2s ` opdtq “ rdt ` opdtq.

var
ˆ

St`dt ´ St

St

˙

“ σ2dt ` opdtq.

Inspired from the above formal calculation, We formally write the Black-Scholes model for
the asset price as

dSt

St
“ rdt ` σdBt. (3.3.21)

The above equation, which describes (3.3.20) in the differential form, is called the Black-
Scholes stochastic differential equation.

Martingale property of the Black-Scholes model

Similar to the binomial model, in the Black-Scholes model the lack of arbitrage is equivalent
to the martingale property of the discounted asset price. The discounted asset price in the
Black-Scholes model is given by

S̃t “ e´rtSt “ S0 exp
ˆ

´
σ2

2
t ` σBt

˙

.
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The conditional expectation of S̃t`s given S̃t is then given by

S0Ê
„

exp
ˆ

´
σ2

2
pt ` sq ` σBt`s

˙ˇ

ˇ

ˇ

ˇ

S̃t

ȷ

“ S0 exp
ˆ

´
σ2

2
t ` σBt

˙

Ê
„

exp
ˆ

´
σ2

2
s ` σpBt`s ´ Btq

˙ˇ

ˇ

ˇ

ˇ

S̃t

ȷ

“ S̃tÊ
„

exp
ˆ

´
σ2

2
s ` σpBt`s ´ Btq

˙ˇ

ˇ

ˇ

ˇ

S̃t

ȷ

.

By the independence of the increments of Brownian motion, we have

Ê
„

exp
ˆ

´
σ2

2
s ` σpBt`s ´ Btq

˙ˇ

ˇ

ˇ

ˇ

S̃t

ȷ

“ Ê
„

exp
ˆ

´
σ2

2
s ` σpBt`s ´ Btq

˙ȷ

,

and therefore,

Ê
“

S̃t`s

ˇ

ˇS̃t

‰

“ S̃tÊ
„

exp
ˆ

´
σ2

2
s ` σpBt`s ´ Btq

˙ȷ

.

On the other hand since Bt`s ´ Bt „ N p0, sq, we have

Ê rexp pσpBt`s ´ Btqqs “ exp
ˆ

σ2

2
s

˙

,

and therefore, Ê
“

S̃t`s

ˇ

ˇS̃t

‰

“ S̃t.

In addition to the asset price, the discounted price of a newly introduced contingent claim
must be a martingale to preserve the no-arbitrage condition. Recall from formula (3.3.10)
that the price of a contingent claim with payoff gpST q is given by

V pt, Stq “ e´rpT ´tqÊrgpST q | Sts.

If we define the discounted price by Ṽ pt, Stq “ e´rtV pt, Stq, then we can write the above
as

Ṽ pt, Stq “ e´rT ÊrgpST q | Sts.

By the tower property of conditional expectation, we have

Ê
“

Ṽ pt ` s, St`sq
ˇ

ˇSt

‰

“ Ê
”

e´rT ÊrÊrgpST q | St`ss

ˇ

ˇ

ˇ
St

ı

“ e´rT Ê rgpST q|Sts “ Ṽ pt, Stq.

Therefore, the price of the contingent claim is a martingale under risk-neutral probability.
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3.3.9 Physical versus risk-neutral in the Black-Scholes model

Recall from (2.4.1) that the binomial model under physical probability is given by

Spk`1qδ “ SkδHk`1, for k “ 0, ..., N ´ 1,

where the sequence of i.i.d. random variables tHkuN
k“1 is given by

Hk “

#

u with probability p

ℓ with probability 1 ´ p

Then, the dynamics of the asset price under physical probability is given by

lnpST q “ lnpS0q `

N
ÿ

k“1
lnpHkq.

lnpHkq is the log return Rlog
kδ . Recall from (3.3.3) that the first two moments of log return

are given by

ErlnpHkqs “ pµ ´
1
2

σ2qδ ` Opδ2q and ErlnpHkq2s “ σ2δ ` opδq.

If we define Z 1
k :“ lnpHkq´pµ´σ2{2q

σ
?

δ
, one can write

lnpST q “ lnpS0q `

ˆ

µ ´
1
2

σ2
˙

T ` σ
?

T ¨
1

?
N

N
ÿ

k“1
Z 1

k,

where tZ 1
ku is a sequence of i.i.d. random variables satisfying

ErZ 1
ks “ opδq, and ErpZ 1

kq2s “ 1 ` op1q.

If follows from (3.3.6) that 1?
N

řN
k“1 Z 1

k converges weakly to N p0, 1q, and under physical
probability, the Black-Scholes model is described by

St “ S0 exp
ˆ

pµ ´
σ2

2
qt ` σBt

˙

.

In other words, by switching from risk-neutral probability to physical probability, we adjust
the mean return of the asset from r to the risk-free interest rate µ.

Remark 3.3.2. For the purpose of derivative pricing, physical probability is irrelevant.
This is because by the fundamental theorem of asset pricing, Theorem 2.1.1, the price
of any derivative is determined by the discounted expectation of payoff under risk-neutral
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probability. However, for portfolio management, physical probability is important, because
it carries the long-term growth rate of the asset, µ. For example, an investor with x initial
wealth wants to decide how to split his investment between a risk-free bond with interest
rate r and a risky asset given by the Black-Scholes model

St “ S0 exp
ˆ

pµ ´
σ2

2
qt ` σBt

˙

.

His objective is to maximize his expected wealth at time T subject to a constraint of the risk
of portfolio measured by the variance of the wealth at time T , i.e.,

max
θ

tErXθ
T s ´ λvarpXθ

T qu. (3.3.22)

where Xθ
T is the wealth of the investor at time T if he chooses to invest x0´θ in the risk-free

asset and θ in the risky asset. The wealth Xθ
T satisfies

Xθ
T “ erT px0 ´ θq ` θepµ´ σ2

2 qT `σBT .

Therefore,

ErXθ
T s “ erT px0 ´ θq ` θeµ and varpXθ

T q “ θ2e2µT peσ2T ´ 1q.

Therefore, the portfolio maximization problem (3.3.22) is given by

max
θ

!

erT px0 ´ θq ` θeµT ´ λθ2e2µT peσ2T ´ 1q

)

and the solution is given by

θ˚ “
eµT ´ erT

2λe2µT peσ2T ´ 1q
.

Volatility estimation

Notice that the log return of the Black-Scholes model satisfies

ln
´St`δ

St

¯

“ pµ ´
σ2

2
qδ ` σpBt`δ ´ Btq

We consider the time discretization t0 “ 0, ti`1 “ ti ` δ, and tN “ t. Therefore, it follows
from (B.15) (the quadratic variation of Brownian motion) that

N´1
ÿ

i“0
ln
´Sti`1

Sti

¯2
“ σ2

N´1
ÿ

i“0
pBti`1 ´ Btiq

2 ` opδq Ñ σ2t (3.3.23)

155



3.3. BLACK-SCHOLES MODEL 3. CONTINUOUS MARKETS

One can use (3.3.23) to make an estimation of volatility. For any ti “ iδ, evaluate

Yti :“
i´1
ÿ

j“0
ln
´Stj`1

Stj

¯2
.

If δ is small enough, then Yti should approximately be equal to tiσ
2. This suggests that

if we fit a line to the data tpti, Ytiq : i “ 0, 1, ...u, the slope of line is σ2. The schematic
picture of this fitting is shown in figure 3.3.9.
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Figure 3.3.9: Quadratic variation estimation of volatility

Exercise 3.3.13 (Project). With the same set of data from Exercise 2.4.1, calculate the
volatility by using the quadratic variation formula (3.3.23). Take δ “ 1

250 year. Then, plot
the estimated quadratic variation Yti versus time ti. Some examples of the generated plots
are given in Figure 3.3.10. Then fit a line to the data by assuming Yt “ σ2t ` noise. To fit
a line to the data points, you can use the least square method. The slope of the line gives
you the volatility σ.

3.3.10 Black-Scholes partial differential equation

Recall from Proposition 3.3.1 that the price V pτ, Sq of the Markovian European contingent
claim with payoff gpST q at time t “ T ´ τ (τ is time-to-maturity) when the asset price is
S satisfies

´Bτ V pτ, Sq “ ´
σ2S2

2
BSSV pτ, Sq ´ rSBSpτ, Sq ` rV pτ, Sq.
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Figure 3.3.10: Quadratic variation estimation of volatility: Left: Tesla. Right: S&P500

The above equation is a partial differential equation called the Black-Scholes equation. One
way to find the pricing formula for an option is to solve the Black-Scholes PDE. As with
all PDEs, a boundary condition and an initial condition12 are required to solve the PDE
analytically or numerically. The initial condition for the Black-Scholes equation is the
payoff of the derivative, i.e.

V p0, Sq “ gpSq.

Notice that here when τ “ 0, we have t “ T .
Notice that the above PDE holds in region τ P r0, T s and S ą 0. Therefore, we need a

boundary condition at S “ 0. This boundary condition is a little tricky to devise, because
in the Black-Scholes model, the price of the asset St never hits zero; if the price of an asset
is initially positive, then the price stays positive at all times. If the price of the asset is
initially 0, then ST “ 0 and the price of the option with payoff gpST q is given by

V pτ, 0q “ e´rτ ÊrgpST q | ST ´τ “ 0s “ e´rτ gp0q.

Therefore, the boundary condition for S “ 0 is given by

V pτ, 0q “ e´rτ gp0q.

To summarize, the Black-Scholes PDE for pricing a Markovian European contingent claim
with payoff gpST q is given by the following boundary value problem

$

’

&

’

%

Bτ V pτ, Sq “ σ2S2

2 BSSV pτ, Sq ` rSBSV pτ, Sq ´ rV pτ, Sq

V pτ, 0q “ e´rτ gp0q

V p0, Sq “ gpSq

. (3.3.24)

Exercise 3.3.14. Consider the option with payoff gpST q “ 1?
ST

. Find the Black-Scholes

12For time-dependent PDEs.
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price of this payoff at time t “ 0 by solving PDE (3.3.24). Hint: Try to plug in V pτ, Sq “

e´rτ Sa into the Black-Scholes equation, for some constant a. Then, find the constant a.
The boundary condition V pτ, 0q “ e´rτ gp0q is unnecessary as gp0q “ 8.

Remark 3.3.3. Somehow the boundary condition V pτ, 0q “ e´rτ gp0q is redundant in equa-
tion (3.3.24), because in the Black-Scholes model, the price of the underlying asset never hits
zero. But this condition is important for solving the Black-Scholes equation numerically.

Heat equation and Black-Scholes model

Recall from Exercise 3.3.9 that the change of variable S̃ :“ e´rpT ´τqS and Ṽ pτ, S̃q :“
e´rpT ´τqV pτ, Sq “ e´rpT ´τqV pτ, erpT ´τqS̃q modifies the Black-Scholes equation to

Bτ Ṽ pτ, S̃q “
σ2S̃2

2
BS̃S̃Ṽ pτ, S̃q.

If we make a change of variables x :“ lnpS̃q and Upτ, xq :“ Ṽ pτ, exq, then we obtain the
heat equation

Bτ Upτ, xq “
σ2

2
BxxUpτ, xq.

Unlike (3.3.24), the heat equation holds on the whole space, i.e.
#

Bτ Upτ, xq “ σ2

2 BxxUpτ, xq

Up0, xq “ e´rT V perT exq
. (3.3.25)

Notice that at time t “ 0 (or τ “ T ), the price of the Markovian European contingent
claim with payoff gpST q is equal to V pT, S0q “ Ṽ pT, S0q “ UpT, lnpS0qq.
Transforming the Black-Scholes equation into the heat equation helps us to apply nu-

merical techniques for the heat equation that are developed in Section 3.2.2 to obtain the
Black-Scholes price of an option.

3.3.11 Numerical methods for the Black-Scholes price of a European
option

Although the Black-Scholes price of call options, put options, digital options, or a linear
combination of them has to a closed-form solution, there are many payoffs that does not.
As a result, one need to develop numerical methods to evaluate the price of such options.
This section, covers the finite-difference scheme for the Black-Scholes equation, the binomial
model approximation of the Black-Scholes model, and the Monte Carlo approximation of
the price of a European option in the Black-Scholes model. All the methods in Section
3.2.2 can also be applied after transferring the Black-Scholes into the heat equation, as
discussed in Section 3.3.10.
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Solving the Black-Scholes equation via finite-difference scheme

One can directly discretize the Black-Scholes equation (3.3.24) to apply the finite-difference
method described in the previous section. See Figure 3.3.11. In this case, the computation
domain has to be r0, Smaxs for some Smax ą 0. The boundary condition at 0 is already
assigned at (3.3.24) by

V pτ, 0q “ e´rτ gp0q,

and the ABC at Smax is given by the growth of the payoff for large values of S. For a call
option, for instance, the ABC is

V pt, Smaxq “ Smax for Smax sufficiently large.

The rest of the approximation follows as was presented in Section 3.3.10. However, one
should be cautious about applying explicit schemes, which need the CFL condition. Recall
that the right-hand side of the CFL condition is always 1

2 times the inverse of the coefficient
of second derivative in the equation. Therefore, the CFL condition translates to

h

k2 ď
1

σ2S2 .

If Smax is chosen very large, for a fixed discretization k of variable S, one needs to set the
discretization h of variable t very small. The downside of this method is that the time of
the algorithm increases significantly. In such cases, transferring the Black-Scholes equation
into the heat equation and implementing the explicit finite-difference scheme in Section
3.3.10 is more efficient.

Smax

S

t
T

k

h

Figure 3.3.11: Finite-difference grid for the Black-Scholes equation. In the explicit
scheme the CFL condition should be satisfied, i.e., h

k2 ď 1
σS . This requires choosing a

very small h. Artificial boundary conditions are necessary on both Smax and 0.
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Binomial model scheme for the Black-Scholes equation

Recall from Section 3.3.1 that the Black-Scholes model is the limit of the binomial model
under risk-neutral probability. Therefore, if necessary, one can use the binomial model
to approximate the Black-Scholes price of the contingent claim. For implementation, one
needs to choose a sufficiently large number of periods N or, equivalently, a small δ “ T

N .
Suggested by (3.3.1), for a given interest rate r and volatility σ, we need to choose u and
ℓ and the one-period interest rate R as follows.

u “ eδpr´ σ2
2 q`

?
δσα, l “ eδpr´ σ2

2 q´
?

δσβ , and R “ rδ,

where α and β are given by (2.4.6). However, one can avoid the calculation of α and β by
making some different choices. Notice that the binomial model has three parameters u, ℓ
and R while the Black-Scholes parameters are only two. This degree of freedom provides
us with some modifications of binomial model, which still converges to the Black-Scholes
formula. This also simplifies the calibration process in Section 2.4 significantly. Here are
some choices:

1) Symmetric probabilities:

u “ eδpr´ σ2
2 q`

?
δσ, l “ eδpr´ σ2

2 q´
?

δσ, and R “ rδ,

Then
π̂u “ π̂ℓ “

1
2

.

2) Subjective return:

u “ eδν`
?

δσ, l “ eδν´
?

δσ, and R “ rδ,

Then

π̂u “
1
2

˜

1 `
?

δ
r ´ ν ´ 1

2σ2

σ

¸

and π̂ℓ “
1
2

˜

1 ´
?

δ
r ´ ν ´ 1

2σ2

σ

¸

.

To see why this choices work, recall (3.3.4) from Section 3.3.1. The only criteria for the
convergence of the binomial model to the Black-Scholes model is that when we write the
log of asset price in the binomial model as in (3.3.4),

lnpST q “ lnpS0q ` pr ´
σ2

2
qT ` σ

?
T ¨

1
?

N

N
ÿ

k“1
Zk,
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the random variables Zk, k “ 1, ..., N must satisfy

ÊrZ1s “ opδq and ÊrZ2
1 s “ 1 ` op1q.

In Section 3.3.1, we made a perfect choice of ÊrZ1s “ 0 and ÊrZ2
1 s “ 1.

Monte Carlo scheme for Black-Scholes

Recall from Section 3.3.2 that the price of a Markovian European contingent claim can be
written as an expectation and/or a single integral.

V pτ, Sq :“ e´rτ ÊrgpSτ q | S0 “ Ss “
e´rτ

?
2π

ż 8

´8

g

ˆ

S
`

epr´ σ2
2 qτ`σ

?
τx
˘

˙

e´ x2
2 dx.

One way to estimate V pT, S0q is to generate a sample xp1q, ..., xpMq of N p0, 1q and approx-
imate the above expectation by

e´rT

M

M
ÿ

j“1
g

ˆ

S0
`

epr´ σ2
2 qT `σ

?
T xpjq˘

˙

. (3.3.26)

Another class of approximation methods, quadrature methods, directly targets the integral
by choosing a large number 0 ă xmax and approximate the integral

ż xmax

´xmax

g

ˆ

S
`

epr´ σ2
2 qτ`σ

?
τx
˘

˙

e´ x2
2 dx

by a finite Riemann sum. For instance, if we choose ∆x :“ xmax
L and xpjq “ j∆x, the

approximation goes as follows:

V pτ, Sq «
e´rτ

?
2π

ż xmax

´xmax

g

ˆ

S
`

epr´ σ2
2 qτ`σ

?
τx
˘

˙

e´ x2
2 dx

« e´rT
L´1
ÿ

j“´L

g

ˆ

S0
`

epr´ σ2
2 qT `σ

?
T xpjq

˘

˙

e´
x2

pjq

2 ∆x.

Quadrature methods, if implemented carefully, can be more efficient than the naive Monte
Carlo scheme (3.3.26).

Exercise 3.3.15 (Project). Consider the payoff of a bull-spread call in Figure 3.3.8 with
T “ 1, K1 “ 10, and K2 “ 20. Assume that the parameters of the underlying asset
are given by S0 “ 15 and σ “ .02, and that the interest rate is r “ .01. Compare the
following approximation schemes for the price of the bull-spread call. Record the time of
the algorithms for each scheme to obtain four-digit accuracy.
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a) The closed-form solution for the value of this option from the Black-Scholes formula.

b) Implicit finite-difference with parameter θ “ .5.

c) Implicit finite-difference with parameter θ “ 1.

d) Explicit finite-difference (equivalently implicit with θ “ 0).

e) Symmetric binomial model.

f) Monte Carlo scheme.

g) Approximation by a Riemann sum.

3.3.12 Stock price with dividend in the Black-Scholes model

IN this section, we consider two types of dividend strategies. If the dividend is paid
continuously, then there is a constant outflow of cash from the price of the asset. If the
rate of dividend payment is Dt, the Black-Scholes model in (3.3.21) has to be modified to

dSt “ rStdt ` σdBt ´ Dtdt.

Choosing Dt :“ qSt for q ě 0, we obtain

dSt “ pr ´ qqStdt ` σStdBt.

Remark 3.3.4. For a continuous dividend rate q, the dividend yield in time period rt, T s

is given by e´qpT ´tq ˆ 100 percent.

Especially, this choice guarantees that the dividend is always less than the asset price and
that paying the dividend does not diminish the value of the asset. In exponential form, we
have

St “ S0 exp ppr ´ qqt ` σBtq “ e´qtS0 exp
ˆ

pr ´
σ2

2
qt ` σBt

˙

.

In this case, the Black-Scholes price of a European contingent claim with payoff gpST q is
given by

V pt, Sq “ e´rpT ´tqÊrgpST q | St “ Ss “ e´rpT ´tqÊ
”

g
´

e´qpT ´tqS̃T

¯

| S̃t “ S
ı

,

where S̃t satisfies the Black-Scholes equation without dividend, i.e.

S̃t “ S0 exp
ˆ

pr ´
σ2

2
qt ` σBt

˙

.
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If the dividend strategy is time-varying qt, then one can write the above pricing formula as

V pt, Sq “ e´rpT ´tqÊ
”

g
´

e´
şT
t qsdsS̃T

¯

| S̃t “ S
ı

.

For continuous-rate dividend, the relation between the Greeks of the option in Proposition
3.3.1 is modified as in the following proposition.

Proposition 3.3.2. Let St follow the Black-Scholes price with a continuous dividend rate
q. For a European Markovian contingent claim, the Black-Scholes price satisfies

Θpτ, Sq “ ´
σ2S2

2
Γpτ, Sq ´ pr ´ qqS∆pτ, Sq ` rV pτ, Sq.

The second type of dividend strategy is discrete. The discrete dividend is paid in times
0 ď t0 ă t1 ă ... ă tN ď T in amounts D0, ..., DN . Then, between the times of dividend
payment, the asset price follows the Black-Scholes model, i.e.

St “ Stn´1 exp
ˆ

pr ´
σ2

2
qpt ´ tn´1q ` σpBt ´ Btn´1q

˙

, t P rtn´1, tnq.

Just a moment before the payment of dividend at time tn´13 the price of the asset is

Stn´ :“ Stn´1 exp
ˆ

pr ´
σ2

2
qptn ´ tn´1q ` σpBtn ´ Btn´1q

˙

.

But, after paying a dividend of Dn, this price drops to

Stn “ Stn´ ´ Dn “ Stn´1 exp
ˆ

pr ´
σ2

2
qptn ´ tn´1q ` σpBtn ´ Btn´1q

˙

´ Dn.

As mentioned in Section 2.3.4, the dividend is usually given as a percentage of the current
asset price, i.e.

Dn “ dnStn´, with dn P r0, 1q.

and we have

Stn “ p1 ´ dnqStn´ “ p1 ´ dnqStn´1 exp
ˆ

pr ´
σ2

2
qptn ´ tn´1q ` σpBtn ´ Btn´1q

˙

.

Remark 3.3.5. For a discrete dividend, the dividend yield in time period rtn´1, tns is
dn ˆ 100 percent.

13The moment before time t is denoted by t´.
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Therefore,

ST “

N
ź

n“1
p1 ´ dnqS0 exp

ˆ

pr ´
σ2

2
qT ` σBT

˙

.

Remark 3.3.6. If at time T there is a dividend payment, the payoff of a contingent claim
gpST q takes into account the price ST after the payment of the dividend. In short, the price
of the asset at the maturity is always ex-dividend.

Proposition 3.3.3. Let St follow the Black-Scholes price with the discrete dividend policy
given by d0, ..., dN P r0, 1q at times 0 ď t0 ă t1 ă ... ă tN ď T . For a European Markovian
contingent claim, the Black-Scholes price satisfies

Θpτ, Sq “ ´
σ2S2

2
Γpτ, Sq ´ rS∆pτ, Sq ` rV pτ, Sq for τ P pT ´ tn, T ´ tn´1q.

Then, the Black-Scholes price of a contingent claim with payoff gpST q is given by

V pt, Sq “ e´rpT ´tqÊrgpST q | St “ Ss “ e´rpT ´tqÊ
”

g
´

ź

tătnďT

p1 ´ dnqS̃T

¯ ˇ

ˇ

ˇ
S̃t “ S

ı

,

where S̃t satisfies the simple no-dividend Black-Scholes model.

Exercise 3.3.16. Consider a portfolio of one straddle option with K “ 10 and one strangle
option with K1 “ 8 and K2 “ 14, both maturing at T “ 1. See Figure 3.3.7. Assume that
the underlying asset has parameters S0 “ 2 and σ “ .2, and that it pays a 4% quarterly
dividend. The interest rate is r “ .01 (1%). Find the price of this portfolio and its ∆ and
Γ at time t “ 0.

Remark 3.3.7. Dividend strategies are sometimes not known upfront and therefore should
be modeled by random variables. If the dividend policy is a random policy that depends on
the path of the stock price, then, the pricing formula will be more complicated even in the
Black-Scholes model.

Exercise 3.3.17 (Butterfly spread). Consider the payoff gpST q shown in Figure 3.3.12.
Consider the Black-Scholes model for the price of a risky asset with T “ 1, r “ .04, and

σ “ .02 with dividends paid quarterly with a dividend yield of 10%. Take S0 “ 10, K1 “ 9,
and K2 “ 11. Find the Black-Scholes price, ∆, Γ, ρ, and V of this option at time t “ 0.
Find Θ at time t “ 0 without taking derivatives with respect to S.
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K1 K2K1+K2

2

K2−K1

2

ST

g(ST )

Figure 3.3.12: Butterfly spread payoff

The Black-Scholes equation with dividend

In the case of dividends, the Black-Scholes equation in (3.3.24) is given by
$

’

&

’

%

Bτ V pτ, Sq “ σ2S2

2 BSSV pτ, Sq ` pr ´ qqSBSpτ, SqV pτ, Sq ´ rV pτ, Sq

V pτ, 0q “ e´rτ gp0q

V p0, Sq “ gpSq

.

This also allows us to solve the derivative pricing problem with more complicated dividend
strategies. Let’s assume that the dividend payment rate at time t is a function qpt, Stq.
Then, the Black-Scholes model with dividend is given by the SDE

dSt “ Stpr ´ qpt, Stqqdt ` σStdBt.

and Black-Scholes equation in (3.3.24) is given by
$

’

&

’

%

Bτ V pτ, Sq “ σ2S2

2 BSSV pτ, Sq ` pr ´ qpt, SqqSBSV pτ, Sq ´ rV pτ, Sq

V pτ, 0q “ e´rτ gp0q

V p0, Sq “ gpSq

.

After the change of variables described in Section 3.3.10, we obtain
#

Bτ Upτ, xq “ σ2

2 BxxUpτ, xq ´ qpT ´ τ, erpT ´τqexqBxUpτ, xq,

Up0, xq “ e´rT V perT exq
.

The above equation is a heat equation with a drift term given by qpT ´τ, erpT ´τqexqBxUpτ, xq.

Exercise 3.3.18 (Project). Consider a European call option with T “ 1 and K “ 2.
Assume that the parameters of the underlying asset are given by S0 “ 2 and σ “ .2, and
that the interest rate is r “ .01 (1%). In addition, assume that the underlying asset pays
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dividends at continuous rate qpt, Stq “ .05e´.01tSt, i.e., 5% of the discounted asset price.

a) Write the Black-Scholes equation for this problem and convert it into a heat equation
with a drift term.

b) Solve this problem numerically by using a finite-difference scheme.

Example 3.3.2. Consider a European option with payoff

gpST q “ eαST .

Assume that the interest rate is r ą 0 and that the volatility of the underlying asset is σ ą 0,
and at time 0 it has value S0, and pays dividends at a continuous rate qpt, Stq “ qSt, where
q ą 0. Then, the Black-Scholes equation is given by

#

Bτ V pτ, Sq “ σ2S2

2 BSSV pτ, Sq ` pr ´ qSqSBSV pτ, Sq ´ rV pτ, Sq

V p0, Sq “ eαS .
.

The boundary condition for the Black-Scholes equation at S “ 0 is given by

V pτ, 0q “ 1.

Function V pτ, Sq “ e´rτ eαS satisfies the Black-Scholes equation and the boundary condi-
tions. Therefore, the price of the contingent claim with payoff eαST at time-to-maturity τ
(at time T ´ τ) is given by V pτ, Sq “ e´rτ eαS if the asset price takes value S at that time.

Exercise 3.3.19. Consider a European option with payoff

gpST q “ S´5
T e10ST .

Assume that the interest rate is r “ .1 and the underlying asset satisfies S0 “ 2 and σ “ .2,
and that pays dividends at a continuous rate of qpt, Stq “ .2St.

a) Write the Black-Scholes equation for this problem.

b) Solve this problem analytically by the method of separation of variables. Plug into the
equation a solution candidate with the form eατ S´5e10S and determine α.
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4

American options

Unlike European options, holder of an American options has the right but not the obligation
to exercise any date before or at the maturity. When she chooses to exercise the option
at time t P r0, T s (or in discrete-time models t P t0, ..., T u), she receives the payoff of the
option gpt, Stq; i.e., the payoff is a function gpt, Sq of the time of exercise t and the price
of the underlying S at the time of exercise. For instance, the payoff of an American call
option if exercises at time t is pSt ´ Kq`.
To price an American option, we assume that the holder chooses to exercise the American

option at the optimal time of exercise; the time that the holder receives the largest value
possible. We will discuss the details of the optimal exercise time in the future.
We use CAmpT, K, S, tq and PAmpT, K, S, tq to denote the price of American call and

American put at time t when the underlying asset price is S with maturity T and strike K,
respectively. The following remarks are very important in our future study of American
option.

Remark 4.0.1. Notice that since exercising is always an option, the value of the American
option never falls below the payoff. In fact, is can sometimes be strictly larger than the
payoff.

