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“Don’t just read it; fight it! Ask your own questions, look for your own
examples, discover your own proofs. Is the hypothesis necessary? Is the
converse true? What happens in the classical special case? What about
the degenerate cases? Where does the proof use the hypothesis?”

- Paul Halmos

“Pure mathematics is, in its way, the poetry of logical ideas.”
- Albert Einstein

“Math is like going to the gym for your brain. It sharpens your mind.”
- Danica McKellar

“One of the endlessly alluring aspects of mathematics is that its
thorniest paradoxes have a way of blooming into beautiful theories.”
- Philip J. Davis

Mathematics is a discipline, which means that you compete against
yourself. If you continue to improve, then you're a mathematician.
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Chapter 0

About this project

The goal of this textbook is to provide an edition of Euclid’s Elements that is easy

to read, inexpensive, and has been released under an open culture license.!

The title Euclid’s “Elements” Redux indicates that while this edition states and
proves Euclid’s results, the proofs have been rewritten using modern mathematics.

This is because mathematics has almost completely changed since The Elements
was published c. 300 BC.

In Euclid’s Hellenistic culture, a number was synonymous with a length that could
be measured. This gave Euclid access to all of the positive numbers but neither zero
nor the negatives. But since the development of algebra wouldn’t begin for another
millennium, Euclid could not have known that the result of Book I, Proposition 47

would be summarized as a2 + % = 2.

When a modern student encounters the original Elements for the first time, he
or she encounters two problems: the logic of the proof, and Euclid’s now archaic
concept of numbers. This edition updates Euclid’s proofs while retaining his funda-

mental results.

It may be impossible to overstate how fundamental these results are to mathemat-
ics. They are the primary reason why The Elements was the world’s most important
mathematics textbook for about 2,200 years.

Let that number sink in for a moment... one math textbook was used by much of
the literate world for over two thousand years. Why should this be? Lack of com-
petition? At certain times and places, yes, but in schools where Euclid’s Elements
got a foothold, other textbooks soon followed. Therefore, this can’t be the complete

answer.

1Euclid’s “Elements” Redux is released under the Creative Commons Attribution-ShareAlike 4.0 In-
ternational License. This means that you are free to copy and distribute it without penalty. If you wish
to add to its content, your work must also be licensed under an equivalent open license.
The book and its source files are available online at
https://archive.org/details/euclid-elements-redux_201809
The figures were created in GeoGebra and can be found in the relevant images folder. Files with
extensions .ggb are GeoGebra files, and files with the .eps extension are graphics files.
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Elegant proofs? While Euclid’s originals remain a model for how proofs should be
written, they aren’t irreplaceable.

Content? Until the development of algebra and calculus, The Elements covered
everything a novice mathematician needed to know. And even after the advent of
calculus, The Elements still had its place. Isaac Newton’s assistant claimed that
in five years of service, he had heard Newton laugh just once: a student asked
if Euclid was still relevant, and Newton laughed at him. But most students only
studied the first six Books (i.e., the first six of the thirteen scrolls that made up the
original Elements). Therefore, not everyone studied The Elements exclusively for
its content.

So, whatever is valuable about The Elements must be present in its first half; but
each Book begins with a foundation (definitions and axioms) and builds upwards
one proposition at a time.

This, I think, is the key to the question: not only does The Elements help a student
learn geometry, but it also immerses the student in a logical system that is as useful
as it is penetrating. While learning algebra helps a student to perform calculus and
statistics, learning geometric proofs from The Elements helps a student to think
clearly about politics, art, music, design, coding, law... any subject that requires
rational thought can be better understood after Euclid.

The reason The Elements was needed in the past, and why it’s needed to-
day, is that it helps its readers learn to think clearly.

But if The Elements is a good textbook, why was it abandoned at the end of the 19th
century?

Mathematics faced a crisis in the last half of that century — ambiguous definitions
and sloppy logic had led to serious contradictions. Without a complete overhaul of
common definitions and the construction of formal logic, mathematics would have
collapsed.

After several decades of work by many brilliant minds, the overhaul was completed,
leading to a mathematical golden age which is still unfolding. But that overhaul
made Euclid’s weaknesses clear: while his logic remained sound, the presentation
of that logic was outdated. Euclid’s definitions and assumptions were ambiguous
to the point of being unworkable. Most seriously, other geometries had been devel-
oped, proving that Euclid’s work was not unique.

As calculus developed into the foundation of engineering and the sciences, its pre-
requisite, algebra, became the course every student seemed to require. Geometric
proofs became a luxury rather than a necessity. With perfect hindsight, the error
is clear — forcing each and every student to learn algebra has only succeeded in
teaching students to hate “math” (which millions of people associate exclusively
with algebra) while hindering their attempts to think logically.

The way forward is also clear — either to rewrite The Elements or to develop a new,
equivalent work. I have opted to rewrite Euclid in the hope that The Elements will
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again be recognized as a textbook of introductory, axiomatic geometry, a model of
proof-writing, and a case-study in applied logic.?

Like all math textbooks, Euclid’s “Elements” Redux requires its student to work
slowly and carefully through each section. The student should confirm each result
and not take anything on faith. While this process may seem tedious, it is exactly
this attention to detail which separates those who understand mathematics from
those who do not.

This edition also contains homework problems and a partial answer key. However,
no prerequisites are required if the student’s goal is to read and understand the
material. The best way to demonstrate this understanding is to memorize a certain
number of proofs and then recite them on request. This was how Abraham Lincoln
made use of The Elements:

In the course of my law-reading, I constantly came upon the word demon-
strate. I thought at first that I understood its meaning, but soon became
satisfied that I did not. I said to myself, “What do I mean when I demon-
strate more than when I reason or prove? How does demonstration dif-
fer from any other proof?” ... I consulted all the dictionaries and books
of reference I could find, but with no better results. You might as well
have defined blue to a blind man. At last I said, “Lincoln, you can never
make a lawyer if you do not understand what demonstrate means;” and
I left my situation in Springfield, went home to my father’s house, and
stayed there till I could give any proposition in the six books of Euclid
at sight. I then found out what “demonstrate” means, and went back to
my law-studies.?

If the student intends to prove some of the problems, then proportions, algebra,
trigonometry, and possibly linear algebra will be helpful. Students with no knowl-
edge of proof writing should consult Richard Hammack’s “Book of Proof”, 3rd ed.*

It is vitally important to understand that, in the mind of mathematicians, math
is a collection of statements about relationships between quantities which can be
proven. Without proofs, mathematics does not exist.

This document was composed over the years using a number of tools:

Debian http://www.debian.org/
GeoGebra http://www.geogebra.org/
Kubuntu https://kubuntu.org
Linux Mint http://www.linuxmint.com/
IyX  http://www.lyx.org/
Windows 7 http://windows.microsoft.com/
Xubuntu https://xubuntu.org

2Victor Aguilar has opted to develop a new introduction to axiomatic geometry. See section [0.4] for
details.

3Carpenter, F.B. “The Inner Life of Abraham Lincoln: Six Months at the White House” Hurd &
Houghton, New York, NY (1874).

4https://www.people.vcu.edu/ rhammack/Book0fProof/
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https://xubuntu.org
https://www.people.vcu.edu/~rhammack/BookOfProof/

CHAPTER 0. ABOUT THIS PROJECT 10

0.1

Contributions & Acknowledgments

Contributors and their contributions:

Victor Aguilar (an invaluable second opinion)
Daniel Callahan (general editor)
Deirdre Callahan (corrections)

John Casey (Casey’s edition of “The Elements” is a partial basis for chapters
1-6)

Daniel Ezell (Owner/Teacher at Golden Gate Learning Center)
Jared Gans (corrections)

Ralph Giles (corrections)

Holly Haynes (contributor)

Sir Thomas L. Heath (Heath’s edition of “The Elements” is this original basis
for chapter 7 and beyond)

Domagoj Hranjec (contributor)

Robert Jullien (corrections)

Elizabeth B. Morran (proofreading)

S. P. (proofreading)

Andreas Piotrowski (moral support)

Neven Sajko (corrections)

Moustafa Shahin (contributor & corrections)
Valorie Starr (proofreading)

Contributors to proofwiki.org

Daniel Callahan would like to thank Jon Allen, Dr. Wally Axmann®, Dr. Elizabeth
Behrman, Karl Elder®, David E. Joyce’, Dr. Thalia Jeffres®, Dr. Kirk Lancaster?,
Dr. Phil Parker', Dr. Gregory B. Sadler'!, and Valorie Starr.

Shttp://www.math.wichita.edu/~axmann/

Shttp://karlelder.com
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0.2 Dedication

This book is dedicated to everyone in the educational community who believes that
algebra provides a better introduction to mathematics than geometry.

0.3 Who needs a new edition of Euclid’s Elements?

Consider an analogous question: who needs training wheels on a bike?
A young person who doesn’t know how to ride a bicycle.

Experienced mathematicians may no longer need Euclid, but Euclid’s construction
of complex ideas from simple axioms remains a model for how mathematics should
be approached. Students who attempt to master Euclid’s Elements will find 21st
century mathematics less confusing despite Euclid’s less-than-rigorous definitions.

0.4 Why rewrite Euclid’s Elements?

The concept that Euclid could use a little tweaking goes back a long way. Book
I, Proposition 40 has been identified as an interpolation, along with many of The
Elements’ lemmas and corollaries. Some editions include the apocryphal Books XIV
and XV which add results on the topic of solid geometry.

It’s important to realize that no math textbook is perfect; flaws will inevitably come
to light after centuries of close study by intelligent minds.

But it’s also important to realize that more than one correct geometry exists; Eu-
clid’s geometry is one of many (but perhaps the easiest to learn). Similarly, for any
true and logical result, either more than one proof exists or the potential for more
than one proof exists. Euclid’s proofs need not be treated as special because they

are “the originals”.'?

There at least two reasons for this. First, a student of mathematics should always
ask if there is another way to prove an interesting theorem. Doing so may provide
insight, if not help generate a new result.

Second, it’s doubtful that Euclid (if indeed he was a single individual) is the sole
author of these proofs. It’s more likely that he (or the scholars of his school) com-
piled and rewrote these proofs from difference sources. Rewriting and editing is
part of a mathematician’s work.

This is not to denigrate the achievement of “The Elements” — the original thirteen
books may have been the first to demonstrate how to construct hundreds of complex

12S0me of the proofs in this text are not based on Euclid’s originals. The originals can be found in
several printed editions, online at David E. Joyce’s Euclid’s Elements:

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

and in Richard Fitzpatrick’s “Euclid’s Elements of Geometry”:

https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf


http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
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structures beginning with first principles. Nearly all well-written math, physics,
and engineering textbooks follow a similar format (and all of the bad ones do not).

But is still the case that Euclid’s original proofs are obsolete — they refer to a con-
ception of mathematics that is no longer viable because it cannot be extended to
produce real analysis, complex analysis, etc. To help see this, consider Euclid’s
original proof of [1.3]:

Book I, Proposition 3: For two given unequal straight-lines, to cut off the greater a

straight-line equal to the lesser.

Proof. Let AB and C be the two given unequal straight-lines, of which let the
greater be AB. So it is required to cut off a straight-line equal to the lesser C from
the greater AB.

Let the line AD, equal to the straight-line C, have been placed at point A. And let
the circle have been drawn with center A and radius AD.

c C G

Figure 0.4.1: Book I, Proposition 3 (original on the left, rewrite on the right)

And since point A is the center of circle DEF, AE is equal to AD. But, C is also equal
to AD. Thus, AE and C are each equal to AD. So AE is also equal to C.

Thus, for two given unequal straight-lines, AB and C, the (straight-line) AE, equal
to the lesser C, has been cut off from the greater AB. (Which is) the very thing it
was required to do.!? O

Compare the original to the rewritten proof below:

Given two arbitrary segments which are unequal in length, it is possible to subdivide
the larger segment such that one of its two sub-segments is equal in length to the

smaller segment.

Proof. Construct segments AB and CG such that CG < AB. We claim that AB
may be subdivided into segments AE and EB where AE = CG.

I3From Richard Fitzpatrick’s “Euclid’s Elements of Geometry”.
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From point A, construct the segment AD such that AD = CG [1.2]. With A as the
center and AD as radius, construct the circle OA [Postulate 1.3] which intersects
AB at E.

Because A is the center of OA, AE = AD [Def. 1.32]. Since AD = CG by construc-
tion, by Axiom 9 from section 1.3.1 (using equalities), we find that AE = CG, which
proves our claim. O

0.5 Recommended Reading

Book of Proof, 3rd edition, Richard Hammack.

This open textbook provides an introduction to the standard methods of proving
mathematical theorems. It can be considered a companion volume to any edition
of Euclid, especially for those who are learning how to read and write mathemat-
ical proofs for the first time. It has been approved by the American Institute of
Mathematics’ Open Textbook Initiative and has a number of good reviews at the
Mathematical Association of America Math DL and on Amazon.

http://www.people.vcu.edu/ rhammack/Book0fProof/index.html

Euclid’s Elements Online, coded and maintained by David E. Joyce

http://aleph0.clarku.edu/"djoyce/java/elements/elements.html

Geometry Without Multiplication, Victor Aguilar

This geometry textbook will be the first in a series (the second being Geometry With
Multiplication). It will not only be suitable for high school students but will also
maintain the rigor required in college level textbooks. The most recent draft can be
found at:

https://www.researchgate.net/publication/291333791_Volume_0One_Geometry_without_
Multiplication

Guidelines for Good Mathematical Writing, Francis Edward Su

https://www.math.hmec.edu/~su/math131/good-math-writing.pdf

How to Solve it, George Polya

“A perennial bestseller by eminent mathematician G. Polya, How to Solve It will
show anyone in any field how to think straight. In lucid and appealing prose, Polya
reveals how the mathematical method of demonstrating a proof or finding an un-
known can be of help in attacking any problem that can be ‘reasoned’ out — from
building a bridge to winning a game of anagrams. Generations of readers have rel-
ished Polya’s deft — indeed, brilliant — instructions on stripping away irrelevancies

and going straight to the heart of the problem.”™

14This description (¢)1985 by Princeton University Press.


http://www.people.vcu.edu/~rhammack/BookOfProof/index.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
https://www.researchgate.net/publication/291333791_Volume_One_Geometry_without_Multiplication
https://www.math.hmc.edu/~su/math131/good-math-writing.pdf
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http://www.amazon.com/How-Solve-Mathematical-Princeton-Science/dp/069116407X/

Khan Academy https://www.khanacademy.org/

The King of Infinite Space: Euclid and His Elements, David Berlinski

Not an edition of Euclid’s Elements but an explication of the Elements itself and
what makes the work revolutionary.

https://www.amazon.com/King-Infinite-Space-Euclid-Elements-ebook/dp/BOOHTQ320S

Math Open Reference
http://www.mathopenref .com/

http://www.mathopenref.com/trianglecenters.html


http://www.amazon.com/How-Solve-Mathematical-Princeton-Science/dp/069116407X/
https://www.khanacademy.org/
https://www.amazon.com/King-Infinite-Space-Euclid-Elements-ebook/dp/B00HTQ320S
http://www.mathopenref.com/
http://www.mathopenref.com/trianglecenters.html

Chapter 1

Angles, Parallel Lines,
Parallelograms

Students should construct figures and/or work through the proofs step-by-step.
This is an essential component to the learning process that cannot be avoided. The
old saying, “There is no royal road to geometry”, means: “No one learns math for
free.”

1.1 Symbols, Logic, and Definitions

The propositions of Euclid will be referred to in brackets; for example, we' write
[3.32] instead of writing Proposition 3.32. Axioms, Definitions, etc., will also be
referred to in this way; for example, Definition 12 in chapter 1 will be written as
[Def. 1.12]. Exercises to problems will be written as [3.5, #1] instead of exercise 1
of Proposition 3.5.

Numbered equations will be written as (10.2.2) instead of the second equation in
chapter 10, section 2.

A note on the exercises: do some of them but don’t feel pressured to do all of them.
Generally, an exercise is expected to be solved using the propositions, corollaries,
and exercises that preceded it. For example, exercise [1.32, #3] should first be at-
tempted using propositions [1.1]-[1.32] as well as all previous exercises. Should
this prove too difficult or too frustrating, he or she should consider whether propo-
sitions [1.33] or later (and their exercises) might help solve the exercise. It is also
permissible to use trigonometry, linear algebra, or other contemporary mathemat-
ical techniques on challenging problems.?

IMathematicians often write “we” when writing about math in the same way that coaches tell players
“here’s what we're going to do” — we are engaged in a team effort to overcome our difficulties.
2And remember that math makes everyone feel stupid at times. Never give up.

15
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1.1.1 Symbols

The following symbols will be used to denote standard geometric shapes or rela-
tionships:

¢ Circles are denoted by: ©O. When the center of a circle is known (for example,
point A), the circle will be identified as ©OA. Otherwise, the circle will be
identified with points on its circumference, such as OABC.

¢ Triangles by: A
¢ Parallelograms by: [
e Parallel lines by: ||

* Perpendicular lines by: L

In addition to these, we shall employ the usual symbols of algebra: +, —, =, <, >,
<, >, #, as well as a few additional symbols:

e Composition: @ For example, suppose we have the segments AB and BC
which intersect at the point B. The statement AB + BC refers to the sum of
their lengths, but AB @ BC refers to their composition as one object. See Fig.
1.1.1.

Figure 1.1.1: Composition: the geometrical object AB & BC is a single object com-
posed of two segments, AB and BC.

The composition of angles, however, can be written using either + or ¢, and
in this textbook their composition will be written with +.

e Similar: ~ Two figures or objects are similar if they have the same shape
but not necessarily the same size. If two similar objects have the same size,
they are also congruent.

e Congruence: = Two figures or objects are congruent if they have the same
shape and size, or if one has the same shape and size as the mirror image of
the other. This means that an object can be re-positioned and reflected so as
to coincide precisely with the other object without resizing.?

Shttp://en.wikipedia.org/wiki/Congruence_(geometry)
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1.1.2 Logic

Propositions are mathematical statements that are either completely true or com-
pletely false, but never both.* Some examples and counterexamples:

* “A triangle has two sides” is a false proposition.
* “A triangle has three sides” is a true proposition.

* “A triangle has three sides?” is not a proposition; it is a question, not a state-

ment.

¢ “Draw a triangle” is not a proposition; it is a command.

Propositions which are true may be divided into axioms and theorems. An axiom
needs no proof, and a theorem requires at least one proof; both axioms and theo-
rems are considered true. A proposition which cannot be proven true is neither an
axiom nor a theorem and is considered false. (Minor spoiler: all propositions in this
book will be shown to be true, i.e., they are theorems.)

An axiom is a proposition that is assumed to be true without proof 5. They are
considered so fundamental that they cannot be inferred from any proposition which
is more elementary. “Any two sides of a triangle are greater in length than the third
side” may be self-evident; however, it is not an axiom since it can be inferred by
demonstration from other propositions. The statement “two objects which are equal
in length to a third object are also equal in length to each other” is self-evident, and
so it is considered an axiom.®

A theorem is a proposition that may be proven from known propositions (either
theorems or axioms). Theorems may also be described as formal statements of
mathematical or logical properties.

A proof is a rigorous mathematical argument which unequivocally demonstrates
the truth of a given proposition’. A proof consists of three parts: the hypothesis,
that which is assumed, the claim, that which the author intends to prove, and
the bulk of the proof which demonstrates how the claim must be true once the
hypothesis is assumed to be true.

A corollary is an inference or deduction based on a theorem which usually states
a small but important result that follows immediately from the proof itself or from

4Propositions are also never partly true. If your dog has brown fur except for one white paw, the
proposition “Your dog is brown” is false.

5Source: Weisstein, Eric W. "Axiom." From MathWorld Wolfram Web Resource.

http://mathworld.wolfram.com/Axiom.html

6Whether a given statement is considered an axiom or a theorem depends on which textbook you are
reading. Graduate textbook authors may require students to prove statements which were considered
axiomatic at the undergraduate level.

7Source: Weisstein, Eric W. “Proof." From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram. com/Proof.html
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the result of the theorem. For example, if a theorem states that all prime num-
bers have irrational square roots, then one corollary to this theorem is that /2 is
irrational.®

A lemma is a theorem which is used as a stepping stone to a larger result rather
than as a statement of interest by itself.” While technically all lemmas are theo-
rems, lemmas are not called theorems in order to communicate the idea that the
result is of minor importance and exists to help prove something more profound.'’

1.1.2.1 Examples
Proposition. (1) If x is a rational number, then x has a decimal expansion.

The hypothesis is that “x is a rational number”, and the claim is that “z has a
decimal expansion” (i.e., it can be written in decimal form). In order to prove this
proposition is a theorem, we begin by assuming that x is a rational number (e.g., a
fraction). From this, we must show logically that 2 has a decimal expansion. If we
can do this, we have written a proof, turning this proposition into a theorem.!!

Converse statements: if we rewrite the above proposition by swapping the hypothe-

sis and the claim, we obtain its converse statement:

Proposition. (2) If x has a decimal expansion, then x is a rational number.

Since this proposition is false, it has no proof and therefore is not a theorem.

There is no guarantee that the converse of a given proposition will be true.

From propositions (1) and (2), we may infer two others: their contrapositive propo-
sitions (informally called contrapositives). The contrapositive forms of proposition

(1):

Proposition. (3) If x does not have a decimal expansion, then x is not a rational
number.

The contrapositive forms of proposition (2):

Proposition. (4) If x is not a rational number, then x does not have a decimal

expansion.

Unlike converse propositions, a contrapositive proposition is true if and only if the
original proposition is true. Since (1) is true, (3) is true; since (3) is true, (1) is true.
Similarly, a contrapositive proposition is false if and only if the original proposition
is false: since (2) is false, (4) is false; since (4) is false, (2) is false.

8This important result will not be proven here. Interested readers should consult Dummit & Foote’s
“Abstract Algebra”, 3rd edition.
9Source: https://en.wikipedia.org/wiki/Lemma_(mathematics)
10The difference between a lemma and a theorem is often determined by the author. For example, it
could be considered that propositions 1-46 in Chapter 1 are lemmas leading toward propositions 47-48,
which are the most profound statements in the chapter.
HWhile this is indeed a theorem, we will not prove it here.
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1.1.3 Definitions

We need a common language in order to discuss similar experiences or ideas. For
mathematics, this is true to an almost ridiculous degree. A mathematician’s work
can be rendered useless if the definitions he or she employs turn out to be vague or

sloppy.'?

Students reading this section for the first time may wish to read definitions 1-6 and
9-11 and then skip ahead to [1.4], returning to the remaining definitions as well as
[1.2] and [1.3] as needed.

The Point

1. A point is a zero dimensional object.'?> A geometrical object which has three
dimensions (length, height, and width) is a solid. A geometrical object which has
two dimensions (length and height) is a surface, and a geometrical object which has
one dimension is a line or line segment. Since a point has none of these, it has zero
dimensions.

The Line

2. A line is a one dimensional object: it has only length. If it had any height or
width, no matter how small, it would have two dimensions. Hence!, a line has

neither height nor width.
A line with points A and B is written as j@ .

(This definition conforms to Euclid’s original definition in which a line need not be
straight. However, in all modern geometry texts, it is understood that a “line” has
no curves. See also [Def 1.4].)

3. The intersections of lines are points. However, a point may exist without being
the intersection of lines.

4. A line without a curve is called a straight line. It is understood throughout this
textbook that a line refers exclusively to a straight line. A curved line (such as the
circumference of a circle) will never be referred to merely as a line in order to avoid
confusion. Lines have no endpoints since they are infinite in length.

A line segment (or more simply a segment) is similar to a line except that it is finite
in length and has two endpoints at its extremities. A line segment with endpoints

12Fuclid’s original definitions are almost useless to modern mathematicians. One example: Euclid
defines a line as either straight or curved and either finite or infinite in length. This type of vagueness,
common until the early 19th century, was one reason why mathematics had to be rewritten into its
modern form.

1BWarren Buck, Chi Woo, Giangiacomo Gerla, J. Pahikkala. "point" (version 13). PlanetMath.org.
Freely available at http://planetmath.org/point

14«Hence”, along with “thus” and “therefore”, are three words that mathematicians use to mean “con-
sequently” or “for this reason”. Generally, “hence” is used for minor results, “thus” for major results, and
“therefore” for results in between. However, YMMV.
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A and B is written as AB. (If the length of a segment appears in a fraction, we will
omit the overline. For example, 1 = 45 for any segment AB.)

A ray is like a line in that it is infinite in length; however, it has one endpoint. A
ray with endpoint A and point B is written as 1@ (where A is the endpoint).

A B
© o
E F

Figure 1.1.2: [Def. 1.2, 1.3, 1.4] ABis a line, C'D is a segment (sometimes called a
line segment), and EF is a ray

The Plane

5. A surface has two dimensions: length and height. It has no width; if it had, it
would be a space of three dimensions.

6. A plane is a surface that extends infinitely far and is assumed to be completely
flat. A plane is the two-dimensional analogue of a point (zero dimensions), a line
(one dimension) and three-dimensional space. Planes act as the setting for most
of Euclidean geometry; that is, “the plane” refers to the whole space in which two-
dimensional geometry is performed.

Planes are defined by three points. For any three points not on the same line, there
exists one and only one plane which contains all three points.

7. Any combination of points, lines, line segments, or curves on a plane is called
a plane figure. A plane figure that is bounded by a finite number of straight line
segments closed in a loop to form a closed chain or circuit is called a polygon'®.

All bounded plane figures have a measure called area. Area'® is the quantity that
expresses the extent of a two-dimensional figure or shape on a plane. Area can
be understood as the amount of material with a given thickness that would be
necessary to fashion a model of the shape, or the amount of paint necessary to
cover the surface with a single coat.

Area is the two-dimensional analog of the length of a curve (a one-dimensional
concept) or the volume of a solid (a three-dimensional concept). Surface area is its
analog on the two-dimensional surface of a three-dimensional object.'”

8. Points which lie on the same straight line, ray, or segment are called collinear
points.

Bhttp://en.wikipedia.org/wiki/Polygon
16Taken from the article: https://en.wikipedia.org/wiki/Area.
17See the List of Formulas in: https://en.wikipedia.org/wiki/Area
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Figure 1.1.3: [Def 1.11] Notice that both angles could be referred to as /BAC,
/CAB, or the angle at point A where A is a vertex.

The Angle

9. The angle made by two straight lines, segments, or rays extending outward from
a common point but in different directions is called a rectilinear angle (or simply

an angle).

10. The one point of intersection between straight lines, rays, or segments is called
the vertex of the angle.

11. A particular angle in a figure will be written as the symbol / and three letters,
such as BAC, of which the middle letter, A, is at the vertex. Hence, such an angle
may be referred to either as /BAC or ZC'AB. Occasionally, this notation will be
shortened to “the angle at point A” instead of naming the angle as above.

12. The angle formed by composing two or more angles is called their sum. Thus in
Fig. 1.1.4, we find that ZABC & Z/PQR = Z/ABR where the segment QP is applied
to the segment BC. We generally write ZABC + /PQR = /ABR to express this

concept.
R
C R C
o A ‘ P A
B Q

Figure 1.1.4: [Def. 1.12]

Figure 1.1.5: [Def. 1.13]

13. Suppose two segments BA, AD are composed such that BA® AD = BD where
BD is a segment (see Fig. 1.1.5). If a point C' which is not on the segment BD
is connected to point A, then the angles ZBAC and ZCAD are called supplements
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of each other. This definition holds when we replace segments by straight lines or
rays, mutatis mutandis'®.

14. When one segment, AF, stands on another segment, BD, such that the adjacent
angles on either side of AE are equal (that is, /EAD = /EAB), each of the angles
is called a right angle, and the segment which stands on the other is described as
perpendicular to the other (or sometimes the perpendicular to the other). (See Fig.
1.1.5)

We may write that AE is perpendicular to DB or more simply that AE | DB. It
follows that the supplementary angle of a right angle is another right angle.

Multiple perpendicular lines on a many-sided object may be referred to as the ob-
ject’s perpendiculars.

The above definition holds for straight lines and rays, mutatis mutandis.

A line segment within a triangle that runs from a vertex to an opposite side and is
perpendicular to that side is usually referred to an altitude of the triangle, although
it could be referred to in a general sense as a perpendicular of the triangle.

15. An acute angle is one which is less than a right angle. /D AB in Fig. 1.1.6 is an
acute angle.

16. An obtuse angle is one which is greater than a right angle. /FAB in Fig. 1.1.6
is an obtuse angle. The supplement of an acute angle is obtuse, and conversely, the
supplement of an obtuse angle is acute.

17. When the sum of two angles is a right angle, each is called the complement of
the other. See Fig. 1.1.6.

A

Figure 1.1.6: [Def. 1.17] The angle Z/BAC is a right angle. Since /BAC = ZCAD +
/DAB, it follows that the angles /BAD and /DAC are each complements of the
other.

Concurrent Lines

18. Three or more straight lines intersecting the same point are called concurrent
lines. This definition holds for rays and segments, mutatis mutandis.

19. The common point through which the rays pass is called the vertex.

8 Mutatis mutandis is a Latin phrase meaning "changing [only] those things which need to be
changed" or more simply "[only] the necessary changes having been made". Source: http://en.
wikipedia.org/wiki/Mutatis_mutandis
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The Triangle

20. A triangle is a polygon formed by three segments joined at their endpoints.
These three segments are called the sides of the triangle. One side in particular
may be referred to as the base of the triangle for explanatory reasons, but there is
no fundamental difference between the properties of a base and the properties of
either of the two remaining sides of a triangle. An exception to this is the isosceles
triangle where two sides are equal in length: the third side is sometimes referred
to as the base.

The formula for the area of a triangle is defined as

1
A= -bh
2

where b =the length of a particular side, and h =the length of a perpendicular
segment from the base to a vertex.

The area of a triangle is zero if and only if its vertices are collinear.

21. A triangle whose three sides are unequal in length is called scalene (the left-
hand triangle in Fig. 1.1.7). A triangle with two equal sides is called isosceles
(the middle triangle in Fig. 1.1.7). When all sides are equal, a triangle is called
equilateral, (the right-hand triangle in Fig. 1.1.7). When all angles are equal, a
triangle is called equiangular.

o>
w
w)
M
[ X0
T

J

Figure 1.1.7: [Def 1.21] The three types of triangles: scalene, isosceles, equilateral.

22. A right triangle is a triangle in which one of its angles is a right angle, such as
the middle triangle in Fig. 1.1.7. The side which stands opposite the right angle is
called the Aypotenuse of the triangle. (In the middle triangle in Fig. 1.1.7, ZEDF
is a right angle, so side EI' is the hypotenuse of the triangle.)

Notice that side EF of a triangle is not written as EF despite the fact that FF is
also a line segment; since EF is a side of a triangle, we may omit the overline.
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Figure 1.1.8: [Def. 1.23]

23. An obtuse triangle is a triangle such that one of its angles is obtuse (such as
/CABin ACAB, Fig. 1.1.8).

24. An acute triangle is a triangle such that each of its angles are acute, such as
the left and right triangles in Fig. 1.1.7.

25. An exterior angle of a triangle is one which is formed by extending the side of a
triangle. In Fig. 1.1.8, ACAB has had side BA extended to the segment BD which
creates the exterior angle Z/DAC.

Every triangle has six exterior angles. Also, each exterior angle is the supplement
of the adjacent interior angle. In Fig. 1.1.8, the exterior angle ZDAC is the supple-
ment of the adjacent interior angle /C AB.

The Polygon

26. A rectilinear figure bounded by three or more line segments can also be referred
to as a polygon (see definition 7). For example, a circle is a plane figure but not a
polygon, but the triangles in Fig. 1.1.8 are both plane figures and polygons.

27. A polygon is said to be convex when it does not have an interior angle greater
than 180°.

28. A polygon of four sides is called a quadrilateral.

29. A lozenge' is an equilateral parallelogram whose acute angles are 45 degrees.
Sometimes, the restriction to 45 degrees is dropped, and it is required only that two
opposite angles are acute and the other two obtuse. The term rhombus is commonly
used for an equilateral parallelogram?’; see Fig. 1.1.9.

9Source: Weisstein, Eric W. "Lozenge." From MathWorld—A Wolfram Web Resource. http://
mathworld.wolfram.com/Lozenge.html
20Source: Weisstein, Eric W. "Rhombus." From MathWorld--A Wolfram Web Resource. http://

mathworld.wolfram.com/Rhombus.html
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Figure 1.1.9: [Def. 1.29] Two rhombi.

30. A rhombus which has a right angle is called a square.

31. A polygon which has five sides is called a pentagon; one which has six sides, a
hexagon, etc.?!

The Circle

32. A circle is a plane figure constructed by connecting all points which are equally
distant from a center point. This center point is the center of the circle, and the
connected points become the circumference of the circle.

Figure 1.1.10: [Def. 1.32] OC is constructed with center C and radius C'D. Notice
that CA = CB = CD. Also notice that AB is a diameter.

33. A radius of a circle is any segment constructed from its center to its circumfer-
ence, such as CA, CB, or CD in Fig. 1.1.10. Notice that CA = CB = CD.

34. A diameter of a circle is a segment constructed through the center and termi-
nated at both ends by the circumference, such as AB in Fig. 1.1.10.

Other

35. A segment, line, or ray in any figure which divides the area of a regular or
symmetrical geometric object into two equal halves is called an Axis of Symmetry
of the figure (such as AC in the polygon ABCD, Fig. 1.1.11).

21See also https://en.wikipedia.org/wiki/Polygon
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o w
o

C

Figure 1.1.11: [Def. 1.35]

Alternatively, if an object is bisected by a segment (or line or ray) such that if for
each point on one side of the segment (or line or ray) there exists one point on the
other side of the segment (or line or ray) where the distance from each of these
points to the segment (or line or ray) is equal, then the segment (or line or ray) is
an Axis of Symmetry.

36. A segment constructed from any angle of a triangle to the midpoint of the
opposite side is called a median of the triangle. Each triangle has three medians
which are concurrent. The point of intersection of the three medians is called the
centroid of the triangle.

Figure 1.1.12: [Def. 1.36] CD is a median of AABC. The triangle has two other
medians not shown, and their intersection is the centroid of AABC.

37. A locus (plural: loci) is a set of points whose location satisfies or is determined
by one or more specified conditions, i.e., 1) every point satisfies a given condition,
and 2) every point satisfying it is in that particular locus.?? For example, a circle is
the locus of a point whose distance from the center is equal to its radius.

38. The circumcenter?® of a triangle is the point where the three perpendicular
bisectors of a triangle intersect.

39. The bisectors of the three internal angles of a triangle are concurrent, and their
point of intersection is called the incenter of the triangle.

Additional definitions will be introduced in [1.5] and subsequent chapters.

22http://en.wikipedia.org/wiki/Locus_(mathematics)
23See also: http://www.mathopenref . com/trianglecircumcenter. html
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1.2 Postulates

We assume the following:

1. A straight line, ray, or segment may be constructed from any one point to
any other point. Lines, rays, and segments may be subdivided by points into
segments or subsegments which are finite in length.

2. A segment may be extended from any length to a longer segment, a ray, or a
straight line.

3. A circle may be constructed from any point (its center) and from any finite
length measured from the center (its radius).

1.3 Axioms

1.3.1 Algebraic Axioms

Let a, b, ¢, etc., be real numbers. These axioms require four operations: addition,
subtraction, multiplication, and division.

Addition?* (often signified by the plus symbol "+") is one of the four basic opera-
tions of arithmetic, with the others being subtraction, multiplication and division.
The addition of two numbers which represent quantities gives us the sum, or to-
tal amount of those quantities combined. For example, if /A = %77 radians and
/B = im radians, then

3 1 3 1 4
LA+ /B = — -Tt=|(-+- = -7 =
+ 47T+47T (4+4)7r T=T

radians.

Addition for quantities is defined when the quantities under consideration have the
same units. For example, a segment with a length of 3 units that is extended by
an additional 7 units now has side-length of 10 units; or 3 + 7 = 10 where each
number represents the number of units. However, if a segment with a length of 3 is
added to ZA = %w radians, the sum is not defined. (In some cases, if the units are
removed and the now unit-less numbers are added together, their sum is defined,
but the sum may have no bearing on the context of the problem.)

Subtraction represents the operation of removing quantities from a collection of
quantities. It is signified by the minus sign (—). For example, if ZA = %w radians

and /B = ir radians, then

31 3 1 2 1
UA—/B=Sn—n=(2_)n=2r==
14" q" <4 4)7T =T

24Some of this and the following originates from Wikipedia.
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radians.

Subtraction is a special case of addition where

a+(=b)=a—-b=c
The caveat above concerning units applies to subtraction.

Multiplication (often denoted by the cross symbol "x", by a point "-" or by the
absence of symbol): when thinking of multiplication as repeated addition, multi-
plication is equivalent to adding as many copies of one of them (multiplicand) as
the value of the other one (multiplier). Normally the multiplier is written first
and multiplicand second, though this can vary and sometimes the distinction is not
meaningful. As one example,

axb=a+a+...+a

where the product a x b equals a added to itself a total of b times.

Multiplication is a special case of addition, and so the caveat above concerning
units applies to multiplication. The area of a certain geometric objects on the plane
(triangles, rectangles, parallelograms, etc.) can be defined by the product of two
lengths (base and height, two adjacent side-lengths, etc.). The volume of a certain
solid geometric objects (spheres, cubes, etc.) can also be defined by the product of
three lengths.

Division: in elementary arithmetic, division (denoted + or / or by ¢ where b # 0)
is an arithmetic operation. Specifically, if b times ¢ equals a, written:

a=bxc
where b is not zero, then a divided by b equals ¢, written:
a+b=c a/b=c —=c

Division is a special case of multiplication where

:a+b:g

b

S =

Hence, the caveat above concerning units applies to division.

Also, b divides a whenever a = t - b for some integer ¢; or, 7 = % = t where t is an

integer. Note that if b divides a, then we also have that;

1. bis a divisor of a

2. ais a multiple of b
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3. ais divisible by b

We use the following as algebraic axioms:?°

1. The Addition Property: If a = band ¢ = d, thena +c = b + d.
2. The Subtraction Property: Ifa =band ¢ = d, thena —c=0—d.
3. Multiplication Property: If a = b, then ca = cb.

—b

4. Division Property: If a = b and ¢ # 0, then & = 2.

5. Substitution Property: If a« = b, then either a or b may be substituted for the
other in any equation or inequality.

6. Reflexive Property: a = a.
7. Symmetric Property: If a = b, then b = a.

8. Converse Properties of Inequalities:

(a) If a < b, then b > a.
(b) If a > b, then b < a.

9. Transitive Properties of Inequalities:

(a) Ifa > band b > ¢, then a > c.
(b) Ifa <band b < ¢, then a < c.
(¢) Ifa>band b > ¢, thena > c.

d) Ifa=band b > ¢, thena > c.
10. Inequality Properties of Addition and Subtraction:

(a) Ifa<b,thena+c<b+canda—c<b-—ec

(b) Ifa >b,thena+c>b+canda—c>b—c.
11. Inequality Properties of Multiplication and Division:

(a) IfaZbandc>0,thenaczbcand%

Y

(b) Ifa§bandc>O,thenacgbcand%

IA
Al ol ol oo

(¢) If a > band ¢ < 0, then ac < bc and ¢

IN

(d) Ifa < band ¢ <0, then ac > bc and £

Y

12. Inequality Property of the Additive Inverse:

(a) If a < b, then —a > —b.

25Sources for these axioms include:

(A) Jurgensen, Brown, Jurgensen. “Geometry.” Houghton Mifflin Company, Boston, 1985. ISBN:
0-395-35218-5

(B) Relevant articles in Wikipedia.



CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 30

(b) If a > b, then —a < —b.

13. Inequality Property of the Multiplication Inverse (where a and b are either
both positive or both negative):

(a) If a < b, then

(b) If a > b, then
(c) If a > (—b), then § > (—1).