Remark 4.0.2. Consider an American option with payoff gpt, Sq which can possibly take
negative values. Since the holder has no obligation to exercise the option, she will not do
so as long as gpt, Stq ď 0. In particular, if the American option has not been exercised
before the maturity T , it is not optimal for her to exercise at T if SpT, ST q ď 0. Therefore,
the actual payoff is g`pt, Sq “ maxt0, gpt, Squ. On the other hand, if the payoff gpT, ST q is
positive at maturity, it is always optimal to exercise it. Therefore, we always assume that
the payoff of an American option is nonnegative.

Remark 4.0.3. The price p of an American option with payoff g1pt, Sq ` g2pt, Sq is not
the same as the sum of the price p1 of an American option with payoff g1pt, Sq and price p2
of an American option with payoff g2pt, Sq. In fact, the first value is always smaller than
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or equal to the sum of the other two. To see this, let t̃ be the optimal exercise time for the
American option with payoff g1pt, Sq ` g2pt, Sq, i.e., the present value of the option is

p “ B0pt̃qpg1pt̃, St̃q ` g2pt̃, St̃qq.

Notice that time t̃ is not necessarily optimal for the other two American options with payoff
g1pt, Sq or g2pt, Sq. Therefore,

pi ě B0pt̃qgipt̃, St̃q, for i “ 1, 2.

This implies that p ď p1 ` p2.

4.0.1 Pricing American option in the binomial model via examples

The key to the pricing of American options is to compare to values at each node of the
model, i.e., continuation value and exercise value. We will properly define these values in
this section and use them to price American option. We first present the pricing method
in the naive case of one-period binomial model.
Example 4.0.1. Consider a one-period binomial model with S0 “ 1, u “ 2.1, ℓ “ .6 and
R “ .1 (for simplicity). We consider an American put option with strike K; the payoff is
pK ´Sq`. Similar to the European put, at the terminal time T “ 1, the value of the option
is known. However, at time t “ 0 we are facing a different situation; we can choose to
exercise and get the exercise value of E :“ pK ´ 1q`, or we can continue. If we continue,
we will have a payoff of pK ´ 2.1q` or pK ´ .6q` depending of the future events. The value
of continuation is obtain via taking risk-neutral expectation:

C :“ 1
1 ` R

ÊrpK ´ ST q`s “
1

1.1

ˆ

1
3

pK ´ 2.1q` `
2
3

pK ´ .6q`

˙

.

max{C,E}

(K − 2.1)+

(K − .6)+

Figure 4.0.1: American put option in one-period binomial model

Next, we should compare continuation value C and exercise value E. If C ą E, we should
not exercise at time 0 and should wait until time 1. Otherwise when C ď E, it is optimal
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to exercise. For example when K “ 3, we have C “ 1.7273 ă E “ 2 and thus we exercise.
However, when K “ 1, we have C “ .2424 ą E “ 0 and thus we do not exercise.

0.6 2.1
K

21
13

Figure 4.0.2: One-period binomial model: continuation value C “
1

1.1
`1

3pK ´ 2.1q` ` 2
3pK ´ .6q`

˘

(gray) and exercise value E “ pK ´ 1q` (red) of
an American put option as a function of strike price K.

As seen in Figure 4.0.2, only American put options with strike K in p.6, 21
13q generate a

larger continuation value and therefore should not be exercises at time 0.

To illustrate more, we consider a two period binomial model in the following example.

Example 4.0.2. Consider a two-period binomial model with the same parameters as in
Exercise 4.0.1, i.e., u “ 2.1, ℓ “ .6 and R “ .1. We consider an American put option
with strike K; the payoff is pK ´ Sq`. The terminal time T “ 2, the value of the option is
known. At time t “ 1, there are two nodes and at time t “ 0 there is one node, at each of
which we have to find exercise value and continuation value. The exercise values are given
by the payoff as seen in Figure 4.0.3
Here C0, C1,1, and C1,2 are the continuation values at nodes t “ 0, t “ 1 price-down, and

t “ 1 price-up, respectively. Next, we should compare continuation value and exercise value
at each node in a backward manner. At time t “ 1, the continuation value is

C1,2 “
1

1 ` R
ÊrpK ´ ST q` | S1 “ 2.1s “

1
1.1

ˆ

1
3

pK ´ 4.41q` `
2
3

pK ´ 1.26q`

˙

C1,1 “
1

1 ` R
ÊrpK ´ ST q` | S1 “ .6s “

1
1.1

ˆ

1
3

pK ´ 1.26q` `
2
3

pK ´ .36q`

˙
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max{C0, (K − 1)+}

max{C1,2, (K − 2.1)+}

max{C1,1, (K − .6)+}

(K − 1.26)+

(K − 4.41)+

(K − .36)+

Figure 4.0.3: American put option in two-period binomial model

Therefore, the price of the option at these nodes are

V1,2 “ max
"

1
1.1

ˆ

1
3

pK ´ 4.41q` `
2
3

pK ´ 1.26q`

˙

, pK ´ 2.1q`

*

V1,1 “ max
"

1
1.1

ˆ

1
3

pK ´ 1.26q` `
2
3

pK ´ .36q`

˙

, pK ´ .6q`

*

1.26 2.1 4.413.3
K

Node (1, 2)

.36 .6 1.2612.6
13

Node (1, 1)

K

Figure 4.0.4: Two-period binomial model: at each nodes at time t “ 1, continuation
value (gray) is compared to exercise value (red) as a function of strike price K.

As you see from Figure 4.0.4, if we choose the strike of the option K in p1.26, 3.3q, then
at node p1, 2q the continuation value is larger, otherwise we exercise at this node. If we
choose K in p.36, 12.6

13 q, at node p1, 1q the continuation value is larger.In this example, values
of K that imposes the continuation in node p1, 1q is disjoint from those which imposed
continuation at node p1, 2q. Therefore, we exercise the American option on at least one of

170



4. AMERICAN OPTIONS

these nodes.
Now let fix our put option by choosing K “ 2. Then, we continue at node p1, 2q and

exercise at node p1, 1q. Therefore, at time t “ 1, the option takes values

V1,2 “ C1,2 « 0.4485 and V1,1 “ 1.4.

At time t “ 0, we need to see if it is optimal to exercise or if it is optimal to continue. The
situation at node p0, 0q is explained in Figure 4.0.5. The exercise value is E “ 1 but the
continuation value is positive, i.e., C “ .9844. Therefore, it is optimal to exercise.

max{C,E} = E = 1

0.4485

1.4000

Figure 4.0.5: American put option at time t “ 0 in two-period binomial model of Example
4.0.2.

Remark 4.0.4. As a general rule, when it is optimal to exercise, i.e., the continuation
value is less than or equal to exercise value, there is no point in continuing the option. This
is because the continuation value remains equal to exercise value since then after. This can
be observed from Example 4.0.2 by taking for example K “ 1. The schematic pattern of
exercise and continuation nodes is presented in Figure 4.0.6.

(1,.2424)

(2.1,0)

(.6,.4)

(4.41,0)

(1.26,0)

(.36,.46)K = 1

(1,1)

(2.1,.9)

(.6,1.4)

(4.41,0)

(1.26,.74)

(.36,1.64)K = 2

Figure 4.0.6: The pattern of continuation versus exercise in a two-period binomial model
in Example 4.0.2. The red nodes are the exercise nodes and blue nodes are continuation
nodes. In the pair pa, bq, a is the asset price and b is the continuation value.

Exercise 4.0.1. In Example 4.0.2, take the following values of K.
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1) K “ 1.

2) K “ 3.

4.1 Pricing American option in the binomial model; problem
formulation

In this section, we formulate the problem of pricing an American option with (nonnegative)
payoff gpt, Sq in T -period binomial model. Notice that to price an American option, it is
important to know the best exercise time for the holder of the option. Since the price of the
underlying is randomly changing over time, the best execution time can also be a random
time. To formulate an exercise strategy as a random time, we need to define the notion of
stopping time. Recalling from Definition B.19, we define an exercise strategy for the multi
period binomial model.

Definition 4.1.1. An exercise strategy for an American option is a stopping time with
respect to price of underlying tSt : t “ 0, ...u, i.e., is a random variables τ : Ω Ñ t0, ..., T u

such that for any t “ 0, ..., T , the even τ ď t is known given the values of Su for u ď t.

In other words, exercise strategy is a stopping time with respect to the information gen-
erated by the price process. Given the holder of an American option chooses a specific
stopping time τ , the corresponding value of the option is obtained through

Ê
” 1

p1 ` Rqτ
gpτ, Sτ q

ı

.

Therefore, the (optimal) value of the option for the holder is given by the maximum value
over all exercise strategies;

V0 :“ max
τPT0

Ê
” 1

p1 ` Rqτ
gpτ, Sτ q

ı

,

where the maximum is taken over the set T0 all stopping times τ with values in t0, ..., T u.
Since the binomial model can be constructed on a finite sample space (the set of all price
process paths is finite), then the set T0 is finite and therefore in the above e can show the
value of the American option with a maximum. More generally, given the option has not
been exercised until time t, then the value of the option is given

Vt :“ max
τPTt

Êr
1

p1 ` Rqτ´t
gpτ, Sτ q | Fts. (4.1.1)

Here the maximum is taken over the finite set Tt of all stopping times τ with values in
tt, ..., T u. Since T0 is finite, there exists an optimal exercise strategy (stopping time) ϱ˚
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with values in t0, ..., T u such that

V0 “ Ê
” 1

p1 ` Rqϱ˚ gpϱ˚, Sϱ˚q

ı

Similarly at time t, there exists an optimal a stopping time ϱ˚
t with values in tt, ..., T u such

that
Vt “ Ê

” 1
p1 ` Rqϱ˚

t ´t
gpϱ˚

t , Sϱ˚
t

q | Ft

ı

We explain the methodology for pricing American option in the simple one-period case
by choosing t “ T ´ 1, i.e.

VT ´1 :“ max
τPTT ´1

Êr
1

p1 ` Rqτ´T `1 gpτ, Sτ q | FT ´1s,

where the maximum is taken over all stopping times τ with two values T ´ 1 and T ; the
former corresponds to decision to exercise at time T ´ 1, while the latter is to continue
untill maturity T . Given FT ´1, for any stopping time τ with two values tT ´ 1, T u, the
events tτ “ T ´ 1u “ tτ ď T ´ 1u and tτ “ T u “ tτ ď T ´ 1uA are both known. Therefore,
either τ “ T ´ 1 a.s. or τ “ T a.s.. When τ “ T ´ 1 we obtain the exercise value
gpT ´ 1, ST ´1q; otherwise τ “ T yields the continuation value 1

1`R ÊrgpT, ST q | FT ´1s.
Therefore, the choice of exercise strategy boils down to choosing the maximum of the
exercise value gpT ´ 1, ST ´1q and the continuation value 1

1`R ÊrgpT, ST q | FT ´1s, i.e.

VT ´1 “ max
! 1

1 ` R
ÊrgpT, ST q | FT ´1s, gpT ´ 1, ST ´1q

)

.

By using the Markov property of the binomial model, we have ÊrgpT, ST q | FT ´1s “

ÊrgpT, ST q | ST ´1s and thus the value of the American option is a function of time T ´ 1
and asset price ST ´1, i.e.

V pT ´ 1, ST ´1q “ max
! 1

1 ` R
ÊrgpT, ST q | ST ´1s, gpT ´ 1, ST ´1q

)

.

In this one period situation, it is not hard to see that the optimal stopping time is obtained
by the first time t (among T ´ 1, and T ) that the exercise value gpt, Stq is not smaller than
continuation value 1

1`R ÊrgpT, ST q | ST ´1s. Notice that from Remark 4.0.2 the value of the
American option at maturity time T is always equal gpT, ST q and

V pT ´ 1, ST ´1q “ max
! 1

1 ` R
ÊrVT | ST ´1s, gpT ´ 1, ST ´1q

)

.

In the sequel, we would like to extend the above implication to all t. More precisely, we
seek to show the following theorem.
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Theorem 4.1.1. The value of the American option with payoff function gpt, Sq is a func-
tion V pt, Sq of time t and the asset price S which satisfies

V pt, Stq “ max
! 1

1 ` R
ÊrV pt ` 1, St`1q | Sts, gpt, Stq

)

(4.1.2)

Here the supremum is over all stopping times with values in tt, ..., T u. In addition, we show
that an optimal exercise strategy is given by the stopping time τ˚

t defined by the first time
u ě t such that V pu, Suq “ gpu, Suq, i.e.,

τ˚
t “ inftu : u “ t, ..., T, such that V pu, Suq “ gpu, Suqu. (4.1.3)

Recall that from Remark 4.0.1, we already know that Vt ě gpt, Stq. Therefore (4.1.3)
representation for an optimal exercise implies that V pt, Stq ą gpt, Stq if and only if τ˚

t ą t.
To prove Theorem 4.1.1, we define a new process Ṽ by

#

ṼT :“ gpT, ST q

Ṽt :“ max
␣ 1

1`R ÊrṼt`1 | Fts, gpt, Stq
(

t “ 0, ..., T ´ 1
. (4.1.4)

The following lemma presents some key properties for the study of an American option.

Lemma 4.1.1. The following properties hold for Vt and Ṽt defined by 4.1.1 and 4.1.4,
respectively.

i) Both Vt
p1`Rqt and Ṽt

p1`Rqt are supermartingales with respect to filtration generated by
the asset price.

ii) Vt and Ṽt are greater than or equal to gpt, Stq.

iii) Vt is the smallest process with property (i) and (ii).

iv)
! V

u^τ˚
t

p1`Rq
u^τ˚

t
: u “ t, ..., T

)

is a martingale.

Property (i) asserts that the discounted price of an American option is a supermartingale
and property (ii) simply restates that the value of the American option is never smaller
than the payoff. Property (iii), which is a crucial property of the value of American option,
indicates that the discounted values of the American option is the smallest supermartingale
which is greater than or equal to the discounted payoff.

Proof of Lemma 4.1.1. Given Ft, for any stopping time τ with values in tt, ..., T u, the
occurrence of the event tτ ď tu “ tτ “ tu is known. Therefore,

• If τ “ t has happened then strategy τ suggests to exercise and

Ê
” 1

p1 ` Rqτ´t
gpτ, Sτ q | Ft

ı

“ gpt, Stq.
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• If τ “ t has not happened, then strategy τ suggests to continue.

Therefore,

Vt “ max
τPTt

Êr
1

p1 ` Rqτ´t
gpτ, Sτ q | Fts “ max

␣

max
τPTt`1

Êr
1

p1 ` Rqτ´t
gpτ, Sτ q | Fts, gpt, Stq

(

(4.1.5)

ě
1

1 ` R
max

τPTt`1
Êr

1
p1 ` Rqτ´t´1 gpτ, Sτ q | Fts.

Let ϱ˚
t`1 be an optimal exercise for Vt`1, i.e.

Vt`1 “ Ê
” 1

p1 ` Rqϱ˚
t`1´t´1 gpϱ˚

t`1, Sϱ˚
t`1

q

ı

.

Then, in particular we have

Vt ě Êr
1

p1 ` Rqϱ˚
t`1´t

gpϱ˚
t`1, Sϱ˚

t`1
q | Fts “

1
1 ` R

ÊrVt`1 | Fts.

Therefore, Vt
p1`Rqt is a supermartingale. The supermartingale property for Ṽt

p1`Rqt is a direct
consequence of its definition (4.1.4), i.e.

Ṽt “ max
␣ 1

1 ` R
ÊrṼt`1 | Fts, gpt, Stq

(

ě
1

1 ` R
ÊrṼt`1 | Fts.

Hence, (i) is proven. (ii) is a straightforward consequence of choosing τ ” t in (4.1.1) and
(4.1.4).

To show (iii), let Yt be another process which satisfies (i)-(ii). In particular, YT ě

gpT, ST q “ VT . Inductively, assume that Yu ě Vu for u ą t. If Vt “ gpt, Stq, then
property (ii) for Yt implies Vt “ gpt, Stq ď Yt. Otherwise, Vt ą gpt, Stq and we deduce from
(4.1.5) that

Vt “ max
τPTt`1

Êr
1

p1 ` Rqτ´t
gpτ, Sτ q | Fts.

Since Yt satisfies (ii), we have

Vt ď max
τPTt`1

Êr
1

p1 ` Rqτ´t
Yτ | Fts.

By optional sampling theorem, Theorem B.6, we obtain

Êr
1

p1 ` Rqτ´t
Yτ | Fts ď Yt.
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Hence, Vt ď Yt.

Remark 4.1.1 (Snell envelope). For any given payoff process g :“ tgtutě0, for instance
gt “

gpt,Sq

p1`Rqt , the smallest supermartingale which is greater than or equal to g is called Snell
envelope of g. Therefore, the discounted value of the American option is the Snell envelope
of the discounted payoff.

First, we use the properties (i)-(iii) in Lemma 4.1.1 to show that Vt “ Ṽt for all t.

Lemma 4.1.2. For any t “ 0, ..., T , we have Vt “ Ṽt.

Proof. Obviously, VT “ gpT, ST q “ ṼT . If Vt`1 “ Ṽt`1, then

Ṽt “ max
! 1

1 ` R
ÊrṼt`1 | Fts, gpt, Stq

)

“ max
! 1

1 ` R
ÊrVt`1 | Fts, gpt, Stq

)

.

By (i) (supermartingale property of discounted V ) and (ii), we have

Ṽt ď max
␣

Vt, gpt, Stq
(

“ Vt.

On the other hand, since Vt is the smallest process with properties (i) and (ii), we must
have Vt ď Ṽt, which verifies the equality.

Next lemma is on the Markovian property of the price of American option.

Lemma 4.1.3. The value of the American option Vt is a function of time t and asset price
S, i.e., Vt “ V pt, Stq.

Proof. If Vt`1 “ V pt ` 1, St`1q, then by Markovian property of binomial model, we obtain
ÊrV pt ` 1, St`1q | Fts “ ÊrV pt ` 1, St`1q | Sts and

Vt “ max
! 1

1 ` R
ÊrV pt ` 1, St`1q | Sts, gpt, Stq

)

is a function V pt, Stq of time and the asset price. Hence, (4.1.2) follows.

Finally, we show that (4.1.3) provides an optimal exercise.

Lemma 4.1.4. The stopping time τ˚
t given by 4.1.3 satisfies

Vt “ Ê
” 1

p1 ` Rqτ˚
t ´t

gpτ˚
t , Sτ˚

t
q | Ft

ı

Proof. Notice that by definition, Vτ˚
t

“ gpτ˚
t , Sτ˚

t
q. Hence, by the optional sampling theo-

rem, Theorem (B.6), and property (iv), we obtain that

Vt “ Vt^τ˚
t

“ Ê
” 1

p1 ` Rqτ˚
t ´t

V pτ˚
t , Sτ˚

t
q | Ft

ı

“ Ê
” 1

p1 ` Rqτ˚
t ´t

gpτ˚
t , Sτ˚q | Ft

ı

,
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which shows that τ˚
t is optimal.

The above discussion suggests the following algorithm in pricing American options.

Pricing American options in the binomial model
1: At time T , the value of the option is gpT, ST pjqq.
2: for each t “ T ´ 1, ..., 0 do
3: for each j “ 1, ..., t ` 1 do
4: Exercise value = gpt, Stpjqq.
5: Continuation value = 1

1`R ÊrV pt ` 1, St`1q | St “ Stpiqs “ 1
1`R

`

V i`1
t`1 π̂u ` V i

t`1π̂ℓ

˘

.
6: The value of the option V pt, Stpiqq “ max

!

gpt, Stpiqq, 1
1`R ÊrV pt ` 1, St`1q | St “ Stpiqs

)

.
7: If V pt, Stpiqq “ gpt, Stpiqq, we exercise the option and stop.
8: If V pt, Stpiqq ą gpt, Stpiqq, we continue and the replicating portfolio is given by

∆tpStpjqq units of risky assets and V pt, Stpiqq ´ ∆tpStpjqqStpjq is cash.
9: end for

10: end for

Remark 4.1.2 (Path dependent American option). If the payoff of the American option
depends on the path, one can adjust the algorithm by considering the path dependent con-
tinuation value and path dependent exercise value. Exercise 4.1.1 provides an example of
such kind.

Example 4.1.1 (American call option on a nondividend asset does not exist!). In this
case the payoff is given by gpt, Sq “ pS ´ Kq`. Then, the price of the American call option
is the same as the price of European call option! In fact, this is true in any model where
the pricing of European claims is carried by the risk-neutral probability. See Proposition
4.1.1.

This situation is not unique to American call option. The following proposition further
elaborate on this matter.

Proposition 4.1.1. Consider an American option with a convex payoff gpSq such that
gp0q “ 0 on an asset which pays no dividend. Assume that the price of a European contin-
gent claim is given by

V Eupt, Sq “ BtpT qÊrgpST q | St “ Ss,

where Ê is expectation under risk-neutral probability, and the discounted asset price S̃t “
St

p1`Rqt is a martingale under risk-neutral probability. Then, the price of American option
V Ampt, Sq with payoff gpSq is the same as V Eu, i.e.

V Eupt, Sq “ V Ampt, Sq.
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Remark 4.1.3. Proposition 4.1.1 is only true when the underlying asset does not pay
dividend. See Exercise 4.1.2.

Exercise 4.1.1. Consider a two-period binomial model for a risky asset with each period
equal to a year and take S0 “ $1, u “ 1.5 and ℓ “ 0.6. The interest rate for both periods is
R “ .1.

a) Price an American put option with strike K “ .8.

b) Price an American call option with strike K “ .8.

c) Price an American option with a path dependent payoff which pays the running max-
imum1 of the path.

Remark 4.1.4. A naive example of an American option is the case where the payoff is $1.
In this case, if the interest rate is positive, it is optimal to exercise the option right away.
However, if interest rate is 0, the time of exercise can be any time. This naive example has
an important implication. If interest rate is zero, one can remove condition gp0q “ 0 from
Proposition 4.1.1, simply by replacing payoff g by g̃pSq “ gpSq ´ gp0q. Since cash value of
gp0q does not change value over time, the value of the American option with payoff gpSq is
gp0q plus the value of American option with payoff g̃pSq.
For negative interest rate, the exercise date will be postponed compared to the positive
interest rate.
For example, if the interest rate is zero, the price of American put is equal to the price of
European put.

Hedging American option in the binomial model

Hedging American option in the binomial model follows the same way as European option.
The only difference is that the hedging may not continue until maturity because of the
early exercise. Given that we know the price V pt ` 1, St`1piqq of the American option at
time t ` 1 at all states i “ 1, ..., t ` 2, to hedge at time t and state j, we need to keep
∆tpStpjqq units of risky asset in the replicating portfolio and V pt, Stpiqq ´ ∆tpStpjqqStpjq

in cash, where ∆tpSq is given by (2.3.4), i.e.

∆pt, Sq :“ V pt ` 1, Suq ´ V pt ` 1, Sℓq

Spu ´ ℓq
for t ă τ˚.

Notice that hedging an American contingent claim is only matters before the time of the
exercise. At the time of the exercise or thereafter, there is no need to hedge. However, if
the holder of the American claim decides not to exercise at time τ˚, the issuer can continue
hedging with no hassle. For example, in Example 4.0.2 with K “ 2, it is optimal for the

1The running maximum at time t is the maximum of the price until or at time t.
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holder to exercise the option at the beginning, where the price of asset is $ 1. Therefore,
the issuer need $ 1 to replicate. However, if the holder continues, the replication problem
in the next period leads to solving the following system of equation.

#

2.1a ` 1.1b “ .4485
.6a ` 1.1b “ 1.4000

which yields a “ ´1.903 and b “ 2.3107. Therefore, the issuer needs $ a ` b “ .4077 to
replicate the option which is less than $ 1 if the holder exercises the option.

Exercise 4.1.2. Consider a two-period binomial model for a risky asset with each period
equal to a year and take S0 “ $1, u “ 1.2 and ℓ “ 0.8. The interest rate for both periods is
R “ .05.

a) If the asset pays 10% divided yield in the first period and 5% in the second period,
find the price of an American and European call options with strike K “ .8.

b) Construct the replicating portfolio for both American and European call option.

4.2 Pricing American option in the Black-Scholes model

In continuous time, including Black-Scholes model, the definition of exercise policy (stop-
ping time) for American options is not easy to define. The definition needs to use filtration
and σ-algebra from measure theory2. Here we avoid technical discussion of stopping times
and only present the solution for American option in the Black-Scholes model.
First notice that Proposition 4.1.1 implies that the American call option is Black-Scholes

model has the same price as European call if the underlying does not pay any dividend.
Therefore, our focus here is on the derivatives such as American put or American call on
a dividend-paying asset.
The key to solve the American option problem in the Black-Scholes model is to set up a

free boundary problem. This type of problems are widely studied in physics. For example,
in order to understand how an ice cube is melting over time, we need to solve a free
boundary problem. Or if we push an elastic object to a certain shape, after releasing, the
shape starts changing in a certain way which can be realized by solving a free boundary
problem. See Figure 4.2.1.
Another simple example occurs if we add obstacle underneath a hanging elastic rubber.

An elastic rubber fixed at two level points takes shape as a piece of parabola shown in left
image in Figure 4.2.2. The equation satisfied by the free rubber is u2 “ c where the constant
c depends on the physical properties of the rubber. If we position an obstacle underneath
the rubber such that the elastic rubber is touched, then it changes the shape of the red

2For more information see for example [23, 31] or for a more advanced text see [17, Chapter 1].
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Figure 4.2.1: Exterior membrane of a tube (purple shape) is forcefully shaped into a
dumbbell (red shape). Upon release of the forces, the surface of the shape starts moving;
each point moves at a speed proportional to the curvature of the surface. Eventually, it
returns back to the original shape. The picture is adopted from [12].
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curve shown in right image in Figure 4.2.2. The position of the red curve satisfies the
same equation u2 “ c but only at the points where the rubber in not touching the obstacle.
Inside the touching region px0, x1q, the rubber takes the shape of the obstacle. At the two
endpoints of touching region, the shape of the rubber is once continuously differentiable;
i.e., if the upx0q “ upx1q “ y0 the height of the obstacle and u1px0q “ u1px1q “ 0.

x0 x0 x1

y0

Figure 4.2.2: The blue curve on the left shows the position of a free elastic hanging at
two points. The red curve shows the same elastic rubber hanging at the same points but
bounded below by an obstacle.

After this short introduction, we come back to the problem of pricing and hedging Ameri-
can option. For the sake of simplicity, we only consider simple case where there is only one
free boundary. This for example occurs when we have an American put or an American
call on a dividend-paying asset. Below, we list the important facts that you need to know
about the free boundary.

a) The domain for the problem tpt, Sq : t P r0, T s, and S P r0, 8qu is divided into to
parts separated by a curve C :“ tpt, S˚ptqq : t P r0, T su. The curve C is called free
boundary.

b) On one side of the boundary it is not optimal to exercise the option. This side is
called continuation region, e.g. if the asset price Ss ą S˚psq for all s ď t, it has never
been optimal to exercise the option before or at time t.

c) The other side of the boundary is called exercise region, e.g. if the asset price St ď

S˚ptq, then it is optimal to exercise the option at time t. Therefore, the optimal
stopping time is the first time that the pair pt, Stq hits the exercise region. More
precisely, the asset price St hits the free boundary at time t at point S˚ptq.

τ˚ :“ inf tt ď T : St “ S˚ptqu .
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It is important to notice that the exercise boundary is an unknown in pricing American
options in continuous time. The other unknown is the price of the American option. We
next explain that finding the price of the American option also gives us the free boundary.
The relation between these two is lied in the following representation of the stopping policy.
For an American option with payoff gpt, Stq, we have the optimal stopping τ˚ given by

τ˚ “ inf tt ď T : V pt, Stq “ gpt, Stqu .

See [24] for more details. Therefore, finding the price of American option is the first priority
here, which will be explained in the sequel.

Finding the edges of exercise boundary

So far, we learned that the domain of the problem is split into continuation boundary and
exercise boundary; e.g. for American put at each time t, p0, S˚ptqq is the interior of exercise
region and pS˚ptq, 8q is the interior of the continuation region. determining continuation
region is the matter of guess-and-check; we must look at the payoff of the American option
to guess the topology of the continuation region. One general rule is that it is not
optimal to exercise in the out of money region or where the payoff takes its
minimum value. We consider the following examples to clarify this rule:

a) American put. An American put option with strike K is out-of-money if St ą

K, and since it is not optimal to exercise in the out-of-money region, the exercise
boundary should be inside the in-the-money region, i.e., S˚ptq ď K. See Figure 4.2.3
on the left. At the maturity (t “ T ), S˚pT q “ K.

b) American call. An American call option with strike K on a dividend-paying asset
is out-of-money if St ă K, and since it is not optimal to exercise in the out-of-
money region, the exercise boundary should be inside the in-the-money region, i.e.,
S˚ptq ě K. See Figure 4.2.3 on the left. At the maturity (t “ T ), S˚pT q “ K.

c) Straddle. Several other options including strangle, bull and bear spread, etc can also
be argued in the similar fashion. However, we only explain it for straddle. First notice
that one can shift the payoff of a straddle option by cash amount of K

2 so that the new
payoff is positive. The key to analyze the straddle is that it is the least desirable to
exercise the option at and around the minimum point. Therefore, we can guess that
there are two free boundaries, S˚

1 ptq and S˚
2 ptq , located symmetrically on two sides of

the minimum point of the payoff K. At the maturity (t “ T ), S˚
1 pT q “ S˚2pT q “ K;

the free boundaries collapse to K.

The position of the free boundary with respect time in the three examples is sketched in
Figure 4.2.5.
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K K

St St

S∗(t) S∗(t)

Figure 4.2.3: Left: Free boundary of American put at time t. Right: Free boundary of
American call (on dividend-paying asset) at time t. The continuation region in marked
with |—|.

K

K
2

St

g(St)

S∗
1
(t) S∗

2
(t)

K

K
2

St

g(St)

S∗
1
(t) S∗

2
(t)

Figure 4.2.4: Two free boundaries of straddle.The continuation region in marked with
|—|. The free boundaries can occur both on the positive regions of the payoff and on
the negative region of the payoff. If the time-to-maturity is long, we guess that the free
boundaries are wides apart and as time-to-maturity decreases, they get closer.

Remark 4.2.1. The price of an American option with payoff equal to g1pSq ` g2pSq is
not equal to, but only smaller than, the summation of prices of an American option with
payoff g1pSq and an American option with payoff g2pSq Similar phenomenon is observed
in Exercise 1.3.3.

Smooth fit

The main tool in finding the free boundary and to evaluate American options in the prin-
ciple of smooth fit.
Let’s denote the price of the American option at time t when the asset price is equal to

St “ S by V pt, Sq. We provide the methodology for American put option. For other cases,
the method can be adopted after necessary modifications. Before presenting this principle,
we shall explain that in the continuation region, the price function V pt, Sq of the American
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Figure 4.2.5: Sketch of the position of American option exercise boundary in time (hor-
izontal axis). Left: American put. Middle: American call (dividend). Right: American
Straddle.

put option satisfies Black-Scholes equation, i.e.
$

’

&

’

%

BtV pt, Sq ` σ2S2

2 BSSV pt, Sq ` rSBSV pt, Sq ´ rV pt, Sq “ 0 for S ą S˚ptq

V pt, Sq “ gpt, Sq for S ď S˚ptq

V pT, Sq “ gpT, Sq;
. (4.2.1)

Therefore, S˚ptq serves as a boundary for the above equation. However, S˚ptq itself is an
unknown. With the Black-Scholes equation, we have two unknowns but only one equation.
Principal of smooth fit provides a second equation.

Proposition 4.2.1 (Principal of smooth fit). Assume that the payoff gpt, Sq of the Ameri-
can option is twice continuously differentiable with respect to S and continuous in t. Then,
at the free boundary S˚ptq, we have

V pt, S˚ptqq “ gpt, S˚ptqq, and BSV pt, S˚ptqq “ BSgpt, S˚ptqq,

for all t ă T .

For example for American put we have gpt, Sq “ pK ´Sq`. Therefore, principle of smooth
fit implies that V pt, S˚ptqq “ pK ´ S˚ptqq` and BSV pt, S˚ptqq “ ´1.
To see how smooth fit can be used in pricing American options, we provide some exactly

solvable example in the following. These examples are called perpetual American options
with maturity T “ 8. As a result, the price of the American option does not depend
on time and the term BtV in PDE (4.2.1) vanishes. Therefore, the pricing function V pSq

satisfies the ODE
σ2S2

2
V 2pSq ` rSV 1pSq ´ rV pSq “ 0,

in the continuation region.
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Example 4.2.1 (Perpetual American put option). A perpetual American option is an
option with maturity T “ 8. In practice, there is no perpetual option. However, if the
maturity is long (10 years), then one can approximate the price with the price of a perpetual
option.

The key observation is that since the Black-Scholes model is time-homogeneous, the free
boundary of the perpetual American put option does not depend on time, i.e., S˚ptq “ S˚

for some unknown constant S˚ ă K. On the other hand, since the time horizon is infinite,
the price V pt, Sq of the American put does not depend on t, i.e., BtV pt, Sq “ 0. Thus, we
have

σ2S2

2
V 1pSq ` rSV 1pSq ´ rV pSq “ 0.

The general solution of the above equation is given by

V pSq “ c1S ` c2S´ 2r
σ2 .

One can argue that c1 must be equal to 0. Since as S Ñ 8, the option goes deep out-of-
money and becomes worthless. To find c2, we use principle of smooth fit.

c2pS˚q
´ 2r

σ2 “ K ´ S˚

c2 “
σ2

2r
pS˚q

2r
σ2 `1.

Thus, S˚ “ rK

r` σ2
2

and

V pSq “

$

’

&

’

%

K ´ S S ě rK

r` σ2
2

σ2

2r

´

rK

r` σ2
2

¯
2r
σ2 `1

S´ 2r
σ2 S ă rK

r` σ2
2

.

Example 4.2.2 (Perpetual American call option on continuous dividend-paying asset).
Consider a continuous constant dividend rate q ą 0. The free boundary in this case is
given by a constant S˚ with S˚ ą K and the price of American option satisfies

σ2S2

2
V 2pSq ` pr ´ qqSV pSq ´ rV pSq “ 0.

The general solution of the above equation is given by

V pSq “ c1Sγ1 ` c2Sγ2 ,
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where γ1 and γ2 are roots of

σ2

2
γ2 `

´

r ´ q ´
σ2

2

¯

γ ´ r “ 0.

Notice that γ1 and γ2 have opposite sign and the positive one is strictly larger than 1. With
out loss in generality, we assume that γ1 ă 0 ă 1 ă γ2.
One can argue that c1 must be equal to 0. Since as S Ñ 0, the option goes deep out-of-

money and becomes worthless. To find c2, we use principle of smooth fit.

c2pS˚qγ2 “ S˚ ´ K

c2 “
1

γ2pS˚qγ2´1 .

Thus, S˚ “
γ2K
γ2´1 and

V pSq “

#

S ´ K S ď
γ2K
γ2´1

1
γ2

pS˚q1´γ2Sγ2 S ą
γ2K
γ2´1

.

Exercise 4.2.1. Formulate and solve the free boundary problem for the perpetual American
options with following payoffs.

a) pS ´ Kq` ` a where a ą 0.

b) pK ´ Sq` ` a where a ą 0.

c) Straddle

d) Strangle

e) Bull call spread

f) Bear call spread

American option with finite maturity

Unlike perpetual American option, when T ă 8, there is no closed-form solution for the free
boundary problem (4.2.1). Therefore, numerical methods should be used to approximate
the solution.
The simplest among numerical methods is the binomial approximation. One needs to

choose large number of periods N and apply the algorithm of “Pricing American options
in the binomial model”. The parameters of the binomial model u, ℓ , and R can be
chosen according to symmetric probabilities, subjective return, or any other binomial which
converges to the specific Black-Scholes model.
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The finite-difference scheme can be employed to solve free boundary problem numerically.
Similar to Section (3.3.10), one can apply the change of variables Upτ, xq “ e´rτ V pT ´

τ, erτ`xq, to derive a heat equation with free boundary for U , i.e.
$

’

&

’

%

Bτ Upτ, xq “ σ2

2 BxxUpτ, xq ` rBxV pτ, xq ´ rUpτ, xq for x ą x˚pτq

Upτ, xq “ gpT ´ τ, exq for x ď x˚pτq

Up0, xq “ gpT, exq

,

where x˚pτq “ lnpS˚pτqq.
For the simplicity, we only consider American put option, where we have Upτ, xq ě gpT ´

τ, exq. Whether we want to apply explicit or implicit scheme to the above problem, because
of the free boundary, we need to add an intermediate step between step i and step i ` 1
of the scheme. Suppose that the approximate solution Ûpτi, xjq at τi is known for all j.
Therefore, finite-difference scheme (3.2.19) or (3.2.20) provides an approximate solution,
denoted by Ûpτi` 1

2
, xjq for the heat equation without including the free boundary3. Then,

to find an approximate solution Ûpτi`1, xjq for the free boundary problem at τi`1, one only
needs to set

Ûpτi`1, xjq :“ maxtÛpτi` 1
2
, xjq, gpT ´ τ, exj qu.

To summarize we have the following:
#

Ûpτi` 1
2
, ¨q :“ AÛpτi, ¨q

Ûpτi`1, xjq :“ maxtÛpτi` 1
2
, xjq, gpT ´ τ, exj qu @j

.

Here A can be implicit, explicit or mixed scheme.
The above method is in the category of splitting method, where there is one or more

intermediate steps in the numerical schemes to go from step i to step i ` 1.
The splitting method described in this section can also be applied directly to Black-Scholes

equation with free boundary
$

’

&

’

%

Bτ V pτ, Sq “ σ2S2

2 BSSV pτ, Sq ` rSBSV pτ, Sq ´ rV pτ, Sq for S ą S˚pτq

V pτ, Sq “ gpT ´ τ, Sq for S ď S˚pτq

V p0, Sq “ gpT, Sq;
.

The CFL condition is not different in the case of free boundary problems.
The Monte Carlo methods for American options are more complicated than for the Eu-

ropean options and in beyond the scope of this lecture notes. For more information of the
Monte Carlo methods for American options, see [19], [7], or the textbook [15].

3The subscript in τi` 1
2

indicate that finite-difference evaluation in each step in an intermediate step.
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American call option on discrete dividend-paying asset

Unlike continuous dividend problem, the discrete dividend cannot be solved as a single
free boundary problem. Consider an asset which pays dividend yield of d P p0, 1q at times
t1 ă t2 ă ... ă tn “ T . Proposition 4.1.1 suggests that at any time t P rti, ti`1q between
the times of dividend payments it is better to wait and not to exercise. However, at time ti

of the dividend payment, the price of the asset decreases by the dividend and so does the
price of the call option. Therefore, if the continuation is not optimal, the option should be
exercises at the moment just before the time of a dividend payment.
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A Convex optimization
In this section, we briefly review the important result that we need from linear and convex
optimization for this course. We start with reminding the notion of convex set and convex
function.

A.1 Convex functions

Definition A.1. A set A Ď Rd is called convex if for any λ P p0, 1q and x, y P A, we have

λx ` p1 ´ λqy P A.

In other words, a convex set is a set which contains all the segments with endpoints inside
the set.

Example A.1. The unit disk tx P Rd : |x| ď 1u and the unit cube r0, 1sd are convex
sets. The volume given by inequalities ai ¨ x ď bi for i “ 1, ..., n, ai P Rd and bi P R
(enclosed within n hyperplanes) is a convex set. Euclidean space Rd and the empty set are
also convex.

Definition A.2. Let A be a convex set. A real function f : A Ď Rd Ñ R is called convex
if for any λ P p0, 1q and x, y P Rd, we have

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq.

A function f is called concave if ´f is convex. The convexity (concavity) is called strict if
the inequality above is strict when x‰y.

Proposition A.1. A set A Ď Rd is called convex. Then, a function f : A Ď Rd Ñ R is
convex if and only if

f

˜

n
ÿ

i“1
λixi

¸

ď

n
ÿ

i“1
λifpxiq,

for all x1, ..., xn P A and λ1, ..., λn P R` with
řn

i“1 λi “ 1.

If a convex function f is twice differentiable, then the Hessian matrix of second derivatives
of f , ∇2f , has all eigenvalues nonnegative. In one dimensional case, this is equivalent to
f2 ě 0.
However, not all convex function are twice differentiable or even differentiable. We actually

know that all convex functions are continuous. In addition, we can show that the one-sided
directional derivatives of a continuous function exits.

Proposition A.2. Let A be a convex set and f : A Ď Rd Ñ R be a convex function. Then,
for all x in the interior of A and all vectors v P Rd, the directional derivative of f at x is

191



A. CONVEX OPTIMIZATION

the direction of v,

∇vfpxq :“ lim
εÑ0`

fpx ` εvq ´ fpxq

ε

exits and satisfies fpx ` tvq ě fpxq ` t∇vfpxq for all t ě 0. In particular, f is continuous
at all points of A.
In one dimensional case, for a convex functions f the above Proposition implies that the

right and left derivatives, f 1p¨`q and f 1p¨´q, exist at all points, and in particular a convex
function is always continuous.
The above proposition has an important implication about the tangent hyperplane to a

convex function.
Corollary A.1. Consider a convex function f and x0 P Rd. Then, there exists some
u P Rd such that the hyperplane y “ fpx0q ` px ´ x0q ¨ u always lies underneath the surface,
i.e.

fpxq ě fpx0q ` px ´ x0q ¨ u for all x P Rd.

When f is differentiable, the linear approximation of f is always under-approximating the
function, i.e.

fpxq ě fpx0q ` px ´ x0q ¨ ∇fpx0q for all v P Rd.

If a function f is twice differentiable, the Hessian ∇2f is the matrix which contains all
second derivatives of the function f , i.e.

”

B2f
BxiBxj

ı

dˆd
. For twice differentiable function one

can provide a criteria for convexity based on the eigenvalues of the Hessian matrix.
Corollary A.2. If all eigenvalues of the Hessian matrix ∇2f are nonnegative (positive)
at all points, then the function f is convex (resp. strictly convex).
One can also use the Hessian matrix to find the local minimum and maximums of a

function by checking its local convexity and concavity which is given in the following result.
Recall that a point x0 for a differentiable function is called critical if ∇fpx0q “ 0.
Proposition A.3. A critical point x0 for a differentiable function f is a local minimum
(resp. maximum) if and only if f is convex (resp. concave) in a neighborhood of x0.

As a result of the above proposition we have the second order derivative test in multivariate
calculus.
Proposition A.4. A critical point x0 for a second order differentiable function f is

i) a local minimum if the Hessian ∇2fpx0q is positive-definite.

ii) a local maximum if the Hessian ∇2fpx0q is negative-definite.

iii) a saddle point if the Hessian ∇2fpx0q has both negative and positive eigenvalues.

Exercise A.1. Find and categorize all the critical point of the function fpx, yq “ xe´
x2`y2

2 .

Exercise A.2. Find and categorize all the critical point of the function fpx, yq “ xye´
x2`y2

2 .
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A.2 Convex constrained optimization

Consider a convex function f : D Ď Rn Ñ R where the set D is given by

K “ tx P Rn : gipxq ď 0 for i “ 1, ..., mu.

We assume that all functions gi for i “ 1, ..., m are convex and therefore the set K is closed
and convex. The primal problem is to minimize f in D, i.e.

min fpxq subject to constraints gipxq ď 0 for i “ 1, ..., M.

If f is strictly concave, then the optimizer is unique if it exists. Notice that the existence
of the optimizer is subject to nonemptiness of the set D.
An equality constraint can also be described in the above form if the function gi is affine4

and both gipxq ď 0 and ´gipxq ď 0. For later analysis, we specify constraint equalities in
the problem separately and define the feasibility set by

K “ tx P Rn : gipxq ď 0 for i “ 1, ..., m and hjpxq “ 0 for j “, ..., ku.

Notice that since gis are convex and hjs are affine, K is convex, for any number λ P p0, 1q

and any x, y P K, λx ` p1 ´ λqy P K. Given the convex functions gi for i “ 1, ..., m and
affine functions hj for j “ 1, ..., k, the convex constrained optimization problem is given by

P :“ min fpxq subject to constraints

#

gipxq ď 0 for i “ 1, ..., m

hjpxq “ 0 for j “ 1, ..., k
. (A.1)

Function f is called the objective function and the inequalities gi ď 0 and equations hj “ 0
are called constraints. If K ‰ H, the problem is called feasible. if fpxq is strictly convex,
then the minimizer is unique; for any two distinguished minimizers x1 and x2 with minimum
value P “ fpx1q “ fpx2q, we have f

`

x1`x2
2

˘

ă 1
2pfpx1q ` fpx2qq “ P which contradicts

with that x1 and x2 are minimizers.
Duality method is one of the useful approaches to solve the convex optimization problems.

To present the dual problem, we first introduce the Lagrangian

Lpµ, λq “ min
xPRn

!

fpxq ` µ ¨ gpxq ` λ ¨ hpxq

)

.

Here µ P Rm and gpxq “ pg1pxq, ..., gmpxqqq, λ P Rk and hpxq “ ph1pxq, ..., hmpxqqq and ¨ is
the dot product in the proper Euclidean space. Then, the dual problem is given by

D :“ max
µPRm

` , λPRk
Lpµ, λq.

4An affine function is a linear function plus a constant; hpxq “ a ¨ x ` b, where a P Rm and b P R.
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Notice that for x P K, Lpµ, λq ď fpxq ` µ ¨ gpxq ` λ ¨ hpxq ď fpxq. Therefore, Lpµ, λq ď

minxPK fpxq and thus, D ď P which is called the weak duality. We can show that under
the following condition that the strong duality holds.

Assumption A.1 (Slater condition). There exist a point x0 such that gipx0q ă 0 for all
i “ 1, ..., m and hjpx0q “ 0 for all j “ 1, ..., k.

Theorem A.1 (Duality). Let f , gi for i “ 1, ..., n and hj for j “ 1, ..., m are convex
and Slater condition A.1 holds. Then D “ P . In addition, the dual maximizer pµ˚, λ˚q P

Rm
` ˆ Rk exists whenever D ą ´8, i.e.

max
µPRm

` , λPRk
Lpµ, λq “ Lpµ˚, λ˚q.

A proof of this theorem can be found in [8, Section 5.3.2]. The following example shows
if Slater condition fail, the strong duality does not necessarily hold.

Example A.2. Take d “ m “ 2, n “ 1 with fpx1, x2q “ x2
1 ` x2, g1pxq “ x2, h1pxq “

x1 ` x2 and h2pxq “ x1 ´ x2. Since feasibility set is a singleton; K “ tp0, 0qu, the Slater
condition does not hold. Therefore, P “ fp0, 0q “ 0. On the other hand, Lpµ, λq “ ´8

unless λ “ 0. Specifically, Lpµ, 0q “ minpx1,x2q fpx1, x2q ` µx2. Then, we also have

Lpµ, 0q “ min
x1

x2
1 ` min

x2
x2p1 ` µq “ ´8,

since µ ě 0. Therefore, D “ ´8 ă P “ fp0, 0q “ 0.

Remark A.1. Notice that the duality can sometimes hold when the Slater condition does
not hold or when the problem is not even feasible. For instance, if K “ H, since minH “ 8,
P “ 8. On the other hand, for and arbitrary point x0, let I and J respectively be the set
of all indices i and j such that gipx0q ą 0 and hjpx0q ‰ 0. Since K “ H, at least one of I
or J is nonempty. Then, choose µ and λ such that µi “ 0 if and only if i R I and λj “ 0
if and only if j R J . Therefore,

Lpµ, λq ď fpx0q ` µ ¨ gpx0q ` λ ¨ hpx0q.

By sending µi Ñ `8 for i P I and λj Ñ ˘8 whether hjpx0q is negative/positive, we obtain
that maxµPRm

` , λPRk Lpµ, λq “ `8.

One of the practical methods of finding the optimal points for primal and dual problem is
through the KKT5, which provided a necessary condition of optimality. Additionally with
Slater condition, KKT is also sufficient.

5Karush-Kuhn-Tucker
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Theorem A.2 (KKT optimality condition). Assume that f , g and h are differentiable
and x˚ P Rd and pµ˚, λ˚q P Rm

` ˆ Rk are respectively the optimizer of the primal and dual
problems. Then,

Bxℓ
fpx˚q ` µ ¨ Bxℓ

gpx˚q ` λ ¨ Bxℓ
hpx˚q “ 0 for ℓ “ 1, ..., n

µ˚
i gipx

˚q “ 0 for i “ 1, ..., m

hjpx˚q “ 0 for j “ 1, ..., k

. (A.2)

Condition µ˚
i gipx

˚q “ 0 is called the complementary slackness condition. In addition, if
the Slater condition A.1 holds and (A.2) is satisfied, then x˚ P Rd and pµ˚, λ˚q P Rm

` ˆ Rk

are respectively the optimizer of the primal and dual problems.

Example A.3. We want to find the maximum volume of an open lid box with a fixed
surface area s by solving the constrained maximization problem

max xyz subject to constraints xy ` 2xz ` 2yz “ s.

Notice that since the Slater condition holds for x0 “ y0 “
?

s and Z0 “ 0, the dual problem
and primal problem have the same value. The KKT condition suggest to solve the following
to find candidates for the primal and dual problem.

xy ` 2µpx ` yq “ 0
xz ` µpx ` 2zq “ 0
yz ` µpy ` 2zq “ 0
xy ` 2xz ` 2yz “ s

Solving the above system of equation yields

x˚ “ y˚ “ 2z˚ “

?
3s

3
and µ˚ “ ´

?
3s

12
,

and the maximum volume is s
?

3s
16 .

Exercise A.3. Find the volume of the largest box under the constraint that the sum of the
diagonals of the three sides sharing a corner equal is to s.

The duality method, while can be used as a computational tool, it can also provide us
with some qualitative results about the optimization problem that we are studying. For
instance, in Section 2.1.6, the dual problem for evaluation of model risk is the problem of
superreplication. In the next sections, we formulate the dual problem for the linear and
quadratic programming.

195



A. CONVEX OPTIMIZATION

Linear programming

Linear optimization is when the objective function f and the constraints are all linear;
for some constants p P Rd, ai P Rd, bi P R for i “ 1, .., m, and cj P Rd and dj P R for
j “ 1, ..., k.

fpxq “ p ¨ x, gipxq “ ai ¨ x ` bi, and hjpxq “ cj ¨ x ` dj .

Therefore,

P :“ min p ¨ x subject to constraints

#

ai ¨ x ` bi ď 0 for i “ 1, ..., m

cj ¨ x ` dj “ 0 for j “ 1, ..., k
. (A.3)

Let matrices A and C consist of rows a1, ..., am and c1, ..., ck, respectively and set d :“
pd1, ..., dkq and b :“ pb1, ..., bmq as column vectors. Then, the linear programming can be
written in the following compact form.

min p ¨ x subject to constraints

#

Ax ` b ď 0
Cx ` d “ 0

.

Each equation cj ¨ x ` dj “ 0 is a hyperplane and each inequality ai ¨ x ` bi ď 0 is a half-
space in the d-dimensional Euclidean space. The feasibility set K can easily be empty, if the
constraints are made by parallel hyperplanes; for example aix ` bi ď 0 and ai1x ` bi1 ď 0
with ai “ ´ai1 and bi “ ´bi1 ´ 1. To avoid this situation, we assume that the vectors
a1, ..., am and c1, ..., ck are linearly independent in Rd. As a result, m ` k ď d the matrices
A and C are full rank, where A and C are matrices with rows a1, ..., am and c1, ..., ck,
respectively. In addition, we need to assume that the column vector d “ pd1, ..., dkq is in
the range of ´C and the orthant ty P Rm : y ě bi for i “ 1, ..., mu intersects with the
range of ´A, Cx ` d “ 0 and Ax ` b ď 0 together have a solution for x. and are column
vectors.

The Lagrangian for the linear programming is given by

Lpµ, λq “ min
xPRd

tp ¨ x ` µ ¨ pAx ` bq ` λ ¨ pCx ` dqu .

Notice that if pµ, λq are such that pT ` pµ˚qTA ` pλ˚qTC ‰ 0 then,

min
xPRd

!

ppT ` µTA ` λTCq ¨ x
)

` µTb ` λTd “ ´8.

Therefore,

Lpµ, λq “

#

´8 pT ` pµ˚qTA ` pλ˚qTC ‰ 0
µTb ` λTd pT ` pµ˚qTA ` pλ˚qTC “ 0

.
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Therefore, the dual problem can be written as

D :“ max
µě0,λ

µTb ` λTd subject to constraints pT ` pµ˚qTA ` pλ˚qTC “ 0 (A.4)

Theorem A.3 (Linear programming duality). Consider the following two linear program-
ming problems (A.3) and (A.4). If either of the problems has an optimal solution, so does
the other one and both problems have the same value, D “ P .

Exercise A.4. Write the dual problem and KKT condition for the standard linear pro-
gramming equation:

min p ¨ x subject to constraints

#

xi ď 0 for i “ 1, ..., d

cj ¨ x ` dj “ 0 for j “ 1, ..., k
.

Exercise A.5 (Project). Study the following algorithms for the linear programming prob-
lem in Exercise 2.1.10. Find a package that has both methods and compare the running
time of each method on the same problem.

a) Simplex method

b) Interior points

Quadratic programming

Consider a positive-definite symmetric6 d-by-d matrix M , ai P Rd, bi P R for i “ 1, .., m,
and cj P Rd and dj P R for j “ 1, ..., k.

fpxq “
1
2

x ¨ Mx, gipxq “ ai ¨ x ` bi, and hjpxq “ cj ¨ x ` dj .

Therefore, the quadratic optimization problem is given by

min 1
2

x ¨ Mx subject to constraints

#

ai ¨ x ` bi ď 0 for i “ 1, ..., m

cj ¨ x ` dj “ 0 for j “ 1, ..., k
. (A.5)

The Lagrangian for the linear programming is given by

Lpµ, λq “ min
xPRd

"

1
2

x ¨ Mx ` µ ¨ pAx ` bq ` λ ¨ pCx ` dq

*

.

6A matrix A is symmetric if AT “ A and is positive-definite if all its eigenvalues are
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The dual problem for (A.5) is also a quadratic problem; the minimizer for x in the La-
grangian function Lpµ, λq is given by xpµ, λq “ ´M´1pATµ ` CTλq and therefore La-
grangian Lpµ, λq is a quadratic function of µ and λ. Therefore,

Lpµ, λq “ ´
1
2

µ ¨ Ãµ ` µ ¨ b ´
1
2

λ ¨ C̃λ ` λ ¨ d,

where Ã “ AM´1AT and C̃ “ CM´1CT are indeed nonnegative definite symmetric matri-
ces. The dual problem can now be decoupled into two problems;

max
µě0

"

´
1
2

µ ¨ Ãµ ` µ ¨ b

*

and max
λ

"

´
1
2

λ ¨ C̃λ ` λ ¨ d

*

The maximization problem on λ is an unconstrained problem which leads to λ˚ “ C̃´1d
when C̃ is invertible. The maximization problem on µ is, however, a constrained problem.
One way to find the primal and the dual optimal variables X˚, µ˚ and λ˚ is through KKT
condition in Theorem (A.2), which is written as

Mx˚ ` ATµ˚ ` CTλ˚ “ 0
µ˚

i paix
˚ ` biq “ 0 for i “ 1, ..., m

cjx˚ ` dj “ 0 for j “ 1, ..., k

When the dual maximizer µ˚
i ą 0, then by KKT condition the ith constraint must hold

with equality, aix
˚ ` bi “ 0. In this case, we call the constraint an active constraint.

Exercise A.6 (Project). Study the following algorithms for the linear programming prob-
lem in Section 1.2. Find a package that has both methods and compare the running time
of each method on the same problem.

a) Active set

b) Interior points

Computational tools for convex optimization problems

The computational methods for convex optimization problems are vast and we do not
intend to study them in this book. Instead, we briefly introduce some of the tools which
you can use to solve optimization problems in finance.
A well-developed convex optimization tool is CVX under MatLab created by Michael Grant

and Stephen Boyd. The academic (noncommercial) version of the toolbox is free and under
a GNU General Public License; it can be used or redistributed but not altered. However,
it works under commercial software MatLab. The home of CVX is http://cvxr.com.
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Another convex optimization tool is CVXOPT which is a Python Program created by Martin
Andersen, Joachim Dahl, and Lieven Vandenberghe. The license is also a GNU General
Public License. The home of CVXOPT is https://cvxopt.org.
As a fun fact, Stephen Boyd from Stanford University and Lieven Vandenberghe from

UCLA are the authors of the convex optimization book [8] which has more than 40,000
citations and is widely used as textbook for optimization courses.