>

1
a
1
a

S = o=

<

1.3.2 Congruence Axioms

In geometry, two figures or objects are congruent if they have the same shape and
size, or if one has the same shape and size as the mirror image of the other.? More
formally, two objects are called congruent if and only if one can be transformed into
the other using only translations, rotations, or reflections. This means that either
object can be re-positioned and reflected (but not resized) so as to coincide precisely
with the other object. Therefore two distinct plane figures on a piece of paper are
congruent if we can cut them out and then match them up completely. Turning the
paper over is permitted.

Examples include:

¢ Two line segments are congruent if they have the same length.
* Two angles are congruent if they have the same measure.

* Two circles are congruent if they have the same diameter or radius.

If a and b are congruent, we may write a = b. Three congruence properties with

examples:

1. Reflexive Property: DE = DFE and ZABC = /ABC.

2. Symmetric Property: If DE = FG, then FG = DE. Also, if ZABC = /DEF,
then /DEF = /ABC.

3. Transitive Property: If AB = CD and CD = EF, then AB = EF. Also, if
/ABC = /DEF and /DEF = /GHI,then ZABC = /GHI.

The Algebraic and Congruence Axioms give us the Distributive Property:

a(b+c¢) =ab+ ac

26Taken from https://en.wikipedia.org/wiki/Congruence_(geometry)
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1.3.3 Geometric Axioms

1. Any two objects which can be made to coincide are equal in measure.
The placing of one geometrical object on another, such as a line on a line, a triangle
on a triangle, or a circle on a circle, etc., is called superposition. The superposi-
tion employed in geometry is only mental; that is, we conceive of one object being
placed on the other. And then, if we can prove that the objects coincide, we infer
by the present axiom that they are equal in all respects, including magnitude. Su-
perposition involves the following principle which, without being explicitly stated,
Euclid uses frequently: “Any figure may be transferred from one position to another

without change in size or form.”
2. Two straight lines on a plane cannot enclose a finite area.
3. All right angles are equal to each other.

4. If two lines (fﬁ, @) intersect a third line (fﬁ) such that the sum of the two
interior angles (/BAC + ZACD) on the same side is less than the sum of two right
angles, then these lines meet at some finite distance. See Fig. 1.3.1.

Figure 1.3.1: AB and @ must eventually meet (intersect) at some finite distance.

The above holds for rays and segments, mutatis mutandis.

" can also be substituted for the above axiom, which states: “In

Playfair’s axiom?
a plane, given a line and a point not on it, at most one line parallel to the given
line can be drawn through the point.” This axiom was named after the Scottish
mathematician John Playfair. His "at most" clause is all that is needed since it can
be proven through Euclid’s propositions that at least one parallel line exists. This

axiom is often written with the phrase, "there is one and only one parallel line".

Axioms which are equivalent to axiom 4 include:

* The sum of the angles in every triangle is 180° (triangle postulate).
e Every triangle can be circumscribed.

* There exists a quadrilateral in which all angles are right angles (that is, a
rectangle).

* There exists a pair of straight lines that are at constant distance from each
other.

2Thttps://en.wikipedia.org/wiki/Playfair’s_axiom
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* Two lines that are parallel to the same line are also parallel to each other.

* There is no upper limit to the area of a triangle. (Wallis axiom)?5.

28nttps://en.wikipedia.org/wiki/Parallel_postulate
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1.4 Book I, Propositions 1-26

Proposition 1.1. CONSTRUCTING AN EQUILATERAL TRIANGLE.

Given an arbitrary segment, it is possible to construct an equilateral triangle on
that segment.

Proof. Suppose we are given segment AB; we claim that an equilateral triangle
can be constructed on AB.

With A as the center of a circle and AB as its radius, we construct the circle OA
[Postulate 3 from section 1.2]. With B as center and AB as radius, we construct the
circle OB, intersecting OA at point C.

Construct segments C' A, CB [Postulate 1 from section 1.2]. We claim that AABC
is the required equilateral triangle.

NN

Figure 1.4.1: [1.1]

Because A is the center of the circle ©A4, AC = AB [Def. 1.33]. Since B is the center
of the circle OB, AB = BC. By Axiom 9 from section 1.3.1 (using equalities), we
have AC = AB = BC.

Since these line segments are the sides of AABC, AABC is an equilateral triangle
[Def. 1.21]. Since AABC is constructed on segment AB, we have proven our claim.
O

Remark. [1.1]-[1.3] are lemmas to [1.4].

Remark. This proposition may seem strange to readers who are familiar with mod-
ern mathematical proofs. Proofs from the 21st century usually show that some non-
tangible, mathematical object either does or does not exist, while [1.1] describes
how to construct an object and then proves that this object is what we intended to
construct.

The mathematics of Euclid’s day was akin to engineering and construction. If you
could prove something existed but not use that knowledge to help construct an
object in the real world, you were on track to becoming a full-time ptochos®®.

29https://en.wikipedia.org/wiki/Begging
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Modern students should draw or construct whatever objects are described in these
propositions.

Exam questions.

1. What do we assume in this proposition?

. What is our claim?

. What is a finite straight line segment?

. What is the opposite of finite?

. What postulates are cited and where are they cited?
. What axioms are cited and where are they cited?

. What use is made of the definition of a circle? What is a circle?

o I o Ot s~ W N

. What is an equilateral triangle?

Exercises.

Exercises #2-5 should be attempted after the student has completed Chapter 1.

1. If the segments AF and BF are constructed, prove that the figure JACBF is a
rhombus. [See the final chapter for a solution.]

2. If C'F is constructed and AB is extended to the circumferences of the circles (at
points D and E), prove that the triangles ACDF and ACEF are equilateral. [See
the final chapter for a solution.]

3. If CA and CB are extended to intersect the circumferences at points G and
H, prove that the points G, F, H are collinear and that the triangle AGCH is
equilateral.

4. Construct CF and prove that (ﬁ)2 =3 (E)2

5. Construct a circle in the space AC B bounded by the segment AB and the partial

circumferences of the two circles.
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Proposition 1.2. CONSTRUCTING A LINE SEGMENT EQUAL IN LENGTH
TO AN ARBITRARY LINE SEGMENT.

Given an arbitrary point and an arbitrary segment, it is possible to construct a
segment with:

(1) one endpoint being the previously given point

(2) a length equal to that of the arbitrary segment.

Proof. Let A be an arbitrary point on the plane, and let BC be an arbitrary seg-
ment. Our claim is stated above.

) L\

Figure 1.4.2: [1.2] at the beginning of the proof (left), and then partially constructed
(right)

Construct AB, and on AB construct the equilateral triangle AABD [1.1].

With B as the center and BC as the radius, construct OB. Extend DB to intersect
the circle OB at E [Postulate 2 from section 1.2]. With D as the center and DE as
radius, construct OD. Extend DA to meet OD at F. O

Figure 1.4.3: [1.2] fully constructed

Proof. Clearly, AF has A as one of its endpoints (claim 1). If we can show that
AF = BC, we will have proven our claim.
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Since DE and DF are radii of OD, DF = DE [Def. 1.32]. Because ADAB is an
equilateral triangle, DA = DB [Def. 1.21]. By [Axiom 2 from section 1.3.1], we find
that

DF —DA=DE — DB

But DF — DA = AF and DE — DB = BE. By [Axiom 5 from section 1.3.1], we find
that AF = BE.

Since BC and BE are radii at OB, BE = BC. By Axiom 9 from section 1.3.1 (using
equalities), we have AF = BC (claim 2), which completes the proof. O

Exercises.

1. Prove [1.2] when A is a point on BC. [See the final chapter for a solution.]
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Proposition 1.3. SUBDIVIDING A LINE SEGMENT.

Given two arbitrary, unequal segments, it is possible to subdivide the larger seg-
ment such that one of its two sub-segments is equal in length to the smaller seg-

ment.

Proof. Construct segments AB and CG such that CG < AB. We claim that AB
may be subdivided into segments AE and EB where AE = CG.

From A, construct AD such that AD = CG [1.2]. With A as the center and AD as
radius, construct OA [Postulate 1.3] which intersects AB at F.

Figure 1.4.4: [1.3]

Because A is the center of OA, AE = AD [Def. 1.32]. Since AD = CG by construc-
tion, by Axiom 9 from section 1.3.1 (using equalities), AE = C'G, which proves our
claim. O

Corollary. 1.3.1. Given arbitrary segments and a ray, it is possible to cut the ray
such that the resulting segment is equal in length to the arbitrary segment.

Exam questions.
1. What previous problem is employed in the solution of this?
2. What axiom is employed in the demonstration?

3. Demonstrate how to extend the shorter of the two given segments until the whole
extended segment is equal in length to the longer segment.

Exercises.

1. Prove [Cor. 1.3.1].
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Proposition 1.4. THE “SIDE-ANGLE-SIDE” THEOREM FOR THE CONGRU-
ENCE OF TRIANGLES.

If two pairs of sides in two triangles is respectively equal in length, and if the cor-

responding interior angles are equal in measure, then the triangles are congruent.

Proof. If AABC and ADEF exist such that AB = DE, AC = DF, and /BAC =
/ZEDF, then ANABC =~ ADEF.

Figure 1.4.5: [1.4]

Recall that superposition allows us to move one object top of another without dis-
torting its shape or measure. If AABC is positioned®® on ADEF such that the
point A is positioned on the point D and side AB is positioned on side DF, then the
point B coincides with the point F because AB = DE.

Since AB coincides with DFE, the side AC also coincides with side DF because
/BAC = Z/EDF. Since AC = DF, C coincides with F.

Because B coincides with E, the base BC of AABC coincides with the base EF of
ADEF; it follows that BC = EF.

Hence all sides and angles of one triangle are equal with their corresponding sides
and angles in the other triangle. We conclude that AABC = ADFEF. O

Remark. Euclid’s Elements contains three propositions on the congruence of trian-
gles: [1.4] side-angle-side (SAS), [1.8] side-side-side (SSS), and [1.26] angle-angle-
side (AAS or SAA) and angle-side-angle (ASA).

Exam questions.
1. What is meant by superposition?
2. How many parts make up a triangle? (Ans. 6, three sides and three angles.)

3. When it is required to prove that two triangles are congruent, how many parts of
one must be given equal to the corresponding parts of the other? (Ans. In general,

30We may write “positioned” instead of “superpositioned” with the understanding that the words are
synonymous in context.
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any three except the three angles. This will be established in [1.8] and [1.26], both
of which use [1.4].)

Exercises.

1. Prove that the line which bisects the vertical angle of an isosceles triangle also
bisects the base perpendicularly. [See the final chapter for a solution.]

2. If two adjacent sides of a quadrilateral are equal in length and the diagonal
bisects the angle between them, prove that their remaining sides are also equal in
length. [See the final chapter for a solution.]

3. If two segments stand perpendicularly to each other and if each bisects the other,
prove that any point on either segment is equally distant from the endpoints of the
other segment. [See the final chapter for a solution.]

4. If equilateral triangles are constructed on the sides of any triangle, prove that
the distances between the vertices of the original triangle and the opposite vertices
of the equilateral triangles are equal. (This may be proven after studying [1.32].)
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Proposition 1.5. ISOSCELES TRIANGLES 1.

If a triangle is isosceles, then:

(1) if the sides of the triangle other than the base are extended, the angles under

the base are equal in measure

(2) the angles at the base are equal in measure.

Proof. Construct AABC such that sides AB = AC and denote side BC' as the tri-
angle’s base. Extend AB to AD and AC to AFE such that CE > BD. We claim
that:

(1) «DBC = Z/ECB
(2) ZABC = ZACB
We will prove each claim separately. Claim 1: /DBC = /ECB

Let F be a point on BD other than B or D. On CE, choose point G such that
CG = BF [1.3]. (Since CE > BD, such a point exists and is not an endpoint.)
Construct BG and CF [two applications of Postulate 1 from section 1.2].

Figure 1.4.6: [1.5]

Because AF = AG by construction and AB = AC by hypothesis, it follows that
sides AF and AC in AFAC are respectively equal in length to sides AG and AB
in AGAB. Also, the angle ZBAC is the interior angle to both pairs of sides in
each triangle. By [1.4], AFAC = AGAB; this implies that ZAFC = ZAGB and
BG =CF.

Consider AFBC, AGCB: since BF = CG, CF = BG, and ZAFC = ZAGB, by [1.4]
AFBC =2 AGCB. This implies that /FBC = Z/GCB, which are the angles under
the base of AABC or,

/DBC = /FBC = /ZGCB = ZECB

This proves claim 1.
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Claim 2: ZABC = ZACB

Since AFBC = AGCB,wehave ZFCB = Z/GBC. By the above?!, /ZFCA = ZGBA.
Notice that:

/FCA = /GBA
/FCB+ /ZACB = /GBC + ZABC
LFCB+/ZACB = /FCB+ ZABC

/ACB = J/ABC
This proves claim 2 and completes the proof. O

Remark. The difficulty which beginners may have with this proposition is due to
the fact that AACF, AABG overlap. A teacher or tutor should graph these trian-
gles separately and point out the corresponding parts: AF = AG, AC = AB, and
/FAC = /GAB. By [1.4], it follows that ZACF = /ABG, /AFC = /AGB.

Corollary. 1.5.1. A triangle is equilateral if and only if it is equiangular.

Exercises.
1. Prove that the angles at the base are equal without extending the sides.

2. Prove that jﬁ is an Axis of Symmetry of AABC. [See the final chapter for a
solution.]

3. Prove that each diagonal of a rhombus is an Axis of Symmetry of the rhombus.

4. Take the midpoint on each side of an equilateral triangle; the segments joining
them form a second equilateral triangle. [See the final chapter for a solution.]

5. Prove [Cor. 1.5.1].

“Detection is, or ought to be, an exact science, and should be treated in the same
cold unemotional manner. You have attempted to tinge it with romanticism,
which produces the same effect as if you worked a love-story into the fifth propo-
sition of Euclid.”

- Sir Arthur Conan Doyle, “The Sign of Four™

%https://gutenberg. org/ebooks/2097

31«By the above” means “This is a result from earlier in the proof. You may need to reread the proof
to find it, but it’s there.”
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Proposition 1.6. ISOSCELES TRIANGLES II.

If a given triangle has two equal angles, then the sides opposite the two angles are
equal in length (i.e., the triangle is isosceles).

Proof. Construct AABC such that ZABC = ZACB. In order to prove our claim
32 33

that AB = AC, we will use a proof by contradiction

Figure 1.4.7: [1.6]

Without loss of generality®*, suppose side AB > AC. On AB, construct a point D
such that BD = C'A [1.3] and construct C'D. Notice that AACD > 0 (i.e., the area
of AACD is greater than 0); otherwise, we would not have AACD.

Consider ADBC and AACB: since DB = AC, /DBC = ZACB, and each triangle
contains the side BC, by [1.4] ADBC = ANACB. It follows that AACB = ADBC.

But AACB = ANACD @ ADBC, and so it follows that AACD = 0 (i.e., the area
of AACD equals 0). But above we showed that AACD > 0. By showing that
ANACD = 0 and AACD > 0, we obtain a contradiction.

Specifically, we assumed that AB > AC and obtained a contradiction. If we instead
assume that AC > AB, we would obtain the same contradiction (this is what we
mean by “without loss of generality”; we had two ways to begin the proof, and
either way would have obtained the same result). Since AB > AC and AC > AB
each produce a contradiction, we must have AB = AC, which proves our claim. [

Corollary. 1.6.1. Together, [1.5] and [1.6] state that a triangle is isosceles if and
only if* the angles at its base are equal.

32Mathematics rigidly follows the laws of Western logic, which means that contradictions are always a
sign of error. If we attempt to prove a proposition and obtain a contradiction, then, because a proposition
is either true or false, the proposition must be false.

See also: https://en.wikipedia.org/wiki/Contradiction

33This proof by contradiction will show that the statement “A triangle with two equal angles has
unequal opposite sides” is false.

See also: https://en.wikipedia.org/wiki/Proof_by_contradiction

34This term is used before an assumption in a proof which narrows the premise to some special case;
it is implied that either the proof for that case can be easily applied to all others or that all other cases
are equivalent. Thus, given a proof of the conclusion in the special case, it is trivial to adapt it to prove
the conclusion in all other cases. It is usually abbreviated as wlog.

See also: http://en.wikipedia.org/wiki/Without_loss_of_generality

350ften abbreviated as “iff”.
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Exam questions.

1.

o I o Ot s~ W N

What is the hypothesis in this proposition?

. What proposition is this the converse of?

. What is the inverse of this proposition?

. What is the inverse of [1.5]?

. What is meant by a proof by contradiction?

. How does Euclid generally prove converse propositions?

. What false assumption is made in order to prove the proposition?

. What does this false assumption lead to?

Exercises.

1.

Prove [Cor. 1.6.1].

See also: https://en.wikipedia.org/wiki/If _and_only_if
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Proposition 1.7. DISTINCT TRIANGLES.

If we construct two distinct triangles such that two sides are equal in length, then
the third side of each triangle will be unequal in length.

Proof. Construct distinct triangles AADB, AACB which share the base AB. Sup-
pose that AC = AD. We claim that BC # BD.

A
o .B

Figure 1.4.8: [1.7], case 1

The vertex of the second triangle may be either within or outside the first triangle.
Case 1: Vertex outside of the other triangle.

Let the vertex of each triangle lie outside the interior of the other triangle (i.e., D
does not lie inside A AC'B and C does not lie inside A ADB). Construct CD. Because
AD = AC by hypothesis, AACD is isosceles. By [Cor. 1.6.11, ZACD = ZADC.

Since /ADC = ZADB + /BDC and ZADB > 0, it follows that ZADC > /BDC
[1.3.1 Axiom 12]. Because ZACD = ZADC, we also have that ZACD > /BDC.
Since /BCD = £L/BCA+ LACD, we also have that ZBCD > ZBDC.

Consider ABDC. Since /BCD > /BDC, by [Cor. 1.6.1] we find that BD # BC,
which proves our claim.

Case 2: Vertex inside the other triangle.

Wilog, let the vertex of the triangle A ADB be located within the interior of AACB.
Extend side AC to segment AE and side AD to segment AF. Construct CD. Be-
cause AC = AD by hypothesis, the triangle AACD is isosceles; by [1.5] ZECD =
/ZFDC.
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Figure 1.4.9: [1.7], case 2

Since /FCD = /ECB + /BCD, it follows that /ECD > /BCD [1.3.1 Axiom 12].
Because /FCD = /FDC, we also have that /FDC > /BCD. Since /BDC =
/BDF + /FDC, we find that /ZBDC > ZBCD.

Consider ABDC'. Since /BDC > /BCD, by [Cor. 1.6.1] we find that BD # BC,

which proves our claim and completes the proof.

O

Corollary. 1.7.1. Two triangles are distinct whenever no side of one triangle is

equal in length to any side of the other triangle.

Exercises.

1. Prove [Cor. 1.7.1].
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Proposition 1.8. THE “SIDE-SIDE-SIDE” THEOREM FOR THE CONGRUENCE
OF TRIANGLES.

If all three pairs of sides of two triangles are respectively equal in length, then the

triangles are congruent.

Proof. Suppose AABC and ADEF are triangles where sides AB = DE, AC = DF,
and BC = EF (where BC and EF are the bases of those triangles). We claim that
ANABC 2 ADEF.

Figure 1.4.10: [1.8]

Let AABC be positioned on ADFEF such that point B coincides with point F and
the side BC coincides with the side FF. Because BC = EF, the point C coincides
with point F'. If the vertex A falls on the same side of E'F as vertex D, then the
point A must coincide with D.

If this were not true, then A must have a different location: call this point G. Our
hypothesis then states EFG = AB and AB = ED. By [1.3.1 Axiom 8], EG = ED.
Similarly, F'G = F'D. However, by [1.7], FG # F D, a contradiction.

Hence the point A must coincide with point D, and so the three angles of one tri-
angle are respectively equal to the three angles of the other (specifically, ZABC =
/DEF, /BAC = ZEDF, and /BCA = ZEF D). Therefore, NABC =2 ADEF. O

Exam questions.
1. What use is made of [1.7]? (Ans: As a lemma to [1.8].)

2. Can [1.7] and [1.8] be combined into a single proposition? If so, how?
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Proposition 1.9. BISECTING A RECTILINEAR ANGLE.
It is possible to bisect an angle.

Proof. Construct ZBAC, point D on /@, and point F on AC such that AF — AD
[1.3]. Construct DE; also construct the equilateral triangle ADEF [1.1] such that
F stands on the other side of DFE than A. Construct AF. We claim that AF bisects
/BAC.

Figure 1.4.11: [1.9]

Consider ADAF, AEAF: each shares AF, AD = AFE by construction, and DF =
EF by construction. By [1.8], ADAF = AEAF, and so /DAF = /EAF. Notice
that

/BAC = /DAF + /EAF
= 2-/DAF
—
% -/BAC = /DAF
Or, /BAC is bisected by AF, which completes the proof. O

Corollary. 1.9.1. If AF is extended to the line jﬁ, then jﬁ is the Axis of Symmetry
of the NAED, ADEF , figure BDAEC, and segment DE.

Corollary. 1.9.2. In [1.9], AB and AC may be constructed as lines, rays, or seg-
ments of appropriate length with point A as the vertex, mutatis mutandis.
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Exam questions.
1. Why does Euclid construct the equilateral triangle on the side opposite of A?

2. If the equilateral triangle were constructed on the other side of DF, in what case
would the construction fail?

Exercises.
1. Prove [1.9] without using [1.8]. (Hint: use [1.5, #2].)
2. Prove that AF' | DE. (Hint: use [1.5, #2].) [See the final chapter for a solution.]

3. Prove that any point on AF is equally distant from the points D and E. [See the
final chapter for a solution.]

4. Prove [Cor. 1.9.1].
5. Prove [Cor. 1.9.2].
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Proposition 1.10. BISECTING A SEGMENT.

It is possible to bisect a segment of arbitrary length (i.e., it is possible to locate the
midpoint of a segment).

Proof. Construct AB; we claim that the segment AB can be bisected.

C

@ o —

Figure 1.4.12: [1.10]

Construct the equilateral triangle AABC with AB as its base [1.1]. Bisect ZACB
by constructing the segment C'D [1.9] which intersects AB at D. Clearly, AB =
AD @ DB. We claim that AB = 2- AD = 2- DB (which is equivalent to stating that
AB is bisected at D).

Consider AACD, ABCD: AC = BC (since each are sides of the equilateral triangle
NACB); each triangle shares side CD; ZACD = /BCD by construction. By [1.4],
ANACD = ABCD, and so AD = DB. Therefore,

AB=AD+DB=2-AD=2-DB

which proves our claim. O

Exercises.

1. Bisect a segment by constructing two circles. [See the final chapter for a solu-
tion.]

2. Extend CD to c“_ﬁ Prove that every point equally distant from the points A and
B are points on &b [See the final chapter for a solution.]
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Proposition 1.11. CONSTRUCTING A PERPENDICULAR SEGMENT I.

It is possible to construct a segment at a right angle to a given line from any point
on the line.

Proof. Construct j@ containing point C. On CHA, choose any point D; on @ , choose
E such that CE = CD [1.3]. Construct the equilateral triangle ADFE on DE [1.1]
and construct CF. We claim that AB | CF.

F

Figure 1.4.13: [1.11]

Consider ADCF, ANECF': each shares side CF', CD = CFE by construction, and
DF = EF since ADFE is equilateral. By [1.8] ADCF =2 AECF, and so Z/DCF =
/ECF. Since these are adjacent angles, [Def. 1.13] states that each of these angles
is a right angle, which proves our claim. O

Corollary. 1.11.1. [1.11] holds when AB is a segment or ray and /or when CF is a
straight line or a ray, mutatis mutandis.

Exercises.

1. Prove that the diagonals of a rhombus bisect each other perpendicularly. [See
the final chapter for a solution.]

2. Prove [1.11] without using [1.8].

3. Find a point on a given line that is equally distant from two given points. [See
the final chapter for a solution.]

4. Find a point on a given line such that if it is joined to two given points on opposite
sides of the line, then the angle formed by the connecting segment is bisected by
the given line. (Hint: similar to the proof of #3.)

5. Find a point that is equidistant from three given points. (Hint: you are looking
for the circumcenter of the triangle.)

6. Prove [Cor. 1.11.1].
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Proposition 1.12. CONSTRUCTING A PERPENDICULAR SEGMENT I1.

Given an arbitrary line and an arbitrary point not on the line, we may construct a
perpendicular segment from the point to the line.

Proof. Construct aB and C such that C is not on 4B We wish to construct CH
such that H is on A5 and CH | AB.

Figure 1.4.14: [1.12]

Take any point D from the opposite side of AB to C. Construct the circle OC with
CD as its radius [Postulate 1.3] where OC intersects fﬁ at the points F' and G.
Bisect FG at H [1.10] and construct CH [Postulate 1.1]. We claim that CH | AB.

Construct ACFG, and consider AFHC and AGHC: FH = GH by construction;
the triangles share HC; CF = CG since each are radii of OC [Def. 1.32]. By [1.8],
AFHC = ANGHC, and so ZCHF = ZCHG. Since these are adjacent angles, [Def.
1.13] states that each angle is a right angle, which proves our claim. O

Corollary. 1.12.1. [1.12] holds when CH and/or AB are replaced by rays, mutatis

mutandis.

Exercises.

1. Prove that circle OC cannot meet /@ at more than two points. [See the final
chapter for a solution.]

2. Prove [Cor. 1.12.1].
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Proposition 1.13. ANGLES AT INTERSECTIONS OF STRAIGHT LINES.

If a line intersects another line, the lines either stand at right angles or at two

angles whose sum equals two right angles.

Proof. If the line AB intersects the line Cﬁ at B, we claim that either ZABC and
/ABD are right angles or that ZABC + ZABD equals two right angles.

A E
® ® A
C B D C B D
G——) O

Figure 1.4.15: [1.13] (@) on left, (8) on right

Iffﬁ € Cﬁ as in Fig. 1.4.15(a), then ZABC and ZABD are right angles.

Otherwise, ZABC and ZABD are not right angles as in Fig. 1.4.15(3); construct
BE | OD [1.11]. Notice that ZABC = /CBE + /EBA [Def. 1.11]. Adding ZABD

to each side of this equality, we obtain that

LABC + ZABD = /CBE + LEBA + ZABD

Similarly, we find that

/CBE+ /EBA+ /ABD = /CBE + ZEBD

By [1.3.1 Axiom 8], we find that

/ABC + /ABD = Z/CBE + ZEBD

Since Z/CBF and ZEBD are right angles, ZABC + ZABD equals the sum of two
right angles, which proves our claim. O



CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 53
An alternate proof:

Proof. Denote /EBA by . Notice that:

/CBA = right angle + 0
/ZABD = right angle — ¢
—
/CBA+ ZABD = right angle

Corollary. 1.13.1. The above proposition holds when the straight lines are replaced
by segments and /or rays, mutatis mutandis.

Corollary. 1.13.2. The sum of two supplemental angles equals two right angles.
Corollary. 1.13.3. Two distinct straight lines cannot share a common segment.

Corollary. 1.13.4. The bisector of any angle bisects the corresponding re-entrant

angle.

Corollary. 1.13.5. The bisectors of two supplemental angles are at right angles to
each other.

Corollary. 1.13.6. The angle /EBA = % - (/CBA — ZABD).

Exercises.

1. Prove [Cor. 1.13.1].
. Prove [Cor. 1.13.2].
. Prove [Cor. 1.13.3].

2
3
4. Prove [Cor. 1.13.4].
5. Prove [Cor. 1.13.5].
6

. Prove [Cor. 1.13.6].
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Proposition 1.14. RAYS TO STRAIGHT LINES.

If at the endpoint of a ray there exists two other rays constructed on opposite sides
of the first ray such that the sum of their adjacent angles is equal to two right
angles, then these two rays form one line.

Proof. Construct ﬂ On opposite sides of ﬂ, construct B? and Eﬁ such that the
sum of their adjacent angles, Z/CBA + ZABD, equals two right angles. We claim

that BC @ BD = CD.

Figure 1.4.16: [1.14]

Suppose instead that B? ® ﬁ = @ and ZEBD > 0. Since @ is a line and
Ezl stands on it, the sum ZCBA + ZABE equals two right angles [1.13]. Also by
hypothesis, the sum /CBA + ZABD equals two right angles. Therefore,

/CBA+/ABE = /CBA+ ZABD
/ABE = /ABD

LABE = /ABE+ /ZEBD
0 = ZEBD

Since /EBD = 0 and ZEBD > 0, we have a contradiction. Hence, B? P ]ﬁ = Cﬁ,
which proves our claim. O

Corollary. 1.14.1. The above result holds for segments, mutatis mutandis.

Exercises.

1. Prove [Cor. 1.14.1].
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Proposition 1.15. OPPOSITE ANGLES ARE EQUAL.
If two lines intersect at a point, then their opposite angles are equal.

Proof. Suppose j@ and @ intersect at £. We claim that ZAEC = ZDEB and
/BEC = Z/DFA.

Figure 1.4.17: [1.15]

Because AL intersects OD at E, the sum /DFEA + ZAEC equals two right angles
[1.13]. Similarly, because OD intersects A at E, the sum ZAEC + /BEC also
equals two right angles. Therefore,

/AEC + /DEA = /AEC + /BEC
/DEA = Z/BEC
Similarly, we can also show that ZAEC = Z/DFE B, which proves our claim. O
An alternate proof:
Proof. Because opposite angles share a common supplement, they are equal. O

Corollary. 1.15.1. [1.15] holds when either one or both of the two straight lines are
replaced either by segments or by rays, mutatis mutandis.
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Exam questions for [1.13]-[1.15].

1.

2
3
4.
5
6
7

What problem is required in Euclid’s proof of [1.13]?

. What theorem? (Ans. No theorem, only the axioms.)

. If two lines intersect, how many pairs of supplemental angles do they make?

What is the relationship between [1.13] and [1.14]?

. What three lines in [1.14] are concurrent?
. State the converse of Proposition [1.15] and prove it.

. What is the subject of [1.13], [1.14], [1.15]? (Ans. Angles at a point.)

Exercises.

1.

Prove [Cor. 1.15.1].
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Proposition 1.16. THE EXTERIOR ANGLE OF A TRIANGLE IS GREATER
THAN EITHER OF THE NON-ADJACENT INTERIOR ANGLES.

If any side of a triangle is extended, the resulting exterior angle is greater than
either of the non-adjacent interior angles.

Proof. Construct AABC. Wlog, we extend side BC to BD. We claim that the exte-
rior angle ZACD is greater than either of the interior non-adjacent angles ZABC,
/BAC.

Figure 1.4.18: [1.16]

Bisect AC at E [1.10] and construct BE [Postulate 1.1]. Extend BE to BF such
that BE = EF [1.3]. Also construct CF.

Consider ACEF and AAEB: CE = EAby construction, BE = EF by construction,
and /CEF = ZAEB [1.15]. By [1.4], ACEF =2 NAEB, and so /ECF = /EAB.
Since LACD = Z/ZECF + ZFCD and ZEAB = Z/BAC,

LACD = LEAB+ LFCD = /BAC + £LFCD

It follows that ZACD > /BAC.

Similarly, if BC is bisected, it can be shown that ZACD > /ABC, which completes
the proof. O

Corollary. 1.16.1. The sum of the three interior angles of the triangle ABCF is
equal to the sum of the three interior angles of the triangle NABC.

Corollary. 1.16.2. The area of ABCF is equal to the area of NABC, which we will
write as ABCF = NABC.
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Corollary. 1.16.3. If sides BA and CF are extended to lines, they cannot meet at
any finite distance. For, if they met at some point X, then the triangle NCAX would
have an exterior angle / BAC equal to the interior angle /ACX.

Exercise.
1. Prove [Cor. 1.16.1].
2. Prove [Cor. 1.16.2].

3. Prove [Cor. 1.16.3] using a proof by contradiction.
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Proposition 1.17. THE SUM OF TWO INTERIOR ANGLES OF A TRIANGLE.
The sum of two interior angles of a triangle is less than the sum of two right angles.

Proof. We claim that the sum of any two interior angles of AABC is less than the
sum of two right angles.

Figure 1.4.19: [1.17]

Wlog, choose ZABC and /BAC and extend side BC to BD. By [1.16], ZACD >
/ABC. To each, add the angle ZACB:

LACD + LACB > /ABC+ ZACB

By [1.13], ZACD+ Z AC B equals two right angles; therefore, ZABC + ZACB is less
than two right angles.

Similarly, we can show that the sums ZABC + Z/BAC and ZACB + Z/BAC are
each less than two right angles, mutatis mutandis. A similar argument follows on

AEFG, which proves our claim. O

Corollary. 1.17.1. Every triangle has at least two acute angles.

Corollary. 1.17.2. If two angles of a triangle are unequal, then the shorter angle is
acute.

Exercises.

1. Prove [1.17] without extending a side. (Attempt after completing Chapter 1.
Hint: use parallel line theorems.)

2. Prove [Cor. 1.17.1].
3. Prove [Cor. 1.17.2].
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Proposition 1.18. ANGLES AND SIDES IN A TRIANGLE 1.

If one side of a triangle is longer than another side, then the angle opposite the
longer side is greater in measure than the angle opposite the shorter side.

Proof. Construct AABC with sides AB and AC where AC > AB. We claim that the
angle opposite AC is greater in measure than the angle opposite AB; or, ZABC >
LACB.

Figure 1.4.20: [1.18]

On AC, find D such that AD = AB [1.3], and construct BD; notice that AABD is
isosceles. By [1.6], ZADB = ZABD. Since ZADB > ZACB by [1.16], ZABD >
/ACB. Since /ABC = /ABD + Z/CBD, we also have that ZABC > /ACB, which

proves our claim. O

Exercises.

1. Prove that if two of the opposite sides of a quadrilateral are respectively the
greatest and the least sides of the quadrilateral, then the angles adjacent to the
least are greater than their opposite angles.

2. In any triangle, prove that the perpendicular from the vertex opposite the side
which is not less than either of the remaining sides falls within the triangle.
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Proposition 1.19. ANGLES AND SIDES IN A TRIANGLE I1I.

In a triangle, if one angle is greater in measure than another, then the side opposite
the greater angle is longer than the side opposite the shorter angle.

Proof. Construct AABC where ZABC > ZACB. We claim that AC > AB.

(@]
s}

Figure 1.4.21: [1.19]

If AC # AB, then either AC = AB or AC < AB.

1. If AC = AB, NACB is isosceles and ZACB = ZABC [Cor. 1.6.1]. This contra-
dicts our hypothesis that ZABC > ZACB, and so AC # AB.

2. If AC < AB, we find that ZACB > ZABC [1.18]. This also contradicts our
hypothesis that ZABC > ZACB, and so AC £ AB.

Since AC' £ AB, we must have that AC > AB. O

Corollary. 1.19.1. In a triangle, longer sides stand opposite the greater interior
angles and shorter interior angles stand opposite the shorter sides.

Exercises.
1. Prove this proposition by a direct demonstration.

2. Prove that a segment from the vertex of an isosceles triangle to any point on the
base is less than either of the equal sides but greater if the base is extended and
the point of intersection falls outside of the triangle.

3. Prove that three equal and distinct segments cannot be constructed from the
same point to the same line. [See the final chapter for a solution.]

4. Consider [1.16], Fig 1.4.18: if AB is the longest side of the AABC, then BF is
the longest side of AFBC and Z/BFC < 3 - ZABC.

5. If AABC is a triangle such that side AB < AC, then a segment AG, constructed
from A to any point G on side BC, is less than AC. [See the final chapter for a

solution.]

6. Prove [Cor. 1.19.1].
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Proposition 1.20. THE SUM OF THE LENGTHS OF ANY PAIR OF SIDES OF
A TRIANGLE.

In a triangle, the sum of the lengths of any pair of sides is greater than the length
of the remaining side.

Proof. Construct AABC; wlog, we claim that AB + AC > BC.

Figure 1.4.22: [3.20]

Extend BA to BD such that AD = AC [1.3], and construct CD.

Consider AACD: by construction AD = AC, and so ZACD = ZADC [1.5]. Since
/BCD = /BCA + /ACD, /BCD > /ACD = /ADC = /BDC. By [1.19], BD >
BC.

Notice that
AD = AC
BA+AD = BA+AC
BD = BA+ AC
and so BA + AC > BC, which proves our claim. O
Alternatively:

Proof. Construct AABC; wlog, we claim that AB + AC > BC. Bisect ZBAC by
constructing AE [1.9]. Then /BEA > /EAC = /EAB. It follows that BA > BE
[1.19]. Similarly, AC > EC. It follows that

BA+ AC > BE+ EC = BC

which proves our claim. O
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Exercises.

1. Let a, b, and c be side-lengths of any triangle. Prove that

la —b] <c< (a+D)

2. Any side of any polygon is less than the sum of the remaining sides.

3. The perimeter of any triangle is greater than the perimeter of any inscribed
triangle and less than the perimeter of any circumscribed triangle. (See also [Def.
4.1])

4. The perimeter of any polygon is greater than that of any inscribed (and less than
that of any circumscribed) polygon of the same number of sides.

5. The perimeter of a quadrilateral is greater than the sum of its diagonals. [See
the final chapter for a solution.]

6. The sum of the lengths of the three medians of a triangle is less than 2 times its
perimeter. [See the final chapter for a solution.]
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Proposition 1.21. TRIANGLES WITHIN TRIANGLES.

In an arbitrary triangle, if two segments are constructed from the vertexes of its
base to a point within the triangle, then:

(1) the sum of the lengths of these inner sides will be less than the sum of the
outer sides (excluding the base);

(2) these inner sides will contain a greater angle than the corresponding sides of
the outer triangle.

Proof. Construct AABC with base BC, and construct D within AABC. Finally,
construct segments BD, CD. We claim that:

1. BA+ AC > BD + DC

2. Z/BDC > LBAC

Figure 1.4.23: [3.21]

Claim 1: BA+ AC > BD + DC.

Extend BD to BE where E is on AC. In ABAFE, we find that BA+ AE > BE [1.20].
It follows that:
BA+ AC = BA+ AFE + EC > BE + EC

Similarly, in ADEC, we find that DE + EC > DC, from which it follows that

BE+ EC=BD+ DE+ EC >BD + DC

From these two inequalities, we obtain that BA + AC > BD + DC, which proves
claim 1.

Claim 2: /BDC > /BAC.

By [1.16], we find that /BDC > /BEC. Similarly, /BEC > /BAE. 1t follows that
/BDC > /BAE = ZBAC, which proves claim 2 and completes the proof. O

An alternative proof of claim 2 that does not extend sides BD and DC:
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Figure 1.4.24: [3.21, alternate proof]

Proof. Construct AABC and ABDC as above. Also construct AD and extending it
to intersect BC at F. Consider ABDA and ACDA. By [1.16], /BDF > /BAF and
/ZFDC > /ZFAC. Then

ZBDC = /BDF + ZFDC > /BAF + /FAC = Z/BAC

which completes the proof. O

Exercises.

1. The sum of the side lengths constructed from any point within a triangle to its
vertices is less than the length of the triangle’s perimeter.

M

Figure 1.4.25: [1.21, #2]

2. If a convex polygonal line ABCD lies within a convex polygonal line AMND
terminating at the same endpoints, prove that the length of ABCD is less than
that of AMND.
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Proposition 1.22. CONSTRUCTION OF TRIANGLES FROM ARBITRARY SEG-
MENTS.

It is possible to construct a triangle whose sides are respectively equal in length to
three arbitrary segments whenever the sum of the lengths of each pair of segments

is greater than the length of the remaining segment.

Proof. Let AR, BS, and CT be arbitrary segments which satisfy our hypothesis.