B A review of probability theory
In financial modeling, most uncertainties can effectively bemodeled by probability. Prob-
ability was not considered part of mathematics until approximately four hundred years
ago by a series of correspondence between Blaise Pascal (1623–1662) and Pierre de Fermat
(1607–1665). Most of the problems were motivated by observation in gambling and games
of chance.

Example B.1 (Empirical observation). One wins a game of rolling one die if he achieves
at least one six in four trials. In a different game, one wins in rolling two dice if he
achieves at least one double six in twenty-four trials. Chevalier de Méré a.k.a. Antoine
Gombaud (1607–1684) wrote to Pascal that these two games must have the same probability
of winning; in the latter, the chance of getting a favorable outcome is a round in six times
less than the former, while the number of trials is six times more. Chevalier de Méré,
however, discovered that the two games are not empirically the same. More specifically,
he observed that the first game has a winning chance of slightly more than 50% while the
second game’s chance is slightly greater than that. Pascal and Fermat discussed the problem
until Fermat eventually solved it. The solution is as follows.

The chance of losing the first game is
´

5
6

¯4
. Therefore, the change of

winning is 1 ´

´

5
6

¯4
« 0.5177.The second problem has the change of

winning equal to 1 ´

´

35
36

¯24
« 0.4914.

It is astonishing that Chevalier de Méré could empirically distinguish a difference of 0.0263
between the two chances of winning.

Example B.2 (Problem of points). Three players are playing over a stake. The condition
of winning is that whoever wins a certain number of rounds takes the whole stake. Player
1 needs one more round to win the stake, while players 2 and 3 need two rounds. However,
outside circumstances dictates that they have to suddenly stop playing and agree to divide
the stake according to current situation of the game. Obviously, player 1 deserves a greater
share of the stake than the other two players, who should receive the same share. What is
the fair share of the stake for each player?
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The game is over after at most three rounds. Therefore, for each pos-
sible outcome of the next three rounds a winner can be decided. For
example, if the outcome of the next three rounds is p2, 3, 1q (player 2
wins, then player 3 wins, and finally player 1 wins), then player 1 is
the winner. There are twenty-seven possible outcomes in the next three
rounds in seventeen of which player 1 wins. Players 2 and 3 each win in
exactly five of the twenty-seven outcomes. Therefore, if all players have
the same chance of winning each round of the game, the stake should
be divided by 17, 5 and 5 between players 1, 2, and 3, respectively.

For about a hundred more years, probability theory continued to be used primarily to
address gambling-related problems, until Jacob Bernoulli (1655–1705), Abraham de Moivre
(1667–1754), and Thomas Bayes (1702–1761) introduced the first limit theorems. Bernoulli
proved that if the probability of heads in tossing a coin is p, then the frequency of heads
in a sequence of n trials converges to p as n Ñ 8. De Moivre showed that the empirical
distribution of the number of heads in n trials converges to a normal distribution.

Law of large numbers. If r is the number of heads in n trials of
tossing a coin with heads probability p, then the probability of that
|p ´ r

n | ě ϵ converges to zero as n Ñ 8.

In n trials of tossing a coin with heads probability p, the probability of r heads is given by
`

n
r

˘

prp1 ´ pqn´r for r “ 0, ..., n. This probability is called the binomial distribution.

De Moivre-Laplace. In the binomial distribution,
`

n
r

˘

prp1´pqn´r „

1?
2π

e´ x2
2 holds when as n Ñ 8 and r´np?

npp1´pq
Ñ x.

The above theorem is an early version of the central limit theorem, which will be presented
later in Theorem B.7 in Section B.4.
Bayes also contributed the concept of conditional probability, which deals with how the

occurrence of a specific event can affect the probabilities of other events. This gave birth to
the concept of conditional probability. Consider the Venn diagram in Figure B.1. Assume
that events A, B, and C have their ex ante probabilities. If we discover that event A has
happened, the ex post probability of A is now equal to 1. Another event B is now restricted
to whatever remains of it inside A, i.e., A X B, and their ex post probabilities are obtained
by rescaling the ex ante probability of A X B by the ex ante probability of A. For example,
the probability of event B given by

ex post probability of A given B “
ex ante probability of A X B

ex ante probability of A
.

In Figure B.1, the ex post probability of C is zero, since the ex ante probability of A X C
is zero.
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BA C

A ∩B

Figure B.1: Given A, the ex post probability of event B is the probability of event B
inside A (A X B) divided by the probability of A.

In the above, we explained how to find the ex post probability in terms of the ex ante
probability. The Bayes formula explains how to obtain the ex ante probability in terms of
the ex post probability. Bayes formula, one of the most influential results in probability,
constructs the foundation of Bayesian statistics. To explain the formula, first we need to
introduce some notations. By PpAq we denote the ex ante probability of event A, and by
PpA|Bq we denote the ex post probability of A given B.

Bayes formula 1.

PpAq “ PpA|BqPpBq ` PpA|BAqPpBAq

If B1, B2, ... are mutually exclusive and

PpB1 Y B2 Y ¨ ¨ ¨ q “ 1,

then
PpAq “ PpA|B1qPpB1q ` PpA|B2qPpB2q ` ¨ ¨ ¨ .

When ex post probabilities of an event A conditional on a certain event B and the ex ante
probability of B are known, one can use Bayes formula to find the ex post probability of
B conditional on A.

Bayes formula 2.

PpB|Aq “
PpA|BqPpBq

PpAq
“

PpA|BqPpBq

PpA|BqPpBq ` PpA|BAqPpBAq

We elaborate on the notion of conditional probability and the Bayes theorem via a famous
example in conditional probability, namely the three prisoners problem.
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Example B.3 (Three prisoners problem). Three suspects (Bob, Kevin, and Stuart) are
equally likely to be convicted. However, the judge has made up his mind and is going
to pronounce one and only one of them guilty the following morning. None of the three
prisoners knows who is going to be announced; however, the warden has been told the name
of the guilty by the judge and has been given strict orders not to pass the information to
the prisoners. Stuart argues with the warden that at least one of the other two, Kevin or
Bob, is not guilty. If the warden names one of the other two, Stuart still cannot know
if he himself is guilty or not. The warden counterargues that if he reveals the name of a
nonguilty person, Stuart’s chance of conviction increases from 1

3 to 1
2 , because now there

are two prisoners one of whom is going to be guilty. Is the warden correct?
To answer the question, we formulate the problem using conditional probabilities. In

this case, if the warden names Bob as not guilty, then the ex ante probability of Stuart’s
conviction is given by

ex ante probability of conviction of Stuart
Ş

Bob named not guilty by the warden
ex ante probability of Bob named not guilty by the warden

.

The ex ante probability of Bob named not guilty by the warden can be calculated using the
Bayes formula. Let’s denote this event by B̃, and let S, K, and B be the events that either
Stuart, Kevin, or Bob, respectively, is announced guilty. By conditional probability, one
needs to calculate

PpS|B̃q “
PpS X B̃q

PpB̃q
.

Since PpS Y K Y Bq “ 1, it follows from the first Bayes formula that

PpB̃q “ PpB̃|SqPpSq ` PpB̃|KqPpKq ` PpB̃|BqPpBq.

Notice that PpKq “ PpBq “ PpSq “ 1
3

7, PpB̃|Sq “ 1
2 , PpB̃|Kq “ 1, and PpB̃|Bq “ 0.

Therefore,
PpB̃q “

1
6

`
1
3

` 0 “
1
2

.

On the other hand,
PpS X B̃q “ PpB̃|SqPpSq “

1
6

.

Therefore, PpS|B̃q “
1
6
1
2

“ 1
3 .

In Example B.3, the revealed information does not change the ex ante probability. This
is, however, a coincidence and not necessarily true. The following exercise addresses this
issue.

7Here we assume that they are equally likely to be pronounced guilty. One can adjust these probabilities
and solve the problem accordingly.
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Exercise B.1. Repeat the solution to Example B.3 with PpKq “ PpSq “ 1
6 and PpBq “ 2

3 .
Beware as here is some ambiguity about how to choose PpB̃|Sq!

Example B.4. In a burglary hearing, there is a probability pG that the suspect is guilty.
In actual fact, the suspect is left-handed. If it is brought before the court that the burglar
is right-handed, the ex post probability that the suspect is guilty vanishes to zero. However,
if the evidence shows that the burglar is left-handed, we need to use the Bayes formula to
find the ex post probability that the suspect is guilty. In this case, let G be the event that
the suspect is guilty and L be the event that the burglar is left-handed that, we assume, has
the same ex ante probability of any individual is left-handed8. Then,

PpG|Lq “
PpL|GqPpGq

PpLq
“

PpGq

PpLq
.

Notice that PpL|Gq “ 1, because the suspect is left-handed. On the other hand,

PpLq “ PpL|GqPpGq ` PpL|GAqPpGAq “ PpGq ` PpL|GAqPpGAq

Notice that PpGq “ pG, PpGAq “ 1 ´ pG, and PpL|GAq is roughly equal to the percentage of
the left-handed population, denoted by pL. Therefore,

PpG|Lq “
pG

pG ` p1 ´ pGqpL
.

Notice that when PL ă 1, then PpG|Lq ą PpGq “ pG, because pG ` p1 ´ pGqpL ă 1. For
instance, when pL “ .1 and pG “ .15, then the ex post probability PpG|Lq is 15

23.5 . If pL “ 0,
then no one in the population is left-handed except for the suspect, which makes him guilty.
If pL “ 1, then everyone in the population is left-handed, PpG|Lq “ pG, and the event L
does not add to the information we already have.

Exercise B.2. Show that if the ex ante probability of event A is 1, then PpB|Aq “ PpBq.

The notion of conditional probability (the handling of new pieces of information in prob-
ability) is one of the most influential tools in applications of probability theory. Most
important applications appear in Bayesian statistics, through which they contribute to all
other areas of science.
We conclude the discussion of early advances in probability theory by mentioning that

these early developments are gathered in Essai philosophique sur les probabilités by Pierre-
Simone Laplace (1749–1827) ([18]). However, the subject still lacked mathematical rigor
compared to other areas of mathematics until a breakthrough happened in the twentieth
century. Andrey Nikolaevich Kolmogorov (1903–1987) initiated the foundation of probabil-
ity theory through measure theory, a topic in mathematical analysis. We provide a more

8It is logical to assume that the probability that a burglar is left-handed is the same as any other
individual.

203



B. PROBABILITY

rigorous treatment of probability theory in Section B.2. In the next section, we present
the discrete theory of probability, which does not need measure theory.

B.1 Basic concepts and definitions of discrete probability

A (finite, countably infinite) sample space is a collection of all possible outcomes of a
random experiment. Any subset A of the sample space Ω is called an event.

Example B.5 (Flipping a coin). The sample space is thead, tailu.

Example B.6 (Arrow-Debreu market model in Section 2.1). The sample space can be
chosen to be t1, ..., Mu, i.e., the collection of all the possible states of the system.

Example B.7 (T -period binomial model). The sample space of the T -period binomial
model in Section 2.3 can be chosen to be the collection of all T -sequences of the form
pa1, ..., aT q where each ai is either u or ℓ. Each sample addresses the complete movements
of the asset price over time.

A probability over a finite (countably infinite) sample space Ω “ tω1, ..., ωM u (Ω “

tω1, ω2, ...u) is a vector π “ pπ1, ..., πM q (π “ pπ1, π2, ...q) of nonnegative values such that
ř

ωPΩ πi “ 1. For simplicity, we write Pπpωjq “ πj if no confusion occurs. The collection
of all subsets of Ω determines the set of all events. The probability of an event A Ď Ω is
then defined by

PpAq :“
ÿ

ωPA

πωi .

Evidently, P satisfies

1) PpHq “ 0,

2) PpAAq “ 1 ´ PpAq for all A Ď Ω, and,

3) If tAnuně1 is a sequence of disjoint events, then

P

˜

ď

ně1
An

¸

“
ÿ

ně1
PpAnq.

Example B.8 (Flipping a coin). In flipping a fair coin, the probability of either heads or
tails is p “ 1

2 . In flipping a unfair coin, the probability of heads is p ‰ 1
2 , and therefore the

probability of tails is 1 ´ p. In two consecutive flips of a fair coin, the probability of having
pH, Hq, pH, T q, pT, Hq, or pT, T q is equally 1{4. If the coin is not fair, then the sample space
is not changed. But the probabilities of these outcomes change to πH “ p and πT “ 1 ´ p
where p P r0, 1s. In two consecutive flips, we have πH,H “ p2, πH,T “ πT,H “ pp1 ´ pq, and
πT,T “ p1 ´ pq2.
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Example B.9 (Single asset T -period binomial model). In a binomial model with T -periods,
a risk-neutral probability assigns the probability πk

uπT ´k
ℓ to an outcome pa1, ..., aT q in which

k of the entities are u and the T ´ k remaining are ℓ.

A random variable X is a function from sample space to Rd, X : ω P Ω ÞÑ Xpωq P Rd. The
values that X takes with positive probability are called the values of the random variable,
x P Rd such that Ppω : Xpωq “ xq ą 0. To simplify the notation, we often write PpX “ xq

for Ppω : Xpωq “ xq. When the sample space is finite or countably infinite, the random
variables can only take finitely of countably infinitely many values. Random variables with
at most countably infinitely many values are called discrete random variables.

Remark B.1. Notice that the values of a random variable are relative to the choice of
probability measure. For example, a random variable X : t0, 1, 2u Ñ R defined by Xpxq “ x
has values t0, 1, 2u relative to probability Pp0q “ Pp1q “ Pp2q “ 1{3. However, relative to a
new probability Qp0q “ Qp1q “ 1{2 and Qp2q “ 0, the set of values is given by t0, 1u.

Example B.10. Recall from Example B.6 that the sample space for the Arrow-Debreu
market model is the set of states Ω “ t1, ..., Mu. Therefore, a random variable is given by
a function X : t1, ..., Mu Ñ R. In particular, the payoff of an asset (the price of an asset
at time 1 for each state of the market) in the Arrow-Debreu market model is a random
variable. For instance, the payoff of asset i given in diagram 2.1.1 is a random variable
Pi,¨ : Ω Ñ R such that

Pi,¨pjq “ Pi,j .

Example B.11 (Bernoulli random variable). Flipping a coin creates a Bernoulli random
variable by assigning values to the outcomes heads and tails. The Bernoulli random variable
X takes the value 1 if the coin turns heads and 0 otherwise. If the coin has a probability
of tails equal to p, then X “ 1 has probability p and X “ 0 has probability 1 ´ p.

Definition B.1. For an event A, the indicator of A is a random variable that takes value
1 if A occurs and 0 otherwise. The indicator of A is denoted by 1A

9. The indicator random
variable 1A is a Bernoulli random variable that takes value 1 with probability PpAq and
value 0 with probability 1 ´ PpAq.

Example B.12 (Binomial random variable). In flipping a coin n times, the binomial
random variable X takes the value of the number of heads. The set of values of X is
t0, ..., nu. If the coin has a probability of heads equal to p, then for x in the set of values,
the probability X “ x is given by

ˆ

n

x

˙

pxp1 ´ pqn´x.

9the indicator is also denoted by χA in some literature.
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Example B.13 (Random walk). In a game of chance, in each round a player flips a coin.
If it turns tails, he gains $1; otherwise, he loses $1. Technically, each round has an outcome
given by 2X ´ 1 where X is a brand new Bernoulli random variable with outcomes 1 and 0.
The player’s accumulated reward after two rounds is a random variable W2 that take values
´2, 0, and 2 with probabilities 1{4, 1{2, and 1{4, respectively. If the coin has a probability
of heads equal p, then PpW2 “ 2q “ p2, PpW2 “ ´2q “ p1´pq2, and PpW2 “ 0q “ 2p1´pqp.
Here, 1 is not among the values of W2, because PpW2 “ 1q “ 0.
If the player continues this game, the sequence of his accumulated wealth at all times,

W0, W1, W2, ...., is called a random walk. At time t, Wt takes values t´t, ´t ` 2, ..., tu for
t “ 1, ..., T . The probability of Wt “ x is given by

ˆ

t

k

˙

pkp1 ´ pqt`1´k with k “
t ` x

2
.

In Example B.13, a proper sample space can be given by

Ω :“ tpa1, a2, ...q ai “ H or T for i “ 1, 2, ...u , (B.1)

when the game is infinite.

Exercise B.3. In Example B.13, calculate PpW2 “ 2 | W1 “ 1q and PpW3 “ ´1 | W1 “ 1q.

Example B.14 (Negative binomial random variable). In flipping a coin, the negative
binomial random variable X counts the number of heads before r number of tails appear.
The set of values of X is tr, r ` 1, ...u. If the coin has a probability of heads equal to p, then
for x in the set of values, the probability X “ x is given by

ˆ

x ` r ´ 1
x

˙

pxp1 ´ pqr.

Exercise B.4. In Example B.14, find an appropriate sample space and an accurate prob-
ability on this sample space.

Example B.15 (T -period binomial model). For the binomial model with T periods, con-
sider the sample space described in Example B.7. Recall from Section 2.3 that in the
binomial model with T periods, the price St of the asset at time t is a random variable that
takes values tS0ukℓt´k : k “ 0, ..., tu. Thus, one can say that under risk-neutral probability,
we have P̂πpSt “ S0ukℓt´kq “

`

t
k

˘

pπ̂uqkpπ̂ℓq
t´k. This is because exactly

`

t
k

˘

of outcomes in
the sample space lead to St “ S0ukℓt´k, and each outcome in the sample space has proba-
bility pπ̂uqkpπ̂ℓq

t´k. Under physical probability, see 2.4.1; the probability of St “ S0ukℓt´k

changes to
`

t
k

˘

pkp1 ´ pqt´k.

Remark B.2 (Random walk as a corner stone of financial models). A binomial model is
related to the random walk in Example B.13 through taking logarithm. If Vt “ lnpStq then
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Vt takes values lnpS0q ` k lnpuq ` pt ´ kq lnpℓq for k “ 0, ..., t. In other words, Vt is the
position of a generalized random walk after t rounds, starting at lnpS0q which moves to
lnpuq or lnpℓq in each round, respective to the outcomes of a coin. If S0 “ 1, u “ e and
ℓ “ e´1, then the random walk Vt is the standard random walk Wt described in Example
B.13. Otherwise, Vt “ lnpS0q ` µt ` σWt where µ “

lnpuq`lnpℓq

2 and σ “
lnpuq´lnpℓq

2 . In other
words,

St “ S0 exp pµt ` σWtq .

Example B.16. Two random variables representing the payoff of two risky assets in the
Arrow-Debreu market model that also includes a zero bond with yield R “ 0, is shown in
Figure B.2. From Exercise 2.1.4, we know that all risk-neutral probabilities are given by
π̂ “ pt{2, p1 ´ tq{2, p1 ´ tq{2, t{2qT with t P p0, 1q. The conditional probability of X “ y

X

p1 = 0

P1,1 = 1

P1,2 = −1

P1,3 = 1

P1,4 = −1

Y

p2 = 0

P2,1 = 1

P2,2 = 1

P2,3 = −1

P2,4 = −1

Figure B.2: Example B.16

given Y “ x, for x “ ˘1 and y “ ˘1, is found below.

PpX “ 1|Y “ 1q “
PpX “ 1&Y “ 1q

PpY “ 1q
“

π̂1
π̂1 ` π̂2

“ t

PpX “ ´1|Y “ 1q “
PpX “ ´1&Y “ 1q

PpY “ 1q
“

π̂2
π̂1 ` π̂2

“ 1 ´ t

PpX “ 1|Y “ ´1q “
PpX “ 1&Y “ ´1q

PpY “ ´1q
“

π̂3
π̂3 ` π̂4

“ 1 ´ t

PpX “ ´1|Y “ ´1q “
PpX “ ´1&Y “ ´1q

PpY “ ´1q
“

π̂4
π̂3 ` π̂4

“ t

(B.2)

Independence

Recall that the conditional probability of event B given that event A has occurred is defined
by

PpB | Aq :“ PpA X Bq

PpAq
.
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The conditional probability gives birth to the important notion of independence. Two
events A and B are called independent if

PpB | Aq “ PpBq,

or equivalently
PpA | Bq “ PpAq.

It is easier to write independence as

PpB X Aq “ PpAqPpBq.

Two random variables X and Y are called independent if each event related to X is inde-
pendent of each event related to Y , i.e.

For all x in values of X and all y is values of Y , we have

PpX “ x, Y “ yq “ PpX “ xqPpY “ yq.

Exercise B.5. Show that two events A and B are independent if and only if the indicator
random variables 1A and 1B are independent.

In modeling random experiments, independence is a common-sense knowledge or an as-
sumption inside a model. For example in a random walk, the outcomes of two different
rounds are assumed independent, because of the belief that two flips of a coin are indepen-
dent trials. As a result, two random variables W5 and W8 ´ W5 are independent.

Exercise B.6. Show that in a random walk, W5 and W8 ´ W5 are independent provided
that the outcome of each round is independent of other rounds.

Defining independence for more than two events (equivalently random variables) is a little
tricky. We call X independent of the sequence of random variables X1, X2, ..., Xn if

PpX “ x, X1 “ x1, X2 “ x2, ..., Xn “ xnq “ PpX “ xqPpX1 “ x1, X2 “ x2, ..., Xn “ xnq.

This indicates that any event related to the values of X is independent of any event related
to the values of X1, X2, ..., Xn, i.e.

PpX P A, pX1, X2, ..., Xnq P Bq “ PpX P AqPppX1, X2, ..., Xnq P Bq.

A finite sequence X1, X2, ..., Xn is called independent sequence of random variables if for
each i, Xi and tXj : j‰iu are independent.
As observed in the following exercise, to show the independence of a sequence of random

variables, it is not enough to check that each pair of random variables Xi and Xj are
independent.
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Exercise B.7. In two consecutive flips of a fair coin, let A be the event that the first flip
turns heads, B be the event that the second flip turns heads and C be the event that only
one of the flips turns heads. Show that A, B, and C are not an independent sequence of
random variables, but they are pairwise independent.

An equivalent definition of independence of a sequence of random variables is as follows.
A finite sequence X1, X2, ..., Xn is called independent if for all subsets A1, ..., An of values
of X1, ..., Xn, respectively, we have

PpX1 P A1, ..., Xn P Anq “ PpX1 P A1q...PpXn P Anq. (B.3)

This can also be extended to an infinite sequence of random variables. An infinite sequence
X1, X2, ... is called independent if each finite subset tXi1 , ..., Xinu makes an independent
sequence. Having defined the notion of independence for a sequence of random variables,
we can now properly define a random walk, as the previous definition in Example B.13 is
more heuristic than rigorous.

Definition B.2. Let ξ1, ξ2, ... be a sequence of independent and identically distributed
(i.i.d.) random variables such that Ppξi “ 1q “ p and Ppξi “ ´1q “ 1 ´ p for some
p P p0, 1q. For x P Z, the sequence W0 “ x, W1, W2, ... with

Wn :“ x `

n
ÿ

i“1
ξi for n ě 1,

is called a random walk. When p “ 1
2 , we call it a symmetric random walk; otherwise, it

is called a biased random walk.

Let X be a random variable on a discrete sample space Ω with probability vector πpωq

for each ω P Ω. Then, the expectation or expected value of X is defined by

ErXs :“
ÿ

ωPΩ
Xpωqπpωq. (B.4)

If a random variable X takes values x1, x2, ... with probabilities p1, p2, ..., respectively, then
the expectation of X can equivalently be given by

ErXs :“
8
ÿ

i“1
xipi.

In particular, if values of X are finitely many x1, x2, ..., xn with probabilities p1, p2, ..., pn,
respectively, then the expectation of X is equivalently given by

ErXs :“
n
ÿ

i“1
xipi. (B.5)
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The advantage of (B.5) over (B.4) is that a sample space can be very large while the random
variable only takes small number of values. For example, in Example B.9, a single-asset
T -period binomial model generates a sample space of all paths of the asset price of size 2T ,
while the values of random variable St are only T ` 1.
By straightforward calculations, the expectation of a function fpxq of X is given by

ErfpXqs “

8
ÿ

i“1
fpxiqpi.

The variance of a random variable is defined by

varpXq :“ ErpX ´ ErXsq2s “ ErX2s ´ ErXs2.

One of the important result in the expectation of random variables is the Jensen inequality
for convex functions.

Corollary B.1. Consider a probability space pΩ, F ,Pq that hosts a Rd-valued random
variable X and let f : Rd Ñ R be convex function f . Then, we have

fpErXsq ď ErfpXqs,

provided that both of the expectations exist.

Proof. By Corollary A.1, there exists a vector u P Rd such that fpErXsq`pX ´ErXsq ¨u ď

fpXq. By taking the expected value from both sides, we obtain the desired result.

The Jensen inequality is reduced to the definition of convexity (A.2) when X is a random
variable with two values x1 and x2. More precisely, if PpX “ x1q “ λ and PpX “ x2q “ 1´λ,
we have

fpErXsq “ fpλx1 ` p1 ´ λx2qq ď λfpx1q ` p1 ´ λqfpx2q “ ErfpXqs.

Let Y be another random variable with values y1, ..., ym. To write the expectation of a
function fpx, yq of two random variables X and Y , we need to know the joint (mutual)
probabilities of the pair pX, Y q, i.e.,

pi,j :“ PpX “ xi, Y “ yjq for i “ 1, ..., n, and j “ 1, ..., m.

Notice that although PpX “ xiq and PpY “ yjq are positive, pi,j can be zero, which means
that if a value xi is realized for the random variable X, then yj cannot be realized for Y ,
and vice versa. Then, we define the expected value of fpX, Y q by

ErfpX, Y qs :“
8
ÿ

i“1

8
ÿ

j“1
fpxi, yjqpi,j .
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With the above definition, one show the Cauchy-Schwartz inequality.
Theorem B.1. For two random variables X and Y we have

ErXY s ď
a

ErX2s
a

ErY 2s.

The equality holds if and only if X and Y are linearly dependent, i.e., if aX ` bY ` c “ 0
for some constants a, b, c P R such that at least one of them is nonzero.
The covariance between two random variables is defined by

covpX, Y q :“ ErpX ´ ErXsqpY ´ ErY sqs “ ErXY s ´ ErXsErY s.

By applying the Cauchy-Schwartz inequality, we obtain

covpX, Y q “ ErpX ´ ErXsqpY ´ ErY sqs ď
a

ErpX ´ ErXsq2s
a

ErpY ´ ErY sq2s.

In the above, the equality holds if and only if X and Y are linearly dependent. The
correlation between two random variables is defined by

corpX, Y q :“ covpX, Y q
a

varpxqvarpY q
.

The Cauchy-Schwartz inequality shows that ´1 ď corpX, Y q ď 1, and either of the equali-
ties holds if and only if if aX ` bY ` c “ 0 for some constants a, b, c P R such that at least
one of them is nonzero. In the case of equality, when ab ă 0 (respectively ab ą 0), then
corpX, Y q “ 1 (respectively corpX, Y q “ ´1).
We can define conditional expectation similarly by replacing the probabilities pi,j with

the conditional probabilities

pi|j :“ PpX “ xi | Y “ yjq “
pi,j

pY
j

,

with pY
j “ PpY “ yjq. More precisely,

ErfpX, Y q | Y “ yjs :“
8
ÿ

i“1
fpxi, yjqpi|j “

1
pY

j

8
ÿ

i“1
fpxi, yjqpi,j . (B.6)

Notice that if PpY “ yq “ 0, then ErfpX, Y q | Y “ ys in (B.6) is not defined. However, we
can define function h : y ÞÑ ErfpX, Y q | Y “ ys on the set of values of the random variable
Y . This in particular helps us to define the random variable

ErfpX, Y q | Y s :“ hpY q.
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Remark B.3. Notice the difference between ErfpX, Y q | Y “ yjs, ErfpX, Y q | Y “ ys,
and ErfpX, Y q | Y s. ErfpX, Y q | Y “ yjs is a real number, ErfpX, Y q | Y “ ys is a real
function on variable y, and finally ErfpX, Y q | Y s is a random variable.