Figure 1.4.26: [1.22]

Construct DE such that it contains the segments DF = AR, FG = BS, and
GH = CT [1.3]. With F as the center and DF as radius, construct OF [Section
1.2, Postulate 3]. With G as the center and GH as radius, construct OG where K is
one intersection between OF and OG. Construct KF, KG. We claim that AKFG
is the required triangle.

Since F is the center of OF, FK = FD. Since F'D = AR by construction, FK = AR.
Also by construction, FG = BS and KG = CT. Therefore, the three sides of the
triangle AKFG are respectively equal to the three segments AR, BS, and CT,
which proves our claim. O

Exercises.

1. Prove that when the above conditions are fulfilled that the two circles must

intersect.

2. If the sum of two of the segments equals the length of the third, prove that the
segments will not intersect.
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Proposition 1.23. CONSTRUCTING EQUAL ANGLES.
It is possible to construct an angle equal to an arbitrary angle on a given point.

Proof. Construct an arbitrary angle ZDEF from ﬁ and ﬁ as well as point A.
We claim it is possible to construct an angle equal to ZDEF on A.

Figure 1.4.27: [1.23]

Construct DF, and construct the triangle ABAC where AB = ED, AC = EF, and
OB = FD [1.22]. By [1.8], ABAC = ADEF, and so /BAC = /DEF. m

Exercises.

1. Construct a triangle given two sides and the angle between them. [See the final
chapter for a solution.]

2. Construct a triangle given two angles and the side between them.
3. Construct a triangle given two sides and the angle opposite one of them.

4. Construct a triangle given the base, one of the angles at the base, and the sum
or difference of the sides.

5. Given two points, one of which is in a given line, find another point on the given
line such that the sum or difference of its distances from the former points may be
given. Show that two such points may be found in each case.
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Proposition 1.24. ANGLES AND SIDES IN A TRIANGLE I11I.

Suppose we have two triangles such that two sides of the first triangle are respec-
tively equal in length to two sides of the second triangle and that the interior angles
of each of these pairs of sides are unequal. The third side of the triangle with the
larger interior angle will be longer than the third side of the triangle with the

smaller interior angle.

Proof. Construct two triangles AABC and ADEF where AB = DE, AC = DF,
and L/BAC > ZEDF. We claim that BC > EF.
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Figure 1.4.28: [1.24]

Construct point G on BC such that /BAG = ZEDF. Wlog, suppose that AB < AC;
by [1.19, #5] we find that AG < AC. Extend AG to AH where AH = DF = AC
[1.3].

Construct BH and CH. In triangles ABAH and AEDF, we have AB = DE, AH =
DF, and /BAH = Z/EDF by construction. By [1.4], ABAH = AEDF, and so
BH = EF.

Notice that ZACH > /BCH since ZACH = /BCH + ZBCA. Because AH = AC
by construction, AACH is isosceles; therefore, F/ACH = ZAHC [1.5]. It follows
that ZAHC > /BCH. And since /BHC = /BHA + ZAHC, we also have that
/BHC > /BCH.

By [1.19], BC > BH. Since BH = EF by the above, BC > EF, which proves our
claim. O

Alternatively, the concluding part of this proposition may be proved without con-
structing CH.
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Proof. Assume the hypotheses and construct the triangles as in the previous proof;
we claim that this proof does not require C'H.

Notice that
BG+GH > BH [1.20] and
AG+GC > AC [1.20] =
(BG+GH)+ (AG+GC) > BH+ AC =
(BG+ GC)+ (AG+GH) > BH+ AC =
BC+ AH > BH+ AC

Since AH = AC and BH = EF by construction, we have

BC+AC > FEF+ AC
BC > FEF

which proves our claim. O

Another alternative:

Proof. In ANABC, bisect the angle ZCAH by 0. In ACAO and AHAO we have
the sides CA, AO in one triangle respectively equal to the sides AH, AO in the
other where the interior angles are equal. By [1.4], OC = OH. It follows that
BO + OH = BO +0OC = BC. But BO + OH > BH [1.20], and so BC' > BH. Since
BH = EF, BC > EF, which proves our claim. O

Remark. The reader will have noticed by now that the number of explicit references
to definitions, axioms, and theorems has dwindled since the first proposition. This
is normal in mathematical writing even though it is sub-optimal to the reader.
Such practice is normal because to do otherwise would place an impossible burden
on the writer. One reader will wish I had cited the Inequality Properties of Addition
and Subtraction in the above. Another would be insulted if I had halted the proof
to cite something so obvious.?® Yet another reader will ask why the Inequality
Properties of Addition and Subtraction was assumed rather than proven.?” No
writer can satisfy contradictory demands. The best way out for the author is to
discard whatever he or she finds obvious and to leave the detective work to the

reader.

Exercises.
1. Prove this proposition by constructing the angle ZABH to the left of AB.
2. Prove that the angle /BCA > /EFD.

36Exactly what is and is not obvious in mathematics is a can of worms I do not intend to open here.

37The questions regarding the foundations of mathematics are not as simple as one might think.
Whitehead & Russell’s “Principia Mathematica” is so detailed that the authors take well over 300 pages
to prove that 1 + 1 = 2.
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Proposition 1.25. ANGLES AND SIDES IN A TRIANGLE 1V.

Suppose two triangles exist such that two sides of the first triangle are respectively
equal in length to two sides of the second triangle and the third sides are unequal
in length. The triangle with the longer third side will have a larger interior angle
than the triangle with the shorter side.

Proof. Construct AABC and ADEF such that AB = DE, AC = DF, and BC >
EF. We claim that /BAC > /EDF.

A D
B G E
o F

Figure 1.4.29: [1.25]

Suppose instead that /BAC = /EDF; since AB = DFE and AC = DF by construc-
tion, by [1.4] AABC = ADEF, and so BC = EF. This contradicts our hypothesis
that BC > EF; hence, ZBAC # Z/EDF.

Now suppose that /BAC < ZEDF; since AB = DE and AC = DF, by [1.24]
we find that FF > BC. This contradicts our hypothesis that BC' > EF; hence,
/BAC # /EDF.

Since /BAC ¢ /EDF, Z/BAC > ZEDF, which proves our claim. O

Corollary. 1.25.1. Construct NABC and ANDEF where AB = DE and AC = DF.
By [1.24] and [1.25], BC > EF iff /BAC > /EDF.

Exercise.

1. Demonstrate this proposition directly by constructing a segment on BC equal in
length to E'F.
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Proposition 1.26. CONGRUENCE OF TRIANGLES WITH ONE EQUAL SIDE
AND TWO EQUAL INTERIOR ANGLES.

If two triangles exist such that one side of the first triangle is equal in length to
one side of the second triangle and that two interior angles of the first triangle are
respectively equal in measure to two interior angles of the second triangle, then the
triangles are congruent. Most express this proposition as two theorems:

1. “ANGLE-SIDE-ANGLE” CONGRUENCE. If the equal side stands between the
two equal angles, then the triangles are congruent.

2. “ANGLE-ANGLE-SIDE” CONGRUENCE. If the equal side does not stand be-
tween the two equal angles, then the triangles are congruent.

We will prove this proposition in two cases.

Proof. Construct AABC and ADEF such that ZABC = ZDEF and LZACB =
/EFD. We claim that if one side of AABC is equal in length to its respective
side in ADEF, then NAABC =< ADFEF.

Figure 1.4.30: [1.26], case 1

Case 1. ANGLE-SIDE-ANGLE

Suppose that BC = EF. If AB # DF, suppose that AB = GFE where G is a point
on DE such that D # G. Construct GF, and notice that Z/GFD > 0. (If ZGFD = 0,
then D = G, a contradiction.)

Consider AABC and AGEF: AB =GE, BC = EF, and ZABC = ZGEF. By [1.4],
NABC =2 NGEF, and so ZACB = /GFE. Since ZACB = /DFFE by hypothesis,
we find that /GFF = /DFFE and /GFE + /GFD = /DFFE;hence /GFD = 0 and
/ZGFD > 0, a contradiction. Therefore, AB = DE.

Since AB = DE, BC = EF, and ZABC = /DEF, by [1.4] AABC = ADEF.

Case 2. ANGLE-ANGLE-SIDE

Now suppose that AB = DFE.
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G

Figure 1.4.31: [1.26], case 2

If BC # EF, suppose that EF = BG where G is a point on BC such that C' #
G. Construct AG, and consider AABG and ADEF: AB = DE, BG = EF, and
/ABG = /ZDEF. By [1.4], AABG = ADEF, and so ZAGB = /DFE. Since
/ACB = /DFFE by hypothesis, /AGB = /ACB; that is, the exterior angle of
AACG is equal to an interior and non-adjacent angle, contradicting [1.16]. Thus
BC = EF.

Since AB = DE, BC = EF, and ZABC = /DEF, by [1.4] AABC = ADEF.

This proves both claims and completes proof. O

Exercises.

1. Prove that the endpoints of the base of an isosceles triangle are equally distant
from any point on the perpendicular segment from the vertical angle on the base.

2. Prove that if the line which bisects the vertical angle of a triangle also bisects
the base, then the triangle is isosceles.

3. In a given straight line, find a point such that the perpendiculars from it on two
given lines are equal. State also the number of solutions.

4. Prove that if two right triangles have hypotenuses of equal length and an acute
angle of one is equal to an acute angle of the other, then they are congruent.

5. Prove that if two right triangles have equal hypotenuses and that if a side of one
is equal in length to a side of the other, then the triangles they are congruent. (Note:
this proves the special case of Side-Side-Angle congruency for right triangles.)

6. The bisectors of two external angles and the bisector of the third internal angle
are concurrent.

7. Through a given point, construct a straight line such that perpendiculars on it
from two given points on opposite sides are equal to each other.

8. Through a given point, construct a straight line intersecting two given lines
which forms an isosceles triangle with them.
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1.5 Book I, Propositions 27-48

Additional definitions regarding parallel lines:

Parallel Lines

40. If two straight lines in the same plane do not meet at any finite distance, they
are said to be parallel. If rays or segments can be extended into lines which do not
meet at any finite distance, they are also said to be parallel.

41. A parallelogram is a quadrilateral where both pairs of opposite sides are paral-
lel.

42. The segment joining either pair of opposite angles of a quadrilateral is called a
diagonal. See Fig. 1.5.1.

Figure 1.5.1: [Def 1.41] and [Def. 1.42]: AC is a diagonal of the square JABCD,
which is also a parallelogram.

43. The altitude of a triangle is the perpendicular segment from the triangle’s base
to the base’s opposing vertex.

45. A quadrilateral where one pair of opposite sides is parallel is called a trapezoid.
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46. When a straight line intersects two other straight lines, between them are eight
angles (see Fig. 1.5.2).

Angles 1 and 2 are exterior angles; so are angles 7 and 8.

Angles 3 and 4 are called interior angles; so are angles 5 and 6.

Angles 4 and 6 are called alternate angles; so are angles 3 and 5.

Angles 1 and 5 are called corresponding angles; so are angles 2 and 6, 3 and
8,and 4 and 7.

These definitions hold if we replace lines with either rays or segments, mutatis

./

4/ 3

mutandis.

5/ 6
7/8

Figure 1.5.2: [Def. 1.46]
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Proposition 1.27. PARALLEL LINES I.

If a line intersects a pair of lines and their alternate angles are equal, then the pair

of lines are parallel.

Proof. Let EF intersect aB and @ such that F/AEF = Z/EFD. We claim that

4B || ED.

Figure 1.5.3: [1.27]

If AL I Cﬁ, then A5 and CD intersect at point G where the length of BG is finite.?®

It follows that AEGF is a triangle where ZAEF is an exterior angle and /EFG a
non-adjacent interior angle. By [1.16], ZAEF > /EFD; but ZAEF = ZEFD by
hypothesis, a contradiction. Therefore, 1B I &D. O

38«“The length of BG is finite” can also be expressed as “BG < oo”.
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Proposition 1.28. PARALLEL LINES II & III.

Suppose a line intersects a pair of lines.

1) PARALLEL LINES II. If the intersecting line makes the exterior angle equal to
its corresponding interior angle, then the pair of lines is parallel.

2) PARALLEL LINES III. If the intersecting line makes the sum of two interior
angles on the same side equal to two right angles, then the pair of lines is parallel.

Proof. Suppose ﬁ intersects fﬁ and @

Figure 1.5.4: [1.28] and [1.29]

Claim 1: If /ZEGB = ZGH D, we claim that AB I Cﬁ

Since /@, ﬁ intersect at G, ZAGH = /FEGB [1.15]. By hypothesis, Z/AGH =
/GHD. Since these are alternate angles, AB I oD by [1.27], which proves our

claim.

Claim 2: If /ZBGH + ZGHD equals two right angles, we claim that AB I &D.
Since ZAGH and Z/BGH are adjacent angles, by [1.13] the sum LZAGH + ZBGH
equals two right angles. Since /BGH = Z/BGH,

/BGH + /GHD = /BGH+ ZAGH
LGHD = ZAGH

Since ZGHD and LZAGH are alternate angles, j@ I Cﬁ by [1.27], which proves
our claim and completes the proof. O
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Proposition 1.29. PARALLEL LINES IV.

If a line intersects two parallel lines, then:
(1) corresponding alternate angles are equal,
(2) exterior angles are equal to corresponding interior angles,

(3) the sum of interior angles on the same side equals two right angles.

Proof. If EF intersects AL and OD where A I Cﬁ, we claim that:
(1) ZAGH = Z/GHD (/BGH = Z/GHC, mutatis mutandis);
(2) ZEGB = Z/GHD (LEGA = ZGHC, mutatis mutandis);

(3) ZGHD + LHGB equals two right angles (ZAGH + ZGHC also equals two
right angles, mutatis mutandis)

Claim 1: if ZAGH # /GHD, one angle must be greater than the other. Wlog,
suppose that ZAGH > Z/GHD. Then we obtain the inequality

LAGH + /BGH > Z/GHD + /BGH

where ZAGH + ZBGH is equal to the sum of two right angles by [1.13]. It follows
that ZGHD + ZBGH is less than two right angles. By the proof of [1.27], /@ and
&D meet at some finite distance; this contradicts our hypothesis that 4B I &D.
Hence, /AGH = /GHD, proving claim 1.

Claim 2: since /EGB = ZAGH by [1.15]and ZAGH = /GHD by claim 1, /EGB =
/GHD, proving claim 2.

Claim 3. since ZAGH = /GHD by claim 1,

LAGH + /HGB = Z/GHD + Z/HGB

Since /AGH + Z/HGB equals the sum of two right angles, /GHD + /HGB equals
the sum of two right angles. This proves claim 3 and completes the proof. O
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Corollary. 1.29.1. EQUIVALENT STATEMENTS REGARDING PARALLEL LINES.
If a line intersects a pair of lines, then the pair of lines are parallel if and only if any

of these three properties hold:
1) corresponding alternate angles are equal;
2) exterior angles equal their corresponding interior angles;

3) the sum of the interior angles on the same side are equal to two right angles.

Corollary. 1.29.2. We may replace the lines in [1.29, Cor. 1] with segments of
appropriate length or rays, mutatis mutandis.

Figure 1.5.5: [1.28] and [1.29]

Exercises.

Remark. We may use [1.31] in the proofs of these exercises since the proof of [1.31]
does not require [1.29].

1. Demonstrate both parts of [1.28] without using [1.27].

2. Construct AB containing the point C' and EF containing the point D such that
B I EF. Construct OH and OJ such that CJ bisects ZACD and CH bisects
/BCD. Prove that DH = D.J. [See the final chapter for a solution.]

4. If any other secant is constructed through the midpoint O of any line terminated
by two parallel lines, the intercept on this line made by the parallels is bisected at
0.

5. Two lines passing through a point which is equidistant from two parallel lines
intercept equal segments on the parallels. [See the final chapter for a solution.]

6. Construct the perimeter of the parallelogram formed by constructing parallels to
two sides of an equilateral triangle from any point in the third side. This perimeter
is equal to 2x the side.
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7. If the opposite sides of a hexagon are equal and parallel, prove that its diagonals
are concurrent.

8. If two intersecting segments are respectively parallel to two others, the angle
between the former is equal to the angle between the latter. (Hint: if fﬁ, % are
respectively parallel to ﬁ, DF and if jﬁ, DE intersect at (G, then the angles at
points A, D are each equal to the angle at G'[1.29].)

Proposition 1.30. TRANSITIVITY OF PARALLEL LINES.

Lines parallel to the same line are parallel to each other.

Proof. Construct lines ﬁ, Cﬁ, EE such that A5 I EF and OD I EF. We claim
that A8 || OD.

A G B
E H F
C K D

Figure 1.5.6: [1.30]

Construct any secant line GHE. Since AB I ﬁ, the angle ZAGH = ZGHF [Cor.
1.29.1]. Since &D I ﬁ‘, the angle /GHF = ZHKD [Cor. 1.29.1]. It follows
that ZAGH = Z/GHF = Z/HKD. Since ZAGH = ZAGK and /ZHKD = /GKD,
/AGK = /GKD. By [1.27], 4B || CD. O

Corollary. 1.30.1. j@, @, ﬁ, and ﬁ( in [1.30] may be replaced by segments of
appropriate length or rays, mutatis mutandis.
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Proposition 1.31. CONSTRUCTION OF A PARALLEL LINE.

We wish to construct a line which is parallel to a given line and passing through a
given point.

Proof. Given the line aB and a point C, we wish to construct the line @ such that

CF | 4B.

(@]
m

[ Y}

lw)
o]

Figure 1.5.7: [1.31]

Using [1.23], construct D on f@ and E not on @ such that, after constructing @,
Z/ADC = /DCE. By [Cor. 1.29.11, CE || 4B. O

Corollary. 1.31.1. j@ and @ in [1.31] may be replaced by segments of appropriate
length or rays, mutatis mutandis.

Exercises.

1. Given the altitude of a triangle and the base angles, construct the triangle. [See
the final chapter for a solution.]

2. From a given point, construct a segment to a given segment such that the resul-
tant angle is equal in measure to a given angle. Show that there are two solutions.

3. Prove the following construction for trisecting a given line f@: on fﬁ, construct
an equilateral AABC. Bisect the angles at points A and B by the lines /ﬁ and
BD. Through D, construct parallels to jﬁ and % which intersect aB at F and F.
Claim: F and F are the points of trisection of f@

4. Inscribe a square in a given equilateral triangle such that its base stands on a
given side of the triangle.

5. Through two given points on two parallel lines, construct two segments forming
a rhombus with given parallels.

6. Between two lines given in position, place a segment of given length which is
parallel to a given line. Show that there are two solutions.
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Proposition 1.32. EXTERIOR ANGLES AND SUMS OF ANGLES IN A TRIAN-
GLE.

If the side of a triangle is extended,
(1) the exterior angle equals the sum of the its interior and opposite angles;

(2) the sum of the three interior angles equals two right angles.

Proof. Construct AABC, and wlog extend side AB to segment AD.

> ¢
os)
U0

Figure 1.5.8: [1.32]

Claim 1: Z/CBD = /BAC + LACB.

Construct BE || AC [1.31]. Since BC intersects BE and AC, we find that /EBC =
ZACB [1.29]. Also, since AB intersects BE and AC, we find that /DBE = /BAC
[1.29]. Since ZCBD = Z/EBC + Z/DBE,

/CBD = /ZACB + Z/BAC
Claim 2: /BAC + ZACB + ZABC = two right angles.
Adding ZABC to each side of the equality in claim 1, we obtain

/ABC +/CBD = /ABC+ ZACB + Z/BAC
By [1.13], ZABC + ZCBD equals two right angles, and so
/BAC + Z/ACB + ZABC
equals two right angles. This completes the proof. O

Corollary. 1.32.1. If a right triangle is isosceles, then each base angle equals half
of a right angle.

Corollary. 1.32.2. If two triangles have two angles in one respectively equal to two
angles in the other, then their remaining pair of angles is also equal.
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Corollary. 1.32.3. Since a quadrilateral can be divided into two triangles, the sum

of its angles equals four right angles.

Corollary. 1.32.4. If a figure of n sides is divided into triangles by drawing diag-
onals from any one of its angles, we will obtain (n — 2) triangles. Hence, the sum of
its angles equals 2(n — 2) right angles.

Corollary. 1.32.5. If all the sides of any convex polygon are extended, then the sum
of the external angles equals to four right angles.

Corollary. 1.32.6. Each angle of an equilateral triangle equals two-thirds of a right
angle.

Corollary. 1.32.7. If one angle of a triangle equals the sum of the other two, then it
is a right angle.

Corollary. 1.32.8. Every right triangle can be divided into two isosceles triangles
by a line constructed from the right angle to the hypotenuse.

Exercises.
1. Trisect a right angle.

2. If the sides of a polygon of n sides are extended, then the sum of the angles
between each alternate pair is equal to 2(n — 4) right angles.

3. If the line which bisects an external vertical angle of a triangle is parallel to
the base of the triangle, then the triangle is isosceles. [See the final chapter for a

solution.]

4. If two right triangles AABC, AABD are on the same hypotenuse AB and if the
vertices C and D are joined, then the pair of angles standing opposite any side of
the resulting quadrilateral are equal.

5. Prove that the three altitudes of a triangle are concurrent. Note: We are proving
the existence of the orthocenter® of a triangle: the point where the three alti-
tudes intersect, and one of a triangle’s points of concurrency?’. [See the final
chapter for a solution.]

6. The bisectors of the adjacent angles of a parallelogram stand at right angles.
[See the final chapter for a solution.]

7. The bisectors of the external angles of a quadrilateral form a circumscribed
quadrilateral, the sum of whose opposite angles equals two right angles.

39http://mathworld.wolfram.com/Orthocenter.html
“Onttp://www.mathopenref . com/concurrentpoints . html


http://mathworld.wolfram.com/Orthocenter.html
http://www.mathopenref.com/concurrentpoints.html

CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 83

8. If the three sides of one triangle are respectively perpendicular to those of an-
other triangle, the triangles are equiangular. (This problem may be delayed until
the end of chapter 1.)

9. Construct a right triangle being given the hypotenuse and the sum or difference
of the sides.

10. The angles made with the base of an isosceles triangle by altitudes from its
endpoints on the equal sides are each equal to half the vertical angle.

11. The angle included between the internal bisector of one base angle of a triangle
and the external bisector of the other base angle is equal to half the vertical angle.

12. In the construction of [1.18], prove that the angle ZDBC is equal to half the
difference of the base angles.

13. If A, B, C denote the angles of a triangle, prove that $(A + B), 3(B + C),
and %(A + C) are the angles of a triangle formed by any side, the bisectors of the
external angles between that side, and the other extended sides.

14. Prove [Cor. 1.32.1].
15. Prove [Cor. 1.32.2].
16. Prove [Cor. 1.32.3].
17. Prove [Cor. 1.32.4].
18. Prove [Cor. 1.32.5].
19. Prove [Cor. 1.32.6].
20. Prove [Cor. 1.32.7].
21. Prove [Cor. 1.32.8].
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Proposition 1.33. PARALLEL SEGMENTS.

Segments which join adjacent endpoints of two equal, parallel segments are them-
selves parallel and equal in length.

Proof. Suppose that AB || CD and AB = CD. Construct JABDC. We claim that
AC = BD and AC || BD.

Figure 1.5.9: [1.33] and [1.34]

Construct BC. Since AB | CD by hypothesis and BC intersects them, ZABC =
/DCB [Cor. 1.29.1].

Consider AABC and ADCB: AB = DC, the triangles share side BC, and ZABC =
/ZDCB. By [1.4], AABC = ADCB.

It follows that AC' = BD and ZACB = Z/CBD. By [Cor. 1.29.1], ZACB = Z/CBD
implies that AC || BD, which completes the proof. O

Corollary. 1.33.1. [1.33] holds for straight lines and rays, mutatis mutandis.

Corollary. 1.33.2. Figure [JABDC is a parallelogram [Def. 1.39].

Exercises.

1. Prove that if two segments AB, BC are respectively equal and parallel to two
other segments DE, EF, then the segment AC joining the endpoints of the former
pair is equal in length to the segment DF joining the endpoints of the latter pair.
[See the final chapter for a solution.]
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Proposition 1.34. OPPOSITE SIDES AND OPPOSITE ANGLES OF PARAL-
LELOGRAMS.

Opposite sides and opposite angles of a parallelogram are equal to one another and
either diagonal bisects the parallelogram.

Proof. Construct [JABCD. We claim that:
(1)AB = CD and AC = BD;
(2)/CAB = /CDB;
(3)£ACD = LABD;
(4) either diagonal (BC or AD) bisects the parallelogram.

Construct BC, and consider AABC and ADBC: since AB || C'D by construction
and BC intersects them, ZABC = /DCB and ZACB = Z/CBD [1.29]. Also, AABC
and ADBC share side BC. By [1.26], AABC = ADCB: it follows that AB = CD
and AC = BD (claim 1) and ZCAB = Z/CDB (claim 2).

Now ZACD = ZACB + /DCB and ZABD = /CBD + /ABC. Since ZACB =
/CBD and /DCB = ZABC by [Cor. 1.29.1], we obtain

/ACD = ZACB+ ZDCB
= ZCBD+ £ZABC
LABD

(claim 3).

Since JABCD = NABC ® ADEF and NABC = ANDCB, NABC = ADBC. It
follows that BC bisects JABCD. The remaining case follows mutatis mutandis if
we construct AD instead of BC (claim 4). O

Corollary. 1.34.1. IABDC =2 - NACB =2- ABCD

Corollary. 1.34.2. If one angle of a parallelogram is a right angle, each of its angles

are right angles.

Corollary. 1.34.3. If two adjacent sides of a parallelogram are equal in length,
then it is a rhombus.

Corollary. 1.34.4. If both pairs of opposite sides of a quadrilateral are equal in
length, it is a parallelogram.

Corollary. 1.34.5. If both pairs of opposite angles of a quadrilateral are equal, it is
a parallelogram.
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Corollary. 1.34.6. If the diagonals of a quadrilateral bisect each other, it is a par-

allelogram.

Corollary. 1.34.7. If both diagonals of a quadrilateral bisect the quadrilateral, it

is a parallelogram.

Corollary. 1.34.8. If the adjacent sides of a parallelogram are equal, its diagonals
bisect its angles.

Corollary. 1.34.9. If the adjacent sides of a parallelogram are equal, its diagonals
intersect at right angles.

Corollary. 1.34.10. In a right parallelogram, the diagonals are equal in length.

Corollary. 1.34.11. If the diagonals of a parallelogram are perpendicular to each

other, the parallelogram is a rhombus.

Corollary. 1.34.12. If a diagonal of a parallelogram bisects the angles whose ver-

tices it joins, the parallelogram is a rhombus.

Exercises.

1. Prove that the diagonals of a parallelogram bisect each other. [See the final
chapter for a solution.]

2. If the diagonals of a parallelogram are equal, then each of its angles are right
angles. [See the final chapter for a solution.]

3. The segments joining the adjacent endpoints of two unequal parallel segments
will meet when extended on the side of the shorter parallel.

4. If two opposite sides of a quadrilateral are parallel but unequal in length and
the other pair are equal but not parallel, then its opposite angles are supplemental.

5. Construct a triangle after being given the midpoints of its three sides.
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6. Prove [Cor. 1.34.1].

7. Prove [Cor. 1.34.2].

8. Prove [Cor. 1.34.3].

9. Prove [Cor. 1.34.4].

10.
11.
12.
13.
14.
15.
16.
17.

Prove [Cor. 1.34.5].
Prove [Cor. 1.34.6].
Prove [Cor. 1.34.7].
Prove [Cor. 1.34.8].
Prove [Cor. 1.34.9].
Prove [Cor. 1.34.10].
Prove [Cor. 1.34.11].
Prove [Cor. 1.34.12].
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Proposition 1.35. AREAS OF PARALLELOGRAMS 1.
Parallelograms on the same base and between the same parallels are equal in area.

Proof. We shall prove three cases.

Figure 1.5.10: [1.35], case 1

Case 1: Construct JABCD and HFDBC on base BC and between parallels AF
and BC where DABCD and CF DBC share the base and a vertex at D. We claim
that DABCD = HFDBC.

By [Cor. 1.34.1], HADCB =2 - ABCD = HFDBC, which proves case 1.

A E D F

B C

Figure 1.5.11: [1.35], case 2

Case 2: Construct JABCD and DEFCB on base BC and between parallels AF and
BC where JABCD and EFC B share the base and ED. We claim that DABCD =
HOEFCB.

Because [JABCD is a parallelogram, AD = BC [1.34]; because [1BCFEF is a paral-
lelogram, EF = BC, and so AD = EF. Notice that

AD—-FED = EF-ED
AE = DF

Consider ABAFE and ACDF: AE = DF, BA = CD [1.34], and /BAFE = ZCDF by
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[1.29, Cor. 1]. By [1.4], ABAE = ACDF. Notice that

AFCB = [HEFCB+ ABAE
= UHABCD + ACDF

Since ABAE = ACDF,HABCD = LEFCB, proving case 2.

A D E F

B C

Figure 1.5.12: [1.35], case 3

Case 3: Construct JABCD and DEFCB on base BC and between parallels AF
and BC where [JABCD and CJEFCB share the base and point G where G is not a

vertex. We claim that ABCD = HOEFCB.

Notice that AD = BC = EF. Since AD+DE = AE, DE+FEF = DF,and AD = EF,

we have AF = DF.

Consider ABAFE and ACDF: BA=CD, AE = DF,and /BAE = ZCDF by [1.29].

By [1.4], ABAE = ACDF, from which it follows that:

ABAE = ACDF
ABAE - ADEG = ACDF - ADEG

ADGB = CGEF
ADGB + ABGC = CGEF + ABGC
HABCD = UHEFCB

This proves case 3 and completes the proof.
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Proposition 1.36. AREAS OF PARALLELOGRAMS I1.
Parallelograms on equal bases and on the same parallels are equal in area.

Proof. Construct DADCB and EHGF between AH I BC on bases BC and FG
such that BC = FG. We claim that JADCB = OFHGF.

A

Figure 1.5.13: [1.36]

Construct BE and CH. Since DEHGF is a parallelogram, FG = EH [1.34]. Since
BC = FG by hypothesis, BC = EH. Given this equality and BC || EH, by [1.33]
BE = CH and BE || CH. It follows that IEHCB is a parallelogram.

By [1.35], DFEHCB = LOEHGF and LDFHCB = [HADCB. Therefore, JADCB =
LIEHGF, which completes the proof. O
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Proposition 1.37. TRIANGLES OF EQUAL AREA I

Triangles which stand on the same base and in the same parallels are equal in
area.

Proof. Construct AABC and ADBC on base BC such that each triangle stands
between parallels fﬁ and % We claim that AABC = ADBC.

E A D £

w— — = = — o

Figure 1.5.14: [1.37]

Construct BE I AC and CF I BD. Tt follows that CIAEBC and EIDBCF are
parallelograms. By [1.35], IAEBC = LUDBCF.

Notice that 1 - AABC = LAEBC because the diagonal AB bisects [JAEBC [1.34,
#1]. Similarly, 1 - ADBC = [IDBCF, and so

%-AABC = %-ADBC
ANABC = ADBC

Exercises.

1. If two triangles of equal area stand on the same base but on opposite sides of the
base, the segment connecting their vertices is bisected by the base or its extension.
[See the final chapter for a solution.]

2. Construct a triangle equal in area to a given quadrilateral figure.
3. Construct a triangle equal in area to a given polygon.

4. Construct a rhombus equal in area to a given parallelogram and having a given
side of the parallelogram as the base.
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Proposition 1.38. TRIANGLES OF EQUAL AREA II.
Triangles which stand on equal bases and in the same parallels are equal in area.

Proof. Construct AABC and ADEF between BE and AD such that BEF I D and
BC = EF. We claim that AABC = ADEF.

Figure 1.5.15: [1.38]

By [1.31], construct BG where G is a point on AD such that BG | AC; similarly,
construct FH where H is a point on AD such that FH | DE. It follows that IGACB
and [DDH FE are parallelograms. Since BC = EF, by [1.36] IGACB =HDHFE.

Since AB bisects IGACB and DF bisects DDHFE by [1.34], AABC = ADEF,
completing the proof. O

Exercises.

1. Every median of a triangle bisects the triangle. [See the final chapter for a
solution.]

2. If two triangles have two sides of one respectively equal to two sides of the other
and where the interior angles are supplemental, then their areas are equal.

3. If the base of a triangle is divided into any number of equal segments, then
segments constructed from the vertex to the points of division divide the whole
triangle into as many equal parts.

4. The diagonal of a parallelogram and segments from any point on the diagonal
to the vertices through which the diagonal does not pass divide the parallelogram
into four triangles which are equal (in a two-by-two fashion).

5. One diagonal of a quadrilateral bisects the other if and only if the diagonal also
bisects the quadrilateral. [See the final chapter for a solution.]

6. If AABC and AABD each stand on the base AB and between the same parallels,
and if a parallel to AB meets the sides AC and BC at the points E' and F' and meets
the sides AD and BD at the points G, H, then EF = GH.
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7. If instead of triangles on the same base we have triangles on equal bases and
between the same parallels, the intercepts made by the sides of the triangles on
any parallel to the bases are equal in length.

8. If the midpoints of any two sides of a triangle are joined, the triangle formed
with the two half sides has an area equal to one-fourth of the whole.

9. The triangle whose vertices are the midpoints of two sides and any point on the
remaining side has an area equal to one-fourth the area of that triangle.

10. Bisect a given triangle by a segment constructed from a given point in one of
the sides.

11. Trisect a given triangle by three segments constructed from a given point
within it.

12. Prove that any segment through the intersection of the diagonals of a parallel-
ogram bisects the parallelogram.

13. The triangle formed by joining the midpoint of one of the non-parallel sides of
a trapezoid to the endpoints of the opposite side is equal in area to half the area of
the trapezoid. (Recall that a trapezoid is a quadrilaterals with two parallel sides
and two non-parallel sides.)
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Proposition 1.39. TRIANGLES OF EQUAL AREA III.

Triangles which are equal in area and stand on the same base and on the same side
of the base also stand between the same parallels.

Proof. Suppose that ABAC and ABDC stand on the same base, BC, on the same
side of BC, and that ABAC = ABDC'; we claim ABAC and ABDC stand between
7D | BC.

Figure 1.5.16: [1.39]

Construct AD. Clearly, the triangles stand between AD and BC. We need only
prove that AD || BC.

Suppose AD | BC and that AE | BC where E is a point on BD other than D;
construct EC. Notice that AEDC > 0 if AEDC = 0, then FE = D, a contradiction).

Since the triangles ABEC, ABAC stand on the same base BC and between the
same parallels (BC and AE), we find that ABEC = ABAC [1.37]. By hypothe-
sis, ABAC = ABDC. Therefore, ABDC = ABEC [Axiom 1.1]. But ABDC =
ABEC + AEDC, and so AEDC = 0 and AEDC > 0. A similar contradiction
results if we place E anywhere other than on D.

It follows that AD || BC, which completes the proof. O
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Proposition 1.40. TRIANGLES OF EQUAL AREA IV.

Triangles which are equal in area and stand on equal bases on the same side of
their bases stand between the same parallels.

Proof. Construct AABC and ADEF on BF such that BC = EF,CE > 0, NAABC =
ADEF, and where each triangle stands on the same side of its base. Construct AD.
Clearly, AABC and ADEF stand between AD and BF; we claim that AD || BF.

Figure 1.5.17: [1.40]

If AD || BF, construct AG (where G is a point on DE) such that AG || BF. Also
construct F'G. Notice that ADFG > 0.

Consider the triangles AGEF and AABC: they stand on equal bases (BC, EF)
and between the same parallels (BF, AG). By [1.38], AGEF = ANABC.

But ADEF = AABC by hypothesis, and so ADEF = AGEF. Since ADEF =
AGEF + ADGF, ADGF = 0 and ADFG > 0. A similar contradiction results if we
place G anywhere other than on D.

It follows that AD || BF, which completes the proof. O

Exercises.

1. Prove that triangles with equal bases and altitudes are equal in area. [See the
final chapter for a solution.]

2. The segment joining the midpoints of two sides of a triangle is parallel to the
base, and the medians from the endpoints of the base to these midpoints will each
bisect the original triangle. Hence, the two triangles whose base is the third side
and whose vertices are the points of bisection are equal in area. [See the final
chapter for a solution.]

3. The parallel to any side of a triangle through the midpoint of another bisects the
third.

4. The segments which connect the midpoints of the sides of a triangle divide the
triangle into four congruent triangles. [See the final chapter for a solution.]
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5. The segment which connects the midpoints of two sides of a triangle is equal in
length to half the third side.

6. The midpoints of the four sides of a convex quadrilateral, taken in order, are the
vertices of a parallelogram whose area is equal to half the area of the quadrilateral.

7. The sum of the two parallel sides of a trapezoid is double the length of the
segment joining the midpoints of the two remaining sides.

8. The parallelogram formed by the segment which connects the midpoints of two
sides of a triangle and any pair of parallels constructed through the same points to
meet the third side is equal in area to half the area of the triangle.

9. The segment joining the midpoints of opposite sides of a quadrilateral and the
segment joining the midpoints of its diagonals are concurrent.
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Proposition 1.41. PARALLELOGRAMS AND TRIANGLES.

If a parallelogram and a triangle stand on the same base and between the same
parallels, then the parallelogram is double the area of the triangle.

Proof. Construct JABCD and AEBC on base BC and between AE || BC. We
claim that LIABCD =2 - AEBC.

Figure 1.5.18: [1.41]

Construct AC and DE. By [1.34], JABCD = 2-AABC; by [1.37], AABC = AEBC.
Therefore, HABCD = 2 - AEBC, which completes the proof. O

Corollary. 1.41.1. If a triangle and a parallelogram have equal altitudes and if
the base of the triangle is double of the base of the parallelogram, then their areas

are equal.

Corollary. 1.41.2. Suppose we have two triangles whose bases are two opposite
sides of a parallelogram and which have any point between these sides as a common
vertex. Then the sum of the areas of these triangles equals half the area of the
parallelogram.
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Proposition 1.42. CONSTRUCTION OF PARALLELOGRAMS 1.

Given an arbitrary triangle and an arbitrary acute angle, it is possible to construct
a parallelogram equal in area to the triangle which contains the given angle.

Proof. Construct AABC and ZRDS. We wish to construct LIFGBE such that
CLOFGBE = NAABC and where [JFGBE contains an angle equal in measure to
ZRDS.

E B

Figure 1.5.19: [1.42]

Bisect AB at E, and construct EC. Construct /BEF = /RDS [1.23], CG || AB,
and BG || EF [1.31].

Because AE = EB by construction, AAEC = AEBC by [1.38]. Therefore, AABC =
2-AEBC. By [1.41], IFGBE = 2 - AEBC. Therefore, 1FFGBE = NABC.

Since [JFGBE contains Z/BEF where ZBEF = ZRDS, the proofis complete. O
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Proposition 1.43. COMPLEMENTS OF PARALLELOGRAMS.

Parallel segments through any point in one of the diagonals of a parallelogram di-
vides the parallelogram into four smaller parallelograms: the two through which
the diagonal does not pass are called the complements of the other two parallelo-
grams, and these complements are equal in area.

Proof. Construct JABCD and diagonal AC. Let K be any point on AC except A
or C. Construct GH and EF through K such that GH | CD and EF || AD. This
divides LIABCD into four smaller parallelograms where LIEBGK, LIHK FD are
the complements of HAEK H, IKGCF. We claim that IEFBGK = HKFD.

Figure 1.5.20: [1.43]

Because AC bisects the parallelograms JABCD, HAEK H, and K GCF by [1.34],
we have AADC = ANABC, NANAHK = NAEK, and AKFC = AKGC. Therefore,

LEBGK = AABC—-AAFK — AKGC
= AADC - AAHK — AKFC
LUHKFD

which completes the proof. O

Corollary. 1.43.1. If through some point K within parallelogram [DABCD we
have constructed parallel segments to its sides in order to make the parallelograms
OHDFK, OEKGB equal in area, then K is a point on the diagonal AC.

Given [1.43], we find that UHDFK, IEKGB equal in area if and only if K is a
point on the diagonal AC.

Corollary. 1.43.2. JAHGB =HADFFE and OEFCB =[HHDCG.

Exercises.
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1. Prove [1.43, Cor. 1].

2. Prove [1.43, Cor. 2].

Proposition 1.44. CONSTRUCTION OF PARALLELOGRAMS I1.

Given an arbitrary triangle, an arbitrary angle (acute, right, or obtuse), and an
arbitrary segment, we can construct a parallelogram equal in area to the triangle
which contains the given angle and has a side length equal to the given segment.

Proof. Construct ZRST, ANPQ, and AB. We wish to construct JBALM on AB
such that 1IBALM = AN PQ and L1IBALM contains an angle equal to ZRST.

R F E K
®
N
B M
« K
L
P Q H A

Figure 1.5.21: [1.44]

Construct the parallelogram [1BEFG where LIBEFG = ANPQ [1.42], /GBE =
/RST,and AB ©® BE = AE. Also construct segment AH || BG [1.31]. Extend F'G
to FH, and construct HB.

Since AH || BG and BG || FE by construction, AH || F'E by [1.30]. Notice that H F'
intersects AH and FE; therefore, /AHF + /HFE = two right angles. It follows
that /BHG + /GFE < two right angles. By [1.3.3, Axiom 4], if we extend H B and
FE, they will intersect at some point K. Through K, construct KL | AB [1.31],
extend AH to intersect KL at L, and extend GB to intersect KX L at M. We claim
that LIBALM fulfills the required conditions.

Clearly, DBALM is constructed on AB. By [1.43], DBM LA = OFEBG, and DFEBG =
AN PQ by construction; therefore IBALM = ANPQ. By [1.15], /ZABM = /EBG,
and ZEBG = ZRST by construction; therefore, ZABM = ZRST. This completes
the proof. O
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Proposition 1.45. CONSTRUCTION OF PARALLELOGRAMS I11.

Given an arbitrary angle (acute, right, or obtuse) and an arbitrary polygon, we can
construct a parallelogram equal in area to the polygon which contains an angle
equal to the given angle.

Proof. Construct polygon ABCD and ZLMN. We wish to construct LIFIKE such
that it contains an angle equal to /LM N and LFIKE = ABCD.

B C L F G |

M N E H K

Figure 1.5.22: [1.45]

By [1.42]. we may construct BD and LJFGHE such that DOFGHE = AABD where
/FEH = ZLMN.

On GH, construct IGIK H such that IGIKH = ABCD where /GHK = /LMN
[1.44]. (We may continue to this algorithm for any additional triangles that remain
in ABCD. This allows us to claim that the proof which follows applies to any n—gon
where n < 00.) Upon completing this algorithm, we claim that LFEK fulfills the

required conditions.

Because /(GHK = Z/LMN = /FFH by construction, /GHK = /FEH. From this,
we obtain
/GHK + /GHE = /FEH+ /GHE

Since HG | EF and EH intersects them, the sum /FEH + /GHE = two right
angles [1.29]. Hence, /GHK + /GHE = two right angles, and so EH & HK = EK
[1.14, Cor. 1]. Since EH || FG by construction, we now have EK | FG.

Similarly to the above, because GH intersects the parallels FG and FK, /FGH =
/GHK [Cor. 1.29.1], and so

/FGH + /HGI = /GHK+ /ZHGI

Since GI | HK and GH intersects them, the sum /GHK + /HGI = two right
angles [1.29]. Hence, /FGH + /HGI = two right angles, and F'G & GI = F1I.

Because DFFEHG and DGHKI are parallelograms, EF and K1 are each parallel
to GH; by [1.30], EF || KI. Since /GHK = /FGH by the above, by [Cor. 1.29.1],
EK || FI. Therefore, IFIK E is a parallelogram.
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Since /ZFEK = /LM N, [FIKEFE contains an angle equal to a ZLMN.

T

M N E H K

Figure 1.5.23: [1.45]

Because IFGHE = ANABD by construction and LIGIKH = ABCD,

ABCD = AABD ® ABCD
= HFGHE®ULUGIKH
= UHFIKFE
which completes the proof. O

Exercises.
1. Construct a rectangle equal to the sum of 2, 3, ..., » number of polygons.

2. Construct a rectangle equal in area to the difference in areas of two given figures.
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Proposition 1.46. CONSTRUCTION OF A SQUARE I.
Given an arbitrary segment, we may construct a square on that segment.

Proof. Construct AB; we wish to construct a square on AB.

Figure 1.5.24: [1.46]

Construct AD | AB [1.11] where AD = AB [1.3]. Through D, construct CD || AB
[1.831] where AB = CD, and through B construct BC || AD. We claim that HABCD
is the required square.

By construction,

AD =AB =CD

Because LJABCD is a parallelogram, AD = BC [1.34]; hence, all four sides of
LJABCD are equal. It follows that [JABCD is a rhombus and ZDAB is a right
angle. By [Def. 1.30], L1IABCD is a square. O

Remark. [1.46] is a lemma to [1.47]. [2.14] offers a second method to construct a

square.

Exercises.

1. Prove that two squares have equal side-lengths if and only if the squares are
equal in area. [See the final chapter for a solution.]

2. Prove that the parallelograms about the diagonal of a square are squares.

3. If on the four sides of a square (or on the sides which are extended) points are
taken which are equidistant from the four angles, then they will be the vertices of
another square (and similarly for a regular pentagon, hexagon, etc.).

4. Divide a given square into five equal parts: specifically, four right triangles and

a square.

5. Prove that the formula for the area of a rectangle is A = bh.
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Proposition 1.47. THE PYTHAGOREAN THEOREM (aka. THE GOUGU THE-
OREM).

In a right triangle, the square on the side opposite the right angle (the hypotenuse)
is equal in area to the sum of the areas of the squares on the remaining sides.

Proof. Construct right triangle AABC where AB is the hypotenuse. We claim that

AB? = AC? + BC?

Figure 1.5.25: [1.47]

By [1.46], we may construct squares on sides AB, BC, and CA of AABC as in
Fig. 1.5.25. Construct CL | AG where L is a point on GF. Also construct CG
and BK. Because both ZACB and ZACH are right angles by construction, the
sum ZACB + /ACH equals two right angles. Therefore BC & CH = BH [1.14].
Similarly, AC & CD = AD.

Because Z/BAG and ZC AK are each angles within a square, they are right angles.
Hence,

ZBAG = ZCAK
LBAG+ ZBAC = ZCAK + £ZBAC
LCAG = LKAB

Since LIBAGF and [JCHK A are squares, BA = AG and CA = AK. Consider
ACAG and AKAB: since CA = AK, BA = AG, and LZCAG = ZKAB, by [1.4]
NCAG =2 AKAB.
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By [1.41], HAGLO = 2 - AC AG because they both stand on AG and stand between
the parallels AG and CL. Similarly, OCHKA = 2 - AK AB because they stand on
AK and between AK and BH. Since ACAG = AKAB, HAGLO = OKACH.

Similarly, it can be shown that DOLFB = L1DCBE. Hence,

AB? = [HAGFB
= [HAGLO @OLFB
= [HKACH +&ODCBE
= AC?+ BC?

which proves our claim. O

Remark. [1.47] is a special case of [6.31].

Remark. [Cor. 10.28.1] describes a ratio which provide Pythagorean Triples*! (three
positive integers a, b, and ¢ such that a? + b? = ¢?): if @ and b are positive integers
and b < a, then Pythagorean Triples follow the ratio

a? —b? _ a? 4+ b?

b: :
“ 2 2

“Ihttps://en.wikipedia.org/wiki/Pythagorean_triple


https://en.wikipedia.org/wiki/Pythagorean_triple
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Alternatively:

Proof. Construct the squares as in Fig. 1.5.26 such that AACB is a right triangle
where ZACB is the right angle.

G L F

7

Figure 1.5.26: [1.47], alternate proof

Construct CG and BK; through C construct OL | AG. Notice that /GAK =
LGAC + £/BAC + £ZBAK and that ZBAG and ZCAK are right angles. It follows
that:

/BAG = /JCAK
/BAG - /BAC = /CAK - /BAC
LCAG = 4ZBAK

Consider ACAG and ABAK: CA = AK, AG = AB, and ZCAG = ZBAK; by [1.4],
NCAG =2 ABAK.

Applying [1.41], we find that IGAOL = AK HC. Similarly, ILOBF = [UDEBC.
O

Remark. The alternative proof is shorter since it’s not necessary to prove that AC
and CD form one segment. Similarly, the proposition may be proven by taking
any of the eight figures formed by turning the squares in all possible directions.
Another simplification of the proof can be obtained by considering that the point A
is such that one of the triangles ACAG or ABAK can be turned round it in its own
plane until it coincides with the other; hence, they are congruent.



CHAPTER 1. ANGLES, PARALLEL LINES, PARALLELOGRAMS 107

Exercises.

1. Prove that the square on AC is equal in area to the rectangle JAB - AO, and the
square on [JBC = [JAB - BO. (Note: [JAB - AO denotes the rectangle formed by the
segments AB and AO.)

2. Prove that the square on LICO = [LAO - OB.
3. Prove that AC? — BC? = AO? — BO?

4. Find a segment whose square is equal to the sum of the areas of two given
squares. [See the final chapter for a solution.]

5. Given the base of a triangle and the difference of the squares of its sides, the
locus of its vertex is a segment perpendicular to the base.

6. In Fig. 1.5.25, prove that BK | CG. BK and CG are transverse segments.
7. In Fig. 1.5.25: if EG is constructed, prove that EG- = AC- +4-BC-.

8. The square constructed on the sum of the sides of a right triangle exceeds the
square on the hypotenuse by four times the area of the triangle (see [1.46, #3]).
More generally, if the vertical angle of a triangle is equal to the angle of a regular
polygon of n sides, then the regular polygon of n sides, constructed on a segment
equal to the sum of its sides exceeds the area of the regular polygon of n sides
constructed on the base by n times the area of the triangle.

9. If AC and BK intersect at P and a segment is constructed through P which is
parallel to BC, meeting AB at ), then CP = PQ.

10. Prove that each of the triangles AAGK and ABEF formed by joining adjacent
corners of the squares in [1.47] is equal in area to AABC. [See the final chapter for

a solution.]

11. Find a segment whose square is equal to the difference of the squares on two
segments.

12. The square on the difference of the sides AC, C'B is less than the square on the
hypotenuse by four times the area of the triangle.

13. If AF is connected, then the segments AE, BK, CL are concurrent.

14. In an equilateral triangle, three times the square on any side is equal to four
times the square on the perpendicular to it from the opposite vertex.

15. We construct the square [JBEFG on BE, a part of the side BC of a square
HABCD, having its side BG in the continuation of AB. Divide the figure AGFECD
into three parts which will form a square.

16. Four times the sum of the squares on the medians which bisect the sides of a
right triangle is equal to five times the square on the hypotenuse.

17. If perpendiculars fall on the sides of a polygon from any point and if we divide
each side into two segments, then the sum of the squares on one set of alternate
segments is equal to the sum of the squares on the remaining set.
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18. The sum of the squares on segments constructed from any point to one pair of
opposite angles of a rectangle is equal to the sum of the squares on the segments
from the same point to the remaining pair.

19. Divide the hypotenuse of a right triangle into two parts such that the difference
between their squares equals the square on one of the sides.

20. From the endpoints of the base of a triangle, let altitudes fall on the opposite
sides. Prove that the sum of the rectangles contained by the sides and their lower
segments is equal to the square on the base.

Proposition 1.48. THE CONVERSE OF THE PYTHAGOREAN /GOUGU THE-
OREM.

Construct squares on all sides of a triangle. If the square on the hypotenuse is
equal in area to the sum of the areas of the squares on the remaining sides, then
the angle opposite to the longest side is a right angle.

Proof. Construct AABC such that AB is the longest side and

AB? = AC? + BC?

We claim that ZACB is a right angle.

Figure 1.5.27: [1.48]

Construct CD such that CD = CA[1.3] and CD L CB [1.11]. Construct BD, and
consider ABCD: /BCD is a right angle by construction. AC' = C'D implies that
AC? = CD?, and so

AC? +CB? =CD* + CB?

By [1.47]1 CD? +CB? = BD?; by hypothesis, AC?+CB? = AB%. Hence AB?> = BD?;
it follows that AB = BD [1.46, #1].

Consider ANACB and ADCB: AB = DB, AC = CD by construction, and each
shares the side CD. By [1.8], AACB = ADCB, and so ZACB = ZDCB. Since
/DCB is a right angle by construction, ZACB is also a right angle. O
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An alternate proof by contradiction:

Figure 1.5.28: [1.48], alternative proof

Proof. Construct AABC such that AC? + BC? = AB?. If CB / CA, construct
COD 1 CA such that CD = CB. Construct AD.

Consider AABC and AADC: CD = CB, the triangles share side AC, and as in the
above proof, it can be shown that AD = AB. This contradicts [1.7]; it follows that,
/ACB is a right angle. O

Corollary. 1.48.1 Let a, b, and c be sides of NA where c is the longest side. NA is a
right triangle if and only if a® + b* = 2.

Exam questions on chapter 1.
1. What is geometry?
. What is geometric object?
. Name the primary concepts of geometry. (Ans. Points, lines, surfaces, and solids.)

2

3

4. What kinds of lines exist in geometry? (Ans. Straight and curved.)

5. How is a straight line constructed? (Ans. By connecting any two collinear points.)
6

. How is a curved line constructed? (Ans. By connecting any three non-collinear
points.)

7. How may surfaces be divided? (Ans. Into planes and curved surfaces.)
8. How may a plane surface be constructed?

9. Why does a point have no dimensions?

10. Does a line have either width nor thickness?

11. How many dimensions does a surface possess?

12. What is plane geometry?

13. What portion of plane geometry forms the subject of this chapter?
14. What is the subject-matter of the remaining chapters?

15. How is a proposition proved indirectly?

16. What is meant by the inverse of a proposition?
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17. What proposition is an instance of the Rule of Symmetry?
18. What are congruent figures?

19. What is another way to describe congruent figures? (Ans. They are identically
equal.)

20. Mention all the instances of equality which are not congruence that occur in
chapter 1.

21. What is the difference between the symbols denoting congruence and equality?
22. Define adjacent, exterior, interior, and alternate angles.

23. What is meant by the projection of one line on another?

24. What are meant by the medians of a triangle?

25. What is meant by the third diagonal of a quadrilateral?

26. State some propositions in chapter 1 which are particular cases of more general
ones that follow.

27. What is the sum of all the exterior angles of any polygon equal to?

28. How many conditions must be given in order to construct a triangle? (Ans.
Three; such as the three sides, or two sides and an angle, etc.)
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Chapter 1 exercises.
1. Suppose A\; and A\, are triangles such that:
(a)/\ is constructed within A,
(b) each side of A\, passes through one vertex of /Ay
(c) each side of A\, is parallel to its opposite side in /\;
We claim that Ay =4 - A . [See the final chapter for a solution.]

2. The three altitudes of the first triangle in #1 are the altitudes at the midpoints
of the sides of the second triangle.

3. Through a given point, construct a line so that the portion intercepted by the
segments of a given angle are bisected at the point.

4. The three medians of a triangle are concurrent. (Note: we are proving the
existence of the centroid of a triangle. Students are encouraged to use Ceva’s
Theorem, not found in Euclid, to solve this problem. Students who seek a challenge
should attempt this problem without using Ceva’s Theorem.)

5. Construct a triangle given two sides and the median of the third side.

6. Let P =the perimeter of a triangle and S =the sum of the lengths of a triangle’s
medians. Prove that 3 - P < S < P.

7. Construct a triangle given a side and the two medians of the remaining sides.

8. Construct a triangle given the three medians. [See the final chapter for a solu-
tion.]

9. The angle included between the perpendicular from the vertical angle of a trian-
gle on the base and the bisector of the vertical angle is equal to half the difference
of the base angles.

10. Find in two parallels two points which are equidistant from a given point and
whose connecting line is parallel to a given line.

11. Construct a parallelogram given two diagonals and a side.
12. The shortest median of a triangle corresponds to the largest side.

13. Find in two parallels two points standing opposite a right angle at a given point
and which are equally distant from it.

14. The sum of the distances of any point in the base of an isosceles triangle from
the equal sides is equal to the distance of either endpoint of the base from the
opposite side.

15. The three perpendiculars at the midpoints of the sides of a triangle are concur-
rent. Hence, prove that perpendiculars from the vertices on the opposite sides are
concurrent.

16. Inscribe a lozenge in a triangle having for an angle one angle of the triangle.
[See the final chapter for a solution.]
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17. Inscribe a square in a triangle having its base on a side of the triangle.

18. Find the locus of a point, the sum or the difference of whose distance from two
fixed lines is equal to a given length.

19. The sum of the perpendiculars from any point in the interior of an equilateral
triangle is equal to the perpendicular from any vertex on the opposite side.

20. Find a point in one of the sides of a triangle such that the sum of the intercepts
made by the other sides on parallels constructed from the same point to these sides
are equal to a given length.

21. If two angles exist such that their segments are respectively parallel, then their
bisectors are either parallel or perpendicular.

22. Inscribe in a given triangle a parallelogram whose diagonals intersect at a

given point.

23. Construct a quadrilateral where the four sides and the position of the midpoints
of two opposite sides are given.

24. The bases of two or more triangles having a common vertex are given, both in
magnitude and position, and the sum of the areas is given. Prove that the locus of
the vertex is a straight line.

25. If the sum of the perpendiculars from a given point on the sides of a given
polygon is given, then the locus of the point is a straight line.

26. If AABC is an isosceles triangle whose equal sides are AB, AC and if B'C" is
any secant cutting the equal sides at B’, C’, such that AB’ + AC' = AB+ AC, prove
that B'C’ > BC.

27. If A, B are two given points and P is a point on a given line L, prove that the
difference between AP and PB is a maximum when L bisects the angle ZAPB.
Show that their sum is a minimum if it bisects the supplement.

28. Bisect a quadrilateral by a segment constructed from one of its vertices.

29. If 4D and BC are two parallel lines cut obliquely by 4B and perpendicularly
by 28, and between these lines we construct BED, cutting 28 at point F such that
ED =2 - AB, prove that the angle /ZDBC = § - ZABC.

30. If O is the point of concurrence of the bisectors of the angles of the triangle
ANABC, if AO is extended to intersect BC at D, and if OF is constructed from O
such that OF 1 BC, prove that the /BOD = /COE.

31. The angle made by the bisectors of two consecutive angles of a convex quadri-
lateral is equal to half the sum of the remaining angles; the angle made by the
bisectors of two opposite angles is equal to half the difference of the two other an-
gles.

32. If in the construction of [1.47] we join EF, KG, then EF? + KG? =5 - AB2.

33. Given the midpoints of the sides of a convex polygon of an odd number of sides,
construct the polygon.
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34. Trisect a quadrilateral by lines constructed from one of its angles.

35. Given the base of a triangle in magnitude and position and the sum of the sides,
prove that the perpendicular at either endpoint of the base to the adjacent side and
the external bisector of the vertical angle meet on a given line perpendicular to the
base.

36. The bisectors of the angles of a convex quadrilateral form a quadrilateral whose
opposite angles are supplemental. If the first quadrilateral is a parallelogram, the
second is a rectangle; if the first is a rectangle, the second is a square.

37. Suppose that the midpoints of the sides AB, BC, C A of a triangle are respec-
tively D, E, F and that DG || BF and intersects EF. Prove that the sides of the
triangle ADCG are respectively equal to the three medians of the triangle AABC.

38. Find the path of a pool ball started from a given point which, after being re-
flected from the four sides of the table, will pass through another given point. (As-
sume that the ball does not enter a pocket.)

39. If two segments which bisect two angles of a triangle and are terminated by the
opposite sides are equal in length, prove that the triangle is isosceles.

40. If a square is inscribed in a triangle, the rectangle under its side and the sum
of the base and altitude is equal to twice the area of the triangle.

41. If AB, AC are equal sides of an isosceles triangle and if BD | AC, prove that
BC?=2-AC-CD.

42. Given the base of a triangle, the difference of the base angles, and the sum or
difference of the sides, construct it.

43. Given the base of a triangle, the median that bisects the base, and the area,
construct it.

44. If the diagonals AC' and BD of a quadrilateral ABCD intersect at F and are
bisected at the points /' and G, then

4.AEFG = (AEB + ECD) — (AED + EBC)

45. If squares are constructed on the sides of any triangle, the lines of connection
of the adjacent corners are respectively:

(a) the doubles of the medians of the triangle;

(b) perpendicular to them.



Chapter 2

Rectangles

Chapter 2 proves a number of propositions that are familiar in the form of alge-
braic equations. Algebra as we know it had not been developed when Euclid wrote
“The Elements”, and so the results are more of historical importance than practical
use (except when they are used in subsequent propositions). This is why Book II
appears in truncated form.

If definitions, postulates, or axioms from chapter 1 are used, they generally won’t
be cited.

2.1 Definitions

1. If AB contains point C, then C is the point of division between AC and CB.
(Notice that the midpoint of AB is a special case of all such points of division.)

2. If AB is extended to point C, then point C' is called a point of external division.

Figure 2.1.1: [Def. 2.1] above, [Def 2.2] below

3. A parallelogram whose angles are right angles is called a rectangle.

114
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Figure 2.1.2: [Def. 2.3, 2.4, and 2.5]

4. A rectangle is said to be contained by any two adjacent sides: thus, [JABCD is
contained by sides AB and AD, or by sides AB and BC, etc.

5. The rectangle contained by two separate adjacent sides (such as AB and AD
above) is the parallelogram formed by constructing a perpendicular to AB at B
which is equal in length to AD and then constructing parallels.

The area of the rectangle is written AB - AD.

Figure 2.1.3: [Def. 2.6]

6. In any parallelogram, a figure which is composed of either of the parallelograms
about a diagonal and the two complements is called a gnomon [see also 1.43]. If
in Fig. 2.1.3 we remove either of the parallelograms [JAGDFE or DOFCH (but not
both) from the parallelogram 1A DC B, the remaining object is a gnomon.

7. A segment divided as in [2.11] is said to be divided in “extreme and mean ratio.”

2.2 Axioms

1. A semicircle (half-circle) may be constructed given only a center point and a

radius.
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2.3 Propositions from Book II

Proposition 2.1. Suppose that two segments (AB, BD) which intersect at one point
(B) are constructed such that one segment (BD) is divided into an arbitrary but finite
number of segments (BC, CE, EF, FD). Then the rectangle contained by the two
segments AB, BD is equal in area to the sum of the areas of the rectangles contained
by AB and the subsegments of the divided segment.

A :G :|-| :| :J
-9------ ®--—------ - — - - - — - ®--—-—------—- o- -
I l I l
| | | |
| | | |
| | | |
B 'C 'E 'F 'D
e o 5 > $
| | | |

Figure 2.3.1: [2.1]
Corollary. 2.1.1. Algebraically, [2.1] states that the area
AB-BD =AB-BC+ AB-CE+ AB-EF + AB-FD
More generally, if y = y1 + y2 + ... + yn, then

xy = z(y1+ ...+ yn)
= Ty1 +xY2 + ... + TYn

[Cor. 2.1.1] restates the Distributive Property from [1.3.2] Congruence Axioms.

Corollary. 2.1.2. The rectangle contained by a segment and the difference of two
other segments equals the difference of the rectangles contained by the segment and
each of the others.

Corollary. 2.1.3. The area of a triangle is equal to half the rectangle contained by
its base and perpendicular.

Exercises.
1. Prove [Cor 2.1.1].
2. Prove [Cor. 2.1.2].

3. Prove [Cor. 2.1.3].
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Proposition 2.2. If a segment (AB) is divided into any two subsegments at a point
(C), then the square on the entire segment is equal in area to the sum of the areas of
the rectangles contained by the whole and each of the subsegments (AC, CB).

Figure 2.3.2: [2.2]

Corollary. 2.2.1. Algebraically, [2.2] is a special case of [2.1] when n = 2. Specifi-

cally, it states that
AF-FD=AF -FE + AF -ED

or: if y = y1 + yo, then

vy = x(y1+y2)
= Ty +TY2

Exercise.

1. Prove [Cor. 1.2.1].
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Proposition 2.3. If a segment (AB) is divided into two subsegments (at C), the
rectangle contained by the whole segment and either subsegment (CB or CF) is
equal to the square on that segment together with the rectangle contained by each of

the segments.

Figure 2.3.3: [2.3]
Corollary. 2.3.1. Algebraically, [2.3] states that if x = y + z, then
wy = (y+z2)y

= y+yz

Exercise.

1. Prove [Cor. 1.3.1].

Proposition 2.4. If a segment (AB) is divided into any two parts (at C), the square
on the whole segment is equal in area to the sum of the areas of the squares on the
subsegments (AC, CB) together with twice the area of their rectangle.

Figure 2.3.4: [2.4]

Corollary. 2.4.1. Algebraically, [2.4] states that if x = y + z, then

v = (y+2)°
y? 4 2yz + 22
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where AC =y, CB=z,and AH -GH = GF - FI = y=.

Corollary. 2.4.2. The parallelograms about the diagonal of a square are squares.

Corollary. 2.4.3. If a segment is divided into any number of subsegments, the
square on the whole is equal in area to the sum of the areas of the squares on all the
subsegments, together with twice the sum of the areas of the rectangles contained by
the several distinct pairs of subsegments.

Corollary. 2.4.4. The square on a segment is equal in area to four times the square
on its half.

Exercises.
1. Prove [2.4] by using [2.2] and [2.3].

2. If from the right angle of a right triangle a perpendicular falls on the hypotenuse,
its square equals the area of the rectangle contained by the segments of the hy-
potenuse. [See the final chapter for a solution.]

3. If from the hypotenuse of a right triangle subsegments are cut off equal to the
adjacent sides, prove that the square on the middle segment is equal in area to
twice the area of rectangle contained by the segments at either end.

4. In any right triangle, the square on the sum of the hypotenuse and perpendicular
from the right angle on the hypotenuse exceeds the square on the sum of the sides
by the square on the perpendicular.

5. The square on the perimeter of a right-angled triangle equals twice the rectangle
contained by the sum of the hypotenuse and one side and the sum of the hypotenuse
and the other side.

6. Prove [Cor. 2.4.1].
7. Prove [Cor. 2.4.2].
8. Prove [Cor. 2.4.3].

9. Prove [Cor. 2.4.4]. [See the final chapter for a solution.]
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Proposition 2.5. If a segment (AB) is divided into two equal parts (at C) and also
into two unequal parts (at D), the rectangle contained by the unequal parts (AD,
DB) together with the square on the part between the points of section (CD) is equal
in area to the square on half the line.

Figure 2.3.5: [2.5]

Corollary. 2.5.1. Algebraically, [2.5] states"

(z+y)? | (z—y)?
RS

Ty =

This may also be expressed as AD - DB + (CD)? = (AC)? = (CB)2.

Corollary. 2.5.2. The rectangle AD - DB is the rectangle contained by the sum
of the segments AC, CD and their difference, and we have proved it equal to the
difference between the square on AC and the square on CD. Hence the difference of
the squares on two segments is equal to the rectangle contained by their sum and
their difference.

Corollary. 2.5.3. The perimeter of the rectangle AH = 2 - AB, and is therefore
independent of the position of the point D on AB. The area of the same rectangle is
less than the square on half the segment by the square on the subsegment between
D and the midpoint of the line; therefore, when D is the midpoint, the rectangle will
have the maximum area. Hence, of all rectangles having the same perimeter, the
square has the greatest area.

Exercises.

1. Divide a given segment so that the rectangle contained by its parts has a maxi-

mum area.

2. Divide a given segment so that the rectangle contained by its subsegments is
equal to a given square, not exceeding the square on half the given line.

Ihttp://aleph0.clarku.edu/~djoyce/ java/elements/bookII/propII5.html
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3. The rectangle contained by the sum and the difference of two sides of a triangle
is equal to the rectangle contained by the base and the difference of the segments
of the base made by the perpendicular from the vertex.

4. The difference of the sides of a triangle is less than the difference of the segments
of the base made by the perpendicular from the vertex.

5. The difference between the square on one of the equal sides of an isosceles
triangle and the square on any segment constructed from the vertex to a point in
the base is equal to the rectangle contained by the segments of the base.

6. The square on either side of a right triangle is equal to the rectangle contained
by the sum and the difference of the hypotenuse and the other side.

7. Prove [Cor. 2.5.1].
8. Prove [Cor. 2.5.2].
9. Prove [Cor. 2.5.3].
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Proposition 2.6. If a segment (AB) is bisected (at C) and extended to a segment
(BD), the rectangle contained by the segments (AD, BD) made by the endpoint of the
second segment (D) together with the square on half of the segment (CB) equals the
square on the segment between the midpoint and the endpoint of the second segment.

Figure 2.3.6: [2.6]

Corollary. 2.6.1. Algebraically, [2.6] states that®

b

o) = (-5~ (37

This may also be expressed as AD - BD + (CB)? = (CD)?.

Exercises.
1. Show that [2.6] is reduced to [2.5] by extending the line in the opposite direction.

2. Divide a given segment externally so that the rectangle contained by its subseg-

ments is equal to the square on a given line.

3. Given the difference of two segments and the rectangle contained by them, find
the subsegments.

4. The rectangle contained by any two segments equals the square on half the sum
minus the square on half the difference.

5. Given the sum or the difference of two lines and the difference of their squares,
find the lines.

6. If from the vertex C of an isosceles triangle a segment C'D is constructed to any
point in the extended base, prove that (CD)? — (CB)? = AD - DB.

7. Give a common statement which will include [2.5] and [2.6]. [See the final
chapter for a solution.]

8. Prove [Cor. 2.6.1].

2http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII6.html
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Proposition 2.7. If a segment (AB) is divided into any two parts (at C), the sum
of the areas of the squares on the whole segment (AB) and either subsegment (CB)
equals twice the rectangle (AB, CB) contained by the whole segment and that sub-
segment, together with the square on the remaining segment.

A C B
[ O

Figure 2.3.7: [2.7]

Corollary. 2.7.1. Algebraically, [2.7] states that if x = y + z, then®

z? 4 22 (y 4+ 2)* + 22

Y2+ 2yz + 222
y* +22(y + 2)
y? + 22z

Or,
(AB)? + (BC)? = 2-AB - BC + (AC)?

Equivalently, this result can be stated as 2> + 2> = 2wz + (v—2)%
Corollary. 2.7.2. Comparison of [2.4] and [2.7]:

[2.4]: square on sum = sum of the areas of squares + twice rectangle

[2.7]: square on difference = sum of the areas of squares— twice rectangle

3http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII7.html
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Proposition 2.8. If a segment (AB) is cut arbitrarily (at C), then four times the
area of the rectangle contained by the whole and one of the segments (AB, BC) plus
the area of the square on the remaining segment (AC) equals the area of the square
constructed on the whole and the aforesaid segment constructed as on one segment
(AB@® BC).*

Figure 2.3.8: [2.8]

Corollary. 2.8.1. Algebraically, [2.8] states that if x = y + z, then

(x+y)?* = a®+2zy+y?
= (y+2)°+20y+2)y+y’
= 42z + 22+ 202 + 2yz + 2
= 4y +dyz+ 22
= dy(y+2) +2°
= dzy+ 2>
= day+ (z —y)*

Exercises.
1. In[1.47], if EF, GK are joined, prove that (EF)? — (CO)? = (AB + BO)?.
2. In [1.47], prove that (GK)? — (EF)? =3- AB - (AO — BO).

3. Given that the difference of two segments equals R and the area of their rectan-
gle equals 4R?, find the segments.

4http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII8.html
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Proposition 2.9. If a segment (AB) is bisected (at C) and divided into two unequal
segments (at D), the area of the squares on the unequal subsegments (AD, DB) is
double the area of the squares on half the line (AC) and on the segment (C' D) between
the points of section.

Figure 2.3.9: [2.9]

Corollary. Algebraically, [2.9] states that

(y+2)°+ (y—2)* =2(y* + 22)

Exercises.

1. The sum of the squares on the subsegments of a larger segment of fixed length

is a minimum when it is bisected.

2. Divide a given segment internally so that the sum of the areas of the squares on
the subsegments equals the area of a given square and state the limitation to its
possibility.

3. If a segment AB is bisected at C' and divided unequally in D, then (AD)? +
(DB)? =2-AD-DB +4-(CD)>.

4. Twice the area of a square on the segment joining any point in the hypotenuse
of a right isosceles triangle to the vertex is equal to the sum of the areas of the
squares on the segments of the hypotenuse.

5. If a segment is divided into any number of subsegments, the continued product of
all the parts is a maximum and the sum of the areas of their squares is a minimum
when all the parts are equal.
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Proposition 2.10. If a segment (AB) is bisected (at C) and is extended to a segment
(AD), the sum of the areas of the squares on the segments (AD, DB) made by the
endpoint (D) is equal to twice the area of the square on half the segment and twice
the square on the segment between the points of that section.

E

Figure 2.3.10: [2.10]
Corollary. 2.10.1. Algebraically, [2.10] states the same result as Proposition 2.9:

(y+2)72+@y—2)7°=2y+2)7°

Corollary. 2.10.2. The square on the sum of any two segments plus the square on
their difference equals twice the area of the sum of their squares.

Corollary. 2.10.3. The sum of the area of the squares on any two segments is equal
to twice the area of the square on half the sum plus twice the square on half the
difference of the lines.

Corollary. 2.10.4. If a segment is cut into two unequal subsegments and also into
two equal subsegments, the sum of the area of the squares on the two unequal sub-
segments exceeds the sum of the areas of the squares on the two equal subsegments
by the sum of the areas of the squares of the two differences between the equal and

unequal subsegments.

Exercises.

1. Given the sum or the difference of any two segments and the sum of the areas of
their squares, find the segments.

2. Consider AABC': the sum of the areas of the squares on two sides AC, CB is
equal to twice the area of the square on half the base AB and twice the square on
the median which bisects AB.

3. If the base of a triangle is given both in magnitude and position and the sum
of the areas of the squares on the sides in magnitude, the locus of the vertex is a

circle.
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4. Consider AABC: if a point D on the base BC exists such that (BA)? 4 (BD)? =
(CA)? + (CD)?, prove that the midpoint of AD is equally distant from both B and
C.

5. Prove [Cor. 2.10.1].
6. Prove [Cor. 2.10.2].
7. Prove [Cor. 2.10.3].
8. Prove [Cor. 2.10.4].

Proposition 2.11. It is possible to divide a given segment (AB) into two segments
(at H) such that the rectangle (AB, BH) contained by the segment and its subseg-

ment is equal in area to the square on the remaining segment (AH).

F G
o—0

A H B

C K D

Figure 2.3.11: [2.11]

Corollary. 2.11.1. Algebraically, [2.11] solves the equation AB - BH = (AH)?, or
a(a — x) = 2% Specifically,

ala —x) = 2?

a?—ar = 2°

> +ar—a® = 0
r = —%£(1+V5)

Note that ¢ = # is called the Golden Ratio®.
Corollary. 2.11.2. The segment CF is divided in “extreme and mean ratio” at A.

Corollary. 2.11.3. If from the greater segment C A of CF we take a segment equal
to AF, it is evident that C A will be divided into parts respectively equal to AH, HB.
Hence, if a segment is divided in extreme and mean ratio, the greater segment will
be cut in the same manner by taking on it a part equal to the less, and the less will
be similarly divided by taking on it a part equal to the difference, and so on.

Shttps://en.wikipedia.org/wiki/Golden_ratio
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Corollary. 2.11.4. Let AB be divided in “extreme and mean ratio” at C. It is evident
([2.11], Cor. 2) that AC > CB. Cut off CD = CB. Then by ([2.11], Cor. 2), AC is cut
in “extreme and mean ratio” at D, and CD > AD. Next, cut off DE = AD, and in the
same manner we have DE > EC, and so on. Since CD > AD, it is evident that CD
is not a common measure of AC and CB, and therefore not a common measure of AB
and AC. Similarly, AD is not a common measure of AC and CD and so is therefore
not a common measure of AB and AC. Hence, no matter how far we proceed, we
cannot arrive at any remainder which will be a common measure of AB and AC.
Hence, the parts of a line divided in “extreme and mean ratio” are incommensurable

(i.e., their ratio will never be a rational number).

Figure 2.3.12: [2.11, Cor. 4]

See also [6.30] where we divide a given segment (AB) into its “extreme and mean
ratio”; that is, we divide AB at point C such that AB - BC = (AC)?.

Exercises.

1. The difference between the areas of the squares on the segments of a line divided
in “extreme and mean ratio” is equal to the area of their rectangle.

2. In a right triangle, if the square on one side is equal in area to the rectangle
contained by the hypotenuse and the other side, the hypotenuse is cut in “extreme
and mean ratio” by the perpendicular on it from the right angle.

3. If AB is cut in “extreme and mean ratio” at H, prove that
(a) (AB)? + (BH)? = 3- (A2
(b) (AB+ BH)?> =5-(AH)?
[See the final chapter for a solution to (a).]

4. The three lines joining the pairs of points G, B; F, D; A, K, in the construction
of [2.11] are parallel.

5. If CH intersects BE at O, then AO 1L CH.
6. If CH is extended, then CH | BF.

7. Suppose that AABC is a right-angled triangle having AB = 2 - AC. If AH is
equal to the difference between BC and AC, then AB is divided in “extreme and

mean ratio” at H.

8. Prove [Cor. 2.11.1].
9. Prove [Cor. 2.11.2].
10. Prove [Cor. 2.11.3].
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11. Prove [Cor. 2.11.4].

Proposition 2.12. On an obtuse triangle (NABC), the square on the side opposite
the obtuse angle (AB) exceeds the sum of the areas of the squares on the sides con-
taining the obtuse angle (BC, CA) by twice the area of the rectangle contained by
either of them (BC) and its extension (CD) to meet a perpendicular (AD) on it from
the opposite angle.

Figure 2.3.13: [2.12]

Corollary. 2.12.1. Algebraically, [2.12] states that in an obtuse triangle

(AB)? = (AC)? + (BC)* +2-BC -CD

This is extremely close to stating the law of cosines®: ¢? = a? + b*2ab - cos(a)

Corollary. 2.12.2. If perpendiculars from A and B to the opposite sides meet them
in H and D, the rectangle AC - CH is equal in area to the rectangle BC - CD (or
LJAC -CH =[BC - CD).

Exercises.

1. If the angle ZACB of a triangle is equal to twice the angle of an equilateral
triangle, then AB? = BC? + CA? + BC - CA.

2. Suppose that ABCD is a quadrilateral whose opposite angles at points B and D
are right, and when AD, BC are extended meet at £, prove that AE-DE = BE-CE.

3. If AABC is a right triangle and BD is a perpendicular on the hypotenuse AC,
prove that AB - DC = BD - BC.

4. If a segment AB is divided at C so that (AC)? = 2 - (BC)?, prove that (AB)? +
(BC)?>=2-AB-AC.

Shttps://en.wikipedia.org/wiki/Trigonometric_functions
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5. If AB is the diameter of a semicircle, find a point C' in AB such that, joining
C to a fixed point D in the circumference and constructing a perpendicular CE
intersecting the circumference at £, then (CE)? — (CD)? is equal to a given square.

6. If the square of a segment C'D, constructed from the angle C of an equilateral
triangle AABC to a point D on the extended side AB is equal in area to 2 - (AB)?,
prove that AD is cut in “extreme and mean ratio” at B.

7. Prove [Cor. 2.12.1].
8. Prove [Cor. 2.12.2].
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Proposition 2.13. In any triangle (ANABC), the square on any side opposite an
acute angle (at C) is less than the sum of the squares on the sides containing that
angle by twice the area of the rectangle (BC, CD) contained by either of them (BC)
and the intercept (CD) between the acute angle and the foot of the perpendicular on
it from the opposite angle.