Example B.17. With regard to the above remark, we find PpX “ 1|Y q, PpX “ ´1|Y q,
and ErX|Y s in Example B.16. It follows from (B.2) that hpyq “ PpX “ 1|Y “ yq is given
by

hpyq “

#

t when y “ 1
1 ´ t when y “ ´1

Thus, PpX “ 1|Y q “ tδ1pY q ` p1 ´ tqδ´1pY q. Here, δxpyq is 1 when y “ x and 0 otherwise.
Similarly, PpX “ ´1|Y q “ p1 ´ tqδ1pY q ` tδ´1pY q. Finally,

ErX|Y s “ PpX “ 1|Y q ´ PpX “ ´1|Y q “ tδ1pY q ` p1 ´ tqδ´1pY q ´ p1 ´ tqδ1pY q ´ tδ´1pY q

“ p2t ´ 1qδ1pY q ` p1 ´ 2tqδ´1pY q.

As a particular case, when fpx, yq “ x, we have

hpyq “ ErX | Y “ ys and ErX | Y s “ hpY q.

Corollary B.2. If X and Y are random variables and f is a real function, then we have

ErfpY qX | Y s “ fpY qErX | Y s.

The following proposition, which is a direct result of (B.6), explains a very important
property of independent random variables.

Proposition B.1. X and Y are independent if and only if, for any real function fpx, yq

of X and Y , we have

ErfpX, Y q | Y “ ys “ ErfpX, yqs for all y in the set of values of Y.

Corollary B.3. If X and Y are independent and f is a real function, then we have

ErfpXq | Y s “ ErfpXqs.

One of the important properties of conditional expectation is the tower property, which
is presented in the next proposition.

Proposition B.2 (Tower property of conditional expectation). Let X, Y and Z be random
variables. Then,

ErErX | Y, Zs | Y s “ ErX | Y s.

In particular,
ErErX | Y ss “ ErXs.
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The following proposition provides an equivalent representation for independence through
the conditional expectation.

B.2 General probability spaces

Some random experiments can generate uncountable number of outcomes, e.g., choosing
a point in the unit interval r0, 1s or choosing a chord of a unit circle. In such cases, the
definitions in Section B.1 don’t make sense; e.g., the summation in (B.4) relies on the
countability of the sample space. The complexity of uncountable sample spaces is twofold.
First, the basic definitions, such as the expected value in (B.4), use summation, which
relies on countability of values. In Section B.2, we will consider the continuous random
variables in which the summations can be replaced by an integral, such as Example B.18.
Secondly, there is mathematical challenge in defining an event in an uncountable sample
space, which we will describe later in this section.

Example B.18. In choosing a random number uniformly inside r0, 1s, the probability of
the following events can be calculated by integration.

i) The probability that the random number is in pa, bq Ď r0, 1s equals
şb
a fpxqdx “ b ´

a. Here fpxq “ 1r0,1spxq is called the uniform probability density function. This
probability is the area enclosed by fpxq and x axis above interval pa, bq

ii) The probability that the random number is .5 equals 0 as the area described in (i) is
zero.

iii) The probability that the random number is a rational number is 0. Rational numbers
are countable so the probability of this event is sum of the probability of each rational
number, which is summation of countable number of zeros.

iv) The probability that the random number is an irrational number is 1. This probability
is the complement of the probability of rationals, which is 0.

The random experiment in the above example is describing a continuous random vari-
able. In such random variables, the probability of events and expected values of random
variables can be calculated by integration. However, in general, there can be random
variables that are neither continuous nor discrete. In that case, concepts such as expec-
tation and conditional expectation should be defined differently; they requires advanced
techniques from measure theory. Measure theory was gradually developed as a theory for
integration by several mathematicians such as Émile Borel (1871–1956), Henri Lebesgue
(1875–1941), Johann Radon (1887–1956), and Maurice Fréchet (1878–1973). However, An-
drey Kolmogorov (1903–1987) was the first who noticed that this theory can be used as a
foundation for probability theory; a probability is a nonnegative finite measure (normalized
to mass one) and the expectation is an integral with respect to that measure.
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≡ ω 7→ei2πrω−−−−−−−−−→
2πr

2πr

Figure B.3: Description of the transformations in Example B.19

Another difficulty that arises in uncountable sample spaces is the meaning of an event. In
discrete space, any subset of the sample space is an event and any function from sample
space to Rd is a random variable. However, in uncountable sample spaces, there are some
subsets of the sample space for which no value as a probability can be assigned. Therefore,
an event and a random variable should be defined in a proper way by using the concept of
measurability; only measurable sets are events, and measurable real functions make random
variables. For more extensive study on the concept of probability measures and measurable
functions see [1] or [4]. Here, we address the issue briefly. First, we provide an example to
show how a nonmeasurable set looks like.

Example B.19 (A nonmeasurable set exists). Consider Ω “ r0, 1q, identified by a unit
circle through the transformation ω ÞÑ ei2πω shown in Figure B.3. Here, i “

?
´1. Now,

for any rational number r in r0, 1q, consider the rotational transformation on the circle
given by ei2πr : x “ ei2πω ÞÑ ei2πrx. If we consider the uniform probability on Ω “ r0, 1q,
the induced probability on the circle is also uniform. The uniform probability on the circle
is invariant under rotations;

PpBq “ Ppei2πrBq for any subset B on the circle.

For x “ ei2πω, define the orbit of x by Opxq :“ txei2πr : r P Q X r0, 1qu. Since Opxq

is countable and the unit circle is uncountable, there are uncountably many disjoint orbits
with a union equal to the unit circle. Let A be a set that has exactly one point from each
distinct orbit. Then, one can see that the countable disjoint union

ď

rPQXr0,1q

ei2πrpAq

covers the unit circle. Here, ei2πrpAq means the image of A under the rotational transfor-
mation ei2πr. This is because: (1) If x P ei2πrpAq X ei2πr1

pAq for 0 ď r ă r1 ă 1 rationals ,
we have then both ei2πp1´rqx10 and ei2πp1´r1qx belonging to A and being members of Opxq,

10If y “ ei2πrx, then x “ ye´i2πr. But, since ´r is not in r0, 1q and 1 “ ei2π, we can write x “ yei2πp1´rq.
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which contradicts the choice of A; and (2) For each x, there is a member y P Opxq P A; there
exists a rational r such that y “ ei2πrx. Thus, x “ ei2πp1´rqy P ei2πp1´rqpAq. Therefore, we
have

P

¨

˝

ď

rPQXr0,1q

ei2πrpAq

˛

‚“
ÿ

rPQXr0,1q

P
`

ei2πrpAq
˘

.

It follows from the invariance of uniform probability under rotation that the probability of
A is the same as the probability of ei2πrpAq for all r P QX r0, 1q, if such a probability exists.

P

¨

˝

ď

rPQXr0,1q

ei2πrpAq

˛

‚“
ÿ

rPQXr0,1q

P pAq .

Now if A has probability 0 under uniform measure, then so does the countable union
Ť

rPQXr0,1q ei2πrpAq, which is a contradiction, because the union
Ť

rPQXr0,1q ei2πrpAq makes
up the whole circle, which has probability 1. Otherwise, if A has a nonzero probability, then
the sum on the left-hand side is infinite. Either way, it is impossible to assign a probability
to A; A is nonmeasurable.

Uncountable sample spaces appear in probability even when the experiment is a discrete
one. For instance, consider the following version of the law of large numbers:

Theorem B.2 (Law of Large Numbers). Let tXnu8
n“1 be a sequence of independent random

variables that take values 0 or 1 with equal likelihood. Then,

lim
NÑ8

1
N

8
ÿ

n“1
Xn “

1
2

except on a set of outcomes with probability zero.

In this theorem, we consider a sample space Ωthat consists of all sequences ω “ pω1, ...q
such that ωn “ H or T based on the outcome of the nth coin flip. The random variable
Xn is defined by 1 if ωn “ H and 0 if ωn “ T . This sample space is uncountable! To see
this, we construct a map which takes it into the interval r0, 1q:

ω ÞÑ

8
ÿ

n“1

Xn

2n
.

The right-hand-side above is the binary representation of a number in r0, 1q. Therefore,
the sample space Ω is uncountable and not significantly different from r0, 1q.

Remark B.4. Notice that some numbers can have two different binary representations.
For example, .5 “ 1

2 “
ř8

n“2
1

2n . However, the even in Ω that corresponds to all these
numbers has probability zero.
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σ-field of events

One of the important notions in the probability theory is dealing with the definition of an
event, a random variable, and the information related to them, which is presented in the
following definition.

Definition B.3 (σ-field). For a (possibly uncountable) sample space Ω, the set of events
should use the notion of σ-field from measure theory. A σ-field F is a collection of subsets
of Ω that satisfies

a) H and Ω P F .

b) If A P F , then AA P F .

c) For a sequence tAnu8
n“0 Ď F ,

Ť8
n“0 An P F .

A sample space Ω along with a σ-field is called a measurable space.

Usually, a σ-field can be specified by defining a set of elementary events and expanding
this set to a whole σ-field, which contains all events. For instance, in a discrete sample
space Ω “ tω1, ω2, ...u, one can define the elementary events to be En “ tωnu. Then, any
event is a countable union of elementary events.
In uncountable sample spaces, the methodology of working with elementary events is

inevitable. We consider a set of elementary events tEn : n ě 1u and construct the
smallest σ-field that contains all these elementary events, namely the σ-field generated by
elementary sets tEn : n ě 1u denoted by σpEn : n ě 1q.

Example B.20. Consider Ω “ R and the elementary events given by the singleton sets
En :“ txnu for n “ 1, 2, .... Then, by property (b) the complement of singleton elementary
events, EA

n “ Rztxnu is in the σ-field generated by Ens. Also, any finite or countable
number of xns and the complement of it make events in this σ-field. For instance, the
σ-field generated by t1u is

!

H,R, t1u,Rzt1u

)

.

The σ-field generated by t1u and t2u is
!

H,R, t1u, t2u, t1, 2u,Rzt1u,Rzt2u,Rzt1, 2u

)

.

Example B.21. The σ-field generated by a single event, A has four distinct events: H,
Ω, A, and AA. For example, the σ-field generated by the set of all rational numbers in R
consist of H, R, the set of rational numbers, and the set of irrational numbers.

In the discrete example from the last paragraph, the σ-field is the same as the set of all
subsets of Ω. In Chapter 2, the sample space is Ω “ pRd`1qT . We consider each elementary
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event given by an open set in pRd`1qT . Then, we work with the Borel σ-field BpΩq, the
σ-field generated by all open subsets of Ω. This method can be generalized to all samples
spaces that are topological spaces. The Borel σ-field in R, BpRq, is generated by the set of
all open intervals pa, bq. It is not hard to see that all intervals, closed or semi-closed, are
also included in the Borel σ-field. For instance,

pa, bs “
č

ně1

´

a, b `
1
n

¯

.

Also, all single points are in the Borel σ-field; tbu “
Ť

ně1rb, b ` 1
nq. Also, BpRq can be

generated by half-open intervals of the form pa, bs, because

pa, bq “

8
ď

n“1

´

a, b ´
1
n

ı

.

Exercise B.8. Show that BpRq can be generated by half-open intervals of the form ra, bq.

Exercise B.9. Check whether the following sets make a σ-field. In case they are not a
σ-field, find the missing events that makes them a σ-field.

i)
␣

R, tau, tbu, ta, bu,Rztbu,Rztau
(

where a and b are two distinct real numbers.

ii)
␣

H, r0, 1s, r0, 2
3q, p1

3 , 1s
(

.

iii)
␣

H,R
(

.

The Borel σ-field on r0, 1s, Bpr0, 1sq, is the σ-field generated by the intervals of the form
pa, bq, r0, bq, or pa, 1s, where 0 ď a ă b ď 1. Equivalently, Bpr0, 1sq is generated by the
half-open intervals of the form ra, bq or pa, bs.

Example B.22. The Borel σfield Bpr0, 1sq can be generated by either of the following
elementary events:

i) The set of intervals of the form pa, bq, r0, bq, or pa, 1s, where 0 ď a ă b ď 1,

ii) The set of intervals of the form ra, bq or pa, bs, where 0 ď a ă b ď 1, and

iii) The set of intervals of the form ra, bs, where 0 ď a ă b ď 1.

To show this, we need to demonstrate that each elementary event of one set can be generated
by the elementary events from the other sets. In the set of elementary events in (i), the
interval pa, bq can be written as

pa, bq “

8
ď

n“1

´

a, b ´
1
n

ı

.
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Therefore, pa, bq can be generated by the events that are described in (ii). r0, bq and pa, 1s

already belong to the set that are described in (ii). Therefore, all elementary events in (i)
can be generated by elementary events in (ii).
In addition, we have

ra, bq “

8
ď

n“1

”

a, b ´
1
n

ı

and pa, bs “

8
ď

n“1

”

a `
1
n

, b
ı

,

which implies that all elementary events in (ii) can be generated by elementary events in
(iii).

Finally, we have

ra, bs “

8
č

n“1

´

a ´
1
n

, b `
1
n

¯

, pa, 1s “

8
č

n“1

´

a ´
1
n

, 1
ı

, and r0, bq “

8
č

n“1

”

0, b `
1
n

¯

.

Therefore, all elementary events in (iii) can be generated by elementary events in (i).

The Borel σ-field on the half-line r0, 8q, Bpr0, 8qq, is the σ-field generated by the sets of
the form pa, bq or r0, bq, where 0 ď a ă b.

Exercise B.10. Show that Bpr0, 8qq can be generated by either of the following elementary
events:

i) The set of intervals of the form pa, bq or r0, bq, where 0 ď a ă b ă 8, and

ii) The set of intervals of the form ra, bq, where 0 ď a ă b ă 8.

Hint: Show that each elementary event of one set can be generated by the elementary events
from the other set.

The following example is a useful use of elementary events in analyzing an event of interest
and a method of finding the probability of such an event.

Example B.23. In Example B.13, let the event of ruin A be the collection of all outcomes
for which the gambler’s wealth eventually hits zero. For instance, if W0 “ 10, any outcome
with ten loses in a row since the start of the game is in this set. Also, any outcome with the
number of losses at some time larger than the number of wins plus ten is in the ruin event
A. The ruin event is uncountable. We attempt to find the probability of this event later in
Example B.25, namely the ruin probability. Before that, we need to write this event as a
union of disjoint simpler events for which the probability can easily be evaluated.

A “

8
ď

¨

n“1
An,
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where An is the event that the ruin happens exactly at the nth round. Notice that An is
made of all outcomes such that (1) the nth round is a lost round, (2) in the first n ´ 1st
rounds there are x ´ 1 lost rounds more than the number of wins. Therefore, if m is the
number of won rounds in the n´1st rounds, we must have 2m`x´1 “ n´1, or m “ n´x

2 .
As a result, An is a nonempty event if and only if n ´ x is an even number. Therefore, one
can write

A “

8
ď

¨

m“1
Ax`2m.

Exercise B.11. Recall the sample space given by (B.1) for a random walk. Show that in
Example B.23 the event of ruin is uncountable.

Many complicated sets can be found in the Borel σ-field. For more discussion of Borel
sets, see [3, Chapter 7]. However, in most cases, it is enough to work with the elementary
events that build the σ-field.

Probability via measure theory

Given a σ-field of events, we can define a probability measure in the most general form.

Definition B.4. A measure space is a pΩ, Fq such that Ω is a sample space and F is a
σ-field on Ω. A measure on a measure space pΩ, Fq is a function from P : F Ñ R Y t8u

such that for any sequence tAnu8
n“0 Ď F of disjoint events,

P

˜

8
ď

n“0
An

¸

“

8
ÿ

n“0
PpAnq.

A probability measure is a measure with the following properties.

a) For any A P F then PpAq ě 0.

b) PpΩq “ 1.

Notice that the above definition leads to many important properties of the probability:

a) PpAAq ` PpAq “ PpAA Y Aq “ PpΩq “ 1. Therefore, PpAAq “ 1 ´ PpAq.

b) PpHq “ 1 ´ PpΩq “ 0.

c) Continuity of probability. For any shrinking sequence of events A1 Ě A2 Ě ¨ ¨ ¨ ,
we have

lim
nÑ8

PpAnq “

˜

8
č

n“0
An

¸

Exercise B.12. Show (c) in the above.
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Triple pΩ, F ,Pq is called a probability space. To define any other measure P on a mea-
surable space pΩ, Fq, it is sufficient to define it on the elementary sets that generate the
σ-field F . For example, to define a uniform probability measure on r0, 1s on the Borel
σ-field Bpr0, 1sq, one only needs to define

Pppa, bqq “ b ´ a, for pa, bq P r0, 1s.

Since probability of singleton is zero, we have

Ppr0, bqq “ Ppt0uq ` Ppp0, bqq “ 0 ` b.

Similarly, Pppa, 1sq “ 1 ´ a.
Here is a more complicated example. The random variable in this example is not discrete

or continuous.

Example B.24. We choose a random number in r0, 1s in the following way. We flip a fair
coin. If the coin lands heads, we choose a number uniformly in r0, 1s. If the coin lands tails,
we choose

?
2{2. We define the corresponding probability measure on Bpr0, 1sq by defining

it only on the elementary events:

Pppa, bqq “

#

1
2pb ´ aq if

?
2{2 R pa, bq P r0, 1s

1
2pb ´ aq ` 1

2 if
?

2{2 P pa, bq P r0, 1s
.

Notice that although the above probability is only defined on open intervals, one can find
probability of other events. For instance, Ppt

?
2{2uq “ limnÑ8

`?
2{2 ´ 1

n ,
?

2{2 ` 1
n

˘

“
2
n ` 1

2 “ 1
2 .

Example B.25. In this example, we follow up on the probability of ruin in Example B.23.
Recall that the event of ruin is represented as the union of disjoint events:

A “

8
ď

¨

m“0
Ax`2m.

Therefore, by the definition of probability

PpAq “

8
ÿ

m“0
PpAx`2mq.

If the chance of winning any round is p, then

PpAx`2mq “

ˆ

x ` 2m ´ 1
m

˙

pmp1 ´ pqx`m.
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Therefore,

PpAq “

8
ÿ

m“0

ˆ

x ` 2m ´ 1
m

˙

pmp1 ´ pqx`m.

The above probability is not easy to calculate in this series form, and it is easier to find it
by using a conditioning technique.

Example B.26. In an infinite sequence of coin flips, we consider Ω to be the set of all
sequences pω1, ω2, ¨ ¨ ¨ q such that ωi “ H or T for n ě 1. A σ-field can be defined by
specifying some elementary events. For a finite sequence n1, ...nm of positive integers, an
elementary event En1,...nm is defined to be the set of all pω1, ω2, ¨ ¨ ¨ q such that ωnj “ H
for j “ 1, ..., m. Then, on the σ-field generated by a fair coin, we have the corresponding
probability measure given by PpEn1,...nmq “

`1
2
˘m. For an unfair coin with the probability

of heads given by p, we have a different probability measure QpEn1,...nmq “ pm. Based on
the assignment of probability , we can determine the probability of all events in the σ-field
generated by the elementary events. For instance, let Em,´n be the event that the nth flip
is heads and the mth flip is tails. Then,

Em “ Em,n Y Em,´n.

Notice that Em,n and Em,´n are disjoint events. Thus, PpEm,n1q “ 1
2 ´ 1

4 “ 1
4 . For an

unfair coin, we have QpEm,n1q “ p ´ p2 “ pp1 ´ pq. Recalling the notion of independence
from (B.3), one can see that for n‰m, En and Em are independent events, under both
measures P and Q. More precisely, since En X Em “ Em,n, we have

PpEm,nq “
1
4

“ PpEmqPpEnq and QpEm,nq “ p2 “ QpEmqQpEnq.

Generally speaking, En1 X ¨ ¨ ¨ X Enm “ En1,...,nm, and therefore the σ-field generated by the
sequence tEn : n ě 1u is the same as the σ-field generated by the elementary sets of the
form En1,...,nm.
Recall that mapping

ω “ pω1, ω2, ¨ ¨ ¨ q ÞÑ

8
ÿ

n“1

an

2n

with an “ 1 when ωn “ H and an “ 0 when ωn “ T maps Ω to r0, 1s. Under this mapping,
the elementary event En is mapped to

2n´1
ď

i“0

”2i ` 1
2n

,
2i ` 2

2n

¯

.

Although tedious, one can find the exact intervals that make the image of En1,...nm under
this mapping and then use it to verify that the σ-field generated by these events is exactly
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the Borel σ-field Bpr0, 1sq. The following theorem is a helpful tool in that regard.

Exercise B.13. Show that any interval of the form
”

k1
2n , k2

2n

¯

with 0 ď k1 ă k2 ď 2n can
be written by a combination of a finite union, intersection and complement of the sets that
are image of the elementary events of the form En under the mapping described in Example
B.26. Use this to show that the σ-field generated by the elementary events of the form En

correspond to the Borel σ-field Bpr0, 1sq.

Given a probability measure P, the events that have a probability of 0 under P are called
null events. For instance, in choosing a point uniformly in r0, 1q, the probability of any
single point is 0; therefore, the singleton txu is a null event. In Example B.24, the only
singleton that is not a null event is

␣

?
2

2
(

. The set of all rational numbers is a null event in
both cases. In Example B.26, one can show that an event of a particular pattern appearing
periodically along a sequence of coin flips is a null event. For instance, the event of the
pattern THH appearing periodically along a sequence of coin flips is a null event.

Exercise B.14. Show that the event of all outcomes that have the pattern THH (or any
other particular pattern) appearing periodically along a sequence of coin flips is a null event.
Use the same idea to extend the result: the event of all outcomes that have a periodic pattern
is a null event. (Hint: the set of all patterns is a countable set.)

Random variables

In this section, we explain the definition of a random variable. Random variables represent
random quantities that are related to a random experiment. For example, in Example
B.13, the value Wn of a random walk at time n is a random variable.

Definition B.5. A random variable on a measure space pΩ, Fq is a function X : Ω Ñ Rd

such that for any Borel set A P BpRdq, the inverse image of A under X, X´1pAq, belongs
to the set of events F .

In the sequel, we denote the inverse image of A under X, X´1pAq, by tX P Au. Since
BpRdq is generated by open sets in Rd, the condition “@A P BpRdq, tX P Au P F” in
Definition B.5 needs to hold only for all open sets instead of all Borel sets; A P BpRdq

for all open sets A Ď Rd. If Ω “ Rd and F “ BpRdq, a random variable is called a
Borel-measurable function.
In practice, important random quantities are described by random variables. See the

example below.

Example B.27. In an infinite sequence of coin flips, Example B.26, we define the random
variable X as follows. For ω “ pω1, ω2, ¨ ¨ ¨ q P Ω

Xpωq “

8
ÿ

n“1

an

3n
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such that an “ 0 if ωn “ H, and an “ 2 if ωn “ T. Here,
ř8

n“1
an
3n “ 0.a1a2 ¨ ¨ ¨ is the

ternary representation of a number in r0, 1s. X maps Ω to r0, 1s. To check if X is a random
variable, we need to check that the inverse of an open interval is in the σ-field generated by
the elementary sets An1,...nm described in Example B.26. We leave this task to the following
exercise.

Remark B.5. The image of X in Example B.27 is called a Cantor set.

Exercise B.15. Show that the mapping X defined in Example B.27 is a random variable.
Hint: Assume a ternary representation for the endpoints of the interval pa, bq.

Let X be a random variable. The σ-field generated by X is the smallest σ-field that
contains all events tX P Au for all Borel sets A, and is denoted by σpXq. In other words,
it is the σpXq that contains all events related to X. σpXq can equivalently be expressed
as the smallest σ-field that contains all events tX P Au for all open sets A.

Independence

It is possible to define the notion of independence for two random variables X and Y by
using the inverse images tX P Au and tY P Bu.

Definition B.6. A sequence of random variables tXn : n ě 1u are called independent if for
any sequence of Borel sets tAn : n ě 1u Ď BpRq, the sequence of events tX´1

n pAnq : n ě 1u

are independent.
In particular, two random variables X and Y are called independent if for any two Borel

sets A and B, tX P Au and tY P Bu are independent,

PpX P A & Y P Bq “ PpX P AqPpY P Bq.

The following proposition can be used as an alternative definition of independence of two
random variables.

Proposition B.3. Two random variables X and Y are independent if and only if for any
two bounded Borel-measurable functions h1pxq and h2pyq we have

Erh1pXqh2pY qs “ Erh1pXqsErh2pY qs. (B.7)

As a consequence of the above proposition, if X and Y are independent, then for any two
bounded Borel-measurable functions h1pxq and h2pyq, h1pXq and h2pY q are also indepen-
dent.

Example B.28. In Example B.13, consider random variables Wn and Wm ´ Wn with
m ą n. These random variables are independent. This is because, Wn “ W0 `

řn
i“1 ξi and

Wm ´ Wn “
řm

i“n`1 ξi, and the vectors pξ1, ..., ξnq and pξn`1, ..., ξmq are independent. As
a result h1pξ1, ..., ξnq :“ W0 `

řn
i“1 ξi and h2pξn`1, ..., ξmq “

řm
i“n`1 ξi are independent.
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One can assert the independence of a sequence of random variables in terms of the sequence
of σ-fields generated by them.

Proposition B.4. A sequence of random variables tXn : n ě 1u are independent if any
sequence of events tEn : n ě 1u such that En P σpXnq for all n ą 1 is an independent
sequence.
In particular, two random variables X and Y are independent if for any two events F1 P

σpXq and F2 P σpY q, F1 and F2 are independent,

PpF1 X F2q “ PpF1qPpF2q.

The above proposition gives rise to the notion of independent σ-fields of events.

Definition B.7. A sequence of random variables σ-fields tFn : n ě 1u are called inde-
pendent if any sequence of events tFn : n ě 1u such that Fn P Fn is an independent
sequence.
In particular, two σ-fields F and G are called independent if for any two events F P F

and G P G, we have
PpF X Gq “ PpF qPpGq.

Example B.29. In Example B.13, consider the σ-field generated by the outcomes of the
even rounds and the σ-field generated by the outcomes of the odd rounds; denote them by
F and G, respectively. Since, the outcomes of each round in independent others, F and G
are independent σ-fields.

Expected value and integration

Before Andrey Kolmogorov used the concept of a measure to define probability, measures
were used to extend the notion of integration. Integration with respect to measures is also
important in probability theory to define the expected value of random variables. Here,
we define the expected value of a random variable by the integral of that random variable
with respect to a probability measure in the most general form, which included uncountable
sample spaces.
If a random variable X is defined on a probability space pΩ, F ,Pq, the expected value of

X is defined as an integral of X with respect to measure P, denoted by

ErXs :“
ż

XdP.

The definition of the integral is a little cumbersome. Thus, we only outline the steps.

Step 1) For an indicator random variable X “ 1A where A is an event in F , we have

ErXs :“
ż

A
dP “ PpAq.

224



B. PROBABILITY

Step 2) For step random variable X, a finite linear combination of indicator random
variables X “

řN
j“1 aj1Aj , we have

ErXs :“
N
ÿ

j“1
ajPpAjq.

Step 3) If the random variable X is nonnegative,X ě 0, then X can be approximated
from below by an increasing sequence of step random variables; Xn Ò X. Then,

ErXs :“ sup
n

ErXns.

Notice that one can show that the value ErXs is independent of the choice of
the increasing sequence of step random variables and thus is well defined.

Step 4) For a general random variable X, we decompose X into positive and negative
parts; X “ X` ´ X´ with X` “ max 0, X and X´ “ max 0, ´X. Then,

ErXs :“ ErX`s ´ ErX´s.

In Step (4) in the above, the expected value ErXs is 8 when ErX`s “ 8 and ErX´s ă 8,
and it is ´8 when ErX`s ă 8 and ErX´s “ 8. However, ErXs cannot be defined when
we have both ErX`s “ 8 and ErX´s “ 8. This motivates the following definition.
Definition B.8. A random variable is called integrable if Er|X|s “ ErX`s ` ErX´s ă 8.
The following example shows why we need to separate the positive part and the negative

part of a random variable in Step 4 above.
Example B.30. Consider the uniform probability measure on probability space given by
Ω “ r´1, 1s2, the two dimensional square, and a random variable X given by Xpx, yq “

xy
px2`y2q2

11. The positive part of X is r0, 1s2 Y r´1, 0s2. It is easy (by switching to polar
coordinates) to see that

ż

r0,1s2

X`dP “

ż 1

0

ż 1

0

xy

px2 ` y2q2 dxdy `

ż 0

´1

ż 0

´1

xy

px2 ` y2q2 dxdy “ 8,

and therefore, X is not integrable. We conclude that ErXs does not exist. However, the
iterated integral below exists and is equal to zero, i.e.