C

Figure 2.3.14: [2.13]

Corollary. 2.13.1. Algebraically, [2.13] states that in an acute triangle

(AB)* = (AC)* + (BC)* +2-BC -CD

which repeats the result of [2.12].

Exercises.

1. If the angle at point C of the AACB is equal to an angle of an equilateral
triangle, then AB? = AC? + BC? — AC.BC.

2. The sum of the squares on the diagonals of a quadrilateral, together with four
times the square on the line joining their midpoints, is equal to the sum of the
squares on its sides.

3. Find a point C in a given extended segment AB such that AC?+ BC? = 2AC.BC.
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Proposition 2.14. CONSTRUCTION OF A SQUARE II. It is possible to construct

a square equal in area to any given polygon.

Proof. We wish to construct a square equal in area to polygon M N PQ.

Figure 2.3.15: [2.14]

Construct rectangle JABCD equal in area to M NP(Q [1.45]. If any two adjacent
sides of [JABCD are equal, then [JABCD is a square and we have completed the
construction.

Otherwise, extend side AB to AE such that BE = BC. Bisect AE at I, and with F
as center and F'F as radius, construct semicircle AGE. Extend CB to the semicircle
at G. We claim that the square constructed on BG is equal in area to M N PQ.

To see this, construct F'G. Because AFE is divided equally at F' and unequally at B,
by [2.5] AB - BE + (FB)? = (FE)?. Also, (FE)?> = (FG)?, since both are radii of
semicircle AGE. By [1.47], (FG)? = (FB)? + (BG)?. Therefore,

AB.BE+ (FB)? = (FB) + (BG)
AB-BE = (BG)
AB-BC = (B—G)2
OABCD = (BG)?
which completes the construction. O

Corollary. 2.14.1. The square on the perpendicular from any point on a semicircle
to the diameter is equal to the rectangle contained by the segments of the diameter.
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Exercises.

1. Given the difference of the squares on two segments and their rectangle, find the
segments.

2. Prove [Cor. 2.14.1].

Chapter 2 exam questions.
1. What is the subject-matter of chapter 2? (Ans. Theory of rectangles.)
2. What is a rectangle? A gnomon?

3. What is a square inch? A square foot? A square mile? (Ans. The square
constructed on a line whose length is an inch, a foot, or a mile.)

4. When is a line said to be divided internally? When externally?
5. How is the area of a rectangle determined?

6. How is a line divided so that the rectangle contained by its segments is a maxi-
mum?

7. How is the area of a parallelogram found?

8. What is the altitude of a parallelogram whose base is 65 meters and area 1430
square meters?

9. How is a segment divided when the sum of the squares on its subsegments is a

minimum?

10. The area of a rectangle is 108-60 square meters and its perimeter is 48-20 linear
meters. Find its dimensions.

11. What proposition in chapter 2 expresses the distributive law of multiplication?
12. On what proposition is the rule for extracting the square root founded?
13. Compare [1.47], [2.12], and [2.13].

14. If the sides of a triangle are expressed algebraically by z2 + 1, > — 1, and 2z
units, respectively, prove that it is a right triangle.

15. How would you construct a square whose area would be exactly an acre? Give
a solution using [1.47].

16. What is meant by incommensurable lines? Give an example from chapter 2.
17. Prove that a side and the diagonal of a square are incommensurable.

18. The diagonals of a lozenge are 16 and 30 meters respectively. Find the length
of a side.

19. The diagonal of a rectangle is 4.25 inches, and its area is 7.50 square inches.
What are its dimensions?

20. The three sides of a triangle are 8, 11, 15. Prove that it has an obtuse angle.
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21. The sides of a triangle are 13, 14, 15. Find the lengths of its medians. Also find
the lengths of its perpendiculars and prove that all its angles are acute.

2

22. If the sides of a triangle are expressed by m? + n?, m? — n?, and 2mn linear

units, respectively, prove that it is right-angled.

Chapter 2 exercises.

1. The squares on the diagonals of a quadrilateral are together double the sum of
the areas of the squares on the segments joining the midpoints of opposite sides.

2. If the medians of a triangle intersect at O, then (AB)% + (BC)? + (CA)? =
3((0A)?2 4 (OB)? + (0C)?).

3. Through a given point O, construct three segments OA, OB, OC of given lengths
such that their endpoints are collinear and that AB = BC.

4. If in any quadrilateral two opposite sides are bisected, the sum of areas of the
squares on the other two sides, together with the sum of areas of the squares on
the diagonals, is equal to the sum of the areas of the squares on the bisected sides
together with four times the area of the square on the line joining the points of
bisection.

5. If squares are constructed on the sides of any triangle, the sum of the areas of
the squares on the segments joining the adjacent corners is equal to three times
the sum of the areas of the squares on the sides of the triangle.

6. Divide a given segment into two parts so that the rectangle contained by the
whole and one segment is equal in area to any multiple of the square on the other

segment.

7. If P is any point in the diameter AB of a semicircle and C'D is any parallel chord,
then (CP)? + (PD)? = (AP)?> + (PB)>.

8. If A, B, C, D are four collinear points taken in order, then AB-CD + BC - AD =
AC - BD.

9. Three times the sum of the area of the squares on the sides of any pentagon
exceeds the sum of the area of the squares on its diagonals by four times the sum
of the area of the squares on the segments joining the midpoints of the diagonals.

10. In any triangle, three times the sum of the area of the squares on the sides is
equal to four times the sum of the area of the squares on the medians.

11. If perpendiculars are constructed from the vertices of a square to any line,
the sum of the squares area of the on the perpendiculars from one pair of opposite
angles exceeds twice the area of the rectangle of the perpendiculars from the other
pair by the area of the square.

12. If the base AB of a triangle is divided at D such that m - AD = n - BD, then
m-(AC)2 +n-(BC)2 =m-(AD)? +n-(DB)?+ (m +n)- (CD)>2.
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13. If the point D is taken on the extended segment AB such that m - AD =n-BD,
then m - (AC)2 —n - (BC)2=m-(AD)? —n-(DB)?+ (m —n) - (CD)2.

14. Given the base of a triangle in magnitude and position as well as the sum or the
difference of m times the square on one side and n times the square on the other
side in magnitude, then the locus of the vertex is a circle.

15. Any rectangle is equal in area to half the rectangle contained by the diagonals
of squares constructed on its adjacent sides. [See the final chapter for a solution.]

16. If A, B, C, ... are any finite number of fixed points and P a movable point, find
the locus of P if (AP)% + (BP)? + (CP)? + ... is given.

17. If the area of a rectangle is given, its perimeter is a minimum when it is a

square.

18. Construct equilateral triangles on subsegments AC, CB of segment AB. Prove
that if D, D, are the centers of circles constructed about these triangles, then 6- D -
D? = (AB)? + (AC)? + (CB)2.

19. If a, b denote the sides of a right triangle about the right angle and p denotes

the perpendicular from the right angle on the hypotenuse, then 2 + ;5 = %.

20. If upon the greater subsegment AB of a segment AC which is divided in ex-
treme and mean ratio, an equilateral triangle AABD is constructed and CD is
joined, then (CD)? =2 - (AB)2.

21. If a variable line, whose endpoints rest on the circumferences of two given
concentric circles, stands opposite a right angle at any fixed point, then the locus of

its midpoint is a circle.



Chapter 3

Circles

Axioms and Mathematical Properties from chapters 1 and 2 will be assumed and
not generally cited. This will be a rule that we will apply to subsequent chapters,

mutatis mutandis.

Remark. Modern geometry no longer uses Euclid’s definitions for curves, tangents,
etc. However, for our purposes, the definitions are adequate.

3.1 Definitions

1. Equal circles are circles with equal radii.’

2. A chord of a circle is a segment which intersects two points of the circle’s cir-
cumference. If the chord is extended to a line, then this line is called a secant, and
each of the parts into which a secant divides the circumference is called an arc—the
larger is called the major conjugate arc, and the smaller is called the minor conju-
gate arc.

3. A segment, ray, or straight line is said to touch a circle when it intersects the cir-
cumference of a circle at one and only one point. The segment, ray, or straight line
is called a tangent to the circle, and the point where it touches the circumference is
called the point of intersection.

IThis is actually a theorem, and not a definition. If two circles have equal radii, they are evidently
congruent figures and therefore equal in all aspects. Using this method to prove the theorem, [3.26]-
[3.29] follow immediately.

136
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—o

\ 4 o—

Figure 3.1.1: [Def. 3.3] @ touches OA at B; or, @ is tangent to OA and B is the
point of intersection between OA and C'D.

4. Circles are said to touch one another when they intersect at one and only one
point. There are two types of contact:

a) When one circle is external to the other.
b) When one circle is internal to the other.

When circles intersect at two points, the intersection may be referred to as a cut.
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Figure 3.1.2: On the left: [Def. 3.4] The circles ©OA and OD touch externally at F,
while the circles OC and OA touch internally at B. On the right: [Def. 3.5] The
chord C'D of the circle OA divides the circle itself into segments DEC and DBC.
Segment DEC (shaded) is bounded by chord CD and arc DEC, and segment DBC
(unshaded) is bounded by chord C'D and arc DBC.

5. A segment of a circle is a two-dimensional figure bounded by a chord and an arc
whose boundary points include the endpoints of the chord.

6. Chords are said to be equally distant from the center when the perpendiculars
constructed to them from the center are equal in length.

7. The angle in the segment is the rectilinear angle contained between two chords
which intersect at the same endpoint on the circumference of a circle. In Fig. 3.1.3,
/DCE is an angle in the segment. See also [3.21].

8. The angle of a segment is the non-rectilinear angle contained between its chord
and the tangent at either endpoint. In Fig. 3.1.3, the arc DFEC is the angle of
segment DEC. These angles only appeared in the original proof to [3.16].

9. An angle in a segment is said to stand on its conjugate arc.
10. Similar arcs are those that contain equal angles.

11. A sector of a circle is formed by two radii and the arc that is included between
them. In Fig. 3.1.3, OA, radius AD, and radius AC form the sectors DACE and
DACB.
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Figure 3.1.3: [Def. 3.8], [Def. 3.9], and [Def. 3.11]

12. Concentric circles are those which have the same center point.
13. Points which lie on the circumference of a circle are called concyclic.
14. A cyclic quadrilateral is a quadrilateral which is inscribed in a circle.

15. A modern definition on an angle?: an angle in geometry is the figure formed by
two rays, called the sides of the angle, which share a common endpoint, called the
vertex of the angle. This measure is the ratio of the length of a circular arc to its
radius, where the arc is centered at the vertex and delimited by the sides.

The size of a geometric angle is usually characterized by the magnitude of the
smallest rotation that maps one of the rays into the other. Angles that have the

same size are called congruent angles.

A
v

r

Figure 3.1.4: The measure of angle 0 is the quotient of s and r.

In order to measure an angle 6, a circular arc centered at the vertex of the angle
is constructed, e.g., with a pair of compasses. The length of the arc is then divided
by the radius of the arc r, and possibly multiplied by a scaling constant k& (which
depends on the units of measurement that are chosen):

0=ks/r

2http://en.wikipedia.org/wiki/Angle
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The value of # thus defined is independent of the size of the circle: if the length of

the radius is changed, then the arc length changes in the same proportion, and so
the ratio s/r is unaltered.

0=1 rad

A
v

1

Figure 3.1.5: 0 = s/r rad = 1 rad.

A number of units are used to represent angles: the radian and the degree are by
far the most commonly used.

Most units of angular measurement are defined such that one turn (i.e. one full
circle) is equal to n units, for some whole number n. In the case of degrees, n = 360.
A turn of n units is obtained by setting k£ = 5= in the formula above.

The radian is the angle subtended by an arc of a circle (that is, the angle standing
opposite the arc of a circle) that has the same length as the circle’s radius. The
case of radian for the formula given earlier, a radian of n = 27 units is obtained
by setting k = 3—: = 1. One turn is 27 radians, and one radian is 17‘%0 degrees,
or about 57.2958 degrees. The radian is abbreviated rad, though this symbol is
often omitted in mathematical texts, where radians are assumed unless specified
otherwise. When radians are used angles are considered as dimensionless. The
radian is used in virtually all mathematical work beyond simple practical geometry,
due, for example, to the pleasing and "natural" properties that the trigonometric
functions display when their arguments are in radians. The radian is the (derived)
unit of angular measurement in the SI system.

The degree, written as a small superscript circle (°), is 1/360 of a turn, so one turn
is 360°. Fractions of a degree may be written in normal decimal notation (e.g. 3.5°
for three and a half degrees), but the "minute" and "second" sexagesimal sub-units
of the "degree-minute-second" system are also in use, especially for geographical
coordinates and in astronomy and ballistics.

Although the definition of the measurement of an angle does not support the con-
cept of a negative angle, it is frequently useful to impose a convention that allows
positive and negative angular values to represent orientations and/or rotations in
opposite directions relative to some reference.

In a two-dimensional Cartesian coordinate system, an angle is typically defined by
its two sides, with its vertex at the origin. The initial side is on the positive z-axis,
while the other side or terminal side is defined by the measure from the initial
side in radians, degrees, or turns. Positive angles represent rotations toward the
positive y-axis, and negative angles represent rotations toward the negative y-axis.
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When Cartesian coordinates are represented by standard position, defined by the
z-axis rightward and the y-axis upward, positive rotations are anticlockwise and

negative rotations are clockwise.

-115°

Figure 3.1.6: Z/CBA measured as a positive angle, /FEDF measured as a negative
angle

16. Suppose we have two points F' and P such that when the area of the rectangle
OF - OP is equal to the area of the square of the radius of that circle, then F' and P
are called inverse points with respect to the circle.

17. The supplement of an arc is the amount by which an arc is less than a semicir-
cle, or an angle less than two right angles.
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3.2 Propositions from Book III

Proposition 3.1. THE CENTER OF A CIRCLE 1.
It is possible to locate the center of a circle.

Proof. Construct a circle and take any two points A, B on the circumference. Con-
struct AB and bisect AB at C [1.10]. Construct CD 1 AB (where D is on the
circumference) and extend C'D to intersect the circumference at E. Bisect DFE at F.
We claim that F' is the center of the circle.

Figure 3.2.1: [3.1]

Suppose instead that point G, which does not lie on chord DFE, is the center of the
circle. Construct GA, GC, and GB. Notice that ZACG = ZACD + /DCG; clearly,
/DCG > 0.

Consider AACG and ABCG: we have AC = CB by construction, GA = GB (since
they are radii by hypothesis), and side CG is shared in common. By [1.8], we find
that ZACG = ZBCG; therefore, each angle is a right angle. But ZACD is right by
construction; therefore /DCG = 0. But ZDCG > 0 above, a contradiction.

Hence, no point can be the center of the circle other than a point on DE. Since all
radii are equal in length and FE = FD, it follows that F, the midpoint of DFE, is
the center of OF'. This proves our claim. O
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Alternatively:

Proof. Consider the objects constructed in the proof above: because FD 1 AB and
ED bisects AB, every point equally distant from the points A and B must lie on
ED [1.10, #2]. Since the center is equally distant from A and B, the center must lie
on ED. And since the center must also lie equally distant from E and D, the center
is the midpoint of ED. O

Corollary. 3.1.1. The line, ray, or segment which bisects any chord of a circle per-
pendicularly passes through the center of the circle.

Corollary. 3.1.2. The locus of the centers of the circles which pass through two fixed
points is the line bisecting at right angles the line that connects the two points.

Corollary. 3.1.3. If A, B, C are three points on the circumference of a circle, the
lines which perpendicularly bisect the chords AB, BC will intersect at the center of
the circle.

Exercises.

1. Prove [Cor. 3.1.1].
2. Prove [Cor. 3.1.2].
3. Prove [Cor. 3.1.3].
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Proposition 3.2. POINTS ON A LINE INSIDE AND OUTSIDE A CIRCLE.
If any two points are chosen from the circumference of a circle and a line is con-

structed on those points, then:

(1) The points between the endpoints on the circumference form a chord (i.e., they
lie inside the circle).

(2) The remaining points of the line lie outside the circle.
Proof. Construct OC where A and B are arbitrary points on the circumference of
OC' and construct f@ We claim that:

(1) AB is a chord of OC.

(2) All points of ‘A1 which are not on AB lie outside of the circle.

Figure 3.2.2: [3.2]

Take any point D on AB and construct CA, CD, and CB. Notice that ZADC >
/ABC by [1.16]; however, ZABC = /BAC because ACAB is isosceles [1.5]. There-
fore, /ADC > /BAC = /DAC. By [1.29], AC > C'D [1.29], and so CD is less than
the radius of OC. Consequently, D must lie within the circle [Def. 1.23]. Similarly,
every other point between A and B lies within OC. Finally, since A and B are
points in the circumference of OC, AB is a chord. This proves claim 1.

Wlog, let E be any point on AE such that B4 > BA, and construct CE. By [1.16],
/ABC > /AEC; by the above, Z/CAE > /AEC. It follows that in AACE, CE >
C'A, and so the point E lies outside OC. This proves claim 2, which completes the
proof. O

Corollary. 3.2.1. Three collinear points cannot be concyclic.

Corollary. 3.2.2. A straight line, ray, or segment cannot intersect a circle at more
than two points.
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Corollary. 3.2.3. The circumference of a circle is everywhere concave towards the

center.

Exercises.

1. Prove [Cor. 3.1.1].
2. Prove [Cor. 3.1.2].
3. Prove [Cor. 3.1.3].
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Proposition 3.3. CHORDS 1.

Suppose there exist two chords of a circle, only one of which passes through the cen-
ter of the circle. The chord which does not pass through the center is bisected by the
chord that passes through the center if and only if the chords are perpendiculars.

Proof. Construct OO with chords AB and CD where AB contains the center of OO.
We claim that AB bisects C'D if and only if AB 1. CD.

A

A

Figure 3.2.3: [3.3]

Suppose that AB bisects CD. Construct OC and OD, and consider ACFEO and
ADFEO: CE = ED by hypothesis, OC = OD since each are radii of OO, and both
triangles have FO in common. By [1.8], ZCEO = /DFEO; since they are also
adjacent angles, each is a right angle, and therefore AB | CD.

Now suppose that AB | CD. Because OC = OD, ACDO is isosceles; by [1.5],
/0CD = Z0DC. Consider AOEC and AOED: /0CD = /0DC, /CEO = Z/DEO
since AB | CD, and they share side FO. By [1.26], AOEC = AOED, and so
CFE = ED. Since CD = CE ® ED, AB bisects CD, proving our claim. O

The second part of the proposition may also be proved this way:

Proof. By [1.47], we find that

Q

0C) = (OE)+(BCY

D)2 = (OFE)?>+ (ED)?

6/\

Since OC = OD, we also have that (OC)? = (OD)?, and it follows that (EC)? =
(ED)2. Therefore, EC = ED. O
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Corollary. 3.3.1. The line which bisects perpendicularly one of two parallel chords
of a circle bisects the other perpendicularly.

Corollary. 3.3.2. The locus of the midpoints of a system of parallel chords of a
circle is the diameter of the circle perpendicular to them all.

Corollary. 3.3.3. If a line intersects two concentric circles, its intercepts between
the circles are equal in length.

Corollary. 3.3.4. The line connecting the centers of two intersecting circles bisects
their common chord perpendicularly.

Observation: [3.1], [3.3], and [3.3, Cor. 1] are related such that if any one of them
is proved directly, then the other two follow by the Rule of Symmetry.

Exercises.

1. If a chord of a circle stands opposite a right angle at a given point, the locus of

its midpoint is a circle.

2. Prove [3.3, Cor. 1].

3. Prove [3.3, Cor. 2].

4. Prove [3.3, Cor. 3].

5. Prove [3.3, Cor. 4]. [See the final chapter for a solution.]
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Proposition 3.4. CHORDS I1.

If two chords exist in a circle where at most one is a diameter, then it is not the case
that each chord bisects the other.

Proof. Construct OO with chords AB and C'D such that at most one of these chords
is a diameter and such that AB and CD intersect at £ where ZAEC > 0. If AB
and CD are not diameters, they do not contain O. Construct OF and extend OF to
FG. We claim it is not the case that AE = EB and CF = ED.

Figure 3.2.4: [3.4]

Suppose instead that AE = EB and CE = ED. By [3.3], ZOEA is a right angle.
Similarly, Z/OFEC'is a right angle, or /OFA = ZOEC. But ZOEC = ZOEA+/AEC,
and so ZAEC = 0. It follows that ZAEC > 0 and ZAEC = 0, a contradiction.

Thus it is not the case that AE = EB and CE = ED, which completes the proof. [

Corollary. 3.4.1. If two chords of a circle bisect each other, they are both diameters.
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Proposition 3.5. NON-CONCENTRIC CIRCLES I
If two circles intersect at exactly two points, then they are not concentric.

Proof. Construct OABC and OABD which intersect at A and B; we claim that
OABC and OABD are not concentric.

Figure 3.2.5: [3.5]

Suppose instead that OABC and OABD share a common center, O. Construct OA
and OCD where A, B, C, and D are distinct. Notice that CD > 0.

Because O is the center of OABC, OA = OC. Because O is the center of the circle
0OABD, OA = OD; hence, OD = OC where OD = OC @ CD. It follows that CD = 0
and CD > 0, a contradiction. Therefore, OABC and OABD are not concentric.

Exercises.

1. Two circles cannot have three points in common without coinciding. [See the
final chapter for a solution.]
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Proposition 3.6. NON-CONCENTRIC CIRCLES II.

If one circle intersects another circle internally at exactly one point, then the circles

are not concentric.

Proof. Construct OADFE and OABC such that OABC intersects OADFE internally
at A and only at A. We claim that OADE and OABC' are not concentric.

Figure 3.2.6: [3.6]

Suppose instead that OADFE and OABC are concentric, and let O be the center of
each circle. Construct OA and OBD. Notice that BD > 0; if BD = 0, then B = D
and OADE and OABC intersect at two points, contrary to hypothesis.

Because O is the center of each circle by hypothesis, OA = OB and OA = OD;
therefore, OB = OD and OB @ BD = OD. Hence, BD = 0, a contradiction. There-

fore, the circles are not concentric. O



CHAPTER 3. CIRCLES 151

Proposition 3.7. UNIQUENESS OF SEGMENT LENGTHS FROM A POINT ON
THE DIAMETER OTHER THAN THE CENTER.

Choose any point on the diameter of a circle other than the center, and from that
point construct a finite number of segments to the circumference. Then:

(1) The longest segment constructed will contain the center of the circle.

(2) The shortest segment constructed will form a diameter with the longest seg-
ment.

(3) As for the remaining segments, those with endpoints on the circumference
nearer to the endpoint of the longest segment will be longer than segments with
endpoints farther from the endpoint of the longest segment.

(4) Two and only two equal segments can be constructed from each point to the
circumference, one on each side of the diameter.

Proof. Construct OO with point P on diameter AE such that O and P are distinct.
Construct a finite number of segments from P to the circumference (PA, PB, PC,
etc.). Notice that PA is a segment on the diameter. We will prove four claims.

Figure 3.2.7: [3.7T] OFAG

1. The longest segment, PA, is the segment which passes through O.

Construct OB where B is a point on OO. Clearly, OA = OB. From this we obtain
PA = OA+ OP = OB + OP. Consider AOPB: since OB + OP > PB by [1.20],
it follows that PA > PB. Since this inequality holds for any segment constructed
using this method, PA is the longest segment of all such constructed segments.

2. The extension of PA in the opposite direction, PE, is the shortest segment of all
such constructed segments.

Construct OD and consider AOPD: by [1.20], OP + PD > OD. Since, OD = OF =
OP + PE, it follows that

OP+PD > OP+PE
PD > PE
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Since this inequality holds for any segment constructed using this method, PE is
the shortest segment of all such constructed segments.

Figure 3.2.8: [3.7] OEAG

3. As for the remaining segments, those with endpoints on the circumference
nearer to the endpoint of the longest segment (PA) will be longer than segments
with endpoints farther from the endpoint of the longest segment (i.e., PA > PB >
PC > PD).

Construct OC, and consider APOB and APOC: OB = OC and each shares side
OP. Since /POB = /POC + /BOC, we find that ZPOB > /POC. By [1.24],
PB > PC. Similarly, PC > PD.

4. Two and only two segments making equal angles with the diameter and standing
on opposite sides of the diameter are equal in length (i.e., PD = PF).

At O, construct ZPOF = /POD and construct PF. Consider APOD and APOF:
OD = OF, each shares side OP, and ZPOD = /POF by construction. By [1.4],
APOD = APOF, and so ZOPF = Z/OPD and PD = PF.

We claim that a third segment cannot be constructed from P equal to PD = PF.
Suppose this were possible and let PG = PD. Then PG = PF, contradicting claim
3 above.

This completes the proof. O
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Corollary. 3.7.1. If two equal segments PD, PF are constructed from a point P to
the circumference of a circle, the diameter through P bisects the angle /D PF formed

by these segments.

Corollary. 3.7.2. If P is the common center of circles whose radii are PA, PB, PC,
PD, etc., then:

(1) The circle whose radius is the maximum segment (OP with radius PA) lies
outside OO and intersects it at A [Def. 3.4].

(2) The circle whose radius is the minimum segment (OP with radius PE) lies
inside OO and intersects it at F.

(3) A circle having any of the remaining radii (such as PD) cuts OO at two points
(such as D, F).

Exercises.
1. Prove [Cor. 3.7.1].
2. Prove [Cor. 3.7.2].

Remark. [3.7] is a good illustration of the following important definition: if a geo-
metrical magnitude varies its position continuously according to any well-defined
relationship, and if it retains the same value throughout, it is said to be a constant
(such as the radius of a fixed circle).

But if a magnitude increases for some time and then begins to decrease, it is said
to be a maximum when the increase stops. Therefore in the previous figure, PA,
which we suppose to revolve around P and meet the circle, is a maximum.

Again, if it decreases for some time, and then begins to increase, it is a minimum
at the beginning of the increase. Thus PE, which we suppose as before to revolve
around P and meet the circle, is a minimum. [3.8] will provide other illustrations
of this concept.



CHAPTER 3. CIRCLES 154

Proposition 3.8. SEGMENT LENGTHS FROM A POINT OUTSIDE THE CIR-
CLE AND THEIR UNIQUENESS.

Suppose a point is chosen outside of a circle and from that point segments are
constructed such that they intersect the circumference of the circle at two points,
one on the “outer” or convex side of the circumference and one on the “inner” or
concave side of the circumference. Let one segment be constructed which intersects
the center of the circle and the others all within the same semicircle but not through
the center of the circle. Then:

(1) The largest segment passes through the center.

(2) The segments nearer to the segment through the center are greater in length
than those which are farther away.

(3) If segments are constructed to the convex circumference, the minimum seg-
ment is that which passes through the center when extended.

(4) Of the other segments, that which is nearer to the minimum is smaller than
one more farther out.

(5) From the given point outside of the circle, there can be constructed two equal
segments to the concave or the convex circumference, both of which make equal
angles with the line passing through the center.

(6) Three or more equal segments cannot be constructed from the given point
outside the circle to either circumference.

Proof. Construct OO, point P outside of OO, and all points indicated in the figure
below. We will prove each claim separately.

Figure 3.2.9: [3.8] 0O
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1. The maximum segment passes through the center.

Notice that OA = OB and so AP = OA + OP = OB + OP. Consider ABOP:
OB + OP > BP [1.20]. Therefore, AP > BP.

Figure 3.2.10: [3.8] OO

2. The segments nearer to the segment through the center are greater in length
than those which are farther.

Consider ABOP and ACOP: OB = OC, each share side OP, and the angle /BOP >
ZCOP. Therefore, BP > CP [1.24]. Similarly, CP > DP, etc.

3. If segments are constructed to the convex circumference, the minimum segment
is that which passes through the center when extended.

Consider AOFP: OF + FP > OP = OF + EP [1.20]. Since OF = OF, we find that
FP > EP.

4. Of the other segments, that which is nearer to the minimum is smaller than one
more farther out.

Consider AGOP and AFOP: GO = FO, each shares side OP, and the angle
/GOP > /FOP. By [1.24], GP > FP. Similarly, HP > GP.

5. From the given point outside of the circle, there can be constructed two equal
segments to the concave or the convex circumference, both of which make equal
angles with the line passing through the center.

Construct ZPOI such that Z/POI = ZPOF [1.23], and consider ATOP and AFOP:
I0 = FO, each shares side OP, and ZIOP = /POF by construction. By [1.4],
TP = FP. Segments TP and F'P fulfill the above requirements, which proves this
claim.

6. Three or more equal segments cannot be constructed from the given point outside
the circle to either circumference.
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Above, we obtain TP = FP. We claim that a third segment cannot is constructed
from P equal to P and F'P. Suppose this were possible and let PK = PF. However
by claim 4, PK > PF. This contradiction proves our claim. O

Corollary. 3.8.1. If PI is extended to meet the circle at L, then PL = PB.

Corollary. 3.8.2. If two equal segments are constructed from P to either the convex
or concave circumference, the diameter through P bisects the angle between them,
and the segments intercepted by the circle are equal in length.

Corollary. 3.8.3. If P is the common center of circles whose radii are segments
constructed from P to the circumference of OO, then:

a) The circle whose radius is the minimum segment (PE) has external contact with
OO [Def. 3.4].

b) The circle whose radius is the maximum segment (PA) has internal contact with
0O0.

¢) A circle having any of the remaining segments (PF) as radius intersects OO at
two points (F, I).

Exercises.

1. Prove [Cor. 3.8.1].
2. Prove [Cor. 3.8.2].
3. Prove [Cor. 3.8.3].
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Proposition 3.9. THE CENTER OF A CIRCLE II.

A point within a circle from which three or more equal segments can be constructed
to the circumference is the center of that circle.

Proof. Construct OABC and equal segments DA, DB, and DC. We claim that D is

the center of OABC.
| C

7

Figure 3.2.11: [3.9]

B

Construct AB and BC and bisect them at points £ and F, respectively [1.10]. Then
construct GEDK and LDFH.

Consider AAED and ABED: ED is a common side, AE = EB, and DB = DA
since each are radii of OABC. By [1.8], AAED = ABED, and so ZAED = /BED;
it follows that ZAED and ZBED are each right angles.

Since GEDK | AB and GEDK bisects AB, [3.1, Cor. 1] states that the center of
OABC is a point on GEDK. Similarly, the center of OABC is a point on LDFH.
Since GEDK and LDF H intersect at D, D is the center of OABC. O

Alternatively:

Proof. Since AD = LD, the segment bisecting the angle ZADL passes through
the center [3.7, Cor. 1]. Similarly, the segment bisecting the angle /BD A passes
through the center. Hence, the point of intersection of these bisectors, D, is the

center. O
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Proposition 3.10. THE UNIQUENESS OF CIRCLES.

If two circles have more than two points of their circumferences in common, they

coincide.

Proof. Construct OABC and ODAB such that they have more than two points in
common. We claim that OABC and ODAB coincide.

A

A

Figure 3.2.12: [3.10]

Suppose that OABC and ODAB share three points in common (A, B, C). From P,
the center of OABC, construct PA, PB, PC; since each is a radius, PA = PB = PC.

Since ODAB is a circle and P a point from which three equal segments PA, PB,
PC can be constructed to its circumference, P is also the center of ODAB [3.9]. By
[Def. 3.11 OABC and ODAB coincide, which proves our claim. O

Corollary. 3.10.1. Two circles which do not coincide do not have more than two
points common.

Remark. Similarly to [3.10, Cor. 1], two lines which do not coincide cannot have

more than one point common.

Exercise.

1. Prove [Cor. 3.10.1].
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Proposition 3.11. SEGMENTS CONTAINING CENTERS OF CIRCLES.

If one circle touches another circle internally at one point, then the line joining the
centers of the two circles must contain that point of intersection.

Proof. Construct OO and OH such that OH touches OO internally at P. Also con-
struct O<—H) We claim that O<—H) contains P.

Figure 3.2.13: [3.11]

Suppose instead that E is the center of OH such that FE does not lie on O<_F>’, and
construct EP. Extend OF to intersect OH at C' and D and intersect OO at A and
B. Since E is a point on the diameter of OO between O and A, FA < EP [3.7].

Notice that EA = EC + CA. Since CA > 0, EA > EC. Also notice that EP =
EC since each are radii of OH, and so EA > EP. But EA < EP above; this
contradiction demonstrates that the center of the internal circle, H, must lie on
éﬁ%; that is, Oﬁ contains H. Equivalently, O<—f>l contains P, which concludes the
proof. O

Alternatively:

Proof. Since EP is a segment constructed from a point within the circle OO to the
circumference of OO but not forming part of the diameter through E, the circle
whose center is £ with radius EP cuts OH at P [3.7, Cor. 2] and also touches it
at P by hypothesis, a contradiction. A similar argument holds for all points not on
OP. Hence, the center of OO must lie on OP. O
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Proposition 3.12. INTERSECTING CIRCLES 1.

If two circles intersect externally at one point, then the segment joining their cen-
ters contains that point of intersection.

Proof. Construct OPCF and OPDFE which intersect externally at point P. Also
construct AG. We claim that AG contains P.

Figure 3.2.14: [3.12]

Construct APFE; a claim equivalent to the above is that APFE contains G.

Suppose instead that B is the center of OPDE and is not on APE. Construct AB,
intersecting OPDFE at D and OPCF at C but not intersecting at P. Also construct
BP. By our hypothesis, AP = AC and BP = BD. Hence

AC + DB = AP + BP

Also notice that AB = AC®CD& DB where CD > 0; it follows that AB > AC+DB.
By the above equality, AB > AP + BP.

Consider AAPB: we find that one side of AAPB is greater than the sum of the
other two, contradicting [1.20]. Thus, the center of OPDFE lies on APE at G. Equiv-
alently, AG contains P, which completes the proof. O

Alternatively:

Proof. Suppose that the center of OPDE lies on BP. Since BP is a segment con-
structed from a point outside of the circle OPCF to its circumference which does
not pass through the center when it is extended, the circle whose center is B with
radius BP must cut the circle OPCF at P [3.8, Cor. 3].

However, such a circle touches OPCF at P by hypothesis, a contradiction. Since
BP was chosen as any segment other than PE, the center of OPDFE must lie on
PE. O
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Remark. [3.11] and [3.12] may written as one theorem: “If two circles touch each
other at any point, the centers and that point are collinear.” This is a limiting case
of the theorem given in [3.3, Cor. 4]: “The line joining the centers of two intersecting
circles bisects the common chord perpendicularly.”

Figure 3.2.15: [3.12], Suppose OO and OO’ have two points of intersection, A and
B. Suppose further that A remains fixed while the second circle moves so that the
point B ultimately coincides with A. Since the segment OO’ always bisects AB, we
see that OO’ intersects A. In consequence of this motion, the common chord C'D
becomes the tangent to each circle at A.

Corollary. 3.12.1. If two circles touch each other, their point of intersection is the
union of two points of intersection. When counting the number of points at which
two circles intersect, we may for purposes of calculation consider this point of inter-

section as two points.
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Corollary. 3.12.2. If two circles touch each other at any point, they cannot have
any other common point.

Figure 3.2.16: [3.2, Cor. 2]

For, since two circles cannot have more than two points common [3.10] and their
point of intersection is equivalent to two points for purposes of calculation, circles
that touch cannot have any other point common. The following is a formal proof of
this Corollary:

Construct OO and OO’ where A is the point of intersection, and let O’ lie between
O and A. Take any other point B in the circumference of OO, and construct O'B.
By [3.7], O'B > O'A. Therefore, B is outside the circumference of the inner circle.
Hence, B cannot be common to both circles. Since point B was chosen arbitrarily,
the circles cannot have any other common point except for A.
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Proposition 3.13. INTERSECTING CIRCLES I1I.
Two circles cannot touch each other at two points either internally or externally.

Proof. We divide the proof into its internal and external cases:

Figure 3.2.17: [3.13]

Internal case: suppose two distinct circles OACB and OADDB touch internally at
two points A and B. Since the two circles touch at A, the segment joining their
centers passes through A [3.11]. Similarly, the segment joining their centers passes
through B. Hence, the centers of these circles and the points A and B are on AB,
and so AB is a diameter of each circle. Bisect AB at E: clearly, E is the center of
each circle, i.e., the circles are concentric. This contradicts [3.5], and thus OACB
and OADB do not touch internally at two points.

External case: if two circles OF and OH touch externally at points I and J where
I and J are distinct, then by [3.12] EH contains the points I and .J; in other words,
I and J are not distinct, a contradiction. Thus, OF and OH do not touch externally
at two points. O

An alternative proof to the internal case:

Proof. Construct a line bisecting AB perpendicularly. By [3.1, Cor. 1], this line
passes through the center of each circle, and by [3.11] and [3.12] must pass through
each point of intersection, a contradiction. Hence, two circles cannot touch each
other at two points. O
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Remark. This proposition is an immediate inference from [3.12, Cor. 1] that if
a point of intersection counts for two intersections, then two contacts would be
equivalent to four intersections; but there cannot be more than two intersections
[3.10]. It also follows from [3.12, Cor. 2] that if two circles touch each other at point
A, they cannot have any other point in common; hence, they cannot touch again at
B.

Exercises.

1. If a circle with a non-fixed center touches two fixed circles externally, the differ-
ence between the distances of its center from the centers of the fixed circles is equal
to the difference or the sum of their radii, according to whether the contacts are of
the same or of opposite type [Def. 3.4].

2. If a circle with a non-fixed center is touched by one of two fixed circles internally
and touches the other fixed circle either externally or internally, the sum of the
distances from its center to the centers of the fixed circles is equal to the sum or the
difference of their radii, according to whether the contact with the second circle is
internal or external.

3. Suppose two circles touch externally. If through the point of intersection any
secant is constructed cutting the circles again at two points, the radii constructed
to these points are parallel. [See the final chapter for a solution.]

4. Suppose two circles touch externally. If two diameters in these circles are par-
allel, the line from the point of intersection to the endpoint of one diameter passes
through the endpoint of the other. [See the final chapter for a solution.]
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Proposition 3.14. EQUALITY OF CHORD LENGTHS.

Chords in a circle are equal in length if and only if they are equally distant from
the center.

Proof. Construct OO with chords AB and CD. We claim that AB = CD if and only
if AB and CD are equally distant from the center.

¥

Figure 3.2.18: [3.14]

Suppose AB = CD, and construct OF | AB and OF 1. CD. We claim that FO =
FO.

Construct AO and CO. Because AB is a chord in OO and OF is a perpendicular
segment constructed from the center to E, OF bisects AB [3.3]; or AE = EB.
Similarly, CF = FD. Since AB = CD by hypothesis, AE = CF.

Because ZOFEF is a right angle, (A0)?> = (AE)? + (EO)? by [1.47]. Similarly,
d

(CO)? = (CF)? 4 (FO)?. Since (A0)?> = (CO)? and (AFE)?> = (CF)?, we have

(EO)? = (FO)?, and so EO = FO.

Now suppose EO = FO under a construction similar to the above. We claim that
AB =CD.

Construct AO and CO. By [1.47] and similarly to the above proof, (AF)%+ (F0)? =
(CF)? 4+ (FO)? where (EO)? = (FO)? due to our hypothesis. Hence (AF)? = (CF)?,
andso AE =CF. But AB=2-AEand CD =2-CF by [3.3],and so AB=CD. O
Exercises.
1. If a chord of given length slides around a fixed circle, then:

(a) the locus of its midpoint is a circle;

(b) the locus of any point fixed on the chord is a circle.
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Proposition 3.15. INEQUALITY OF CHORD LENGTHS.

The diameter is the longest chord in a circle, and a chord is nearer to the center of
a circle than another chord if and only if it is the longer of the two chords.

Proof. Construct OO with diameter AB and chords CD and EF such that CD is
nearer to O that EF. We claim that:

(1) AB is the longest chord in a circle;

(2)CD > EF;

(3) Longer chords are nearer to the center than shorter chords.

Figure 3.2.19: [3.15]

(1) We claim that AB is the longest chord in a circle.

Construct OC, OD, OFE as well as OG L CD and OH | EF. Notice that AB =
OA + OB = OC + OD. Consider ACDO: OC + OD > CD by [1.20]. Therefore,
AB > CD. Since the choice of CD was arbitrary, the proof is complete.

(2) We claim that CD > EF.

Since CD is nearer to O than EF by hypothesis, it follows that OG < OH [3.14].
Since AOGC and AOHF are right triangles, we find that (OC)? = (OG)? + (GC)?
and (OF)? = (OH)? + (HE)?. Since OC = OF, (0G)? + (GC)? = (OH)? + (HE)?.
But (OG)? < (OH)?, and so (GC)? > (HE)?. Tt follows that GC > HE. Since
CD=2-GCand EF =2-HE by [3.3],CD > EF.

(3) Longer chords are nearer to the center than shorter chords.

Suppose that CD > EF. We claim that OG < OH.

As before, we find that (OG)? + (GC)? = (OH)? 4+ (HE)?. Due to our hypothesis,
(GC)? > (HE)?. Therefore (OG)? < (OH)?, and so OG < OH. O
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Exercises.

1. The shortest chord which can be constructed through a given point within a
circle is the perpendicular to the diameter which passes through that point.

2. Through a given point, within or outside of a given circle, construct a chord of
length equal to that of a given chord.

3. Through one of the points of intersection of two circles, construct a secant
(a) where the sum of its segments intercepted by the circles is a maximum;
(b) which is of any length less than that of the maximum.

4. Suppose that circles touch each other externally at A, B, C' and that the chords
AB, AC of two of them are extended to meet the third again in the points D and
E. Prove that DF is a diameter of the third circle and is parallel to the segment
joining the centers of the others.
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Proposition 3.16. THE PERPENDICULAR TO A DIAMETER OF A CIRCLE.

The perpendicular to a diameter of a circle intersects the circumference at one and
only one point, and any other segment through the diameter’s endpoint intersects

the circle at two points.

Proof. Construct OC with points A, B, and H on its circumference where AB is a
diameter of OC. Also construct BH and B/ | AB where B intersects OC at B.
We claim that:

(1) E touches OC' at B only;

(2) BH cuts OC.

Figure 3.2.20: [3.16]

Claim 1: ﬁ touches OC' at B only.

Let I be an arbitrary point on ﬁ and construct the segment CI. Because /CBI
is a right angle, (CI)? = (CB)? + (BI)? by [1.47]. It follows that (CT)? > (C'B)?,
and so CI > CB. By [3.2], I lies outside of OC. Similarly, every other point on
except B lies outside of the OC. Hence, BI intersects touches OC at B only.

Claim 2: BH cuts OC.

Construct CG L BH. It follows that (BC)? = (CG)? + (GB)?. Therefore (BC)? >
(CG)?, and so BC > CG. By [3.2], G must lie within OC, and consequently if BG
is extended it must also intersect OC' at H and therefore cut it.

This completes the proof. O
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Exercises.

1. If two circles are concentric, all chords of the larger circle which touch the smaller
circle are equal in length. [See the final chapter for a solution.]

2. Construct a parallel to a given line which touches a given circle.
3. Construct a perpendicular to a given line which touches a given circle.
4. Construct a circle having its center at a given point

(a) and touches a given line;

(b) and touches a given circle.

How many solutions exist in this case?

5. Construct a circle of given radius that touches two given lines. How many
solutions exist?

6. Find the locus of the centers of a system of circles touching two given lines.

7. Construct a circle of given radius that touches a given circle and a given line or
that touches two given circles.



CHAPTER 3. CIRCLES 170
Proposition 3.17. TANGENTS ON CIRCLES 1.

It is possible to construct a tangent of a given circle from a given point outside of

the circle.

Proof. Construct OO and P such that P is outside of OO. We wish to construct
tangent BP to OO.

Figure 3.2.21: [3.17] (o), ()

Construct radius OC and extend OC to OP. With O as center and OP as radius,
construct the circle ©O;. Also construct CA L OP. Construct OA, intersecting OO
at B, and construct BP. We claim that BP is the required tangent to OO.

Since O is the center of OO and 0O;, we find that OA = OP and OC = OB.
Consider AAOC and APOB: OA = OP, OC = OB, and each shares Z/BOC =
ZAOC = ZPOB. By [1.4], AAOC = APOB, and so ZOCA = ZOBP.

But ZOCA is a right angle by construction; therefore ZOBP is a right angle, and
by [3.16], BP touches the circle OO at B. By definition BP is a tangent of OO at
point B, which proves our claim. O
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Corollary. 3.17.1. If AC is extended to AE and OEF is constructed, then OO is cut
at D. Construct DP; DP is a second tangent of OO at P.
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Exercises.

1. Prove that tangents PB and PD in [3.17] are equal in length because the square
of each is equal to the square of OP minus the square of the radius.

2. If a quadrilateral is circumscribed to a circle, the sum of the lengths of one pair
of opposite sides is equal to the sum of the lengths of the other pair.

3. If a parallelogram is circumscribed to a circle, it must be a rhombus, and so its
diagonals intersect at the center.

4. If BD is constructed and OP is intersected at F, then OP | BD.

5. The locus of the intersection of two equal tangents to two circles is a segment
(called the radical axis of the two circles).

6. Find a point such that tangents from it to three given circles is equal. (This point
is called the radical center of the three circles.)

7. Prove that the rectangle OF - OP is equal in area to the square of the radius of
00. (Note: we are locating the inverse points with respect to OO. See the definition
below.)

8. The intercept made on a variable tangent by two fixed tangents stands opposite
a constant angle at the center.

9. Construct a common tangent to two circles. Demonstrate how to construct a

segment cutting two circles so that the intercepted chords are of given lengths.

10. Prove [Cor. 3.17.1].
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Proposition 3.18. TANGENTS ON CIRCLES II.

If a line touches a circle, the segment from the center of the circle to the point of
intersection with the line is perpendicular to the line.

Proof. Construct OO with point C on its circumference, and also construct Cﬁ We
claim that if OD touches 00, then OC' L cD.

Figure 3.2.22: [3.18]

Suppose instead that another segment OG is constructed from the center such that
OG | D where OG cuts the circle at F. Because the angle ZOGC is right by
hypothesis, the angle ZOCG must be acute [1.17]. By [1.19], OC > OG. But OG =
OF ® FG and OC = OF, and so OC < OG, a contradiction. Hence OC L ch. O

Alternatively:

Proof. Since the perpendicular must be the shortest segment from O to &D and
OC is evidently the shortest line, it follows that OC L cD. O
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Proposition 3.19. TANGENTS ON CIRCLES III.

If a line is a tangent to a circle, then the perpendicular constructed from its point
of intersection passes through the center of the circle.

Proof. Suppose AB is tangent to OCDA. We claim that if AB 1L AC, then AC
contains the center of OCDA.

Figure 3.2.23: [3.19]

Suppose otherwise: let O be the center of OCDA and construct AO. Notice that
ZOAC > 0. Because /@ touches OCDA and OA is constructed from the center to
the point of intersection, OA L AB by [3.18]. Since 4B L AC by hypothesis, ZOAB
and ZC AB are right angles.

It follows that Z/CAB = ZOAB and ZCAB = ZOAB + ZOAC; hence ZOAC =0
and ZOAC > 0, a contradiction. Therefore, the center lies on AC. O

Corollary. 3.19.1. If a number of circles touch the same line at the same point, the
locus of their centers is the perpendicular to the line at the point.

Corollary. 3.19.2. Suppose we have a circle and any two of the following properties:
(a) a tangent to a circumference;

(b) a segment, ray, or straight line constructed from the center of the circle to the
point of intersection;

(c) right angles at the point of intersection.

Then by [3.16], [3.18], [3.19], and the Rule of Symmetry, the remaining property
follows. If we have (a) and (c), then it may be necessary to extend a given segment or
a ray to the center of the circle: these are limiting cases of [3.1, Cor. 1] and [3.3].
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Proposition 3.20. ANGLES AT THE CENTER OF A CIRCLE AND ON THE
CIRCUMFERENCE.

The angle at the center of a circle is double the angle at the circumference when
each stands on the same arc of the circumference.

Proof. Construct OF with EB as radius, and construct ZBFEC and ZBAC where A,
C, and D are points on the circumference of OF. We claim that /BEC = 2-/BAC =
2-/BDC.

Figure 3.2.24: [3.20]

Construct AEF, and consider AEAB: since EA = EB, by [1.6] ZEAB = /EBA
and therefore /FAB + /EBA = 2 - /FAB. Since /BEF = /FEAB + /EBA by
[1.32], ZBEF =2 - ZEAB. Similarly in AFAC, ZFEC =2 - ZEAC. It follows that

/BEC = /BEF + /FEC =2-(LEAB + /EAC) =2 -/ZBAC

Now construct GD, BD, and CD. By an argument similar to the above, we can
prove that /GEC =2 - /ZEDC and /GEB =2 - /EDB. Since /BEC = /GEC —
/GEB, we find that

/BEC =2-(LEDC — Z/EDB) =2 - Z/BDC

which completes the proof. O

Corollary. 3.20.1. The angle in a semicircle is a right angle.
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Proposition 3.21. ANGLES ON CHORDS.
In a circle, angles standing on the same arc are equal in measure to each other.

Proof. Construct OF, and also construct /BAC and ZBDC on the same arc BFC.
We claim that /BAC = Z/BDC.

Figure 3.2.25: [3.21]

By [3.20], /BEC = 2 - ZBAC = 2 - ZBDC, or ZBAC = £ZBDC. This proves our
claim. 0

Corollary. 3.21.1. If two triangles NACB, AADB stand on the same base AB and
have equal vertical angles on the same side of it, then the four points A, C, D, B are

concyclic.

Corollary. 3.21.2. If A, B are two fixed points and if C varies its position in such
a way that the angle / ACB retains the same value throughout, the locus of C'is a
circle. (Or: given the base of a triangle and the vertical angle, the locus of the vertex

is a circle).

Exercises.

1. Given the base of a triangle and the vertical angle, find the locus
(a) of the intersection of its perpendiculars;
(b) of the intersection of the internal bisectors of its base angles;

(c) of the intersection of the external bisectors of the base angles;
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(d) of the intersection of the external bisector of one base angle and the internal
bisector of the other.

2. If the sum of the squares of two segments is given, prove that their sum is a
maximum when the segments are equal in length.

3. Of all triangles having the same base and vertical angle, prove that the sum of
the sides of an isosceles triangle is a maximum.

4. Of all triangles inscribed in a circle, the equilateral triangle has the maximum
perimeter.

5. Of all concyclic figures having a given number of sides, the area is a maximum
when the sides are equal.

6. Prove [Cor. 3.20.1].
7. Prove [Cor. 3.21.1].
8. Prove [Cor. 3.21.2].
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Proposition 3.22. QUADRILATERALS INSCRIBED INSIDE CIRCLES.

The sum of the opposite angles of a quadrilateral inscribed in a circle equals two
right angles.

Proof. Construct quadrilateral ABCD inscribed in OF. We claim that the sum of
the opposite angles of ABCD equals two right angles.

Figure 3.2.26: [3.22]

Let 7 radians = two right angles, and construct diameters AC and BD. Since
ZABD and ZACD stand on arc AD, ZABD = ZACD by [3.21]. Similarly, ZDBC =
ZDAC because they stand on arc DC. Hence

LABC = J/ABD + /DBC
= JLACD+ £LDAC
From this, we obtain
/ABC + /CDA = /ACD+ /DAC + ZCDA

where the right-hand side of the equality is the sum of the interior angles of AACD.
Since this sum equals 7 radians by [1.32], ZABC + Z/CDA = « radians.

Similarly, /DAB+ /ZBCD = r radians (mutatis mutandis), which proves our claim.
[l

Corollary. 3.22.1. If the sum of two opposite angles of a quadrilateral are equal to
two right angles, then a circle may be inscribed about the quadrilateral.

Corollary. 3.22.2. If a parallelogram is inscribed in a circle, then it is a rectangle.
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Exercises.
1. If the opposite angles of a quadrilateral are supplemental, it is cyclic.

2. A segment which makes equal angles with one pair of opposite sides of a cyclic
quadrilateral makes equal angles with the remaining pair and with the diagonals.

3. If two opposite sides of a cyclic quadrilateral are extended to meet and a perpen-
dicular falls on the bisector of the angle between them from the point of intersection
of the diagonals, this perpendicular will bisect the angle between the diagonals.

4. If two pairs of opposite sides of a cyclic hexagon are respectively parallel to each
other, the remaining pair of sides are also parallel.

5. If two circles intersect at the points A, B, and any two segments ACD, BFE are
constructed through A and B, cutting one of the circles in the points C, E and the
other in the points D, F, then CE || DF.

6. If equilateral triangles are constructed on the sides of any triangle, the segments
joining the vertices of the original triangle to the opposite vertices of the equilateral
triangles are concurrent.

7. In the same case as #7, prove that the centers of the circles constructed about
the equilateral triangles form another equilateral triangle.

8. If a quadrilateral is constructed about a circle, the angles at the center standing
opposite the opposite sides are supplemental.

9. If a tangent which varies in position meets two parallel tangents, it stands
opposite a right angle at the center.

10. If a hexagon is circumscribed about a circle, the sum of the angles standing
opposite the center from any three alternate sides is equal to two right angles.

11. Prove [Cor. 3.22.1].

12. After completing #11, rewrite the results of [3.22] and [Cor. 3.22.1] into one
proposition.

13. Prove [Cor. 3.22.2].
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Proposition 3.23. UNIQUENESS OF ARCS.

Two similar and unequal arcs cannot be constructed on the same side of the same
chord.

Proof. Construct AB. Suppose instead that two similar and unequal arcs ACB and
ADB are constructed on the same side of AB. Construct ADC, CB, and DB.

X\

Figure 3.2.27: [3.23]

Since arc ACB is similar to arc ADB, ZADB = ZACB by [Def. 3.10]; this contra-
dicts [1.16] and proves our claim. O
Proposition 3.24. EQUALITY OF SIMILAR ARCS.

Similar arcs standing on equal chords are equal in length.

Proof. Construct AB = CD and arcs AEB and CFD such that AEB ~ CFD. We
claim AEB = CFD.

Figure 3.2.28: [3.24]

Since AB = CD, if AB is applied to CD such that the point A coincides with C
and the point B coincides with D, then the chord AB coincides with C'D. Because
AEB ~ CFD, they must coincide at every point [3.23]. This proves our claim. [

Corollary. 3.24.1. Since the chords are equal in length, they are congruent, there-

fore the arcs, being similar, are also congruent.
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Proposition 3.25. CONSTRUCTION OF A CIRCLE FROM AN ARC.
Given an arc of a circle, it is possible to construct the circle to which the arc belongs.

Proof. Given an arc (ABC) of OF, we wish to construct OF.

A C
Figure 3.2.29: [3.25]

Take any three points A, B, C on arc ABC. Construct AB, BC. Bisect AB at D and
BC at E. Construct DF | AB and EF 1 BC. We claim that F, the intersection of
DF and EF, is the center of the required circle.

Because DF bisects and is perpendicular to AB, the center of the circle of which
ABC is an arc lies on DF [3.1, Cor. 1]. Similarly, the center of the circle of which
ABC is an arc lies on EF.

Since F is the intersection of DF and EF, our proof is complete. O
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Proposition 3.26. ANGLES AND ARCS 1.

In equal circles, equal angles at the centers or on the circumferences stand upon
arcs of equal length.

Proof. Construct OG and OH with equal radii and with equal angles at the centers:
/BGC in OG and ZEHF in OH. Also construct equal angles ZBAC in OG where
A is on the circumference and ZEDF in OH where D is on the circumference. We
claim that arc BKC = arc ELF.

Figure 3.2.30: [3.26]

Construct BC and EF and consider ABGC and AEHF: BG = EH,GC = HF, and
/BGC = /EHF. By [1.4], ABGC = AEHF, and so BC = EF.

By [3.20], /ZBAC = % - Z/BGC and ZEDF = i .- Z/EHF. Since /BGC = /EHF by
hypothesis, /BAC = Z/EDF. By [Def. 3.10], arc BAC ~ arc EDF. And by [3.24],
arc BAC = arc EDF.

By [Def. 3.1], OG and OH are equal in measure, and so arc BKC = arc ELF which

proves our claim. O

Corollary. 3.26.1. If the opposite angles of a cyclic quadrilateral are equal, one of
its diagonals must be a diameter of the circumscribed circle.

Corollary. 3.26.2. Parallel chords in a circle intercept equal arcs.

Corollary. 3.26.3. If two chords intersect at any point within a circle, the sum of
the opposite arcs which they intercept is equal to the arc which parallel chords inter-
secting on the circumference intercept. If two chords intersect at any point outside
a circle, the difference of the arcs they intercept is equal to the arc which parallel
chords intersecting on the circumference intercept.
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Corollary. 3.26.4. If two chords intersect at right angles, the sum of the opposite
arcs which they intercept on the circle is a semicircle.

Exercises.

1. Prove [Cor. 3.26.1].
2. Prove [Cor. 3.26.2].
3. Prove [Cor. 3.26.3].
4. Prove [Cor. 3.26.4].
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Proposition 3.27. ANGLES AND ARCS II.

In equal circles, angles at the centers or at the circumferences which stand on equal

arcs are equal in measure.

Proof. Construct OG and OH with equal radii and construct angles at the centers
(Z/AOB, /DHF) and at the circumferences (/ACB, /DFFE) which stand on equal
arcs (AGB, DK E). We claim that ZAOB = Z/DHE and ZACB = /DFE.

(@]
l

Figure 3.2.31: [3.27]

Consider the angles at the centers (/AOB, /DHE). Suppose that ZAOB > /DHE
and that ZAOL = /DHE. Since the circles are equal in all respects, arc AGL =
arc DK F [3.26]. Notice that arc LB > 0.

But arc AGB = arc DK FE by hypothesis. Hence arc AGB = arc AGL and arc AGB =
arc AGL®darc LB where arc LB = 0, a contradiction. A corresponding contradiction
follows if we assume that ZAOB < ZDHE. Therefore, ZAOB = /DHE.

Now consider the angles at the circumference. Since 2 - ZACB = ZAOB and 2 -
/DFE = /DHE by [3.20], ZACB = Z/DFE. This completes the proof. O
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Proposition 3.28. CHORDS AND ARCS I

In equal circles, chords of equal length divide the circumferences into arcs, and
these arcs are respectively equal.

Proof. Construct equal circles (0O, OH) with equal chords (AB, DE). We claim
that AB and DE divide the circumferences of OO and OH, respectively, so that arc
AGB = arc DKFE and arc ACB = arc DFE.

Figure 3.2.32: [3.28]

If the equal chords are diameters, all arcs are equal semicircles, which completes
the proof.

Otherwise, construct AO, OB, DH, and HE. Because the circles are equal in all

respects, their radii are equal [Def. 3.1].

Consider AAOB and ADHE: AO = DH, OB = HE, and AB = DE. By [1.8],
ANAOB = ADHE; hence ZAOB = Z/DHUE, and so arc AGB = arc DK E [3.26].

Since the whole circumference AGBC is equal in measure to the whole circumfer-
ence DK EF, it follows that arc ACB = arc DF E. This proves our claim. O
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Proposition 3.29. CHORDS AND ARCS II.
In equal circles, equal arcs stand opposite equal chords.

Proof. Construct equal circles OO and OH where arc AGB = arc DK E. We claim
that AB = DE.

Figure 3.2.33: [3.29]

Construct AO, OB, DH, and HE. Because the circles are equal in measure, the
angles ZAOB and Z/DHFE at the centers which stand on the equal arcs AGB and
DKE are themselves equal [3.27].

Consider AAOB and ADHE: AO = DH, OB = HE, and ZAOB = /DHE. By
[1.4], AAOB = ADHE. Therefore, AB = DE, which proves our claim. O

Corollary. 3.29.1. Propositions [3.26]-[3.29] are related in the following sense: in
circles with equal radius,

1. In [3.26], equal angles imply equal arcs.
2. In [3.27], equal arcs imply equal angles. Together, [3.26] and [3.27] state that

equal angles and equal arcs are equivalent.
3. In [3.28], equal chords imply equal arcs.
4. In [3.29], equal arcs imply equal chords. Together, [3.28] and [3.29] state that

equal chords and equal arcs are equivalent.

Or: in circles with equal radius, equal chords <= equal angles <= angles stand

on equal arcs.

Remark. Since the two circles in the four last propositions are equal, they are con-
gruent figures, and the truth of the propositions is made evident by superposition.
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Proposition 3.30. BISECTING AN ARC.

Proof. We wish to bisect the given arc ACB.

Figure 3.2.34: [3.30]

Construct the chord AB and bisect it at D. Construct DC' 1. AB, intersecting the
arc at C. We claim that arc ACB is bisected at C.

Construct AC and BC, and consider AADC and ABDC: AD = DB, they share
side DC, and ZADC = /BDC. By [1.4], AADC = ABDC, and so AC = BC.

By [3.28], arc AC = arc BC| since arc ACB = arc AC ®arc BC, arc ACB is bisected
at C. O

Exercises.

1. Suppose that ABCD is a semicircle with diameter AD and a chord BC. Extend
BC to BC and AD to ﬁ, and suppose each ray intersects at E. Prove that if CE is
equal in length to the radius of ABCD, then arc AB = 3-CD. [See the final chapter
for a solution.]

2. The internal and the external bisectors of the vertical angle of a triangle in-
scribed in a circle meet the circumference again at points equidistant from the
endpoints of the base.

3. If A is one of the points of intersection of two given circles and two chords ACD,
AC'D’ are constructed, cutting the circles in the points C, D, C’, and D’, then
the triangles ABCD, ABC’'D’ formed by joining these to the second point B of
intersection of the circles are equiangular.

4. If the vertical angle ZACB of a triangle inscribed in a circle is bisected by a
line @ which meets the circle again at D, and from D perpendiculars DE, DF are
constructed to the sides, one of which is extended, prove that EA = BF and hence
that CE = $(AC + BC).
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Proposition 3.31. THALES’ THEOREM.

In a circle,

(1) if a circle is divided into two semicircles, then the angle contained in either
arc is a right angle;

(2) if a circle is divided into two unequal arcs and an angle is contained in the
larger of the two arcs, then the angle contained in that arc is an acute angle;

(3) if a circle is divided into two unequal arcs and an angle is contained in the
smaller of the two arcs, then the angle contained in that arc is an obtuse angle.

Proof. Construct OO, diameter AB, and points C, D, and E such that C' and D are
on one semicircle and F is on the other semicircle. We claim that:

(1) ZACB in arc ACB is a right angle;

(2) ZACFE in arc ACF is an acute angle.

(3) ZACD in arc ACD is an obtuse angle.

Figure 3.2.35: [3.31]

Claim 1: ZACB in arc ACB is a right angle;

Construct radius OC and extend AC to AC. Consider AAOC: since AD = OC,
/ACO = ZOAC. Similarly in AOCB, Z/0CB = ZCBO. Hence,

ACB = JACO+ Z0CB
= ZLOAC+ ZCBO
= /BAC+ ZCBA

Consider AABC: by [1.32], /FCB = /BAC + /CBA. Hence, /ZACB = /FCB
where each are adjacent angles; thus, ZACB is a right angle.
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Claim 2: ZACE in arc ACE is an acute angle.

Construct CE. Since ZACB = /ACE + /BCE, Z/ACB > /ACE. But we have
proven that ZACB is a right angle; thus, ZACFE is acute.

Figure 3.2.36: [3.31]

Claim 3: ZACD in arc ACD is an obtuse angle;

Construct CD. Since /ACD = Z/ACB + /BCD, /ACD > /ACB. Since ZACB is a
right angle, ZACFE is obtuse. O

Corollary. 3.31.1. If a parallelogram is inscribed in a circle, its diagonals intersect

at the center of the circle.

Corollary. 3.31.2. [3.31] holds if arcs are replaced by chords of appropriate

length, mutatis mutandis.
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Proposition 3.32. TANGENT-CHORD ANGLES RELATED TO ANGLES ON THE
CIRCUMFERENCE WHICH STAND ON THE CHORD.

If a line is tangent to a circle, and from the point of intersection a chord is con-
structed cutting the circle, the angles made by this chord with the tangent are
respectively equal to the angles in the alternate arcs of the circle.

Proof. Construct EF such that EF is tangent to OABC at A. Construct chord AC;
notice that AC cuts OABC. We claim that the angles made by this chord with the
tangent are respectively equal to the angles in the alternate arcs of the circle. We
shall prove this in two cases.

A

Figure 3.2.37: [3.32](«)

Case 1: We wish to show that ZABC = ZF AC in figure («).

Construct AB such that AB | FE. Also construct BC. Because BF is tangent to
OABC, AB is clearly constructed at A, and AB L H’, by [3.19] we find that AB
passes through the center of OABC. By [3.31], ZACB is a right angle; since AABC
is a triangle, the sum of the two remaining angles, ZABC'+ ZC AB, equals one right
angle.

Since ZBAF is a right angle by construction, ZABC + ZCAB = ZBAF. From this
we obtain ZABC = /BAF — /CAB = /F AC, which proves the first case.
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Case 2: We wish to prove that ZCAE = ZCDA in figure (5).

Figure 3.2.38: [3.32](3)

Take any point D on the arc AC. Since the quadrilateral ABCD is inscribed in a
circle, the sum of the opposite angles ZABC + ZC D A equals two right angles [3.22]
and is therefore equal to the sum ZFAC + ZCAE. However, ZABC = ZFAC by
case 1. Hence, /CDA = ZCAE.

This proves our second and last case, completing the proof. O

Exercises.

1. If two circles touch, any line constructed through the point of intersection will
cut off similar segments.

2. If two circles touch and any two lines are constructed through the point of inter-
section (cutting both circles again), the chord connecting their points of intersection
with one circle is parallel to the chord connecting their points of intersection with
the other circle.

3. Suppose that ACB is an arc of a circle, Cﬁ a tangent at C' (meeting the chord
AB extended to F), and AD 1| AB where D is a point of AB. Prove that if DE be
bisected at C then the arc AC =2-CB.

4. If two circles touch at a point A and if ABC is a chord through A, meeting the
circles at points B and C, prove that the tangents at B and C are parallel to each
other, and that when one circle is within the other, the tangent at B meets the outer
circle at two points equidistant from C.

5. If two circles touch externally, their common tangent at either side stands oppo-
site a right angle at the point of intersection, and its square is equal to the rectangle
contained by their diameters.
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Proposition 3.33. CONSTRUCTING A SEGMENT OF A CIRCLE ON A LINE
WHERE THE SEGMENT CONTAINS AN ANGLE EQUAL TO A GIVEN ANGLE.

Proof. Construct 4B and ZHGF. On f@, we wish to construct a segment of a circle
which contains an angle equal to ZHGF.

Figure 3.2.39: [3.33]

If /ZHGF is a right angle, construct a semicircle on fﬁ as our segment. By [3.31],
a semicircle contains a right angle.

Otherwise, construct /BAE = /HGF. Construct AC | AF and BC | AB. Let AC
be the diameter of O ABC, which we claim is the required circle.

Notice that OABC has B on its circumference because Z/ABC'is a right angle [3.31].
Also, OABC touches AE because /CAFE is a right angle [3.16]. It follows that
/BAFE = ZACB. Since /BAFE = Z/HGF by construction, /HGF = Z/ACB.

Thus on f@, we have constructed a segment of OABC which contains an angle
equal to ZHGF. O

Exercises.

1. Construct a triangle, being given the base, vertical angle, and any of the follow-
ing data:

(a) a perpendicular.
(b) the sum or difference of the sides.
(c) the sum or difference of the squares of the sides.

(d) the side of the inscribed square on the base.
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(e) the median that bisects the base.

2. If lines are constructed from a fixed point to all the points of the circumference
of a given circle, prove that the locus of all their points of bisection is a circle.

3. Given the base and vertical angle of a triangle, find the locus of the midpoint of
the line joining the vertices of equilateral triangles constructed on the sides.

4. In the same case, find the loci of the vertices of a square constructed on one of
the sides.

Proposition 3.34. CONSTRUCTING A SEGMENT OF A CIRCLE WHERE THE
SEGMENT CONTAINS AN ANGLE EQUAL TO A GIVEN ANGLE.

Proof. Construct OABC and Z/HGF. We wish to construct a segment of OABC
which contains an angle equal to ZHGF.

Choose point A on the circumference of OABC and construct the tangent AD. On
AD, construct ZDAC = ZHGF. We claim that segment AC of OABC is the re-
quired segment.

Figure 3.2.40: [3.34]

Choose any point B on the circumference of OABC other than from the arc AC.
Construct AB and BC. By [3.32], ZDAC = ZABC. But ZDAC = ZHGF by
construction, and so ZHGF = ZABC.

Thus on OABC, we have constructed a segment of O ABC which contains an angle
equal to ZHGF. O
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Proposition 3.35. AREAS OF RECTANGLES CONSTRUCTED ON CHORDS.

If two chords of a circle intersect at one point within the circle, then the area of the
rectangle contained by the divided segments of the first chord is equal in area to
the rectangle contained by the divided segments of the second chord [Def. 2.4].

Proof. Construct OO with chords AB and C'D which intersect at one point. We
claim that the rectangles contained by the divided segments are equal in area and

shall prove this claim in four cases.

Figure 3.2.41: [3.35], case 1

Case 1: if the point of intersection is the center of 0O, AO = OB = DO = OC.
Hence, AO - OB = DO - OC.

Figure 3.2.42: [3.35], case 2

Case 2: suppose that AB passes through O and that CD does not; also suppose
they intersect at £ and that AB L CD.

Construct OC. Because AB is divided equally at O and unequally at E, by [2.5]

AE - FB + (OF)® = (OB)?

Since OB = OC,
AE -EB + (OFE)* = (0C)?
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But (OC)? = (OE)? 4 (EC)? by [1.47], and therefore

AE . FB+(OFE)? — (OE)+ (EC)
AE.FB - (BEC)
C
A B
D

Figure 3.2.43: [3.35], case 2

Because AB passes through the center and cuts C'D, which does not pass through
the center at a right angle, AB bisects CD by [3.3]. So (EC)?> = CE - ED, and
therefore, AE - EB = CE - ED.

A "

D

Figure 3.2.44: [3.35], case 3

3. Construct diameter AB of OO which cuts C'D such that AB f CD.

Construct OC, OD, and OF L CD [1.11]. Since CD is cut at right angles by OF
where OF passes through O, CD is bisected at F [3.3] and divided unequally at F.
By [2.5], CE - ED + (FE)2 = (FD)2.

Adding (OF)? to each side of the equality and applying [1.47], we obtain:

CE-ED+ (FE)?+(OF)? = (FD)?+ (OF)?
CE-ED+ (OE)? = (0OD)?
CE -ED + (OE)? (OB)?

Again, since AB is bisected at O and divided unequally at £, AE - EB + (OE)? =
(OB)? [2.5].
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A "

D

Figure 3.2.45: [3.35], case 3

It follows that

CE-FD+ (0OF)? — AE-TB+ (0F)?
CE.-FD - AE-FB

4. Suppose neither chord passes through the center and they intersect at F.

-n

Figure 3.2.46: [3.35], case 4

Through E, construct diameter F'G. By case 3, the rectangle FE - EG = AE - EB
and FE - EG = CE - ED. Hence, AE - EB = CE - ED. O

Corollary. 3.35.1. If a chord of a circle is divided at any point within the circle, the
rectangle contained by its segments is equal to the difference between the square of
the radius and the square of the segment constructed from the center to the point of
section.

Corollary. 3.35.2. If the rectangle contained by the segments of one of two inter-
secting segments is equal to the rectangle contained by the segments of the other, the

four endpoints are concyclic.
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Corollary. 3.35.3. If two triangles are equiangular, the rectangle contained by the
non-corresponding sides about any two equal angles are equal.

Figure 3.2.47: [3.35], Cor. 3

Proof. Let AABO and ADCO be the equiangular triangles, and let them be placed
so that the equal angles at O are vertically opposite and that the non-corresponding
sides, AO and CO, form segment CA. Then the non-corresponding sides BO, OD
form segment BD. Since ZABD = /ACD, the points A, B, C, D are concyclic [3.21,
Cor. 1]. Hence, AO - OC = BO - OD [3.35]. O

Exercises.

1. In any triangle, the rectangle contained by two sides is equal in area to the
rectangle contained by the perpendicular on the third side and the diameter of the
circumscribed circle.

2. The rectangle contained by the chord of an arc and the chord of its supplement
is equal to the rectangle contained by the radius and the chord of twice the supple-
ment.

3. Ifthe base of a triangle is given with the sum of the sides, the rectangle contained
by the perpendiculars from the endpoints of the base on the external bisector of the

vertical angle is given.

4. If the base and the difference of the sides is given, the rectangle contained by
the perpendiculars from the endpoints of the base on the internal bisector is given.

5. Through one of the points of intersection of two circles, construct a secant so that
the rectangle contained by the intercepted chords may be given, or is a maximum.
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\
ay

e F
E
Figure 3.2.48: [3.35], #6

6. Consider the arc AB = AF + FB. The rectangle AF - FB is equal in area to
the rectangle contained by the radius and 2 - FI; that is, it is equal to the rectangle
contained by the radius and a length equal to CF + BG. Hence, if the sum of two
arcs of a circle is greater than a semicircle, the rectangle contained by their chords
is equal to the rectangle contained by the radius, and the sum of the chords of the
supplements of their sum and their difference.

7. Through a given point, construct a transversal cutting two given lines so that
the rectangle contained by the segments intercepted between it and the line may
be given.

8. If the sum of two arcs AC, CB of a circle is less than a semicircle, the rectangle
AC'-CB contained by their chords is equal in area to the rectangle contained by the
radius and the excess of the chord of the supplement of their difference above the
chord of the supplement of their sum.
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Proposition 3.36. THE AREA OF RECTANGLES CONSTRUCTED ON A TAN-
GENT AND A POINT OUTSIDE THE CIRCLE I.

Suppose we are given a circle and a point outside of the circle. If two segments
are constructed from the point to the circle, the first of which intersects the circle
at two points and the second of which is tangent to the circle, then the area of the
rectangle contained by the subsegments of the first segment is equal to the square
on the tangent.

Proof. Construct OO and point P outside of ©O. Then construct PT tangent to OO
at 7T'; also construct PA such that PA intersects the circle at B and again at A. We
claim that AP - BP = (PT)?. We prove this claim in two cases.

T

Figure 3.2.49: [3.36], case 1

Case 1: PA passes through O.
Construct OT. Because AB is bisected at O and divided externally at P, the rect-
angle AP - BP + (OB)* = (OP)? [2.6].

Since PT is a tangent to OO and OT is constructed from the center to the point
of intersection, the angle ZOT P is right [3.18]. Hence (OT)? + (PT)? = (OP)? by
[1.47].

Therefore AP-BP + (OB)? = (OT)?+ (PT)?. But (OB)? = (OT)?, and so AP-BP =
(PT)2.
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Case 2: PA does not pass through O.

|

Figure 3.2.50: [3.36], case 2

Construct the perpendicular OC 1 AB; also construct OT, OB, OP. Because OC,
a segment through the center, cuts AB, which does not pass through the center at
right angles, OC bisects AB [3.3].

Since AB is bisected at C' and divided externally at P, we find that AP - BP +
(CB)? = (CP)? [2.6]. Adding (OC)? to each side, we obtain:

AP - BP + (CB)? + (0OC)? (CP)? + (0C)?
AP.BP+ (0B)? = (OP)?

We also have that (OT)? + (PT)? = (OP)?, from which it follows that

AP .BP+ (0OB)* = (OT)* + (PT)?

Since OB = OT, (OB)? = (OT)?, and so AP - BP = (PT)?. O

Remark. The two propositions [3.35] and [3.36] may be written as one statement:
the rectangle AP - BP contained by the segments of any chord of a given circle
passing through a fixed point P, either within or outside of the circle, is constant.

Proof. Suppose O is the center the circle, and construct OA, OB, OP. Notice that
AOAB is an isosceles triangle, and OP is a segment constructed from its vertex to
a point P in the base or the extended base.

It follows that the rectangle AP - BP is equal to the difference of the squares of OB
and OP; therefore, it is constant. O

Corollary. 3.36.1. If two segments AB, CD are extended to meet at P, and if the
rectangle AP - BP = CP - DP, then the points A, B, C, D are concyclic (compare
[3.35, Cor. 2]).



CHAPTER 3. CIRCLES 201

Corollary. 3.36.2. Tangents to two circles from any point in their common chord
are equal (compare [3.17, #6]).

Corollary. 3.36.3. The common chords of any three intersecting circles are concur-
rent (compare [3.17, #7]).

Exercises.

1. If the segment AD is constructed from the vertex A of AABC which then in-
tersects CB extended to D and creates the angle /BAD = /ACB, prove that
DB-DC = (DA)>.

2. Prove [Cor. 3.36.1].



CHAPTER 3. CIRCLES 202

Proposition 3.37. THE AREA OF RECTANGLES CONSTRUCTED ON A TAN-
GENT AND A POINT OUTSIDE THE CIRCLE II.

Suppose we are given a circle and a point outside of the circle. If two segments are
constructed from the point to the circle, the first of which intersects the circle at
two points, and the area of the rectangle contained by the subsegments of the first
segment is equal to the square on the second segment, then the second segment is
tangent to the circle.

Proof. If the rectangle (AP - BP) contained by the segments of a secant and con-
structed from any point (P) outside of the circle (OO) is equal in area to the square
on the segment (PT) constructed from the same point to meet the circle, we claim
that the segment which meets the circle is a tangent to that circle.

Figure 3.2.51: [3.37]

From P, construct PQ touching OO [3.17]. Construct OP, OQ, OT. By hypothesis,
AP - BP = (PT)? by [3.36], AP - BP = (PQ)?. Hence (PT)? = (PQ)?, and so
PT = PQ.

Consider the triangles AOTP and AOQP: each have OT = OQ, TP = QP, and
they share base OP in common. By [1.8], AOTP = AOQP, and so ZOTP = ZOQP.

But ZOQP is a right angle since PQ is a tangent [3.38]; hence ZOT P is right, and
therefore PT is a tangent to OO [3.16]. O

Corollary. 3.37.1. Suppose we are given a circle and a point outside of the circle
where two segments are constructed from the point to the circle, the first of which
intersects the circle at two points. Then the second segment is tangent to the circle
if and only if the area of the rectangle contained by the subsegments of the first
segment is equal to the square on the tangent.
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Exercises.

1. Construct a circle passing through two given points and fulfilling either of the
following conditions:

(a) touching a given line;
(b) touching a given circle.

2. Construct a circle through a given point and touching two given lines; or touching
a given line and a given circle.

3. Construct a circle passing through a given point having its center on a given line
and touching a given circle.

4. Construct a circle through two given points and intercepting a given arc on a
given circle.

5. If A, B, C, D are four collinear points and EF is a common tangent to the cir-
cles constructed upon AB, CD as diameters, then prove that the triangles AAEDB,
ACFD are equiangular.

6. The diameter of the circle inscribed in a right-angled triangle is equal to half the
sum of the diameters of the circles touching the hypotenuse, the perpendicular from
the right angle of the hypotenuse, and the circle constructed about the right-angled
triangle.

Exam questions for chapter 3.
1. What is the subject-matter of chapter 3?
. Define equal circles.

. Define a chord.

2

3

4. When does a secant become a tangent?

5. What is the difference between an arc and a sector?
6. What is meant by an angle in a segment?

7

. If an arc of a circle is one-sixth of the whole circumference, what is the magnitude
of the angle in it?