ż 1

´1

ż 1

´1
Xpx, yqdxdy “ 0.

11X is undefined at the single point p0, 0q. But, the probability of a single point is 0. Therefore, we can
define Xp0, 0q by any value of choice; for example, Xp0, 0q “ 0.
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Therefore, for random variable X, the iterated integral is not a well defined notion of
expectation.

There are three main convergence theorems for integrals with respect to a measure, which
are very useful in the probability theory. We conclude this section by presenting them.

Theorem B.3 (Monotone convergence theorem). Let tXnuně1 be a sequence of nonneg-
ative and increasing random variables. Then, X :“ limnÑ8 Xn is a random variable and
ErXs “ limnÑ8 ErXns.

Example B.31. In Example B.27, we assume the coin is a fair coin. We shall find the
expected value of the introduced random variable by introducing the sequence of random
variables tXnu8

n“1 defined by

Xnpωq :“
n
ÿ

j“1

aj

3j
,

such that aj “ 0 if ωj “ H, and aj “ 2 if ωj “ T. Notice that by the monotone convergence
theorem, limnÑ8 ErXns “ ErXs. Observe that Xn “ Xn´1 ` ξn, where ξn takes two values
0 and 2

3n with equal probabilities 1
2 . Therefore, ErXns “ ErXn´1s`Erξns. Since Erξns “ 1

3n ,
we have ErXns “ ErXn´1s ` 1

3n . By solving ErXns “ ErXn´1s ` 1
3n recursively, we obtain

ErXns “
řn

j“1
1
3j . As n Ñ 8, if follows from the monotone convergence theorem that

ErXs “
ř8

j“1
1
3j “ 1

2 .

Exercise B.16. Repeat the calculation in Example B.31 for an unfair coin with a proba-
bility p of heads.

Theorem B.4 (Fatou’s lemma). Let tXnuně1 be a nonnegative sequence of random vari-
ables. Then, X “ lim infnÑ8 Xn is a random variable, and ErXs ď lim infnÑ8 ErXns.

Example B.32. On the sample space Ω “ r0, 1q equipped with uniform probability measure,
define the sequence of random variables tYnu8

n“1 by

Ynpωq “

#

1 when for j “ 1, ..., n, aj “ 0 or 2
0 otherwise

,

where ω “
ř8

j“1
aj

3n is the ternary expansion of ω P Ω. Define

Y pωq :“ lim
nÑ8

Ynpωq.

It is straightforward to see that

Y pωq “

#

1 when aj “ 0 or 2 for all j ě 1
0 otherwise

.
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In other words, Y is the indicator random variable of the event that contains all numbers
in r0, 1q whose ternary representation has only digits 0 or 2. This event is the same as the
Cantor set in Remark B.5 and is denoted by C. Therefore, Y “ 1C and ErY s “ PpCq. To
find the PpCq, we use Fatou’s lemma, Theorem B.4, and write

ErY s “ PpCq ď lim inf
nÑ8

ErYns.

Next, we will show that lim infnÑ8 ErYns “ 0. To see this, first observe that Yn is also
an indicator random variable. For example for n “ 1, Y1 “ 1r0,1{3qYr2{3,1q and Y2 “

1r0,1{9qYr2{9,1{3qYr2{3,7{9qYr8{9,1q, and so on. Generally speaking,

Yn “ 1An ,

where An is the union of 2n intervals each of size 1
3n . Therefore, under uniform probability,

ErYns “ PpAnq “
2n

3n
Ñ 0, as n Ñ 8.

This means that the Cantor set has a probability of 0 under uniform probability.
Theorem B.5 (Lebesgue convergence theorem). Let tXnuně1 be a convergent sequence of
random variables and ξ be an integrable random variable such that |Xn| ď |ξ| for all n ě 1.
Then, X :“ limnÑ8 Xn is a random variable, and ErXs “ limnÑ8 ErXns.
Remark B.6. In Example B.32, we could use Lebesgue convergence theorem, Therem
B.5, to show that ErY s “ 0. This is because all random variables Yn are indicators, and
therefore, their absolute values are bounded by the constant random variable ξ “ 1.

Equality of random variables

Recall the simple version of the law of large numbers in Theorem B.2. Here, we put the
emphasis on the exception set, where the limit inside the theorem does not converge to 1

2 .
One possible outcome inside this set is given by Xn “ 0 for n ” 0 pmod 3q, and Xn “ 1
for n ” 1 or 2pmod 3q. Then, the limit on the left-hand side converges to 2

3 , not 1
2 . The

law of large numbers in Theorem B.2 asserts that the collection of all outcomes such that
limNÑ8

1
N

řN
n“1 Xn exists and is equal to 1

2 is an event with a probability of 1. In other
words, the random variable limNÑ8

1
N

řN
n“1 Xn is defined to be the constant 1

2 except on
an event with probability 0.
Definition B.9. Two random variables X and Y are considered equal if the event

tω P Ω : Xpωq‰Y pωqu

has a probability of zero. Then, we write X “ Y P almost surely; X “ Y P-a.s. for short;
or just a.s. whenever the probability measure is assumed.
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For instance, Theorem B.2 indicates that the random variable on the left-hand side,
limNÑ8

1
N

ř8
n“1 Xn, is equal to the random variable on the right-hand side, 1

2 , a.s. In
addition, it also implies that the limit limNÑ8

1
N

ř8
n“1 Xn exists a.s., which is not an

obvious fact.
As a result of the following Lemma, Theorem B.2 shows that the random variable Xpωq “

limNÑ8

řN
n“1 Xn ´ 1

2 is zero a.s.: a very fancy representation for zero!

Lemma B.1. For a nonnegative random variable X, ErXs “ 0 if and only if X “ 0 a.s.

As a consequence, we can define the convergence of a sequence of random variables.

Definition B.10. A sequence tXnu8
n“1 of random variables is called convergent a.s. if the

event
tω P Ω : lim

nÑ8
Xnpωq does not existu

has a probability of 0. Then, the limit random variable X :“ limnÑ8 Xn exists a.s. and is
called the limit of tXnu8

n“1.

Law of a random variable

In the remainder of this section, we show how to define expectation for general random vari-
ables by means of the distribution function, without appealing to the notion of integration
with respect to a measure.

Definition B.11. For a random variable X with real values, the cumulative distribution
function (or cdf or simply “distribution function”) FXpxq is defined by

FXpxq :“ PpX ď xq.

The definition of a distribution function is related to the probability measure P by PpX P

pa, bsq “ FXpbq ´ FXpaq. In fact, the distribution function induces a probability measure
on R, denoted by PX , which is defined on open intervals by

PXppa, bsq “ FXpbq ´ FXpaq.

recall that to define a probability measure on BpRq, we only need to define it on the open
intervals, or equivalently on the half-open intervals of the form pa, bs.

Example B.33. Let X “ 1A. Then, FXpxq “ 0 if x ă 1 and FXpxq “ 1 if x ě 1; see
Figure B.4.

Example B.34. In Example B.24, define a random variable that is equal to the value of
the picked random number. Then, the law of X is shown in Figure B.5.
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Figure B.4: The distribution function for an indicator.
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Figure B.5: The distribution function for the random number chosen in Example B.24.

For a discrete random, FX is a step function. For nondiscrete random variables FXpxq is
not a step function. The distribution function of random variable X in Example B.27 is
illustrated in Figure B.612.
In general, the distribution function of a random variable X satisfies the following prop-

erties.
12To be precise, the distribution function of random variable X in Example B.27 is approximated by the

distribution function of random variable Xn with a large n.
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Figure B.6: Devil’s Staircase: the distribution function of the random variable X in
Example B.27.

a) FXp´8q “ 0 and FXp8q “ 1.

b) FX is an increasing right-continuous function with a left-limit at all points.

Exercise B.17. Show that PpX P ra, bsq “ FXpbq ´ FXpa´q, where FXpa´q is the left
limit of FX at a.

It is also well known that if a function F satisfies the properties (a) and (b) of a distribution
function, then there is always a random variable X in a proper sample space such that
FX “ F .
The probability PX is called the law of X. Notice that knowing FX and knowing the law

of X are equivalent, but they are not equivalent to knowing P. In fact, we shall see that in
many important calculations about random variables, we do not exactly need to know P;
in most applications, the law of a random variable is all we need. Therefore, we will now
introduce expected value in terms of the law of the random variable.
Notice that FX is an increasing function, and therefore one can define the Riemann-

Stieltjes integral with respect to FX as an alternative to the more complicated notion of
integration with respect to measure P. In this case, the integral with respect to measure
PX is also simplified to a Riemann-Stieltjes13 integral.

Proposition B.5. For an integrable random variable X the expectation of X satisfies

ErXs “

ż 8

´8

xdFXpxq.

13Read“Steel-chess”.

230



B. PROBABILITY

In particular, for any function g,

ErgpXqs “

ż 8

´8

gpxqFXpdxq,

given Er|gpXq|s ă 8.

Similarly, for a random vector X “ pX1, ..., Xdq, the distribution function is defined by

FXpx1, ..., xdq :“ PpX1 ď x1, ..., Xd ď xdq.

The law of X is a probability measure PX on Rd such that

PXpp´8, x1s ˆ ¨ ¨ ¨ ˆ p´8, xdsq “ FXpx1, ..., xdq.

Then, the expectation of gpX1, ..., Xdq is given by

ErgpX1, ..., Xdqs “

ż 8

´8

¨ ¨ ¨

ż 8

´8

gpx1, ..., xdqFXpdx1, ..., dxdq,

given Er|gpX1, ..., Xdq|s ă 8.

Exercise B.18. If tXiu
8
i“1 is a sequence of independent Bernoulli random variables with

equally likely values 0 and 1, show that U “
ř8

i“1
Xi
2i is uniformly distributed on r0, 1s.

Conditional expectation

Conditional expectation cannot simply be defined in terms of the distribution function;
more advanced methods are needed. Unlike discrete probability setting, (B.6) in Section B,
we need to define ErX | Y s in general form by using a powerful tool in analysis, namely the
Radon-Nikodym theorem. To give you a glimpse of the definition, we recall from Remark
B.3 in the discrete setting that ErX | Y “ ys is a function of the variable y, denoted
by hpyq. Then, we use this function to define ErX | Y s by hpY q. Similarly, we try to
find ErX | Y s among the random variables of the form hpY q for some (Borel measurable)
function h : R Ñ R.

Definition B.12 (Conditional expectation). Let X be an integrable random variable.
ErX | Y s is the unique random variable of the form hpY q, where h : R Ñ R is a Borel
measurable function that satisfies

ErhpY qgpY qs “ ErXgpY qs, (B.8)

for all bounded real functions g with the domain containing the set of values of Y .

231



B. PROBABILITY

The Radon-Nikodym theorem from measure theory guarantees the existence and the
uniqueness of an integrable random variable ErX | Y s in the a.s. sense. Given Defini-
tion B.12 for conditional expectation, all the results of Corollary B.2, Proposition B.1, and
Proposition B.3 hold for general random variables.

Corollary B.4. Let X and Y be random variables and f be a real function, such that
fpY qX is integrable. Then,

ErfpY qX | Y s “ fpY qErX | Y s a.s..

We only provide a proof for the above corollary and leave the rest of the result of this
section to the reader.

Proof. By uniqueness of conditional expectation, it is sufficient to show that both ErfpY qX |

Y s and fpY qErX | Y s satisfy the Definition B.12. In other words, for any bounded real
functions g with the domain containing the set of values of Y , we have

ErhpY qgpY qs “ ErXgpY qs,

with hpY q “ ErfpY qX | Y s or hpY q “ fpY qErX | Y s. Without lack of generality, we as-
sume that f is a bounded function. Then, fpY qgpY q is also a bounded function. Therefore,

ErErX | Y sfpY qgpY qs “ ErXfpY qgpY qs.

On the other hand,
ErErfpY qX | Y sgpY qs “ ErXfpY qgpY qs.

Therefore, the uniqueness of conditional expectation implies the desired result.

Proposition B.6. X and Y are independent if and only if for any real function fpx, yq

of X and Y , we have

ErfpX, Y q | Y “ ys “ ErfpX, yqs for all y in the set of values of Y,

provided that both fpX, Y q and fpX, yq are integrable for all y in the set of values of Y .

Corollary B.5. Two random variables X and Y are independent if and only if for any a
real function f such that fpXq is integrable, we have

ErfpXq | Y s “ ErfpXqs a.s..

Proposition B.7 (Tower property of conditional expectation). Let X, Y , and Z be inte-
grable random variables. Then,

ErErX | Y, Zs | Y s “ ErX | Y s a.s..
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In particular,
ErErX | Y ss “ ErXs.

Remark B.7. The two following comments often help in finding conditional expectation
in general form.

1) One can verify (B.12) over a smaller set of functions to guarantee ErX | Y s “ hpY q.
For instance, if for any bounded function g we have ErhpY qgpY qs “ ErXgpY qs, then
ErX | Y s “ hpY q holds true. Equivalently, if for any Borel set (or open set) A we
have ErhpY q1Y PAs “ ErX1Y PAs, then ErX | Y s “ hpY q.

2) If for a constant a, Aa “ tY “ au is an event with positive probability, then ErX |

Y “ as “ hpaq and is also constant. Then, one can find constant hpaq by using
ErhpY q1Y PAas “ ErX1Y PAas in the following.

ErhpY q1tY PAaus “ hpaqPpY “ aq “ ErX1tY PAaus ùñ hpaq “
ErX1tY PAaus

PpY “ aq
.

This means that the conditional expectation ErX | Y s on the event {Y=a} is constant
and is equal to the average of X over the event tY “ au.

Exercise B.19. Use Remark B.7-(1) to show Corollary B.4, Proposition B.6 and Propo-
sition B.5.

Recall that X be a random variable. The σ-field generated by X is the smallest σ-field
that contains all events tX P Au for all Borel sets A, and is denoted by σpXq. In other
words, it is the σpXq that contains all events related to X. σpXq can equivalently be
expressed as the smallest σ-field that contains all events tX P Au for all open sets A. We
say that a random variable Z is σpXq-measurable, or measurable with respect to σpXq, if
for any Borel set A, the event tZ P Au is in σpXq. It is known that if Z is σpXq-measurable,
then there exists a Borel function h : R Ñ R such that Z “ hpXq. In particular, since
ErX | Y s is σpY q-measurable, ErX | Y s “ hpY q.
More generally, for a σ-field G Ď F , we say that a random variable Z is G-measurable,

or measurable with respect to G, if for any Borel set A, the event tZ P Au is in G. One
can define ErX | Gs, the conditional expectation of X given the events in G, in a similar
fashion as Definition B.12, for which existence and uniqueness are guaranteed by the Radon-
Nykodim theorem.

Definition B.13 (Conditional expectation with respect to σ-field). Let X be an integrable
random variable and G be a sub σ-field of F . ErX | Gs is the unique random variable Z
that satisfies

ErZY s “ ErXY s, (B.9)

for all G-measurable random variables Y such that XY is integrable.
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Remark B.7 holds also for (B.13): one only needs to verify ErZ1Gs “ ErX1Gs, for all
G P G, to show that Z “ ErX | Gs. If G is generated by a set of elementary events E , then
one only needs to verify that ErZ1Es “ ErX1Es for all E P E . In addition, let A is an event
in G such that PpAq ą 0 and for any events B P G such that B Ď A, we have PpBq “ PpAq

or PpBq “ 0. Then, we have

ErX | Gs “
ErX1tY PAus

PpAq
on A.

Example B.35. Consider the probability space pp0, 1q, Bpp0, 1qqq,Pq where P is uniform
probability measure, and let G be the σ-field generated by the intervals p i

4 , i`1
4 q, for i “

0, 1, 2, 3. Define the random variable X : ω P p0, 1q ÞÑ R to be Xpωq “ 1p1{3,2{3q ´ 1p0,1{3q ´

1p2{3,1q. We would like to find ErX|Gs. The key observation here is that the σ-field G
can be generated by a random variable that takes a constant value in interval p i

4 , i`1
4 q, for

i “ 0, 1, 2, 3. For instance, one can choose (among all other valid choices)

Y “

3
ÿ

i“0
i1

p i
4 , i`1

4 q

and ErX|Gs “ ErX|Y s. Therefore, since Y is constant in each interval p i
4 , i`1

4 q, so is
ErX|Gs, and we can write

ErX|Gs “

3
ÿ

i“0
ai1p i

4 , i`1
4 q

.

In Definition B.13, one can take Y “ 1
p i

4 , i`1
4 q

to obtain

aiEr1
p i

4 , i`1
4 q

s “ ErX1
p i

4 , i`1
4 q

s “

ż i`1
4

i
4

Xpωqdω “

$

’

’

’

’

&

’

’

’

’

%

´1
4 i “ 0

1
12 i “ 1
1
12 i “ 2
´1

4 i “ 3

Therefore,

ai “

$

’

’

’

’

&

’

’

’

’

%

´1 i “ 0
1
3 i “ 1
1
3 i “ 2
´1 i “ 3

,

and
ErX|Gs “ ´1p0, 1

4 q `
1
3

1p 1
4 , 1

2 q `
1
3

1p 1
2 , 3

4 q ´ 1p 3
4 ,1q.

The conditional expectation ErX | Gs can be understood by using the concept of regression.
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X

E[X|G]

W

Figure B.7: Geometric interpretation of conditional expectation with respect to a σ-field.

Consider the vector space of square integrable random variables; V “ tξ : Erξ2s ă 8u

and a linear subspace W of V including all G-measurable random variables. Then, for a
random variable X P V , the conditional expectation Z :“ ErX|Gs is the closest point in
W to X; ErX|Gs minimizes

Er|X ´ Y |2s

over all Y P W ( G-measurable square-integrable random variables). See Figure B.7.

Remark B.8. Any σpY q-measurable random variable Ŷ can be written as hpY q such that
h : R Ñ R is a Borel function. Therefore, we have ErX | Y s by ErX | σpY qs.

Having the conditional expectation defined, one can expand the notion of independence
to a general case. One can show, as in Proposition B.9, that two random variables X
and Y are independent if and only if ErgpXq | σpY qs “ ErgpXqs for any Borel function g
(or, equivalently, ErhpY q | σpXqs “ ErhpY qs for any Borel function h), provided that the
expectations exist.
Now, one can define the independence between two σ-fields: two σ-fields G and H are

independent if for any G-measurable random variable Z, ErZ|Hs “ ErZs (or, equivalently,
for any H-measurable random variable Z, ErZ|Gs “ ErZs). Given Definition B.13 for
conditional expectation, all the results of Corollary B.4, Proposition B.5 and Proposition
B.7 hold for general random variables.

Corollary B.6. Let X and Y be random variables. Then, provided that Y is G-measurable,
we have

ErY X | Gs “ Y ErX | Gs a.s.,

given that X and XY are integrable.

Proposition B.8 (Tower property of conditional expectation). Let X be an integrable
random variable and F and G be two σ-fields such that G Ď F . Then,

ErErX | Fs | Gs “ ErX | Gs a.s.

235



B. PROBABILITY

In particular,
ErErX | Fss “ ErXs.

Proposition B.9. X is independent of all G-measurable random variables if and only if
for any bounded real function f such that fpXq is integrable, we have

ErfpXq | Gs “ ErfpXqs a.s.

In particular, X is independent of Y if and only if ErfpXq | σpY qs “ ErfpXqs.

Corollary B.7. Consider a probability space pΩ, F ,Pq that hosts an integrable random
variable X, and let G be a σ-field such that G Ď F . Then, for any convex function f , we
have

fpErX | Gsq ď ErfpXq | Gs,

provided that fpXq is integrable.

The proof of this corollary is exactly the same line of argument as in Corollary B.1.

Continuous random variables

In this section, we review the basic concepts of continuous random variables without refer-
ring to measurability issues.

Definition B.14. A random variable X is called continuous if there exits a nonnegative
measurable function fX : Rd Ñ R such that

FXpxq :“
ż x1

´8

¨ ¨ ¨

ż xd

´8

fXpyqdy.

In this case, the function fX is called the probability density function (pdf) of the continuous
random variable X.

Working with continuous random variables is often computationally convenient; one can
accurately approximate the integrals to estimate relevant quantities such as probability of
certain events and expected value of certain random variables. For example, when X is a
univariate continuous random variable with pdf fX , the expected value of X is given by

ErXs “

ż 8

´8

xfXpxqdx.

More generally, for a function h : R Ñ R, we have

ErhpXqs “

ż 8

´8

hpxqfXpxqdx.
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If I Ď R, then
PpX P Iq “

ż

I
fXpxqdx.

Example B.36 (Normal distribution). A continuous random variable X with density

fXpxq “
1

?
2π

e´ x2
2 for all x P R

is called a standard Gaussian random variable. By using integration techniques, one can
see that ErXs “ 0 and varpXq :“ ErX2s “ 1.
If Y “ σX ` µ for σ ą 0 and µ P R, then Y is also a continuous random variable with

density

fY pxq “
1

?
2πσ

e´
px´µq2

2σ2 for all x P R.

Then, Y is called a normal random variable with mean µ and variance σ2 and is denoted
by Y „ N pµ, σ2q.

Exercise B.20. Show that when X „ N p0, 1q, we have ErXs “ 0 and varpXq :“ ErX2s “

1.

When X “ pX1, ..., Xdq is a jointly continuous random vector, we refer to its pdf fX as the
joint probability density function of X1, ..., Xd to emphasize its multi-dimensionality. For
simplicity, let’s focus on two random variables. Let the joint pdf of pX, Y q be fX,Y px, yq.
Then, it is easy to see that

a) The pdf of X, fX , satisfies

fXpxq “

ż 8

´8

fX,Y px, yqdy.

A similar formula holds for the pdf of Y .

b) For a function h : R2 Ñ R, we have

ErhpXqs “

ż 8

´8

ż 8

´8

hpx, yqfX,Y px, yqdxdy

c) If K Ď R2, then
PppX, Y q P Kq “

ĳ

K

fX,Y px, yqdA.
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Example B.37 (Bivariate normal distribution). Let C be a symmetric positive-definite
matrix and µ “ pµ1, ..., µdq P Rd. A jointly continuous random vector X “ pX1, ..., Xdq

with density
fXpxq “

1
p2πdetpCqqd{2 e´

px´µqC´1px´µqT
2 for all x P Rd

is called a multi-variate normal random vector. For each j “ 1, ..., d, ErXjs “ µj. The ma-
trix C is called the covariance matrix of X, because its entities correspond to the covariance
of components of X, i.e.,

Ci,j “ ErpXi ´ µiqpXj ´ µjqs.

In particular, for d “ 2, for a positive-definite matrix14

C “

„

σ2
1 σ12

σ12 σ2
2

ȷ

and µ “ 0, we have

fX,Y px, yq “
1

2π
a

σ2
1σ2

2 ´ σ2
12

e
´

σ2
2x2´2σ12xy`σ2

1y2

2pσ2
1σ2

2´σ2
12q for all x P R.

Here by evaluating double integrals, we can see that σ2
1 and σ2

2 are variances of X and Y ,
respectively, and that σ12 is the covariance of X and Y .

Exercise B.21. In Example B.37, show that covpX, Y q :“ ErpXi ´ µiqpXj ´ µjqs “ Ci,j.

Exercise B.22. In Example B.37, show that σ2
1 and σ2

2 are variance of X and Y respec-
tively, and σ12 is the covariance of X and Y .

Defining and calculating conditional probability and conditional expectation is also done
through integral definition for continuous random variables. Let pX, Y q be a jointly con-
tinuous random variable with density fX,Y px, yq. Then, the conditional density of X given
Y “ y is defined by

fX|Y px | yq :“ fX,Y px, yq

fY pyq
,

provided that y is in the set of values of Y , ty : fpyq ‰ 0u. Using the above definition, the
conditional probability of X P I given Y “ y is given by

PpX P I | Y “ yq :“
ş

I fX,Y px, yqdx

fpyq
(B.10)

Similarly, if h : R Ñ R is a function, then the conditional expectation of hpXq given Y “ y

14In order for C to be positive-definite, is necessary and sufficient to have σ1, σ2 ‰ 0, and σ2
1σ2

2 ´ σ2
12 ą 0.
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is given by

ErhpXq | Y “ ys :“
ş8

´8
hpxqfX,Y px, yqdx

fpyq
. (B.11)

In particular, the conditional expectation of X given Y “ y is given by

ErX | Y “ ys :“
ş8

´8
xfX,Y px, yqdx

fY pyq
. (B.12)

Notice that conditional expectation and conditional probability in (B.10), (B.11), and(B.12)
are functions of the variable y. The domain of all these is the set of values of Y , i.e., ty :
fY pyq ‰ 0u. This, in particular, can be useful in defining conditional distribution and condi-
tional probability given Y . Let’s first make the definition for conditional probability of X P I

given Y . Consider a function Y that maps y onto Ypyq :“ PpX P I | Y “ yq “

ş

I fX,Y px,yqdx

fY pyq
.

Then, one can define

PpX P I | Y q :“ YpY q “

ş

I fX,Y px, Y qdx

fY pY q
.

Notice that, unlike PpX P I | Y “ yq which is a real function, PpX P I | Y q is a random
variable that is completely dependent on random variable Y . Similarly, we have

ErhpXq | Y s :“
ş8

´8
hpxqfX,Y px, Y qdx

fY pY q
and ErX | Y s :“

ş8

´8
xfX,Y px, Y qdx

fY pY q
.

For continuous random variables independence can be defined in terms of the joint pdf
fpx, yq; let X and Y be jointly continuous. Then, X and Y are called independent if f is
a separable function, i.e.

fX,Y px, yq “ gpxqhpyq.

Notice that the choice of h and g is not unique and varies by multiplying or dividing
constants. In this case, one can write the separation in a standard form

fX,Y px, yq “ fXpxqfY pyq, (B.13)

where fXpxq and fY pyq are, respectively, the pdf of x and the pdf of Y .

Example B.38. From Example B.37 and (B.13), one can see that bivariate normal ran-
dom variables are independent if and only if they are uncorrelated, i.e., they have zero
correlation or simply σ12 “ 0.

Exercise B.23. Show that (B.7) and (B.13) are equivalent.
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B.3 Martingales

The conditional expectation defined in the previous section is required in the definition of
a martingale. Consider a probability space pΩ, F ,Pq, i.e., a sample space Ω, a σ-field F ,
and a probability measure P and let X :“ tXtu

T
t“0 (possibly T “ 8) be a discrete-time

stochastic process. Here, a stochastic process is simply a sequence of random variables
indexed by time; for any t “ 0, 1, ..., Xt is a random variable.
Definition B.15. A discrete-time stochastic process tMtu

T
t“0 on a probability space pΩ, F ,Pq

is called a martingale with respect to X if
a) Mt is integrable for all t “ 0, ..., T , Er|Mt|s ă 8.

b) The conditional expectation Mt given Xs, Xs´1, ..., X0 is equal to Ms,

ErMt|Xs, Xs´1, ..., X0s “ Ms, for s ă t.

Condition (a) in the definition of martingale is technical and guarantees the existence of
the conditional expectation in condition (b). Condition (b) in the definition of martingale
implies that Ms is a σpX0, ..., Xsq-measurable random variable, for all s ě 0. This is
because the conditional expectation ErMt|Xs, Xs´1, ..., X0s is a σpX0, ..., Xsq-measurable
random variable.
Condition (b) can also be given equivalently by
b1) ErMt|Xt´1, ..., X0s “ Mt´1, for t ě 1.

Notice that, as a result of the tower property for conditional expectation, if (b1) holds, we
can write

ErErMt|Xt´1, ..., X0s|Xs, ..., X0s “ ErMt´1|Xs, ..., X0s.

By applying the tower property inductively, we obtain

ErMt|Xs, ..., X0s “ ErMt´1|Xs, ..., X0s “ ¨ ¨ ¨ “ ErMs`1|Xs, ..., X0s “ Ms.