8. What are segments?

9. What is meant by an angle standing on a segment?

10. What are concyclic points?

11. What is a cyclic quadrilateral?

12. How many intersections can a line and a circle have?
13. How many points of intersection can two circles have?

14. Why is it that if two circles touch they cannot have any other common point?
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15. State a proposition that encompasses [3.11] and [3.12].

16. What proposition is #16 a limiting case of?

17. What is the modern definition of an angle?

18. How does the modern definition of an angle differ from Euclid’s?
19. State the relations between [3.16], [3.18] and [3.19].

20. What propositions are [3.16], [3.18] and [3.19] limiting cases of?
21. How many common tangents can two circles have?

22. What is the magnitude of the rectangle of the segments of a chord constructed
through a point 3.65m distant from the center of a circle whose radius is 4.25m?

23. The radii of two circles are 4.25 and 1.75 ft respectively, and the distance
between their centers 6.5 ft. Find the lengths of their direct and their transverse

common tangents.

24. If a point is h feet outside the circumference of a circle whose diameter is 7920
miles, prove that the length of the tangent constructed from it to the circle is \/3h/2

miles.

25. Two parallel chords of a circle are 12 inches and 16 inches respectively and the
distance between them is 2 inches. Find the length of the diameter.

26. What is the locus of the centers of all circles touching a given circle in a given
point?

27. What is the condition that must be fulfilled that four points may be concyclic?

28. If the angle in a segment of a circle equals 1.5 right angles, what part of the

whole circumference is it?
29. Mention the converse propositions of chapter 3 which are proved directly.
30. What is the locus of the midpoints of equal chords in a circle?

31. The radii of two circles are 6 and 8, and the distance between their centers is
10. Find the length of their common chord.

32. If a figure of any even number of sides is inscribed in a circle, prove that the
sum of one set of alternate angles is equal to the sum of the remaining angles.

Chapter 3 exercises.

1. If two chords of a circle intersect at right angles, the sum of the squares on their
segments is equal to the square on the diameter.

2. If a chord of a given circle stands opposite a right angle at a fixed point, the
rectangle of the perpendiculars on it from the fixed point and from the center of the
given circle is constant. Also, the sum of the squares of perpendiculars on it from
two other fixed points (which may be found) is constant.
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3. If through either of the points of intersection of two equal circles any line is
constructed meeting them again in two points, these points are equally distant
from the other intersection of the circles.

4. Construct a tangent to a given circle so that the triangle formed by it and two
fixed tangents to the circle shall be:

(a) a maximum;
(b) a minimum.

5. If through the points of intersection A, B of two circles any two segments ACD,
BEF are constructed parallel to each other which meet the circles again at C, D,
E, F, then we find that CD = EF.

6. In every triangle, the bisector of the greatest angle is the least of the three
bisectors of the angles.

7. The circles whose diameters are the four sides of any cyclic quadrilateral inter-

sect again in four concyclic points.

8. The four vertices of a cyclic quadrilateral determine four triangles whose ortho-
centers (the intersections of their perpendiculars) form an equal quadrilateral.

9. If through one of the points of intersection of two circles we construct two com-
mon chords, the segments joining the endpoints of these chords make a given angle
with each other.

10. The square on the perpendicular from any point in the circumference of a circle
on the chord of contact of two tangents is equal to the rectangle of the perpendicu-
lars from the same point on the tangents.

11. Find a point on the circumference of a given circle such that the sum of the
squares on whose distances from two given points is either a maximum or a mini-

mum.

12. Four circles are constructed on the sides of a quadrilateral as diameters. Prove
that the common chord of any two on adjacent sides is parallel to the common chord
of the remaining two.

13. The rectangle contained by the perpendiculars from any point in a circle on the
diagonals of an inscribed quadrilateral is equal to the rectangle contained by the
perpendiculars from the same point on either pair of opposite sides.

14. The rectangle contained by the sides of a triangle is greater than the square
on the internal bisector of the vertical angle by the rectangle contained by the
segments of the base.

15. If through A, one of the points of intersection of two circles, we construct any
line ABE% which cuts the circles again at B and C, the tangents at B and C intersect
at a given angle.

16. If a chord of a given circle passes through a given point, the locus of the inter-
section of tangents at its endpoints is a straight line.



CHAPTER 3. CIRCLES 206

17. The rectangle contained by the distances of the point where the internal bisec-
tor of the vertical angle meets the base and the point where the perpendicular from
the vertex meets it from the midpoint of the base is equal to the square on half the
difference of the sides.

18. State and prove the proposition analogous to [3.17] for the external bisector of
the vertical angle.

19. The square on the external diagonal of a cyclic quadrilateral is equal to the sum
of the squares on the tangents from its endpoints to the circumscribed circle.

20. If a “movable” circle touches a given circle and a given line, the chord of contact
passes through a given point.

21. If A, B, C are three points in the circumference of a circle, and D, E are the
midpoints of the arcs AB, AC, and if the segment DE intersects the chords AB, AC
at F and G, then AF = AG.

22. If a cyclic quadrilateral is such that a circle can be inscribed in it, the lines
joining the points of contact are perpendicular to each other.

23. If through the point of intersection of the diagonals of a cyclic quadrilateral the
minimum chord is constructed, that point will bisect the part of the chord between
the opposite sides of the quadrilateral.

24. Given the base of a triangle, the vertical angle, and either the internal or the
external bisector at the vertical angle, construct the triangle.

25. If through the midpoint A of a given arc BAC we construct any chord AD,
cutting BC at F, then the rectangle AD - AE is constant.

26. The four circles circumscribing the four triangles formed by any four lines pass
through a common point.

27. If X, Y, Z are any three points on the three sides of a triangle AABC, the three
circles about the triangles AYAZ, AZBX, AXCY pass through a common point.

28. If the position of the common point in the previous exercise are given, the three
angles of the triangle A XY Z are given, and conversely.

29. Place a given triangle so that its three sides shall pass through three given
points.

30. Place a given triangle so that its three vertices shall lie on three given lines.

31. Construct the largest triangle equiangular to a given one whose sides shall pass
through three given points.

32. Construct the smallest possible triangle equiangular to a given one whose ver-
tices shall lie on three given lines.

33. Construct the largest possible triangle equiangular to a given triangle whose
sides shall touch three given circles.

34. If two sides of a given triangle pass through fixed points, the third touches a
fixed circle.
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35. If two sides of a given triangle touch fixed circles, the third touches a fixed
circle.

36. Construct an equilateral triangle having its vertex at a given point and the
endpoints of its base on a given circle.

37. Construct an equilateral triangle having its vertex at a given point and the
endpoints of its base on two given circles.

38. Place a given triangle so that its three sides touch three given circles.
39. Circumscribe a square about a given quadrilateral.

40. Inscribe a square in a given quadrilateral.

41. Construct the following circles:

(a) orthogonal (cutting at right angles) to a given circle and passing through
two given points;

(b) orthogonal to two others, and passing through a given point;
(c) orthogonal to three others.

42. If from the endpoints of a diameter AB of a semicircle two chords AD, BE are
constructed which meet at C, we find that AC - AD + BC - BE = (AB)?.

43. If ABCD is a cyclic quadrilateral, and if we construct any circle passing through
the points A and B, another through B and C, a third through C and D, and
a fourth through D and A, then these circles intersect successively at four other
points F, F, G, H, forming another cyclic quadrilateral.

44. If AABC is an equilateral triangle, what is the locus of the point M, if M A =
MB+ MC?

45. In a triangle, given the sum or the difference of two sides and the angle formed
by these sides both in magnitude and position, the locus of the center of the circum-
scribed circle is a straight line.

46. Construct a circle:
(a) through two given points which bisect the circumference of a given circle;
(b) through one given point which bisects the circumference of two given circles.

47. Find the locus of the center of a circle which bisects the circumferences of two
given circles.

48. Construct a circle which bisects the circumferences of three given circles.

49. If CD is a perpendicular from any point C in a semicircle on the diameter AB,
OEFG is a circle touching DB at E, CD at F, and the semicircle at G, then prove
that:

(a) the points A, I, G are collinear;

(b) AC = AE.
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50. Being given an obtuse-angled triangle, construct from the obtuse angle to the
opposite side a segment whose square is equal to the rectangle contained by the
segments into which it divides the opposite side.

51. If O is a point outside a circle whose center is £ and two perpendicular segments
passing through O intercept chords AB, CD on the circle, then prove that (AB)? +
(CD)?+4-(OE)?=8-(R)?.

52. The sum of the squares on the sides of a triangle is equal to twice the sum
of the rectangles contained by each perpendicular and the portion of it comprised
between the corresponding vertex and the orthocenter. It is also equal to 12 - (R)?
minus the sum of the squares of the distances of the orthocenter from the vertices.

53. If two circles touch at C, if D is any point outside the circles at which their radii
through C stands opposite equal angles, and if DFE, DF are tangent from D, prove
that DE - DF — (OD)2.



Chapter 4

Inscription and

Circumscription

This chapter contains sixteen propositions: four relate to triangles, four to squares,
four to pentagons, and four to other figures.

4.1 Definitions

1. If two polygons are related such that the vertices of one lie on the sides of the
other, then:

(a) the inner figure is said to be inscribed in the outer figure;
(b) the outer figure is said to be circumscribed around or about the inner figure.

2. A polygon is said to be inscribed in a circle when all of its vertices intersect the
circumference. Reciprocally, a polygon is said to be circumscribed about or around
a circle when each of its sides touch the circle.

Figure 4.1.1: The hexagon is inscribed in the circle, and the circle is circumscribed
about the hexagon.

3. A circle is said to be inscribed in a polygon when it touches each side of the

209
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figure. Reciprocally, a circle is said to be circumscribed about or around a polygon
when it passes through each vertex of the figure.

4. A polygon which is both equilateral and equiangular is said to be regular.

5. The bisectors of the three internal angles of a triangle are concurrent. Their
point of intersection is called the incenter of the triangle.

6. The circle from [4.5] is called the circumcircle, its radius the circumradius, and
its center the circumcenter of the triangle.

Figure 4.1.2: [4.5]

Figure 4.1.3: [4.5, #2]

7. In[4.5, #2], construct oO such that its radius equals OA-OP = OB-OQ = OC-OR,;
this circle is defines as the polar circle of the triangle AABC.
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8. The nine-points circle is a circle that can be constructed for any given triangle.
It is so named because it passes through nine significant concyclic points defined
from the triangle. These nine points are:

(a) the midpoint of each side of the triangle
(b) the foot of each altitude

(c) the midpoint of the line segment from each vertex of the triangle to the
orthocenter (where the three altitudes meet; these line segments lie on their re-

spective altitudes).!

Figure 4.1.4: [4.5, #4] The nine-points circle

Ihttps://en.wikipedia.org/wiki/Nine-point_circle
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4.2 Propositions from Book IV

Proposition 4.1. CONSTRUCTING A CHORD INSIDE A CIRCLE.

Construct an arbitrary circle and an arbitrary segment such that the segment is
less than or equal to the length of the diameter of the circle. It is possible to con-
struct a chord within the circle equal to the length of the segment.

Proof. Construct OABC with diameter AC and the segment DG < AC. We wish to
construct a chord in OABC equal in length to DG.

Figure 4.2.1: [4.1]

If DG = AC, then the required chord already exists (the diameter of 0 A).

If DG < AC, cut sub-segment AE from diameter AC such that AE = DG [1.3].
With A as center and AF as radius, construct the circle OA, cutting the circle
OABC at the points B and F.

Construct AB: we claim that AB is the required chord.

Notice that AB = AE. Since AE = DG by construction, AB = DG. Since AB is a
chord of OABC, the construction is complete. O
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Proposition 4.2. INSCRIBING A TRIANGLE INSIDE A CIRCLE.

In a given circle, it is possible to inscribe a triangle that is equiangular to a given
triangle.

Proof. We wish to inscribe a triangle equiangular to ADEF in OABC.

Figure 4.2.2: [4.2]

At A on the circumference of OABC, construct the tangent line 2§A§. Construct
/HAC = /DEF, /GAB = /DFE [1.23], and segment BC. We claim that AABC
fulfills the required conditions.

Since /DEF = /HAC by construction and /HAC = ZABC by [3.32], Z/ZDEF =
/ABC. Similarly, /DFE = Z/ACB. By [1.32], /FDE = /BAC.

This completes the construction. O
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Proposition 4.3. CIRCUMSCRIBING A TRIANGLE ABOUT A CIRCLE.

It is possible to circumscribe a triangle about a circle such that the triangle is
equiangular to a given triangle.

Proof. We wish to to construct a triangle equiangular to ADEF about OO.

G E D H

Figure 4.2.3: [4.3]

Extend side DE of ADEF to GH, and construct OA. Construct ZAOB = /GEF
and ZAOC = ZHDF [1.23]. At the points A, B, and C, construct the tangents LM,
MN, and NL to OO. We claim that ALM N fulfills the required conditions.

Because AM touches OO at A, ZOAM is right [3.18]. Similarly, /M BO is right; but
the sum of the four angles of the quadrilateral OAM B is equal to four right angles
[1.32, Cor. 3]. Therefore the sum of the two remaining angles ZAOB + ZAMB
equals two right angles.

By [1.13], /GEF + /FED = two right angles, and so ZAOB + /AMB = /GEF +
/FED. But ZAOB = Z/GEF by construction; hence ZAMB = /FFED. Similarly,
/ALC = Z/EDF. By [1.32], /BNC = /DFFE, and so ALMN is equiangular to
ADEF. This completes the construction. O
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Proposition 4.4. INSCRIBING A CIRCLE IN A TRIANGLE.
It is possible to inscribe a circle in a given triangle.

Proof. We wish to inscribe OO in AABC.

C

Figure 4.2.4: [4.4]

Bisect angles ZCAB and ZABC of AABC with AO and BO, respectively. We claim
that O, their point of intersection, is the center of the required circle.

From O construct OD 1. CB, OE 1 AB, and OF L AC. Consider the triangles
ANOAE and AOAF: ZOAE = ZOAF by construction; ZAEO = ZAFO since each is
right; each triangle shares side OA. By [1.26], AOAE = AOAF, and so OF = OF.

Similarly, OD = OF, and so OD = OF = OF. As a consequence of [3.9], the circle
constructed with O as center and OD as radius will intersect the points D, E, F.

Since each of the angles ZODB, ZOF A, ZOF A is right, each segment touches the
respective sides of the triangle AABC [3.16]. Therefore, the circle OO is inscribed
in the triangle A ABC, which completes the construction. O
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Exercises.

1. In [4.4]: if OC is constructed, prove that ZACB is bisected. Hence, the existence
of the incenter of a triangle is proven. [See the final chapter for a solution.]

2. If the sides BC, C A, AB of the triangle AABC are written as q, b, ¢, and half
the sum of their side-lengths is defined as s, prove that the distances of the vertices
A, B, and C of the triangle from the points of contact of the inscribed circle are

respectively s —a, s — b, s — c.

/
/

Figure 4.2.5: [4.4, #3]

3. If the external angles of the triangle AABC are bisected as in the above Figure,
prove that the three vertices O’, O, O"" of the triangle formed by the three bisectors
are the centers of three circles, each touching one side externally and the other two
when extended. These three circles are defined as the escribed circles of the triangle
ANABC.

4. Prove that center of the inscribed circle, the center of each escribed circle, and
two of the vertices of the triangle are concyclic. Also, prove that any two of the
escribed centers are concyclic with the corresponding two of the vertices of the tri-
angle.

5. Of the four points O, O’, O”, O, prove that any one is the orthocenter of the
triangle formed by the remaining three.

6. In the above figure, prove that ABCO’, ACAQO”, and AABQO"" are equiangular.

7. Given the base of a triangle, the vertical angle, and the radius of the inscribed
or any of the escribed circles, construct it.
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Proposition 4.5. CIRCUMSCRIBING A CIRCLE ABOUT A TRIANGLE.
It is possible to circumscribe a circle about a given triangle.

Proof. We wish to construct ©O about AABC.

Figure 4.2.6: [4.5]

Bisect sides AC and BC of AABC at the points F and D, respectively. Construct
DO | BC and EO L CA. We claim that O, the point of intersection of the perpen-
dicular segments, is the center of the required circle.

Construct OA, OB, OC, and consider triangles ABDO and ACDO: sides BD = CD
by construction, the triangles share side DO in common, and /BDO = ZCDO
because each is right. By [1.4], ABDO = ACDO, and so BO = OC.

Similarly, AO = OC, and so AO = BO = CO. As a consequence of [3.9], a circle can
be constructed with O as its center and O A as its radius such that the circumference
OO0 will pass through A, B, and C. Thus OO is circumscribed about the triangle
ANABC. O

Corollary. 4.5.1. Since the perpendicular from O to AB bisects AB by [3.3], we see
that the perpendiculars at the midpoints of the sides of a triangle are concurrent.
(See also [Def. 4.7].)
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Exercises.

1. Prove that the three altitudes of a triangle (A ABC') are concurrent. (This proves
the existence of the orthocenter of a circle.) [See the final chapter for a solution.]

2. In the figure below, prove that the three rectangles OA - OP, OB - OQ, OC - OR
are equal in area. (See also [Def. 4.7].)

Figure 4.2.7: [4.5, #2]

3. If the altitudes of a triangle are extended to meet a circumscribed circle, prove
that the intercepts between the orthocenter and the circle are bisected by the sides
of the triangle.

4. Prove that the circumcircle of a triangle is the “nine points circle” of each of the
four triangles formed by joining the centers of the inscribed and escribed circles.
(See [Def. 4.8].)

5. Prove that the radius of the “nine points circle” of a triangle is equal to half its
circumradius. (See [Def. 4.8].)

6. Prove that the distances between the vertices of a triangle and its orthocenter
are respectively the doubles of the perpendiculars from the circumcenter on the
sides.

Remark. The orthocenter, centroid, and circumcenter of any triangle are collinear;
they lie on the Euler line?.

2https://en.wikipedia.org/wiki/Euler_line
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Figure 4.2.8: The Euler Line

Proposition 4.6. INSCRIBING A SQUARE IN A CIRCLE.
It is possible to to inscribe a square in a given circle.

Proof. We wish to inscribe the square [JABCD in OO.

Figure 4.2.9: [4.6]

Construct diameters AC and BD such that AC L BD. Also construct AB, BC, CD,
and DA. We claim that JABCD is the required square.

Notice that the four angles at O are equal since they are right angles. Hence the
arcs on which they stand are equal [3.26] and the four chords on which they stand
are equal in length [3.29]. Therefore the figure LIABC D is equilateral.

Again, since AC is a diameter, the angle ZABC is right [3.31]. Similarly, the re-
maining angles are right. It follows that [JABCD is a square inscribed in OO,
which completes the construction. O
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Proposition 4.7. CIRCUMSCRIBING A SQUARE ABOUT A CIRCLE.
It is possible to circumscribe a square about a given circle.

Proof. We wish to construct the square [JEHGF about OO.

Figure 4.2.10: [4.7]

Through O construct diameters AC and BD such that AC | BD, and at the points
A, B, C, and D construct the tangential segments HE = FF = FG = GH. We
claim that DEFGH is the required square.

Since AFE touches the circle at A, the angle ZFAO is right [3.18] and therefore
equal to ZBOC, which is right by construction. Thus AF || OB and EB | AO.

Since AO = OB (both are radii of cO), the figure HDOA is a rhombus. Since the
angle ZAOB is right, HAOBE is a square.

Similarly, each of the figures LJOCFB, [1IDGCO, and JHDOA is a square. Simi-
larly to the above, LIEHGF is also a square circumscribed about OO, which com-
pletes the construction. O

Corollary. 4.7.1. The circumscribed square, JEHGF, has double the area of the
inscribed square, L1IBC D A.

Exercises.

1. Prove [Cor. 4.7.1]. [See the final chapter for a solution.]
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Proposition 4.8. INSCRIBING A CIRCLE IN A SQUARE.
It is possible to inscribe a circle in a given square.

Proof. We wish to inscribe OO in DEHGF'.

Figure 4.2.11: [4.8]

Bisect adjacent sides EH and EF at A and B, respectively. Through A and B,
construct AC L. EH and BD 1 EF. We claim that O, the point of intersection of
these parallel segments, is the center of the required circle, OO.

Because CJEAOB is a parallelogram, its opposite sides are equal; therefore OA =
EB. But EB is half the side of JEHGF, and so OA = half of the side of IEHGF.
This is also true for each of the segments OB, OC, and OD, mutatis mutandis.
Hence

As a consequence of [3.9], O is the center of OO. And since these segments are
perpendicular to the sides of the given square, the circle constructed with O as
center and OA as radius is inscribed in the square. This completes the construction.

(I
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Proposition 4.9. CIRCUMSCRIBING A CIRCLE ABOUT A GIVEN SQUARE.
It is possible to circumscribe a circle about a given square.

Proof. We wish to construct ©O about LJABCD.

Figure 4.2.12: [4.9]

Construct perpendicular diagonals AC and BD intersecting at O. We claim that O
is the center of the required circle.

Consider AABD and ACBD: since [JABCD is a square, DA = AB = BC = CD.
The triangles share side BD. By [1.8], AABD =~ ACBD, and so ZABD = /CBD.
Since /ABC = ZABD + /CBD, Z/ABC is bisected by BD. Similarly, we can prove
that ZADC is bisected by BD and that ZDAB and Z/BCD are bisected by AC.

Since LJABCD is a square, /ABC = /BCD = /CDA = /DAB, and so ZABO =
/CBO = /BCO =/DCO = /CDO = ZADO = /DAO = Z/BAO.

Consider AABO and ACBO: ZABO = Z/CBO by the above, they share side OB,
and AB = BC by the above. By [1.4], AABO = ACBO. Also notice that ZBAO =
/ABO = /CBO = /BCO, and so each triangle is isosceles. By [1.6], AO = BO =
CO.

As a consequence of [3.9], O is the center of OO with radius = OA which intersects
B, C, and D and is clearly constructed about the square L1ABC D. This completes
the construction. O
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Proposition 4.10. CONSTRUCTION OF AN ISOSCELES TRIANGLE WITH BASE
ANGLES DOUBLE THE VERTICAL ANGLE.

It is possible to construct an isosceles triangle such that each base angle is double
the vertical angle.

Proof. We wish to construct an isosceles triangle A ABD such that

/DBA=2-/DAB=/BDA

Figure 4.2.13: [4.10]

Construct AB and divide it at C such that AB - BC = (A—C’)2 [2.6].

With A as center and AB as radius, construct OA; on its circumference construct
BD = AC [4.1]. Also construct AD. We claim that AABD fulfills the required

conditions.

Construct CD and the circle OACD about AACD [4.5].

Since BD = AC, AB - BC = (BD)". Notice that B is outside of oACD. By [3.37]
BD is tangent to OACD. By [3.32], /ZBDC = /DAC, and so

/CDA+ /BDC = /BDA = /ZCDA+ ZDAC

By [1.32], /BCD = Z/CDA+ /DAC, and so Z/BDA = Z/BCD.

Since AB = AD, by [1.5] /BDA = /BCD = /CBD.

Since Z/CBD = /BCD, by [1.6] BD = DC. Hence BD = DC = AC.

Again from [1.5], /CDA = /DAC, and so Z/CDA+ /DAC =2 - /DAC.

By the above, /BCD = /CDA+ /DAC, and so /BCD =2-/DAC =2- /DAB.
Since /BCD = /CBD = /DBA, /DBA =2-/DAB.

Since /BDA = /BCD, /DBA = 2 - /ZDAB = /ZBDA, which completes the con-
struction. 0
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Exercises.

1. Prove that AACD is an isosceles triangle whose vertical angle is equal to three
times each of the base angles. [See the final chapter for a solution.]

2. Prove that BD is the side of a regular decagon inscribed in the circle OBDE.

3. If DB, DE, and EF are consecutive sides of a regular decagon inscribed in a
circle, prove that BF — BD = radius of a circle.

4. If F is the second point of intersection of the circle OACD with OBDE, prove
that DE = DB. If AE, BE, CE, and DFE are constructed, then triangles AACE
and AADE are each congruent with AABD.

5. Prove that AC is the side of a regular pentagon inscribed in the circle OACD,
and EB the side of a regular pentagon inscribed in the circle OBDE.

6. Since AACE is an isosceles triangle, (EB)? — (EA)? = AB - BC = (BD)?; that
is, prove that the square of the side of a pentagon inscribed in a circle exceeds the
square of the side of the decagon inscribed in the same circle by the square of the
radius.
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Proposition 4.11. INSCRIBING A REGULAR PENTAGON IN A GIVEN CIR-
CLE.

It is possible to inscribe a regular pentagon in a given circle.

Proof. We wish to inscribe a regular pentagon in OABC.

D

A

Figure 4.2.14: [4.11]

Construct any isosceles triangle having each base angle equal to double the vertical
angle [4.10], and then construct AABD equiangular to that triangle such that it is
inscribed in OABC [4.4].

Bisect the angles /DAB and ZABD by constructing AC and BE, respectively. Also
construct EA, ED, DC, and CB. We claim that the figure ABCDF is a regular
pentagon.

Since /DAB = /ABD = 2 - /ADB by construction, AC bisects /DAB, and BE
bisects ZABD, and so

/LBAC = ZCAD = LZADB = /DBE = /ZFEBA

By [Cor. 3.29.1], the chords on which these angles stand are equal in length:

AB=BC=CD=DE=FEA
Hence ABCDF is equilateral.

Again, because the arcs AB and DE are equal in length, if we add the arc BCD to
both, then the arc ABCD is equal in length to the arc BCDE, and therefore the
angles ZAED, / BAFE which stand on them are equal [3.27].

Similarly, it can be shown that all of these angles are equal; therefore ABCDE is
equiangular and a regular pentagon; this proves our claim. O
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Exercises.

1. Prove that the figure formed by the five diagonals of a regular pentagon is an-
other regular pentagon.

2. If the alternate sides of a regular pentagon are extended to intersect, the five
points of meeting form another regular pentagon.

3. Prove that every two consecutive diagonals of a regular pentagon divide each
other in the extreme and mean ratio [2.11].

4. Being given a side of a regular pentagon, construct it.

5. Divide a right angle into five equal parts.
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Proposition 4.12. CIRCUMSCRIBING A REGULAR PENTAGON ABOUT A GIVEN
CIRCLE.

It is possible to circumscribe a regular pentagon about a given circle.

Proof. We wish to construct a regular pentagon about OO.

G

Figure 4.2.15: [4.12]

Use [4.11] to inscribe a regular pentagon inside OO with vertices at points A, B, C,
D, and E; at these points, construct equal tangential segments F'G, GH, HI, I.J,
and JF. We claim that FGH]IJ is the required circumscribed regular pentagon.

Construct OF, OA, and OB. Because the angles ZOAF and ZOEF of the quadri-
lateral AOEF are right angles [3.18], the sum of the two remaining angles ZAOE +
/AFFE equals two right angles. Similarly, the sum ZAOB + ZAGB equals two right
angles; hence Z/AOE+ /AFE = ZAOB+ /AGB. But ZAOFE = ZAOB because they
stand on equal segments AE and AB [3.27]. Hence /AFE = /AGB. Similarly, the
remaining angles of the figure FGHIJ are equal, and so FGH1J is equiangular.

Now construct OF and OG and consider AEOF and ANAOF: AF = FE [3.17, #1],
the triangles share side FO, and AO = EO since each are radii of 0O. By [1.8],
AEOF = NAOF, and so ZAFO = /EFO;or, ZAFE is bisected at F'.

Since /AFE = /AFO + /EFO = 2 - ZAFO, it follows that ZAFO = %4AFE.
Similarly, ZAGO = 1 ZAGB.

Consider AAFO and ANAGO: ZAFE = /AGB implies that ZAFO = ZAGO;
/FAO = /G AO since each are right angles; finally, each shares side AO. By [1.26],
AAFO = NAGO, and so AF = AG.

As a consequence, GF = 2 - AF; similarly, JFF = 2 - EF. And since AF = EF,
GF = JF, and so on for all remaining sides. Therefore, FGHIJ is equilateral and
equiangular; thus, it is a regular pentagon, which proves our claim. O
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Remark. This proposition is a particular case of the following general theorem
(which has an analogous proof): “If tangents are constructed on a circle at the ver-
tices of an inscribed regular polygon with a finite number of sides, they will form a
regular polygon with the same number of sides circumscribed to the circle.”
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Proposition 4.13. INSCRIBING A CIRCLE IN A REGULAR PENTAGON.
It is possible to inscribe a circle in a regular pentagon.

Proof. We wish to inscribe OO in regular pentagon ABCDE.

Figure 4.2.16: [4.13]

Bisect two adjacent angles Z/JAF and /F BG by constructing AO and BO, respec-
tively; we claim that the point of intersection of the bisectors, O, is the center of the

required circle.
Construct CO as well as perpendiculars from O to the five sides of the pentagon.

Consider AABO and ACBO: AB = BC by hypothesis, ZABO = Z/CBO by con-
struction, and each shares side BO. By [1.4] AABO = ACBO, and so Z/BAO =
/ZBCO; however, ZBAO = % - Z/BAFE by construction. Therefore

ZBCO = % - LBAFE = % -/ZBCD

Hence CO bisects the angle ZBCD. Similarly, we can show that DO bisects Z/HDI
and that EO bisects ZIE.J.

Consider ABOF and ABOG: ZOFB = ZOGB since each are right, Z/OBF =
Z/OBG because OB bisects ZABC by construction, and each shares side OB. By
[1.26], ABOF = ABOG, and so OF = OG.

Similarly, all the perpendiculars from O to the sides of the pentagon are equal. By
[3.9], the circle whose center is O with radius OF is inscribed in regular pentagon
ABCDE, which completes the construction. O
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Proposition 4.14. CIRCUMSCRIBING A CIRCLE ABOUT A REGULAR PEN-
TAGON.

It is possible to circumscribe a circle about a regular pentagon.

Proof. We wish to construct OO about regular pentagon ABCDE.

A

Figure 4.2.17: [4.14]

Bisect adjacent angles ZBAFE by AO and ZABC by BO. We claim that O, the point
of intersection of the bisectors, is the center of the required circle.

Similarly, construct OC, OD, and OF. Consider AABO and ACBO: AB = BC and
Z/ABO = ZCBO by construction, and the triangles share BO in common. By [1.4],
ANABO = ANCBO, and so ZBAO = ZBCO.

But /BAFE = /BCD since ABCDE is a regular pentagon. Since /BAO = %ABAE
by construction, ZBCO = $/BCD; hence, CO bisects ZBCD. Similarly, it can be
shown that DO bisects ZCDE and EO bisects ZDFEA.

Because /FAB = /ABC, it follows that /OAB = ZOBA. Consider AOBA: by
[1.4], OA = OB. Similarly, we can show that

OA=0B=0C=0D=0E

By [3.9], O is the center of a circle with radius OA which passes through points
B, C, D, and FE, and is constructed about the regular pentagon ABCDE. This
completes the construction. O
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Proposition 4.15. INSCRIBING A REGULAR HEXAGON IN A CIRCLE.

It is possible to inscribe a regular hexagon in a circle.

Proof. We wish to to inscribe regular hexagon ABCDEF in OO.
B
E~—M—7—¢

Figure 4.2.18: [4.15]

Take a point A on the circumference of OO and construct AO. With A as center and
AO as radius, construct the circle O A, intersecting OO at the points B and F.

Construct OB and OF; extend AO to intersect OA at D, extend BO to intersect OA

and F'A; we claim that hexagon ABCDEF is the required hexagon.

Notice that OA = OB since each are radii of OO. Similarly, AB = OA since each
are radii of OA. Hence, OA = OB = AB, and so AOAB is equilateral.

Since the sum of the interior angles of a triangle is two right angles and equilateral
triangles have equal angles, /AOB = Z/OBA = ZOAB.

Mutatis mutandis, we can show that

/AOB = LAOF = /FOF = /EOD = Z/DOC = ZBOC

By [Cor. 3.29.1], AB = BC = CD = DE = EF = FA and so hexagon ABCDEF is
equilateral.

Also OA = OB = OC = OD = OF = OF since each are radii of OO. By [1.8], each
sub-triangle of hexagon ABC DEF is congruent. It follows that

/ABC = /BCD = /CDFE = /DEF = /EFA=/FAB

and so ABCDEF is equiangular. This completes the construction. O

Remark. [4.13] and [4.14] are particular cases of the following theorem: “A regular
polygon of any finite number of sides has one circle inscribed in it and another
constructed about it, and both circles are concentric.”
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Corollary. 4.15.1. The length of the side of a regular hexagon inscribed in a circle
is equal to the circle’s radius.

Corollary. 4.15.2. If three alternate angles of a hexagon are joined, they form an
inscribed equilateral triangle.

Exercises.

1. Prove that the area of a regular hexagon inscribed in a circle is equal to twice the
area of an equilateral triangle inscribed in the circle. Also prove that the square of
the side of the triangle equals three times the square of the side of the hexagon.

2. If the diameter of a circle is extended to C until the extended segment is equal
to the radius, prove that the two tangents from C and their chord of contact form
an equilateral triangle.

3. Prove that the area of a regular hexagon inscribed in a circle is half the area of
an equilateral triangle and three-fourths of the area of a regular hexagon circum-
scribed to the circle.

4. Prove [Cor. 4.15.1].
5. Prove [Cor. 4.15.2].
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Proposition 4.16. INSCRIBING A REGULAR FIFTEEN-SIDED POLYGON IN
A GIVEN CIRCLE.

It is possible to inscribe a regular fifteen-sided polygon in a given circle.

Proof. We wish to inscribe a regular fifteen-sided polygon in OO.

Figure 4.2.19: [4.16]

Inscribe a regular pentagon ABCDF in the circle OO [4.11] as well as an equilat-
eral triangle AAGH [4.2]. Construct CG. We claim that CG is a side of the required

polygon.

Since ABCDE is a regular pentagon, the arc ABC is 2 of the circumference.
Since AAGH is an equilateral triangle, the arc ABG is % of the circumference.

Hence arc GC is the difference between these two arcs and equal to 2 — £ = & of

the circumference.

Therefore, if chords equal in length to GC are similarly constructed [4.1], we have
a regular fifteen-sided polygon (i.e., a quindecagon) inscribed in oO. O

Remark. Until 1801, no regular polygon was constructible by segments and circles
only except those described in Book IV of Euclid and those obtained by the contin-
ued bisection of the arcs of which their sides are chords. Then, Gauss proved that
if 2n + 1 is a prime number, regular polygons with 2n + 1 sides are constructible by
elementary geometric methods.
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Exam questions for chapter 4.
1. What is the subject-matter of chapter 4?
. When is one polygon said to be inscribed in another?

. When is one polygon said to be circumscribed about another?

2
3
4. When is a circle said to be inscribed in a polygon?
5. When is a circle said to be circumscribed about a polygon?
6. What is a regular polygon?

7

. What figures can be inscribed in, and circumscribed about, a circle by means of
chapter 4?

8. What regular polygons has Gauss proved to be constructible by the line and
circle?

9. What is meant by escribed circles?

10. How many circles can be constructed to touch three lines forming a triangle?
11. What is the centroid of a triangle?

12. What is the orthocenter?

13. What is the circumcenter?

14. What is the polar circle?

15. What is the “nine-points circle™?

16. How does a nine-points circle get its name?

17. Name the nine points that a nine-points circle passes through.

18. What three regular figures can be used in filling up the space round a point?
(Ans. Equilateral triangles, squares, and hexagons.)

19. If the sides of a triangle are 13, 14, 15 units in length, what are the values of
the radii of its inscribed and escribed circles?

20. What is the radius of the circumscribed circle? (See #19, above.)
21. What is the radius of its nine-points circle? (See #19, above.)

22. What is the distance between the centers of its inscribed and circumscribed
circles? (See #19, above.)

23. If r is the radius of a circle, what is the area:
(a) of its inscribed equilateral triangle?
(b) of its inscribed square?
(c) its inscribed pentagon?
(d) its inscribed hexagon?

(e) its inscribed octagon?
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(f) its inscribed decagon?

24. Find the side-lengths of the polygons in parts (a)-(f) in the previous problem.

Exercises for chapter 4.

1. If a circumscribed polygon is regular, prove that the corresponding inscribed
polygon is also regular. Also prove the converse.

2. If a circumscribed triangle is isosceles, prove that the corresponding inscribed
triangle is isosceles. Also prove the converse.

3. If the two isosceles triangles from #2 (above) have equal vertical angles, prove
that they are both equilateral.

4. Divide an angle of an equilateral triangle into five equal parts.
5. Inscribe a circle in a sector of a given circle.
6. Inscribe a regular octagon in a given square.

7. If a segment of given length slides between two given lines, find the locus of the
intersection of perpendiculars from its endpoints to the given lines.

8. If the perpendicular to any side of a triangle at its midpoint meets the internal
and external bisectors of the opposite angle at the points D and F, prove that D, E
are points on the circumscribed circle.

9. Through a given point P, construct a chord of a circle so that the intercept EF
stands opposite a given angle at point X.

10. In a given circle, inscribe a triangle having two sides passing through two given
points and the third parallel to a given line.

11. Given four points, no three of which are collinear, construct a circle which is
equidistant from them.

12. In a given circle, inscribe a triangle whose three sides pass through three given
points.

13. Construct a triangle, being given:

(a) the radius of the inscribed circle, the vertical angle, and the perpendicular
from the vertical angle on the base.

(b) the base, the sum or difference of the other sides, and the radius of the in-
scribed circle, or of one of the escribed circles.

(c) the centers of the escribed circles.

14. If F' is the midpoint of the base of a triangle, DFE the diameter of the circum-
scribed circle which passes through F', and L the point where a parallel to the base
through the vertex meets DFE, prove that DL - FE equals the square of half the sum
of the two remaining sides and DF - LE equals the square of half the difference of
the two remaining sides.
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15. If from any point within a regular polygon of n sides perpendiculars fall on the
sides, prove that their sum is equal to n times the radius of the inscribed circle.

16. The sum of the lengths of perpendiculars falling from the vertices of a regular
polygon of n sides on any line is equal to n times the perpendicular from the center
of the polygon on the same line.

17. If R denotes the radius of the circle circumscribed about a triangle AABC, r,
r’, r"”, r""" are the radii of its inscribed and escribed circles; 4§, ¢’, 6” are the per-
pendiculars from its circumcenter on the sides; pu, p/, ¢/ are the segments of these
perpendiculars between the sides and circumference of the circumscribed circle,
prove that we have the equalities:

v +r"+r" = 4R+r (1)
p+p +p" = 2R—1r (2)
d+8+8 = R+r (3)

The relation (3) supposes that the circumcenter is inside the triangle.

18. Take a point D from the side BC of a triangle AABC and suppose we construct
a transversal £ DF through it; suppose we also construct circles about the triangles
ADBF, AECD. Prove that the locus of their second point of intersection is a circle.

19. In every quadrilateral circumscribed about a circle, prove that the midpoints of
its diagonals and the center of the circle are collinear.

20. Prove that the line joining the orthocenter of a triangle to any point P in the
circumference of its circumscribed circle is bisected by the line of co-linearity of
perpendiculars from P on the sides of the triangle.

21. Prove that the orthocenters of the four triangles formed by any four lines are

collinear.

22. If a semicircle and its diameter are touched by any circle either internally or
externally, prove that twice the area of the rectangle contained by the radius of
the semicircle and the radius of the tangential circle equals the area of a rectangle
contained by the segments of any secant to the semicircle through the point of
intersection of the diameter and touching circle.

23. If p, p' are radii of two circles touching each other at the center of the inscribed
circle of a triangle where each touches the circumscribed circle, prove that

+

12
oo

=

and state and prove corresponding theorems for the escribed circles.

24. If from any point in the circumference of the circle, circumscribed about a
regular polygon of n sides, segments are constructed to its vertices, prove that the
sum of their squares is equal to 2n times the square of the radius.