Example B.39. Let Y be an arbitrary integrable random variable. Then, Mt :“ ErY |

Xt, ..., X0s is a martingale with respect to X.
Example B.40 (Symmetric random walk). The symmetric random walk in Definition B.2
is a martingale. Since Wi ´ Wi´1 “ ξi, we have

ErWt`1|Wt, ..., W0s “ ErWt ` ξt`1|ξt, ..., ξ1, W0s

“ ErWt|ξt, ..., ξ1, W0s ` Erξt`1|ξt, ..., ξ1, W0s.

ErWt|ξt, ..., ξ1, W0s is simply ErWt|Wt, ..., W0s “ Wt. On the other hand, since tξnu8
n“1 is

an independent sequence of random variables, it follows from Corollary B.3 that

Erξt`1|ξt, ..., ξ1, W0s “ Erξt`1s “ 0,
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and therefore, ErWt`1|Wt, ..., W0s “ Wt.
Example B.41 (Multiperiod binomial model). Under the risk-neutral probability, the dis-
counted price of the asset, Ŝt :“ St

p1`Rqt is a martingale. Recall from Section II.2.3 that

St “ St´1Ht,

where Hi is a sequence of i.i.d. random variables under the risk-neutral probability that is
given by

PπpHi “ uq “
1 ` R ´ ℓ

u ´ ℓ
and PπpHi “ lq “

u ´ 1 ´ R

u ´ ℓ
.

Thus, Ht is independent of St´1 “ S0Ht´1 ¨ ¨ ¨ H1 and

ErSt|St´1, ..., S0s “ ErSt´1Ht|Ht´1, ..., H1, S0s

“ St´1ErHt|Ht´1, ..., H1, S0s “ St´1ErHts “ p1 ` RqSt´1.

In the second equality above, we used Corollary B.2 and the third equality is the result of
Corollary B.3.
Remark B.9. As a result of tower property of conditional expectation, the expectation of
a martingale remain constant with time, i.e., ErMts “ ErM0s.
Example B.42. Let tWtu

8
t“0 be a symmetric random walk from Example B.2 and define

Mt :“ W 2
t ´ t. Then, Wt is a martingale with respect to tξtu

8
t“1. To see this, we need to

show
ErW 2

t`1 ´ pt ` 1q|ξt, ..., ξ1s “ W 2
t ´ t.

Recall that Wt`1 “ Wt ` ξt`1. Thus,

ErW 2
t`1|ξt, ..., ξ0s “ ErpWt ` ξt`1q2|ξt, ..., ξ1s

“ ErW 2
t |ξt, ..., ξ1s ` Erξ2

t`1|ξt, ..., ξ1s ` 2ErWtξt`1|ξt, ..., ξ1s.

It follows from Corollary B.2 that

ErW 2
t |ξt, ..., ξ1s “ W 2

t

ErWtξt`1|ξt, ..., ξ1s “ WtErξt`1|ξt, ..., ξ1s.

On the other hand, by Corollary B.3, we have

Erξ2
t`1|ξt, ..., ξ1s “ Erξ2

t`1s “ 1
Erξt`1|ξt, ..., ξ1s “ Erξt`1s “ 0

Thus, ErX2
t`1|ξt, ..., ξ0s “ W 2

t ` 1, and therefore,

ErMt`1|ξt, ..., ξ1s “ W 2
t ` 1 ´ pt ` 1q “ Mt.
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In the definition of a martingale, Definition B.15, process X models the dynamics of the
information as time passes. At time t, the occurrence or absence of all events related to
Xt, ..., X0 are known. The conditional expectation ErMt|Xs, Xs´1, ..., X0s should be read
as expectation of Mt given the information gathered from the realization of process X until
time s. It follows from Remark B.8 that if we denote FX

s :“ σpXs, ..., X0q, then part (b)
in Definition B.15 of martingale can be written as

ErMt|FX
s s “ Ms.

This motivates the definition of a filtration.

Definition B.16. A filtration is a sequence of σ-fields F :“ tFsu8
s“0 such that Fs Ď Ft for

t ě s.

For example, if we set FX
s :“ σpXs, ..., X0q, then

FX
s “ σpXs, Xs´1, ..., X0q Ď FX

t “ σpXt, ..., Xs, Xs´1, ..., X0q.

In this case, we call FX the filtration generated by X. FX represents the accumulated
information that are revealed by the process X as time passes.
We a filtration tFtu

8
t“0 is given, a stochastic process tYtu

8
t“0 is called adapted with respect

to the filtration if for all t, Yt is an Ft-measurable random variables. For instance, in
Example B.13, the random walk tWtu

8
t“0 is adapted with respect to tFξ

t u8
t“0. Here, W0 is

a constant and Fξ
t “ σpξ1, ..., ξtq.

Given Definition B.13 of conditional expectation with respect to a σ-field, one can now
define a martingale with respect to a given filtration without appealing to a process X.
A probability space pΩ, F ,Pq equipped with a filtration F :“ tFsu8

s“0 is called a filtered
probability space.

Definition B.17. Consider a filtered probability space, i.e., pΩ, F ,F :“ tFsu8
s“0,Pq. A

discrete-time stochastic process tMtu
T
t“0 is called a martingale with respect to filtration F if

a) The expected value of |Mt| is finite for all t “ 0, ..., T , i.e., Er|Mt|s ă 8.

b) The conditional expectation Mt given Fs is equal to Ms, ErMt | Fss “ Ms for s ď t.

We can equivalently present (b) as

ErMt | Ft´1s “ Mt´1.

By applying the tower property in Proposition B.8 inductively, we obtain

ErErMt | Ft´1s | Fss “ ¨ ¨ ¨ “ ErMs`1 | Fss “ Ms and ErMts “ M0.
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Super/submartingales

Motivated by American option pricing and many other applications, we define a super-
martingale and a submartingales

Definition B.18. A discrete-time stochastic process tMtu
T
t“0 on a filtered probability space

pΩ, F ,Pq is called a supermartingale (or, respectively, a submartingale) with respect to a
filtration F if

a) Mt is integrable for all t “ 0, ..., T , i.e., Er|Mt|s ă 8.

b) ErMt | Fss ď Ms, for s ă t (or, respectively, ErMt | Fss ě Ms, for s ă t).

Mt is a supermartingale if and only if ´Mt is a submartingale. So, we can only focus
our study of supermartingales. A martingale is simultaneously a submartingale and a
supermartingale. The supermartingale property can equivalently be given by

ErMt | Ft´1s ď Mt´1.

Example B.43 (asymmetric random walk). An asymmetric random walk with Ppξn “

1q “ p ă 1
2 is a strict supermartingale.

ErWt`1 | ξt, ..., ξ1s “ ErWt ` ξt`1 | ξt, ..., ξ1s

“ ErWt | ξt, ..., ξ1s ` Erξt`1 | ξt, ..., ξ1s.

ErWt | ξt, ..., ξ1s is simply Wt. On the other hand, since tξiui“1 is an independent sequence
of random variables, it follows from Corollary B.3 that

Erξt`1 | ξt, ..., ξ1s “ Erξt`1s “ 2p ´ 1 ă 0.

Thus, ErWt`1 | ξt, ..., ξ1s ă Wt.

The following corollary shows how submartingales naturally show up from convex trans-
formation of martingales.

Lemma B.2. Let tMtutě0 be a martingale with respect to filtration F and f be a convex
function, and define Yt :“ fpMtq. Then, tYtutě0 is a submartingale with respect to filtration
F if Er|fpMtq|s ă 8 for all t ě 0.

Proof. By corollary B.7, we know that

ErfpMtq | Fss ě fpErMt | Fssq “ fpMsq.

In the above, the equality comes from the martingale property of tMu8
t“0.
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If tMu8
t“0 is a submartingale, we can still have a slightly weaker version of the above

corollary.

Lemma B.3. Let tMtutě0 be a submartingale with respect to filtration F and f be a convex
nondecreasing function such that Er|fpMtq|s ă 8 for all t ě 0. Define Yt :“ fpMtq. Then,
tYtutě0 is a submartingale with respect to filtration F.

Proof. By corollary B.7, we know that

ErfpMtq | Fss ě fpErMt | Fssq ě fpMsq.

In the above, the second inequality comes from the submartingale property of tMu8
t“0, i.e.,

ErMt | Fss ě Ms and nondecreasingness property of f .

The following corollaries are the result of Lemmas B.2 and B.3

Corollary B.8. If M “ tMtutě0 is a martingale, then M` “ tmaxt0, Mtuutě0, |M | :“
t|Mt|utě0 , and |M |p :“ t|Mt|

putě0 for p ą 1 are submartingales; for the last one we need
the assumption that Er|Mt|

ps ă 8 for all t ě 0.

Stopping time and optional sampling theorem

Definition B.19. A stopping time with respect to filtration tFtu
8
t“0 is a random variables

τ : Ω Ñ t0, 1, ...u such that for any t, the even tτ ď tu belongs to Ft.

A stopping time is a random time that does not anticipate the release of information that
is defined by a filtration. For instance, recall that the filtration generated by the process
X is given by tFX

t u8
t“0, where FX

t “ σpX0, ..., Xtq increases as time t passes. Then, the
event that τ happened before or at t should belong to σpX0, ..., Xtq to make tau a stopping
time. Some examples of a stopping time are presented below.

i) A deterministic time τ ” t0 is a stopping time. Then, the event tt0 ď tu is either Ω
or H, if t0 ď t or t0 ą t, respectively.

ii) Let τa be the first time that a stochastic process tXu8
t“0 such as the price of an asset

is greater than or equal to a. Then, the event tτ ď tu can also be represented by al
the outcomes such that Xu ě a for some u ď t. Therefore, it belongs to σpX0, ..., Xtq.

iii) Assume that tYtutě0q be a stochastic process which is measurable with respect to
σpX0, ..., Xtq. Let τ be the first time that a stochastic process tYtutě0q enters the
interval pa, bq. Then, τ is a stopping time.

iv) If tYtutě0q is predictable, i.e., measurable with respect to σpX0, ..., Xt´1q, then the
stopping time in (iii) is called a predictable stopping time. In other words, we know
that the event tτ ď tu is going to happen one period ahead of time t.
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v) If Yt is not measurable with respect to σpX0, ..., Xtq; but it is measurable with re-
spect to σpX0, ..., Xt`1q, then τ is not a stopping time. Because we know about the
occurrence of tτ ď tu not any time sooner than t ` 1.

Lemma B.4. If τ and ϱ are two stopping times with respect to a filtration tFtu
8
t“0, then

τ _ ϱ :“ maxtτ, ϱu, and τ ^ ϱ :“ mintτ, ϱu are stopping times with respect to filtration
tFtu

8
t“0. In particular, for a deterministic time t0, τ ^ t0 is a stopping time bounded by t0

with respect to filtration tFtu
8
t“0.

Proof. We only present the proof for τ _ϱ as the rest of the proof follows through a similar
line of arguments. The event tτ _ ϱ ď tu is equal to tτ ď tu X tϱ ď tu. Since, we have
tτ ď tu P Ft and tϱ ď tu P Ft, tτ _ ϱ ď tu “ tτ ď tu X tϱ ď tu P Ft, and therefore, τ _ ϱ is
a stopping time with respect to a filtration tFtu

8
t“0.

For the simplicity, a stopping time with respect to a known filtration is called a stopping
time, whenever there is no confusion.

Definition B.20 (Stopped process). For a process tXtu
8
t“0 that is adapted to a filtration

and a stopping time τ with respect to the same filtration, the random variable Xτ is defined
to be equal Xt on the event τ “ t.

Example B.44. Consider a random walk W , and let the stopping time τa be the first time
the random walk is greater than or equal to a. Since the random walk moves one step at
a time, τa is the first time the random walk hits a. One can see this as the first time the
wealth of a gambler who bets only one dollar at each round becomes equal to a. Therefore,
Wτa “ a.

Let tMu8
t“0 is a martingale and τ be a stopping time with respect to filtration F such that

τ ě t0 for some deterministic time t0, it is natural to ask whether ErMτ | Ft0s “ Mt0 . In
particular when t0 “ 0, we want to see whether ErMτ s “ M0. The answer in general case
is no according to the next example.

Example B.45. Recall the Saint Petersburg paradox in Example 2.2.4. Let τ be the first
time that the gambler wins a round, i.e.,

τ :“ inftt : ξt “ 1u.

Notice that the doubling strategy always generates exactly one dollar more than the initial
wealth, i.e., Wτ “ W0 ` 1. Let t0 “ 0. If the game is fair, i.e., Ppξ “ 1q “ Ppξ “ ´1q “ 1

2 ,
the random walk, and therefore, the doubling strategy make the wealth process a martingale.
However, ErWτ s “ W0 ` 1 ą W0.

Under some additional condition, we may hope for ErMτ | Ft0s and ErMτ s “ M0 to hold
true. The following Theorem is providing a set of sufficient conditions.
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Theorem B.6 (Optional sampling). Let τ be stopping time bounded by a deterministic
time T , i.e., τ ď T and tMu8

t“0 be a supermartingale. Then for any t ď T ,

ErMτ | Fts ď Mτ^t.

In particular, ErMτ s ď M0.

It is obvious that for a martingale, the inequalities in the assertion of Theorem B.6 turns
to equalities, i.e., ErMτ | Fts “ Mτ^t and ErMτ s ď M0.
To show Theorem B.6, we need the following lemma.

Lemma B.5. Let tMu8
t“0 be a supermartingale. Then, the stopped process

Mτ^t “

#

Mt τ ą t

Mτ τ ď t

is also a supermartingale.

Proof of Theorem B.6. Notice that because τ ď T , τ ^ T “ τ and by Lemma B.5, one can
write

ErMτ | Fts “ ErMτ^T | Fts “ Mτ^t.

Proof of Lemma B.5. It suffices to show Er|Mτ^t|s ă 8 and

ErMτ^t | Ft´1s “ Mτ^pt´1q.

Notice that Mτ^t “ Mτ 1tτătu ` Mt1tτětu. Therefore,

ErMτ^t | Ft´1s “ ErMτ | 1tτătu | Ft´1s ` ErMt1tτětu | Ft´1s

Since tτ ă tu “ tτ ď t ´ 1u P Ft´1 and tτ ě tu “ tτ ă tuA P Ft´1, we have

ErMτ^t | Ft´1s “ ErMτ 1tτătu | Ft´1s ` 1tτětuErMt | Ft´1s.

By supermartingale property of tMu8
t“0, we have ErMt | Ft´1s ď Mt´1 and

ErMτ^t | Ft´1s ď ErMτ 1tτătu | Ft´1s ` Mt´11tτětu.

On the other hand,

1tτătuErMτ | Ft´1s “

t´1
ÿ

i“0
ErMτ 1tτ“iu | Ft´1s “

t´1
ÿ

i“0
ErMi1tτ“iu | Ft´1s.
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Since 1tτ“iuMi isFt´1-measurable for i ď t ´ 1, we have

ErMi1tτ“iu | Ft´1s “ 1tτ“iuMi,

and

1tτătuErMτ | Ft´1s “

t´1
ÿ

i“0
Mi1tτ“iu “ Mτ 1tτďt´1u.

Therefore,
ErMτ^t | Ft´1s ď Mτ 1tτďt´1u ` Mt´11tτětu “ Mτ^pt´1q.

B.4 Characteristic functions and weak convergence

The characteristic function of a (univariate) random variable is a complex function defined
by

χXpθq :“ EreiθXs.

When X is a discrete random variable, then χXpθq “
ř8

i“1 eiθxip1, and when X is con-
tinuous with pdf f , then χXpθq “

ş8

´8
eiθxfpxqdx. In the latter case, the characteristic

function is the Fourier transform of the pdf f .
If F is the distribution function of X, the characteristic function can be equivalently given

by
χXpθq “

ż

R
eiθxdF pxq,

where the above integral should be interpreted as Reimann-Stieltjes integral. Especially
for continuous random variables we have

χXpθq “

ż

R
eiθxfpxqdx.

Therefore, for a continuous random variable, the characteristic function is the Fourier
transform of the pdf. Therefore, if we know the characteristic function of a distribution,
then one can find the distribution function by inverse Fourier transform.

Example B.46. We want to find the characteristic function of Y „ N pµ, σq. First tale
the standard case of X „ N p0, 1q.

χXpθq “
1

?
2π

ż

R
eiθxe´ x2

2 dx “
e´ θ2

2
?

2π

ż

R
e´

px´iθq2
2 dx “ e´ θ2

2 .
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Now, since Y “ µ ` σX, we have

χY pθq “ Ereiθpµ`σXqs “ eiµθχXpσθq “ eiµθ´ σ2θ2
2 .

For the inversion theorem, see [10, Theorem 3.3.4], the characteristic function uniquely
determines the distribution of the random variable. Therefore, all the information
For a random vector pX, Y q, the characteristic function is defined as

χpθ1, θ2q :“ Ereipθ1X`θ2Y qs.

One of the important implications of definition of independent random variable in Remark
B.3 is that if X and Y are independent, then for any pθ1, θ2q we have

χpθ1, θ2q “ MXpθ1qMY pθ2q. (B.14)

The inverse is also true; see [10, Theorem 3.3.2]. This provides an easy way to formulate
and verify the independence of random variable in theory.

Proposition B.10. X and Y are independent if and only if (B.14) holds true.

Weak convergence

The most well-known place where the weak convergence comes to play is the central limit
theorem (CLT).

Theorem B.7. Let X1, X2, ... be a sequence of i.i.d. random variables with expectation
µ “ ErX1s and standard deviation σ :“

a

ErX2
1 s ´ µ2 and define Wn :“

řn
i“1pXi´µq

σ
?

n
. Then,

P pWn ď xq Ñ

ż x

´8

1
?

2π
e´

y2
2 dy,

as n Ñ 8.

The appellation “weak” is originated from the fact that this convergence is weaker that the
concept of pointwise or almost sure (shortly a.s.) convergence. The pointwise convergence
indicates that the sequence of random variablestWnpωqun converges for all ω P Ω; while
almost sure convergence means the probability of the event

An :“ tω : Wnpωqun does not convergeu

converges to zero as n Ñ 8. Almost sure convergence, for instance, appears in the law of
large numbers (LLN).
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Theorem B.8. Let X1, X2, ... be a sequence of i.i.d. random variables with expectation
µ “ ErX1s and standard deviation σ :“

a

ErX2
1 s ´ µ2. Then,

řn
i“1 Xi ´ nµ

n
Ñ 0 almost surely,

as n Ñ 8. Here almost surely means that the probability that this convergence does not
happen is zero.

In other words, the statistical average
řn

i“1 Xi

n converges to the expectation (mean), when
n Ñ 8, except for a set of outcomes with zero total probability. For example in the
context of flipping a fair coin, the fraction of flips that the coin turns heads converges to 1

2
exclusively. However, one can simply construct infinite sequences of heads and tails such
as H, T, T, H, T, T, ... with statistical average converging to some value other than 1

2 .
In the weak sense of convergence in CLT, the sequence of random variablestWnpωqun do

not actually converge to a normal random variable over a significantly large part of the
sample space, as a result of law of iterated logarithms, i.e.

lim sup
nÑ8

Wn
a

2 logplogpnqq
“ 1 almost surely.

Instead, the probability distribution function of Wn can be approximated by normal dis-
tribution function for large n. In this case, we say that

řn
i“1 Xi´nµ

σ
?

n
converges weakly or in

distribution to standard Gaussian.

Definition B.21. We say the sequence tYnu8
n“1 of random variables converges weakly (or

in distribution) to random variable Y if for the distribution functions we have

FYnpyq Ñ FY pyq for any y such that FY is continuous at y.

We denote the weak convergence by Yn ñ Y .

The following example reveals a different aspect of weak convergence in regard to com-
parison with a.s. convergence.

Example B.47. On a probability space pΩ,Pq, let the random variable Ynpωq “ yn for all
ω (a.s.), i.e., Yn is a constant random variable equal to yn. If yn Ñ y, then Yn Ñ Y ” y
pointwise (a.s., respectively).
Now, consider a sequence of possibly different probability space pΩ “ t0, 1u,Pnq such that
Pnpt0uq “ 1 if n is odd and Pnpt0uq “ 0 if n is even. For each n, let the random variable
Zn : Ω Ñ R be defined by

Znpωq “

#

1
n pω “ 0 and n is oddq or pω “ 1 and n is evenq

1 otherwise.
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In particular, the distribution of Zn is a Dirac distribution located at 1
n ;

Fnpxq :“ PnpZn ď xq “

#

1 x ě 1
n

0 otherwise.

Zn does not converge pointwise, since Znp0q alternates between 1
n and 1 as n increases

successively. However, the distribution function Fnpxq of Zn converges to the distribution
function

F pxq :“

#

1 x ě 0
0 otherwise.

The following proposition is one of the equivalent conditions of weak convergence.

Proposition B.11. Yn ñ Y if and only if for any bounded continuous function f :
R Ñ R we have

lim
nÑ8

ErfpYnqs “ ErfpY qs

Notice that the expectation in ErYns and ErY s are to be interpreted in different sample
spaces with different probabilities.
One of the ways to establish weak convergence results is to use characteristic functions;

see [10, Theorem 3.3.6]

Theorem B.9. Let tXnu be a sequence of random variables such that for any θ, χXnpθq

converges to a function χpθq which is continuous at θ “ 0. Then, Xn converges weakly to
a random variable X with characteristic function χ.

As a consequence of the this Theorem, one can easily provide a formal derivation for
central limit theorem. Let Sn :“

řn
i“1 Xi´nµ

σ
?

n
. Thanks to the properties of characteristic

function and (B.14), the characteristic function of Sn is given by

χSnpθq “

n
ź

i“1
χXi´µpθ{pσ

?
nqq “

`

χX1´µpθ{pσ
?

nqq
˘n

.

Here we used identical distribution of sequence tXnu to write the last equality. Since
eix “ 1 ` ix ´ x2

2 ` opx2q, we can write

χXi´µpθq “ 1 ´
σ2θ2

2
` opθ2q.

Therefore,

χSnpθq “
`

χpXi´µqpθ{pσ
?

nqq
˘n

“

ˆ

1 ´
θ2

2n
` opn´1q

˙n

Ñ e´ θ2
2 ,
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as n Ñ 8. This finished the argument since e´ θ2
2 is the characteristic function of standard

Gaussian.

Remark B.10. In the Definition B.21 of weak convergence, only the distribution of random
variables matters, and not the sample space of each random variable. Therefore, in weak
convergence, the random variables in sequence tYnu8

n“1 can live in different sample spaces.
However, one can make one universal sample space for all Yn’s and Y ; more precisely, if
Yn and Y are defined on probability space pΩn, Fn,Pnq and pΩ, F ,Pq, then Ω̃ “ Ω ˆ

ś

n Ωn

is a universal sample space. The random variables Yn and Y are redefined on Ω̃ by

Ỹ pω, ω1, ω2, ...q “ Y pωq, and Ỹnpω, ω1, ω2, ...q “ Ynpωnq.

The distribution of random variables on Ω̃ is determined by the probability P̃ :“ Pb
ś

n Pn.
Therefore, the weak convergence of random variables can be reduced to weak convergence

of probabilities on a single sample space.

Weak convergence of probabilities

If the sample space is a Polish space (complete metrizable topological space), then one can
define weak convergence of probabilities (or even measures). Sample spaces with a topology
contribute to the richness of the probabilistic structure; the concept of convergence of
probabilities can be defined.

Definition B.22. Consider a sequence of probabilities tPnun on a Polish probability space
pΩ, Fq. We say Pn converges weakly to a probability P on pΩ, Fq, denoted by Pn ñ P, if
for any bounded continuous function f : Ω Ñ R we have

lim
nÑ8

Enrf s “ Erf s

Notice that in the above definition topology of Ω has been used in the continuity of
function f .
One can always reduce the weak convergence of random variables to weak convergence of

probabilities in the Polish space Rd. Let tYnu8
n“1 be a sequence of random variables and Y

be a random variable all with values in Rd. Then, the distributions of Yn’s and Y defined
probability measures in Rd as follows.

P̃npAq “ PnpY P Aq and P̃pAq “ PpY P Aq.

Notice that, as emphasized in Remark B.10, Yn and Y live in different probability spaces
pΩn, Fn,Pnq and pΩ, F ,Pq, respectively. However, the probabilities P̃n and P̃ are defined
on the same sample space Rd.

Corollary B.9. Yn ñ Y if and only if P̃n ñ P̃.
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Time

W

Time

W

Figure B.8: Left: Sample path of a random walk. Right: Interpolated sample path of a
random walk

B.5 Donsker Invariance Principle and Brownian motion

In this section, we heuristically construct Brownian motion (or Wiener process) as the
weak limit of symmetric discrete-time random walk in Definition B.2. First, we make
the sample paths of random walk continuous by linear interpolation. For t P r0, 8q, we
define the interpolated random walk by Wt :“ Wrts ` pt ´ rtsqWrts`1; see Figure B.8. Then,
tWt : t ě 0u becomes a continuous-time stochastic process with continuous sample paths,
i.e., for each t ě 0, Wt is a random variable and for any realization ω of random walk,
Wtpωq is continuous in t.
Motivated by central limit theorem, we defined normalized random walk by

X
pnq
t :“ 1

?
n

Wnt for all t P r0, 8q.

1
n

1√
n

A sample path of a normalized random walk X(n)

Time

W

Then, we define Brownian motion is the weak limit of X
pnq
t as n Ñ 8. Indeed, a rigorous
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definition of the Brownian motion is way more technical and requires advanced techniques
from analysis and measure theory. Here we only need the properties which characterize a
Brownian motion.

Remark B.11. In the above construction, one can take any sequence of i.i.d. random
variables tξnuně0 with finite variance σ2 and define X

pnq
t :“ 1

σ
?

n
Wnt. The rest of the

arguments in this section can be easily modified for this case.

Because tξiu
8
i“1 are i.i.d., for any t “ k

n and s “ ℓ
n with t ą s, X

pnq
t ´ X

pnq
s has mean zero

and variance t ´ s. If t ą s are real numbers, then the mean is still zero but the variance is
1
nprtns´rsnsq which converges to t´s. In addition, X

pnq
t ´X

pnq
s is independent of X

pnq
u when

u ď s. By central limit theorem, X
pnq
t ´ X

pnq
s ñ N p0, t ´ sq, a normal distribution with

mean zero and variance t ´ s. This suggests that Brownian motion inherits the following
properties in the limit from X

pnq
t :

a) B has continuous sample paths,

b) B0 “ 0,

c) when s ă t, the increment Bt ´ Bs is a normally distributed random variables with
mean 0 and variance t ´ s and is independent of Bu; for all u ď s.

The properties above fully characterize the Brownian motion.

Definition B.23. A stochastic process is a Brownian motion if it satisfies the properties
(a)-(c) above.

Property (c) in the definition of Brownian motion also implies some new properties for
the Brownian motion which will be useful in modeling financial asset prices.

- Time-homogeneity. Brownian motion is time homogeneous, i.e., Bt ´ Bs has the
same distribution as Bt´s.

- Markovian. The distribution of Bt given tBu : u ď su has the same distribution as
Bt given Bs, i.e., the most recent past is the only relevant information. Notice that
Bt “ Bs`Bt´Bs. Since by property (c) Bt´Bs is independent of Fs :“ tBu : u ď su,
the distribution of Bt “ Bs ` Bt ´ Bs given Fs “ tBu : u ď su is normal with mean
Bs and variance t´s, which only depends on the most recent past Bs. In other word,
by Proposition B.6

ErfpBtq | Fss “ ErfpBt ´ Bs ` Bsq | Fss “ ErfpBt ´ Bs ` Bsq | Bss
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- Martingale. Finally, the conditional expectation ErBt | Bu : u ď ss can be shown
to be equal to Bs.

ErBt | Bu : u ď ss “ ErBt | Bss “ ErBs | Bss ` ErBt ´ Bs | Bss “ Bs.

In the above we used property (c) to conclude that ErBt ´ Bs | Bss “ 0.

A typical sample paths of Brownian motion is shown in Figure B.9.

Figure B.9: A sample paths of Brownian motion

Sample space for Brownian motion

In order to construct a Brownian motion, we need to specify the sample space. In the early
work of Kolmogorov, we choose the sample space to be pRdqr0,8q, i.e., space of all functions
from r0, 8q to Rd. This is motivated by the fact that for any ω P Ω, the sample path of
Brownian motion associated with sample ω is given by the function Btpωq : r0, 8q Ñ Rd.
See Figure B.9. Kolmogorov made a theory which in particular resulted in the existence
of Brownian motion. While it is not hard to show property (c), in his theory it is not easy
to show property (a) of Brownian motion, i.e., the sample paths are continuous. By using
the weak convergence result of Yuri Prokhorov, Norbert Wiener take the construction of
Brownian motion to a new level by taking the sample space Ω :“ Cpr0, 8q;Rdq, the space
of all continuous functions. This way property (a) becomes trivial, while, property (c) is
more challenging.
Among all the continuous functions in Cpr0, 8q;Rdq only a small set can be a sample

paths of a Brownian motion. In the following, we present some of the characteristics of the
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paths of Brownian motion.

i) Sample paths of Brownian motion are nowhere differentiable. In addition,

lim sup
δÑ0

Bt`δ ´ Bt

δ
“ 8, and lim inf

δÑ0

Bt`δ ´ Bt

δ
“ ´8.

ii) Sample paths of Brownian motion are of bounded quadratic variation variations.
More precisely, the quadratic variation of the path of Brownian motion until time t,
equals t, i.e.,

lim
}Π}Ñ0

N´1
ÿ

i“0
pBti`1 ´ Btiq

2 “ t, a.s., (B.15)

where for the partition Π :“ tt0 “ 0 ă t1 ă ¨ ¨ ¨ ă tN “ tu, }Π} “ maxi“0,...,N´1pti`1´

tiq

iii) Sample paths of Brownian motion are not of bounded variations almost surely, i.e.,
for

sup
Π

N´1
ÿ

i“0
|Bti`1 ´ Bti | “ 8, a.s.,

where the supremum is over all partitions Π :“ tt0 “ 0 ă t1 ă ¨ ¨ ¨ ă tN “ tu.

In the above, property (iii) is a result of (ii). More precisely, for a a continuous function
g : ra, bs Ñ R, a nonzero quadratic variation implies infinite bounded variation. To show
this, let’s assume that g is continuous and bounded variation B. Then, g is uniformly
continuous on ra, bs, i.e., for any ε ą 0, there exists a δ ą 0 such that if }Π} ď δ, then

max
i“0,...,N´1

t|gpti`1q ´ gptiq|u ď ε.

Thus,

N´1
ÿ

i“0
pgpti`1q ´ gptiqq2 ď max

i“0,...,N´1
t|gpti`1q ´ gptiq|u

N´1
ÿ

i“0
|gpti`1q ´ gptiq| ď εB.

By sending ε Ñ 0, we obtain that the quadratic variation vanishes.
The following exercise shows the relation between the quadratic variation is martingale

properties of Brownian motion.

Exercise B.24. Show that B2
t ´ t is a martingale, i.e.

ErB2
t`s ´ pt ` sq | Bss “ B2

s ´ s.
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C Stochastic analysis

Calculus is the study of derivative (not financial) and integral. Stochastic calculus is
therefore the study of integrals and differentials of stochastic objects such as Brownian
motion. In this section, we provide a brief overview of the stochastic integral and Itô
formula (stochastic chain rule). The application to finance is provided in Part 3.

In calculus, the Riemann integral
şb
a fptqdt is defined by the limit of Riemann sums:

lim
δÑ0

δ
N
ÿ

i“1
fpt˚

i q,

where δ “ b´a
N , t0 “ a, ti “ t0 ` iδ, and t˚

i is an arbitrary point in interval rti´1, tis. The
Reiman integral can be defined for a limited class of integrands, i.e., the real functions f is
Riemann integrable on ra, bs if and only if it is bounded and continuous almost everywhere.
A natural extension of Riemann integral is Lebesgue integral, which can be defined on a
large class of real functions, i.e., bounded measurable function on ra, bs.

A more general form of Riemann integral, Riemann-Stieltjes integral is defined in a similar
fashion. For two real functions f, g : ra, bs Ñ R, the integral of the integrand f with respect
to integrator g is defined by

ż b

a
fptqdgptq lim

δÑ0

N
ÿ

i“1
fpt˚

i qpgptiq ´ gpti´1q.

For Riemann-Stieltjes integral, and its extension, Lebegue-Stieltjes integral, to be well-
defined, we need some conditions on f and g.

The condition on the integrand f is similar to the those in Riemann and Lebesgue integrals.
For example if f is continuous almost everywhere and at the points of discontinuity of g,
then no further condition needs to be imposed on f in the Riemann-Stieltjes integral. For
the Lebesgue-Stieltjes integral, f only needs to be measurable. However, for g a very crucial
condition is needed to make the integral well-defined. g must be of bounded variation, i.e.

lim
δÑ0

N
ÿ

i“0
|gpti`1q ´ gptiq| ă 8.

No matter how nice the function f is, if g is unbounded variation, Riemann-Stieltjes or
Lebesgue-Stieltjes integral cannot be defined. As seen in Section B.5, the sample paths of
Brownian motion are of unbounded variation, which makes it impossible to use them as
the integrator. Therefore, the integral

şb
a fptqdBt with respect to Brownian motion cannot

be defined pathwise in the sense of the Riemann-Stitljes or Lebesgue-Stieltjes integrals.
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In this section, we define a new notion of integral, Itô integral15, which makes sense of
şb
a fptqdBt in a useful way for some applications, including finance.
One of the major tools in stochastic analysis is the stochastic chain rule. Recall that the

chain rule in the differential form is written as dhpgptqq “ g1ptqh1pgptqqdt, which can be
used in the change of variable in integral. If vptq “ hpgptqq and h and g are differentiable
functions, then

ż b

a
fptqdvptq “

ż b

a
fptqg1ptqh1pgptqqdt.

The right-hand side above is a Riemann (Lebesgue) integral. As a matter of fact, change
of variable formula for Reimann (Lebesgue) integral is the integral format of the chain rule.
For bounded variation but not necessarily differentiable function g, the chain rule in the
change of variable for Riemann-Stieltjes (Lebesgue-Stieltjes) integral can be written in a
slightly different way. More precisely, if vptq “ hpgptqq and h is a differentiable function
and g is of bounded variation, then

ż b

a
fptqdvptq “

ż b

a
fptqh1pgptqqdgptq.

In the chain rule for Itô stochastic integral, an extra term appears. If vptq “ hpBtq and h
is a twice differentiable function, then

ż b

a
fptqdvptq “

ż b

a
fptqh1pBtqdBt `

1
2

ż b

a
fptqh2pBtqdt.

As expected the term
şb
a fptqh1pBtqdBt shows up like in chain rule. However, the term

1
2
şb
a fptqh2pBtqdt, which is a simple Riemann integral, is unprecedented. In the remaining

of this section, we provide a heuristic argument why this term should be in the chain rule
for Itô stochastic integral.

C.1 Stochastic integral with respect to Brownian motion and Itô formula

We first introduce a special case of Itô integral, called Wiener integral16. In Wiener integral,
we assume that the integrand f is simply a real function and is not stochastic. The the
partial sums

Sδ :“
N
ÿ

i“1
fpti´1qpBti ´ Bti´1q,

15Named after Japanese mathematician Kiyosi Itô, 1915-2008.
16Named after American mathematician Norbert Wiener, 1894-1964.
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is a Gaussian random variable with mean zero and variance

δ
N
ÿ

i“1
f2pti´1q.

Exercise C.1. Show that Sδ is a Gaussian random variable with mean zero and variance
δ
řN

i“1 f2pti´1q.

Therefore, it follows form

lim
δÑ0

δ
N
ÿ

i“1
f2pti´1q “

ż b

a
f2ptqdt,

that Sδ ñ X where X is a normal random variable with mean zero and variance
şb
a f2ptqdt.

Notice that in the partial sum for Sδ, we choose ti´1, i.e., the left endpoint on the interval
rti´1, tis. This choice is not crucial to achieve the limit. If we would choose different points
on the interval, we still obtain the same limiting distributions. See Exercise C.2.

Exercise C.2. Calculate that the mean and the variance of partial sums below:

a)
řN

i“1 fptiqpBti ´ Bti´1q.

b)
řN

i“1 f
´

ti`ti´1
2

¯

pBti ´ Bti´1q.

c)
řN

i“1 fpti´1qpBti ´ Bti´1q.

Then, show that in each case the limit of the calculated quantities as δ Ñ 0 is the same.

Itô integral extends Wiener integral to stochastic integrands. The integrand f is now a
function of time t P ra, bs and ω in sample space Ω. For our analysis in this notes, we only
need to define Itô integral on the integrands of the form fpt, Btq where f : ra, bs ˆ R Ñ R
is a measurable function. Similar to the Winer integral we start with the partial sum

N´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq.

Exercise C.3. Calculate that the mean and the variance of partial sums below:

a)
řN

i“1 BtipBti ´ Bti´1q.

b)
řN

i“1 B ti`ti´1
2

pBti ´ Bti´1q.
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c)
řN

i“1 Bti´1pBti ´ Bti´1q.

Then, show that in all cases the limits of the calculated quantities as δ Ñ 0 are different.

ż T

0
fpu, BuqdBu :“ P ´ lim

δÑ0

N´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq. (C.1)

The notation P ´ lim means the limit is in probability, i.e., for any ε ą 0,

P

˜

ˇ

ˇ

ˇ

N´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq ´

ż T

0
fpu, BuqdBu

ˇ

ˇ

ˇ
ą ε

¸

Ñ 0 as δ Ñ 0.

The choice of starting point ti in the interval rti, ti`1s in fpti, Btiq is crucial. This is because
choosing other point in the interval rti, ti`1s leads to different limits. Fo instance,

N´1
ÿ

i“0
f
´ ti ` ti`1

2
,
Bti`ti`1

2

¯

pBti`1 ´ Btiq

converges to
ż T

0
fpu, BuqdBu `

ż T

0
Bxfpu, Buqdu.

Martingale property of stochastic integral

Consider the discrete sum which converges to the stochastic integral, i.e.

MT :“
N´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq

Assume that the values of B0, ..., Btj are given. We want to evaluate the conditional
expectation of the stochastic sum MT , i.e.

ErMT | B0, ..., Btj s.

Then, we split the stochastic sum into to parts

MT :“
j´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq `

N´1
ÿ

i“j

fpti, BtiqpBti`1 ´ Btiq.
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The first summation of the right-hand side above is known given B0, ..., Btj . Thus,

ErMT | B0, ..., Btj s “

j´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq ` E

«

N´1
ÿ

i“j

fpti, BtiqpBti`1 ´ Btiq | B0, ..., Btj

ff

“

j´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq `

N´1
ÿ

i“j

E
“

fpti, BtiqpBti`1 ´ Btiq | B0, ..., Btj

‰

Each term in the second summation of right-hand side above can be calculated by tower
property of conditional expectation

E
“

fpti, BtiqpBti`1 ´ Btiq | B0, ..., Btj

‰

“ E
“

fpti, BtiqErBti`1 ´ Bti | B0, ..., Btis | B0, ..., Btj

‰

.

Since Bti`1 ´ Bti is independent of B0, ..., Bti ,

ErBti`1 ´ Bti | B0, ..., Btis “ ErBti`1 ´ Btis “ 0.

This implies that the second summation vanishes and we have

ErMT | B0, ..., Btj s “

j´1
ÿ

i“0
fpti, BtiqpBti`1 ´ Btiq “: Mtj .

In other words, given the Brownian motion up to time tj , the expected values of MT is
equal to Mtj . In probability terms, we call this a martingale. By some more technical tools,
one can show that given the path of a Brownian motion until time t ă T , the expected
value of the stochastic integral

şT
0 fps, BsqdBs is equal to

şt
0 fps, BsqdBs, i.e.

E
„
ż T

0
fps, BsqdBs

ˇ

ˇ

ˇ

ˇ

Bs for s P r0, ts

ȷ

“

ż t

0
fps, BsqdBs.

One of the consequence of martingale property is that the expectation of stochastic integral
is zero, i.e.

E
„
ż T

0
fps, BsqdBs

ȷ

“

ż 0

0
fps, BsqdBs “ 0.

Remark C.1. The martingale property of the stochastic integral with respect to Brownian
motion is basically a result of martingale property of Brownian motion. Riemann integral
şt
0 fps, Bsqds is a martingale if and only if f ” 0. Intuitively, if we assume

şt
0 fps, Bsqds is

a martingale, we have

E
”

ż t`δ

t
fps, Bsqds

ˇ

ˇ

ˇ
Ft

ı

“ 0.
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By dividing both sides by δ and then sending δ Ñ 0, we obtain

lim
δÑ0

E
”1

δ

ż t`δ

t
fps, Bsqds

ˇ

ˇ

ˇ
Ft

ı

“ Erfpt, Btq | Fts “ fpt, Btq.

C.2 Itô formula

One of the important implications of Itô integral is a very powerful tool called Itô formula.
Itô formula is the stochastic version of Taylor expansion. To understand this better let’s
try to write Taylor expansion for V pt ` δ, Bt`δq about the point V pt, Btq.

V pt ` δ, Bt`δq “ V pt, Btq ` δBtV pt, Btq ` BxV pt, BtqpBt`δ ´ Btq `
1
2

BxxV pt, BtqpBt`δ ´ Btq
2 ` opδq.

(C.2)

The remaining term in of order opδq since Bt`δ ´ Bt „ Op
?

δq. Also, we know that

pBt`δ ´ Btq
2 ´ δ „ opδq, pBt`δ ´ Btqδ „ opδq, and trivially δ2 „ opδq. (C.3)

If we take conditional expectation with respect to Bt, we obtain

ErV pt ` δ, Bt`δq | Bts “V pt, Btq ` δBtV pt, Btq ` BxV pt, BtqErpBt`δ ´ Btq | Bts

`
1
2

BxxV pt, Btqδ ` opδq.

“V pt, Btq ` pBtV pt, Btq `
1
2

BxxV pt, Btqqδ ` opδq

Notice that here, by the martingale property of Brownian motion, we have ErpBt`δ ´ Btq |

Bts “ 0. Then, we obtain

ErV pT, BT qs “ V p0, B0q ` E

«

N´1
ÿ

i“0
pBtV pti, Btiq `

1
2

BxxV pti, Btiqqδ

ff

` op1q,

which in the limit converges to

ErV pT, BT qs “ V p0, B0q ` E
„
ż T

0
pBtV pti, Btq `

1
2

BxxV pt, Btqqdt

ȷ

.

The above formula is called Dynkin formula. If we don’t take conditional expectation, we
can write

V pt ` δ, Bt`δq “ V pt, Btq ` pBtV pt, Btq `
1
2

BxxV pt, Btqqδ ` BxV pt, BtqpBt`δ ´ Btq ` opδq.
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Then, we obtain

V pT, BT q “ V p0, B0q`

N´1
ÿ

i“0
pBtV pti, Btiq`

1
2

BxxV pti, Btiqqδ`

N´1
ÿ

i“0
BxV pti, BtiqpBti`1´Btiq`op1q.

which in the limit converges to

V pT, BT q “ V p0, B0q `

ż T

0
pBtV pt, Btq `

1
2

BxxV pt, Btqqdt `

ż T

0
BxV pt, BtqdBt. (C.4)

In the above, (C.4) is referred to as Itô formula.
In a less formal way, Utô formula is given by

dV pt, Btq “ pBtV pt, Btq `
1
2

BxxV pt, Btqqdt ` BxV pt, BtqdBt.

However, it has to be interpreted as (C.4).

Exercise C.4. Use Itô formula to calculate dV pt, Btq in the following cases.

a. V pt, xq “ eax

b. V pt, xq “ e´teax

c. V pt, xq “ e´t cospxq

d. V pt, xq “ e´txa

where a is a given constant.

C.3 Martingale property of stochastic integral and partial differential
equations

Why martingale property of stochastic integral is important? Recall the Itô formula

dV pt, Btq “ pBtV pt, Btq `
1
2

BxxV pt, Btqqdt ` BxV pt, BtqdBt.

Assume that V pt, xq satisfies the PDE

BtV pt, xq `
1
2

BxxV pt, xq “ 0. (C.5)

Then,
dV pt, Btq “ BxV pt, BtqdBt.
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and thus V pt, Btq is a martingale, i.e.

V pt, Btq “ ErV pT, BT q | Bs for s P r0, tss.

Conversely, if V pt, Btq is a martingale, then V pt, xq must satisfy the PDE (C.5).

C.4 Stochastic integral and Stochastic differential equation

Riemann integral allows us to write a differential equation dx
dt “ fpt, xptqq, xp0q “ x0 as an

integral equation

xptq “ x0 `

ż t

0
fps, xpsqqds. (C.6)

Integral equations are more general because the solution does not necessarily need to be
differentiable. For instance if

fpt, xq “

#

1 t ě 1
0 t ă 1

.

The solution to the integral equation is xptq “ x0 ` pt ´ 1q`, which is not differentiable at
t “ 1. While dx “ fpt, xptqqdt should be interpreted as (C.6).
Itô integral allows us to define stochastic differential equations (SDE for short) in integral

form. For example, the Black-Scholes differential equation is given by

dSt

St
“ rdt ` σdBt.

The true meaning of this term is

St “ S0 ` r

ż t

0
Sudu ` σ

ż t

0
SudBu.

The solution is a stochastic process St which satisfies the SDE. In the above case, it is easy
to verify, by means of Itô formula, that the geometric Brownian motion

St “ S0 exp
ˆ

pr ´
1
2

σ2qt ` σBt

˙

.

Take V pt, xq “ S0 exp
`

pr ´ 1
2σ2qt ` σx

˘

. It follows from Itô formula that

V pt, Btq “ V p0, B0q `

ż t

0
pBtV ps, Bsq `

1
2

BxxV ps, Bsqqdt `

ż t

0
BxV ps, BsqdBs.

Since V p0, xq “ S0, BtV ps, xq “ pr ´ 1
2σ2qV ps, xq, BxV ps, xq “ σV ps, xq, and BxxV ps, xq “
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σ2V ps, xq, we have

V pt, Btq “ S0 ` r

ż t

0
V ps, Bsqds ` σ

ż t

0
V ps, BsqdBs.

In general for a pair of given functions µpt, xq and σpt, xq, an equation of the form

dSt “ µpt, Stqdt ` σpt, StqdBt (C.7)

is called a stochastic differential equation (SDE). A solution St is a process such that the
Lebesgue integral

ż t

0
µps, Ssqds ă 8 P-a.s.,

the Itô integral
ż t

0
σps, SsqdBs

is well-defined, and the following is satisfied:

St “ S0 `

ż t

0
µps, Ssqds `

ż t

0
σps, SsqdBs.

For CEV model in Section ??, SDE is written as

dSt

St
“ rdt ` σSβ

t dBt

or in integral form

St “ S0 ` r

ż t

0
Sudu ` σ

ż t

0
S1`β

u dBu.

One of the most important applications of the Itôs formula is the chain rule in the stochas-
tic form. Consider SDE

dSt “ µpt, Stqdt ` σpt, StqdBt (C.8)

and V pt, Stq where V pt, xq is a function one time continuously differentiable in t and twice
continuously differentiable on x. Then we can write

V pt ` δ, St`δq “ V pt, Stq ` BtV pt, Stqδ ` BxV pt, StqpSt`δ ´ Stq `
1
2

BxxV pt, StqpSt`δ ´ Stq
2 ` opδq.

Notice that by (C.8), we have

St`δ ´ St « µpt, Stqδ ` σpt, StqpBt`δ ´ Btq.

264



C. STOCHASTIC CALCULUS

Therefore, we have

pSt`δ ´ Stq
2 “ σ2pt, StqpBt`δ ´ Btq

2 ` opδq.

and

V pt ` δ, St`δq “ V pt, Stq ` BtV pt, Stqδ ` BxV pt, Stqpµpt, Stqδ ` σpt, StqpBt`δ ´ Btqq

`
1
2

BxxV pt, Stqpµpt, Stqδ ` σpt, StqpBt`δ ´ Btqq2 ` opδq

“ V pt, Stq ` BtV pt, Stqδ ` BxV pt, Stqpµpt, Stqδ ` σpt, StqpBt`δ ´ Btqq

`
1
2

BxxV pt, Stqσ
2pt, Stqδ ` opδq

“ V pt, Stq ` pBtV pt, Stq ` BxV pt, Stqµpt, Stq `
1
2

BxxV pt, Stqσ
2pt, Stqqδ

` σpt, StqBxV pt, StqpBt`δ ´ Btqq ` opδq.

Or in the integral form we have

V pt, Stq “V p0, S0q `

ż t

0

´

BtV pu, Suq ` BxV pu, Suqµpu, Suq `
1
2

BxxV pu, Suqσ2pu, Suq

¯

du

`

ż T

0
σpu, SuqBxV pu, SuqdBu.

(C.9)

Proposition C.1. If the function V pt, Sq is twice continuously differentiable and tV pt, StquT
t“0

is a martingale, then

BtV pt, Sq ` BxV pt, Sqµpt, Sq `
1
2

BxxV pt, Sqσ2pt, Sq “ 0

for all t P r0, T s and S.

Proof. By the Itô formula (C.9), we have
ż t

0

´

BtV pu, Suq ` BxV pu, Suqµpu, Suq `
1
2

BxxV pu, Suqσ2pu, Suq

¯

du

“ V pt, Stq ´ V p0, S0q ´

ż T

0
σpu, SuqBxV pu, SuqdBu.

Since the right-hand side is a martingale, so is the left-hand side. However, a Riemann
integral on the left cannot be a martingale unless

BtV pt, Stq ` BxV pt, Stqµpt, Stq `
1
2

BxxV pt, Stqσ
2pt, Stq “ 0.
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This is because if the above term is not zero at some time t, e.g. positive, the Riemann
integral becomes increasing for a short interval rt, t ` δs, which contradicts the martingale
property.

C.5 Itô calculus

The calculations in the previous section can be obtained from a formal calculus. First, we
formally write (C.2) as

dV pt, Btq “ BtV pt, Btqdt ` BxV pt, BtqdBt `
1
2

BxxV pt, BtqpdBtq
2.

Then, we present (C.3) in formal form of

pdBtq
2 “ dt, dBtdt “ dtdBt “ 0 , and pdtq2 “ 0. (C.10)

which implies the Itô formula for Brownian motion.

dV pt, Btq “ pBtV pt, Btq `
1
2

BxxV pt, Btqqdt ` BxV pt, BtqdBt.

For the Itô formula for process St in (C.8), we can formally write

dV pt, Stq “ BtV pt, Stqdt ` BxV pt, StqdSt `
1
2

BxxV pt, StqpdStq
2.

Then, we use (C.10) to obtain

pdStq
2 “ µ2pdtq2 ` 2µσdtdBt ` σ2pdBtq

2 “ σ2dt.

Thus,

dV pt, Stq “ pBtV pt, Stq `
σ2pt, Stq

2
BxxV pt, Stqqdt ` BxV pt, StqdSt.

Theorem C.1 (Itô formula). Consider St given by (C.8) and assume that function V is
once continuously differentiable in t and twice continuously differentiable in x. Then, we
have

dV pt, Stq “ pBtV pt, Stq`µpt, StqBxV pt, Stq`
σ2pt, Stq

2
BxxV pt, Stqqdt`σpt, StqBxV pt, StqdBt.

Similar to Section C.3, we can use martingale property of stochastic integral to obtain a
PDE. More precisely, V pt, Stq is a martingale if and only if V pt, xq satisfies

BtV pt, xq ` µpt, xqBxV pt, xq ` σ2pt, xq
1
2

BxxV pt, xq “ 0.
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Exercise C.5. Let
dSt “ Stdt ` 2StdBt.

Calculate dV pt, Stq in the following cases.

a. V pt, xq “ eax

b. V pt, xq “ e´teax

c. V pt, xq “ e´t cospxq

d. V pt, xq “ e´txa

where a is a constant.

Exercise C.6. In each of the following SDE, find the PDE for the function V pt, xq such
that V pt, Stq is a martingale.

a. dSt “ σdBt where σ is constants.

b. dSt “ κpm ´ Stqdt ` σdBt where κ, m and σ are constants.

c. dSt “ κpm ´ Stqdt ` σ
?

StdBt where κ, m and σ are constants.

d. dSt “ rStdt ` σS2
t dBt where r and σ are constants.

Exercise C.7. Consider the SDE

dSt “ rStdt ` σStdBt where r and σ are constants.

a. Find the ODE for the function V pxq such that e´rtV pStq is a martingale.

b. Find all the solutions to the ODE in (a).
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Index

a.s., see almost surely
ABC, 120
almost surely, 103
arbitrage

arbitrage bounds, 36
model-independent arbitrage, 36
no weak arbitrage condition, 41
strong arbitrage, 41
weak arbitrage, 36, 41

Arrow-Debreu model, 39
artificial boundary conditions, see ABC
asset, 1

liquid, 1
return, 28

realized, 45
risk-free, 1
risky, 1
underlying, 2, 10

Bachelier model, 104
backwardation, 7
binomial model, 75
Black-Scholes equation, 157
Black-Scholes model, 135
bond, 14

convexity, 20
corporate, 16
coupon, 15
coupon-carrying, 15
duration, 19
face value, 14
maturity, 14
present value, 14

principle, 14
sovereign, 16
yield, 15

Brownian motion, 104

calibration, 93
binomial model

physical probability, 94
risk-neutral probability, 98

canonoical mapping, 66
CDO, seecollateralized debt obligation24

collateral portfolio, 24
trenches, 24

equity, 24
junior, 24
mezzanine, 24
senior, 24

central counterparty clearinghouse (CCP), 4
clearing payment, 8
collateralized debt obligation, 24
commodity, 1
computational domain, 120
contango, 7
contingent claim, 56

European, see Markovion82
Markovion, 82

continuously compounded rate, see short rate
credit risk, 2

debt, 1
Delta, 85
derivative, 1

maturity, 2
payoff, 4
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dividend yield, 90

Eisenberg-Noe model, 7
elementary securities, 48
equity, 1

financial risk, 2
financial security, 1
fixed point, 8
fixed-income, 1

maturity, 1
fixed-income security, 14
forward contract, 2

long position, 2
short position, 2

forward price, 3
forward rate, 16

instantaneous, 17
forward rate agreement, 17
free boundary problem, 179
FTAP, 104
fundamental theorem of asset pricing, see

FTAP
futures contract, 2
futures prices, 3

GBM, 135
geometric Brownian motion, see GBM
Greeks, 140

Delta, 142
Gamma, 142
Theta, 142

heat equation
backward, 111
forward, 111

hedging
Delta, 85, 137

instantaneous rate, see short rate

marginal account, 4
market

complete, 57
incomplete, 57

martingale, 72
maturity, 2
Monte Carlo method, 126

no weak arbitrage condition, 41
no-dominance principle, 33

option, 10
American, 14, 167

call, 14, 182
continuation value, 173
exercise value, 173
put, 14, 182
straddle, 182

asian, 137
at-the-money, 10
basket option, 36
call, 10
digital, 107

call, 107
put, 107

European, 11
in-the-money, 10
long position, 11
look-back, 137
outof-the-money, 10
put, 10
short position, 11
vanilla, 10

payoff
Bear-spread call, 148
Bull-spread call, 148
European, 11
path-dependent, 87
straddle, 148
strangle, 148

payoff function, see payoff
polar collection, 71
polar sets, 71
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generated, 73
portfolio, 28, 41

of bonds, 15
admissible, 74
collateral portfolio, 24
efficient portfolio, 28
investment portfolio, 28
long position, 41
of defaultable assets, 24
replicating, 52
self-financing, 66
short position, 41

pricing model, 58
prime rating, 21

quadrature method, 126

rate of return, 94
replication

perfect, 58
return

Arithmetic, 93
logarithmic, 93

risk
market, 2
model risk, 58
operational, 2
systemic, 2, 25

risk premium, 96
risk-adjusted probability

risk-neutral probability, 42
risk-neutral probability, 42, 58

sample path, 65
security, 1
short rate, 15
short selling, 34
Snell envelope, 176
spot price, 3
spot rate, see short rate
state-price deflator, 47
stochastic process, 64

diffusion, 101
Markovian, 78

strike price, 10
subprime rating, 21
superreplication, 58
superreplication price, 58
survival rate, 21

underlying, see asset2

volatility, 94

weak convergence
binomial to GBM, 129

yield
risk-adjusted yield, 22

zero bond, see zero-coupon bond
maturity, 14
principle, 14

zero-coupon bond, 14
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