CHAPTER 4. INSCRIPTION AND CIRCUMSCRIPTION 237

25. In the above problem, if the segments are constructed from any point in the
circumference of the inscribed circle, prove that the sum of their squares is equal to
n times the sum of the squares of the radii of the inscribed and the circumscribed
circles.

26. State the corresponding theorem for the sum of the squares of the lines con-
structed from any point in the circumference of any concentric circle.

27. If from any point in the circumference of any concentric circle perpendiculars
fall to all the sides of any regular polygon, prove that the sum of their squares is
constant.

28. See #27. For the inscribed circle, prove that the constant is equal to 3n/2 times
the square of the radius.

29. See #27. For the circumscribed circle, prove that the constant is equal to n
times the square of the radius of the inscribed circle, together with %n times the
square of the radius of the circumscribed circle.

30. If from the midpoint of the segment joining any two of four concyclic points a
perpendicular falls on the segment joining the remaining two, the six perpendicu-
lars thus obtained are concurrent.

31. Given a regular polygon circumscribed about an arbitrary circle, prove that as
the number of sides of a regular polygon increases, the perimeter of the polygon
decreases.

32. The area of any regular polygon of more than four sides circumscribed about a
circle is less than the square of the diameter.

33. If two sides of a triangle are given in position, and if their included angle is
equal to an angle of an equilateral triangle, prove that the locus of the center of its
nine-points circle is a straight line.

34. If s equals half of the perimeter of a triangle (i.e., the triangle’s semi-perimeter),
and if v/, r”, " are the radii of its escribed circles, prove that

"

/
TI'T/I+T/I'T +TI/I'T:SQ

35. Given the base of a triangle and the vertical angle, find the locus of the center
of the circle passing through the centers of the escribed circles.

36. If AB is the diameter of a circle, PQ is any chord cutting AB at O, and if the
segments AP, AQ) intersect the perpendicular to AB at O (at D and E respectively),
prove that the points A, B, D, E are concyclic.

37. Inscribe in a given circle a triangle having its three sides parallel to three given
lines.

38. If the sides AB, BC, etc., of a regular pentagon are bisected at the points A’,
B', C’, D', E’, and if the two pairs of alternate sides BC, AE and AB, DE meet at
the points A”, E”, respectively, prove that

NA"AE" — NA’AE' = pentagon A'B'C'D'E’
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39. In a circle, prove that an equilateral inscribed polygon is regular; also prove
that if the number of its sides is odd, then it is an equilateral circumscribed polygon.

40. Prove that an equiangular circumscribed polygon is regular; also prove that if
the number of its sides are odd, then it is an equilateral inscribed polygon.

41. Prove that the sum of the perpendiculars constructed to the sides of an equian-
gular polygon from any point inside the figure is constant.

42. Express the lengths of the sides of a triangle in terms of the radii of its escribed

circles.



Chapter 5

Theory of Proportions

Chapter 5, like Chapter 2, proves a number of propositions that are familiar in the
form of algebraic equations. Like Book II, Book V appears in truncated form.

5.1 Definitions

0. Variables a, b, ¢, z, y, ... represent positive real numbers unless stated otherwise.

1. Let « and y be two positive integers where = < y. We say that z is a factor of y
when there exists a positive integer n > 1 such that nx = y. We also say that y is a
maultiple of x.

2. Suppose that = and y are two positive integers such that x # 0. A ratio is the
number £ which may also be written as y : x.

3. Numbers are said to have a ratio to one another when the lesser number can be
multiplied so as to exceed the greater.

4. Numbers which have the same ratio are called proportions. When four numbers
are proportions, it may be described as: “The first is to the second as the third is to
the fourth.” Or:

a_c
b d
The above equality may also be writtenas a:b=c: d.

5. Inequalities of fractions:

a c ad  bc
(5>E) = (Q>Q> < (ad > be)

The symbol > may be replaced with >, <, and <. Numbers which have the same
ratio are called proportional.

6. Proportions consist of at minimum three terms.

239
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Remark. This definition has the same fault as some of the others: it is not a defini-
tion but an inference. It occurs when the means in a proportion are equal, and so
there are four terms. As an example, take the numbers 4, 6, 9. Here the ratio of
4:61s 2/3, and the ratio of 6 : 9 is 2/3; therefore 4, 6, 9 are continued proportionals.
But, in reality, there are four terms: the full proportionis4:6 =6 : 9.

7. The duplicate ratio is a compound ratio of two equal ratios. Algebraically, the
duplicate ratio of z : y is 22 : y?. (The duplicate ratio of 2 : 5is 4 : 25.)

John Casey updates Euclid’s definition of the duplicate ratio of two lines: the ratio

of the squares constructed on these segments.

8. The triplicate ratio is a compound ratio of three equal ratios. Algebraically, the
triplicate ratio of x : y is 2% : y>. (The triplicate ratio of 2 : 5is 8 : 125.)

9. Harmonic division of a segment AB means identifying two points C' and D such

that AB is divided internally and externally in the same ratio £4 = 24.

Figure 5.1.1: Here, the ratio is 2. Specifically, the distance AC is one unit, the
distance C'B is half a unit, the distance AD is three units, and the distance BD is
1.5 units.

Harmonic division of a line segment is reciprocal: if points C' and D divide the
segment AB harmonically, the points A and B also divide the line segment CD
harmonically. In that case, the ratio is given by % = % which equals one-third

in the example above.!

http://en.wikipedia.org/wiki/Harmonic_division
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5.2 Propositions from Book V

Proposition 5.1. If any number of numbers are each the same multiple of the same
number of other numbers, then the sum is that multiple of the sum.

Corollary. 5.1.1. [5.1] is equivalent to kx + ky = k(z + y).

Proposition 5.2. If a first number is the same multiple of a second that a third is
of a fourth, and a fifth also is the same multiple of the second that a sixth is of the
fourth, then the sum of the first and fifth also is the same multiple of the second that
the sum of the third and sixth is of the fourth.

Corollary. 5.2.1. [5.2] is equivalent to the following: if kv = x, kw = r, mv = y, and
mw = u, then © +y = (k+m)vand r+u = (k+ m)w.

Proposition 5.3. If a first number is the same multiple of a second that a third is
of a fourth, and if equimultiples are taken of the first and third, then the numbers
taken also are equimultiples respectively, the one of the second and the other of the
fourth.

Corollary. 5.3.1. [5.3] is equivalent to the following: Let A = kB and C = kD. If
EF =mAand GM = mC, then EF = mkB and GH = mkD.

Proposition 5.4. If a first number has to a second the same ratio as a third to a
fourth, then any equimultiples whatever of the first and third also have the same
ratio to any equimultiples whatever of the second and fourth respectively, taken in
corresponding order.

Corollary. 5.4.1. [5.4] is equivalent to: if% =k= %, then A =kB and C = kD.

Proposition 5.5. If a number is the same multiple of a number that a subtracted
part is of a subtracted part, then the remainder also is the same multiple of the
remainder that the whole is of the whole.

Corollary. 5.5.1. [5.5] is equivalent to: if t+y = k(m+n) and © = km, then y = kn.

Proposition 5.6. If two numbers are equimultiples of two numbers, and any num-
bers subtracted from them are equimultiples of the same, then the remainders either

equal the same or are equimultiples of them.

Corollary. 5.6.1. [5.6] is equivalent to: if v +y = km, u+v = kn, x = lm, y = In,
and all variables are positive, then y = (k — l)m and v = (k — l)n whenever k > l.
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Proposition 5.7. Equal numbers have to the same the same ratio; and the same
has to equal numbers the same ratio.

Corollary. 5.7.1. If any numbers are proportional, then they are also proportional
inversely.

Corollary. 5.7.2. [5.7] is equivalent to: if a = b, thena:c=b:c,and c:a = c: b.

Proposition 5.8. Of unequal numbers, the greater has to the same a greater ratio
than the less has; and the same has to the less a greater ratio than it has to the
greater.

Corollary. 5.8.1. [5.8] is equivalent to: if AB > C and D > 0, then AB = C + k

where k > 0, and ATB = % = % + % > %. It follows that g > %, since all

quantities are positive.

Proposition 5.9. Numbers which have the same ratio to the same equal one an-
other; and numbers to which the same has the same ratio are equal.

Corollary. 5.9.1. [5.9] is equivalent to: if A = kC and B = kC, then A = B.

Proposition 5.10. Of numbers which have a ratio to the same, that which has a
greater ratio is greater; and that to which the same has a greater ratio is less.

Corollary. 5.10.1. [5.10] is equivalent to: if% > g and C > 0, then A > B.

Proposition 5.11. Ratios which are the same with the same ratio are also the same
with one another.

Corollary. 5.11.1. [5.11] is equivalent to: if% = % and

olQ
I
Rl

, then 4 = £ This

is the transitive property for fractions.

Proposition 5.12. If any number of numbers are proportional, then one of the an-
tecedents is to one of the consequents as the sum of the antecedents is to the sum of
the consequents.

Corollary. 5.12.1. [5.12] is equivalent to: if T = ¥ = %, then

c a+b+c

rT_Yy_z_zTHyYy+z
a b
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Proposition 5.13. If a first number has to a second the same ratio as a third to a
fourth, and the third has to the fourth a greater ratio than a fifth has to a sixth, then
the first also has to the second a greater ratio than the fifth to the sixth.

Corollary. 5.13.1. [5.13] is equivalent to: if A = kB, C = kD, C =1D, E = jF and
l>j,then k=1andsok > j.

Proposition 5.14. If a first number has to a second the same ratio as a third has to
a fourth, and the first is greater than the third, then the second is also greater than
the fourth; if equal, equal; and if less, less.

Corollary. 5.14.1. [5.14] is equivalent to: if A = kB, C = kD, A > C, and k > 0,
then kB =A > C = kD and so B > D. If A < C and B < D, the result follows
mutatis mutandis.

Proposition 5.15. Parts have the same ratio as their equimultiples.

Corollary. 5.15.1. [5.15] is equivalent to: if AB = kC, DE = kF, and C = mF,
then AB = kmF = mDE.

Proposition 5.16. If four numbers are proportional, then they are also proportional

alternately.

Corollary. 5.16.1. [5.16] is equivalent to: if% = %, then % =

Sl

Proposition 5.17. If numbers are proportional taken jointly, then they are also

proportional taken separately.

Corollary. 5.17.1. [5.17] is equivalent to: if x +vy = ky, u+v = kv, and x = ly, then
ly+y=ky orl+1=k Thusu+v=(l+1)v, oru=lv.

Proposition 5.18. If numbers are proportional taken separately, then they are also

proportional taken jointly.

Corollary. 5.18.1. [5.18] is equivalent to: if v = ky, u = kv, and x +y = ly, then
(k+1l)y=lyandsok+1=landu+v="kv=(k+1)v=lv.

Proposition 5.19. If a whole is to a whole as a part subtracted is to a part sub-
tracted, then the remainder is also to the remainder as the whole is to the whole.
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Corollary. 5.19.1. If numbers are proportional taken jointly, then they are also
proportional in conversion.

Corollary. 5.19.2. [5.19] is equivalent to: if x +y = k(u + v) and © = ku, then
y = kv.

Remark. 5.19.3. If u : v, the [5.16] [5.17], [5.18], and [5.19] show the following
proportions to be equivalent?:

lL.utv=x:y

2. (u+v):v=(x+y):y

8

3. (u+v):u=(r+y):
4. (u+v):(z+y)=v:y
5. (u+v):(x4+y)=u:z

6. u:x=v:y

(2)-(5) also hold when + is replaced by —.

Proposition 5.20. If there are three numbers, and others equal to them in multi-
tude, which taken two and two are in the same ratio, and if the first is greater than
the third, then the fourth is also greater than the sixth; if equal, equal, and; if less,
less.

Corollary. 5.20.1. [5.20] is equivalent to: let A = kB, B =1C, D = kE, E = |F,
and A > C. We wish to show that D > F.

A
Suppose that A =c+m, m > 0. Then A = kIC, D = kIF, and so 4 = 2.

Now% >1since A>C.IfD=F, %:1;andifD<F, é<1. Hence, D > F.

The remaining cases follow mutandis mutatis.

Proposition 5.21. If there are three numbers, and others equal to them in multi-
tude, which taken two and two together are in the same ratio, and the proportion of
them is perturbed, then, if the first number is greater than the third, then the fourth
is also greater than the sixth; if equal, equal; and if less, less.

Corollary. 5.21.1. The result of [5.21] is the same as the result [5.20].

2David E. Joyce provides these results at:
aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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Proposition 5.22. If there are any number of numbers whatever, and others equal
to them in multitude, which taken two and two together are in the same ratio, then
they are also in the same ratio.

Corollary. 5.22.1. [5.22] is equivalent to: if A= kB, B=1C, D = kE, and E = [F,
then A = klC and D = ElF.

Proposition 5.23. If there are three numbers, and others equal to them in multi-
tude, which taken two and two together are in the same ratio, and the proportion of
them be perturbed, then they are also in the same ratio.

Corollary. 5.23.1. The result of [5.23] is the same as the result of [5.22].

Proposition 5.24. If a first number has to a second the same ratio as a third has
to a fourth, and also a fifth has to the second the same ratio as a sixth to the fourth,
then the sum of the first and fifth has to the second the same ratio as the sum of the
third and sixth has to the fourth.

Corollary. 5.24.1. [5.24] is equivalent to: if x = km, u = kn, y = Im, and v = In,
thenx +y=km+Im=(k+0)mandu+v=kn+In=Ck-+1Dn.

Proposition 5.25. If four numbers are proportional, then the sum of the greatest
and the least is greater than the sum of the remaining two.

Corollary. 5.25.1. [5.25] is equivalent to: let x +y = k(u+v), k > 1, and = = ku.
Since x +vy = ku + kv, y = kv; and since k > 1, y > v.
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Exam questions for chapter 5.

1. What is the subject-matter of this chapter?

. When is one number said to be a multiple of another?

. What is a measure?

. What is the ratio of two commensurable numbers?

. What is meant by the ratio of incommensurable numbers?
. Give an illustration of the ratio of incommensurables.

. What are the terms of a ratio called?

o I o Ot s~ W N

. What is duplicate ratio?

9. Define triplicate ratio.

10. What is proportion? (Ans. Equality of ratios.)
11. When is a segment divided harmonically?

12. What are reciprocal ratios?

Chapter 5 exercises.

1. Prove that if four numbers are proportionals, the sum of the first and second is
to their difference as the sum of the third and fourth is to their difference.

2. Prove that if four numbers are proportionals, their squares, cubes, etc., are
proportionals. [See the final chapter for a solution.]

3. If two proportions have three terms of one respectively equal to three correspond-
ing terms of the other, the remaining term of the first is equal to the remaining term
of the second.

4. If three numbers are continual proportionals, prove that the first is to the third
as the square of the difference between the first and second is to the square of the
difference between the second and third.

5. If AB is cut harmonically at C and D and is bisected at O, prove that OC, OB,
OD are continual proportionals.

6. Continuing from #5: if O’ is the midpoint of C'D, prove that (00’)? = (OB)? +
(OD)2.

7. Continuing from #5: prove that AB - (AC + AD) = 2-AC - AD, or 4= + 45 = 45
8. Continuing from #5: prove that CD-(AD + BD) =2-AD-BD, or 55 + 15 = 75

9. Continuing from #5: prove that AB-CD =2- AD - CB.



Chapter 6

Applications of Proportions

Recall that we write AGHI = AJK L to indicate that the area of AGHI equals the
area of AJK L.

Similarly, if we wish to state that the area of AABC divided by the area of ADEF
equals the area of AGHI divided by the area of AJK L, we may write either

ANABC AGHI
ADEF —  AJKL

ANABC : ADEF AGHI : AJKL

6.1 Definitions

1. Similar polygons are polygons that have the same shape, or one that has the
same shape as the mirror image of the other. More precisely, one polygon can be
obtained from the other by uniformly scaling (enlarging or shrinking), possibly with
additional translation, rotation and reflection. This means that either object can
be re-scaled, re-positioned, and reflected so as to coincide precisely with the other
object.

A modern perspective of similarity is to consider polygons similar if one appears
congruent to the other when zoomed in or out at some level.’

Similar polygons agree in shape; if they also agree in size, then they are congruent.
If polygons A and B are similar, we will denote this as A ~ B.

(a) When the shape of a figure is given, it is said to be given in species. Thus
a triangle whose angles are given is given in species. Hence, similar figures are of

the same species.

(b) When the size of a figure is given, it is said to be given in magnitude, such
as a square whose side is of given length.

(c) When the place which a figure occupies is known, it is said to be given in
position.

I Adapted from: https://en.wikipedia.org/wiki/Similarity_(geometry)
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(d) Any two equilateral triangles are similar.

2. A segment is said to be cut at a point in extreme and mean ratio when the whole
segment is to the greater segment as the greater segment is to the lesser segment.
This ratio is also referred to as the golden ratio.

The figure below illustrates the geometric relationship.

a4:b
Figure 6.1.1: The golden ratio

Expressed algebraically, for quantities ¢ and b with a > b > 0,

a+b

def
= ¢

@
a b

where the Greek letter phi (p or ¢) represents the golden ratio. Its value is:

1
¥ = +2\/5 = 1.6180339887 . ..

The golden ratio also is called the golden mean or golden section (Latin: sectio au-
rea). Other names include medial section, divine proportion, divine section (Latin:
sectio divina), golden proportion, golden cut, and golden number.?

3. If three quantities of the same kind are in continued proportion, the middle
term is called a mean proportional between the other two. Numbers in continued
proportion are also said to be in geometrical progression.

4. If four quantities of the same kind are in continued proportion, the two middle
terms are called two mean proportionals between the other two.

5. The altitude of any figure is the length of the perpendicular from its highest
point to its base.

6. Two corresponding angles of two figures have the sides about them reciprocally
proportional when a side of the first is to a side of the second as the remaining side
of the second is to the remaining side of the first.

7. Similar figures are said to be similarly constructed upon given segments when
these segments are corresponding sides of the figures.

8. Corresponding points in the planes of two similar figures are such that segments
constructed from them to the vertices of the two figures are proportional to the
corresponding sides of the two figures. See Fig. 6.1.2.

2Much of this section comes from https://en.wikipedia.org/wiki/Golden_ratio.
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Figure 6.1.2: [Def 6.9] See [6.20, #2]

9. The point O in Fig. 6.1.2 is called the center of similitude of the figures. It is also
called their double point.

10. Two polygons are said to be homothetic if they are similar and their correspond-
ing sides are parallel. If two polygons are homothetic, then the lines joining their
corresponding vertices meet at a point.?

11. The center of mean position of any number of points A, B, C, D, etc., is a point
which may be found as follows: bisect the segment joining any two points A, B at
G. Join G to a third point C; divide GC at H so that GH = - GC. Join H to a
fourth point D and divide HD at K, so that HK = - HD, and so on. The last point
found will be the center of mean position of the given points.

3http://americanhistory.si.edu/collections/search/object/nmah_694635
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6.2 Propositions from Book VI

Proposition 6.1. PROPORTIONAL TRIANGLES AND PARALLELOGRAMS.

Triangles and parallelograms which have the same altitude have areas which are

proportional to their bases.

Proof. Construct AACB and AACD such that the triangles have the same alti-
tude; also construct LIFACB and [JAF DC each with the same height as the previ-
ously constructed triangles. We claim that

BC :CD = AACB : NACD =HOEACB : JAFDC

G B C D K

Figure 6.2.1: [6.1]

Extend BD in both directions to the # and L. Construct any finite number of
segments toward H, each equal in the length to BC" in this proof, we construct BG
and GH. Similarly, construct an equal number of segments which are equal in the
length to C'D toward L. Also construct AG, AH, AK, and AL.

Since BC = BG = GH, by [1.38] AACB = AABG = AAGH. Similarly, if OH —
k- BC (where k is a positive integer such that k£ > 1), AACH = k- AACB; and if
CL = m - CD (where m is a positive integer such that m > 1), AACL =m - AACD.

Finally, CH = n - CL (where n is a positive real number such that n > 0); again,
[1.38] implies that AACH =n - AACL. That is,

CH  AACH
cL ~ "7 AACL
Hence,
CH:CL = NAACH : ANACL =
k-BC:m-CD = (k-ANACB):(m-AACD) =
BC:CD = AACB:AACD

By [1.41], IEACB =2 - AACB and LJACDF = 2 - AACD. Therefore
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2-BC:2-CD = [EOFEACB:HAFCD =

BC:CD = HFEACB:HAFCD

Clearly, NACB : NACD = [HFEACB : JAFCD, which completes the proof. O
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Proposition 6.2. PROPORTIONALITY OF SIDES OF TRIANGLES.

A segment within a triangle divides the sides of a triangle proportionally if and
only if the segment is constructed parallel to one of the sides of a triangle.

Proof. Construct AABC and DE where D is on AB and F is on AC. We claim that
DE || BC ifand only if AD : DB = AE : EC.

A

Figure 6.2.2: [6.2]

First, suppose that DE || BC. We claim that AD : DB = AE : EC.

Construct BE and CD, and consider ABDE and ACED: each shares base DE and
stands between the parallels BC and DE. By [1.37], ABDE = ACDE. By [5.7],
NADE : ABDE = NADE : ACDE.

By [6.1], AADE : ABDE = AD : DB and AADE : ACDE = AE : EC. Since
ABDE = ANCDE, it follows that AD : DB = AE : EC.
Now suppose that AD : DB = AE : EC. We claim DE || BC.

By [6.11, AD : DB = ANADFE : ABDE and AE : EC = ANADE : ACDE. Since
AD : DB = AE : EC by hypothesis, AADE : ABDE = ANADE : ACDE.

By [5.9], ABDE = ACDE. These triangles also stand on the same base DFE as well
as on the same side of DE. By [1.39], they stand between the same parallels, and
so DE || BC. O

Exercise.

1. If two segments are cut by three or more parallels, the intercepts on one are
proportional to the corresponding intercepts on the other.
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Proposition 6.3. ANGLES AND PROPORTIONALITY OF TRIANGLES.

A line bisects an angle of a triangle if and only if the line divides the side opposite
the angle into segments proportional to the adjacent sides.

Proof. Construct AABC and AD where D is a point on AC. We claim that AD
bisects /BAC if and only if BD : DC = BA : AC.

Figure 6.2.3: [6.3]

Suppose that AD bisects ZBAC of a triangle AABC. We claim that BD : DC =
BA: AC.

Construct CE such that CFE | AD. Extend BA to intersect CE at E. Because BE
intersects the parallels AD and EC, /BAD = Z/AEC [1.29].

Because AC intersects the parallels AD and EC, ZACE = /DAC. By hypothesis,
/DAC = /BAD. Therefore, /ACE = /DAC = /BAD = Z/AEC. Consider NACE:
since ZACE = Z/AEC, by [1.6] AE = AC.

Again, because AD || EC, where EC is one of the sides of the triangle ABEC, by
[6.2]1 BD : DC = BA : AE. Since AE = AC by the above, BD : DC = BA : AC.

Now suppose that BD : DC = BA : AC. We claim that /BAC is bisected by AD.

Let the same construction be made as above. Because AD || EC, by [6.2] BA : AE =
BD:DC.

But BD : DC = BA : AC by hypothesis. By [5.11], it follows that BA : AE = BA :
AC, and so AE = AC by [5.9].

Consider AACE: by [Cor. 1.6.1], ZAEC = LZACE. By [1.29], ZAEC = ZBAD and
LACE = Z/DAC. Hence Z/BAD = /DAC.

Since /BAC = /BAD + /DAC, it follows that ZBAC is bisected by AD. This
completes the proof. O



CHAPTER 6. APPLICATIONS OF PROPORTIONS 254

Exercises.

1. If the segment AD bisects the external vertical angle ZCAE, prove that BA :
AC = BD : DC, and conversely.

Figure 6.2.4: [6.3], #1

Hint: construct AF = AC. Also construct ED. Then the triangles AACD and
NAED are evidently congruent; therefore the angle Z/E DB is bisected, and hence
BA:AE =BD: DE and BA: AC = BD : DC by [6.3].

2. Prove #1 without using [6.3], and then prove [6.3] using #1.

3. Prove that the internal and the external bisectors of the vertical angle of a
triangle divide the base harmonically.

4. Prove that any segment intersecting the legs of any angle is cut harmonically by
the internal and external bisectors of the angle.

5. Prove that any segment intersecting the legs of a right angle is cut harmonically
by any two lines through its vertex which make equal angles with either of its sides.

6. If the base of a triangle is given in number and position and if the ratio of the
sides is also given, prove that the locus of the vertex is a circle which divides the
base harmonically in the ratio of the sides.

7. If a, b, c denote the sides of a triangle AABC, and D, D’ are the points where the
internal and external bisectors of A meet BC, then prove that

2abc
DD’ = b2—c2

8. In the same case as #7, if E, E’, F, F’ are points similarly determined on the
sides C'A, AB, respectively, prove that

1 1 1 —
DD’ + EE’ + FF'

2 2 2
a b c
DD’ + EE’ + FF’
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Proposition 6.4. EQUIANGULAR TRIANGLES 1.

In equiangular triangles, the sides about the equal angles are proportional where
the corresponding sides stand opposite the equal angles.

Proof. Let AABC and ADCE be equiangular triangles where ZABC = /DCE,
/BAC = /CDE, and ZACB = /CED. We claim that BA : AC = CD : DE. (The
proof of the remaining cases will be analogous.)

N
N
N

F
N
N
I
I
D

Figure 6.2.5: [6.4]

Place BC such that BE = BC @ CE. Since ZABC + ZACB is less than two right
angles [1.17] and ZACB = ZDEC, it follows that ZABC + ZDEC is less than two
right angles. Hence when BA and DE are extended, they will intersect at F by
[Cor. 1.29.1].

By [1.28], since /DCE = /ABC, DC || FB; and since /DEC = /ACB, AC || FE.
Therefore L1 ACD is a parallelogram; by [1.34], FA = DC and AC = FD.

Consider AFBE: since AC || FE, by [6.2] BA: AF = BC : CE. But AF = CD, and
so BA:CD = BC :CE. By[5.16], BA: BC =CD : CE.

Similarly, since CD || BF, by [6.2] BC : CE = FD : DE. But FD = AC, and so
BC:CE=AC:DE;or BC: AC =CE: DE.

Since BA: BC =CD :CEand BC : AC =CE : DE,by[5.221 BA: AC =CD : DE,
which proves our claim. O

Corollary. 6.4.1. By [Def. 6.1], the triangles in [6.4] have been proved to be similar.

Therefore, equiangular triangles are similar.
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Exercises.

1. If two circles intercept equal chords AB, A’B’ on any secant, prove that the
—

tangents <A-T>, A'T to the circles at the points of intersection are to one another as

the radii of the circles.

2. If two circles intercept on any secant chords that have a given ratio, prove that
the tangents to the circles at the points of intersection have a given ratio, namely,
the ratio compounded of the direct ratio of the radii and the inverse ratio of the
chords.

3. Being given a circle and a line, prove that a point may be found such that the
rectangle of the perpendiculars falling on the line from the points of intersection of
the circle with any chord through the point shall be given.

4. If AB is the diameter of a semicircle ADB and CD 1 AB, construct through A
a chord AF of the semicircle meeting CD at E such that the ratio CE : EF may be
given.
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Proposition 6.5. EQUIANGULAR TRIANGLES II.

If two triangles have proportional sides, then the triangles are equiangular with
the equal angles opposite the corresponding sides.

Proof. Construct AABC and ADEF such that BA : AC = ED : DF and AC :
CB = DF : FE. We claim that:
()AABC and ADEF are equiangular;

(2) equal angles stand opposite corresponding sides.

C

Figure 6.2.6: [6.5]

At D and E, construct the angles ZEDG = ZBAC and ZDEG = ZABC. By [1.32],
AABC and ADEG are equiangular; by [6.4], BA: AC = ED : DG.

Since BA : AC = ED : DF by hypothesis, DG = DF. Similarly, EG = EF.

Consider AEDF and AEDG: DG = DF, each shares side ED, and EG = EF. By
[1.8], AEDF = AEDG, and so AEDF and AEDG are equiangular. But AEDG is
equiangular to A ABC by construction. Therefore, AEDF is equiangular to AABC,

proving claim 1.

Since /BAC stands between BA and AC, and ZEDF stands between ED and DF,
we have also proven claim 2. This completes the proof. O

Corollary. 6.5.1. Two triangles are equiangular if and only if the sides about
the equal angles are proportional where the corresponding sides stand opposite the

equal angles.
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Remark. In [Def. 6.1], two conditions are laid down as necessary for the similitude
of polygons:

(a) The equality of angles;
(b) The proportionality of sides.

Now by [6.4] and [6.5], we see that if two triangles possess either condition, they
also possess the other. Triangles are unique in this respect. In all other polygons,
one of these conditions may exist without the other. Thus two quadrilaterals may
have their sides proportional without having equal angles, or vice verse.
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Proposition 6.6. EQUIANGULAR TRIANGLES III.

If two triangles contain an equal angle enclosed by proportional sides, then the
triangles are equiangular and have those angles equal which stand opposite to
their corresponding sides.

Proof. Construct AABC and ADEF such that:
(1) /BAC = Z/ZEDF
(2) BA: AC =ED : DF

We claim that AABC and ADFEF are equiangular and have those angles equal
which stand opposite to their corresponding sides.

C

Figure 6.2.7: [6.6]

Recreate the construction from [6.5]: by [6.4], BA : AC = ED : DG. By hypothesis,
BA: AC = ED : DF, and so DG = DF.

Because ZEDG = /ZBAC by construction and ZBAC = ZEDF by hypothesis,
/EDG = /ZEDF.

Consider AEDG and AEDF: DG = DF, each shares side DE, and /EDG =
/EDF. By[1.4], AEDF = ANEDG, and so AEDF and AEDG are equiangular.

But AEDG is equiangular to ABAC by construction, and so AEDF is equiangular
to ABAC.

Finally, AABC and ADEF have equal angles which stand opposite to their corre-
sponding sides, which proves our claim. O

Remark. As in the case of [6.4], an immediate proof of [6.6] can also be obtained
from [6.2].
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Proposition 6.7. SIMILAR TRIANGLES I.

Iftwo triangles each contain an equal angle, if the sides about two remaining angles
are proportional, and if the remaining angles are either both acute or not acute,
then the triangles are similar.

Proof. Construct AABC and ADEF where /BAC = /EDF, AB: BC = DE : EF,
and ZEFD and Z/BCA are either both acute or not acute. We claim that AABC ~
ADEF.

Figure 6.2.8: [6.7]

If ZABC # /DEF, then one angle must be greater than the other. Wlog, suppose
/ABC > /DEF such that ZABG = ZDEF, from which it follows that ZEFFD =
/BGA.

Consider AABG and ADEF: /BAG = /EDF and ZABG = /DEF. By [1.32],
AABG and ADEF are equiangular. By [6.4], AB : BG = DE : EF.

Since AB : BC = DE : EF by hypothesis, BG = BC. Consider ACBG: by the
above, the triangle is isosceles. By [1.5], ZBGC = ZBCG. By [Cor. 1.17.1], every
triangle has at least two acute angles, and so /BGC and Z/BCG are both acute.
Since ZBGC is acute, Z/BG A is obtuse.

By hypothesis, /EFD = /BGA, and so ZEFD is obtuse; since /BCG = /BCA,
/BCA is acute. However, ZEF D and Z/BC A are either both acute or both obtuse
by hypothesis, a contradiction. Hence /ZABC = /DFEF. Since /BAC = /EDF by
hypothesis, by [1.32] AABC and AEF D are equiangular.

Since AB : BC = DE : EF by hypothesis, AABC ~ ADFEF [6.4]. This proves our
claim. O

Corollary. 6.7.1. If NABC and NDEF each have two sides proportional to two
sides in the other triangle, then AB : BC = DE : EF, the angles at points A and D

opposite one pair of corresponding sides are equal, and the angles at points C and
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F opposite the other are either equal or supplemental. This proposition is nearly
identical with [6.7].

Corollary. 6.7.2. If either of the angles at points C and F are right, the other angle
must be right.

Exercises.
1. Prove [Cor. 6.7.1].
2. Prove [Cor. 6.7.2].

3. Prove the Transitivity of Similar Triangles, i.e., if ANABC ~ ADEF and ADEF ~
AGHI, then ANABC ~ ANGHI. [See the final chapter for the solution.]
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Proposition 6.8. SIMILARITY OF RIGHT TRIANGLES.

The triangles formed by dividing a right triangle by the perpendicular from the
right angle to the hypotenuse are similar to the original triangle and to each other.

Proof. Construct right-triangle AAC B where /BC A is its right angle. Construct
CD such that D is on side AB and AB 1. DC. We claim that AABC ~ AACD,
NABC ~ ABCD, and ANACD ~ ABCD.

Figure 6.2.9: [6.8]

Consider AABC and AACD: they share Z/BAC, and they each contain a right
angle. By [1.32], AABC and ANABD are equiangular. By [Cor. 6.4.1], AABC ~
AABD.

Likewise, AABC ~ ABCD. By [6.7, #3], ANACD ~ ABCD, which completes the
proof. O

Corollary. 6.8.1. The perpendicular DC is a mean proportional between the seg-
ments AD and DB of the hypotenuse. (Since ANADC and ACDB are equiangular,
AD : DC = DC : DB. Thus DC is a mean proportional between AD and DB [Def.
6.3].)

Corollary. 6.8.2. BC is a mean proportional between AB and BD; also, AC is a
mean proportional between AB and AD.

Corollary. 6.8.3. The segments AD and DB are in the duplicate of AC : CB; in
other words, AD : DB = (AC)? : (CB)?.

Corollary. 6.8.4. BA : AD are in the duplicate ratios of BA : AC, and AB : BD are
in the duplicate ratio of AB : BC. Or, AB : AD = (AB)? : (AC)? and AB : BD =
(AB)?: (BC)>.
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Exercises.

1. Prove [Cor. 6.8.1].
2. Prove [Cor. 6.8.2].
3. Prove [Cor. 6.8.3].
4. Prove [Cor. 6.8.4].
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Proposition 6.9. CUTTING OFF SUB-SEGMENTS.
From a given segment, we may cut off any required sub-segment.

Proof. Construct AB; we wish to cut off any required sub-segment from AB.

Figure 6.2.10: [6.9]

Suppose we wish to cut ;th of AB. Construct AF at any acute angle to AB. On ﬁ,
choose point C and cut off segments CD, DE, and EF where AC = CD = DE = EF
[1.3]. Construct CG, DH, EI, and F B such that each is parallel to CG. We claim
that AG = 1. AB.

Since CG || BF where BF is the side of AABF, by [6.2]:
CF:AC = GB:AG
(ACeCF): AC = (AGs&GB):AG
AF: AC = AB:AG
AC:AF = AG:AB

But AC = 1. AF by construction, and so AG = 1 - AB. Since our choice of 1 was
arbitrary, any other required sub-segment may similarly be cut off. O

Remark. [1.10] is a particular case of this proposition.

Exercises.

1. Prove [6.9] using a proof by induction.
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Proposition 6.10. SIMILARLY DIVIDED SEGMENTS.
We wish to divide a segment similarly to a given divided segment.

Proof. Construct AC divided at points D and E as well as AB where Z/BAC is an
acute angle. We claim that AB can be divided similarly to AC.

1
1
1
b

F G

Figure 6.2.11: [6.10]

Construct CB, DF, and EG such that DF | CB and EG || CB. Also construct DK
where DK intersects EG at H and where DK || AB.

It follows that DDHGF and CJH K BG are parallelograms; by [1.34] DH = F'G and
HK = GB.

Consider ADCK: since EH || CK, by [6.2] DE : EC = DH : HK.
But DH = FG and HK = GB; by [5.7], we find that DE : EC = FG : GB.
Consider AAEG: since DF || EG, we find that AD : DE = AF : FG.

From the last two proportions we obtain AD : EC = AF : GB. This divides AB
similarly to AC. O

Corollary. 6.10.1. We may divide a given undivided segment AB similarly to a
given divided segment DE by constructing AC at an acute angle to AB where AC is
divided into segments similar to DE.
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Exercises.

1. We wish to divide a given segment AB internally or externally in the ratio of two
given segments FG and H.J.

| F G
I o °

I

I

I -

I

I

Figure 6.2.12: [6.11]

Through A and B construct any two parallels @ and % Construct segments
AC = FG and BD = HJ. Also construct CD: we claim that CD divides AB
internally at E in the ratio of FG : H.J.

2. In #1, if BD' is constructed parallel to AC, then CD will cut AB externally at £
in the ratio of F'G : HJ.

Corollary. 6.10.2. The two points in the above Figure, E and E', divide AB har-
monically.

This problem is manifestly equivalent to the following: given the sum or difference
of two segments and their ratio, we wish to construct the segments.

Exercises.

3. In the above Figure, prove that any line AE’ through the midpoint B of the base
DD’ of ADCD' is cut harmonically by the sides of the triangle and a parallel to the
base through the vertex.

4. Given the sum of the squares on two segments and their ratio, construct the
segments.

5. Given the difference of the squares on two segments and their ratio, construct
the segments.
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6. Given the base and ratio of the sides of a triangle, construct it when any of the
following data is given:

(a) the area;

(b) the difference on the squares of the sides;
(c) the sum of the squares on the sides;

(d) the vertical angle;

(e) the difference of the base angles.

Proposition 6.11. PROPORTIONAL SEGMENTS I.
Given two segments, we wish to find a third proportional segment.

Proof. Construct JK and LM. We wish to construct a segment X such that JK :
LM =1M : X.

Figure 6.2.13: [6.11]

Construct AC and AF at an arbitrary acute angle. Cut off AB = JK, BC = LM,
and AD = LM. Construct BD such that CE | BD. We claim that DFE is the
required third proportional segment.

In ACAE, BD || CE; by [6.2]. AB : BC = AD : DE. But AB = JK and BC =
LM = AD. Hence JK : LM = LM : DE, which completes the construction. O

Remark. Another solution can be inferred from [6.8]. If AD and DC in that propo-
sition are respectively equal to JK and LM, then DB is the third proportional.

Corollary. 6.11.1 Algebraically, this problem can be written as

a b b2
— == = —
b T a

where a and b are positive real numbers.
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Exercises.

1. Suppose that A AOQ is a triangle where AQ > AO. If we cut AB = AO, construct
BB’ || AO, cut BC' = BB/, and so on, prove that the series of segments AB, BC,
CD, etc., are in continual proportion.

Figure 6.2.14: [6.2, #1]

2. In the above Figure, prove that (AB — BC) : AB = AB : AQ. (Hint: This is
evident by constructing M B’ || AQ.)
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Proposition 6.12. PROPORTIONAL SEGMENTS II.
We wish to find a fourth proportional to three given segments.

Proof. Construct AK, BM, and CP. We wish to construct a fourth segment pro-
portional to these three segments; specifically, we wish to construct X such that
AK :BM =CP: X.

Construct lﬁ and ﬁ at an arbitrary acute angle. Also construct DG = AK,
GE = BM, and DH = CP. Construct GH such that EF || GH [1.31]. We claim
that HE is the required fourth proportional segment.

Figure 6.2.15: [6.12]

In ADEF, GH || EF, and so DG : GE = DH : HF [6.2]. But the above equalities
give us AK : BM = CP : HF. Hence, HF is the fourth proportional to AK, BM,
and C'P, completing the construction. O

Corollary. 6.12.1 Algebraically, this problem can be written as

a c be
— === —
b =z a
where a, b, and c are positive real numbers. From this equation, it is possible to infer

[Cor. 6.11.1] where ¢ = D.
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Proposition 6.13. PROPORTIONAL SEGMENTS III.
We wish to find a mean proportional between two given segments.

Proof. Construct EF and GH. We wish to construct a mean proportional between
these segments; specifically, we wish to construct X such that EF : X = X : GH.

D
A LB C
E F G H
[ O—C)

Figure 6.2.16: [6.13]

Construct segment AC such that AC = EF @ GH where AB = EF and BC = GH.

On AC, construct semicircle ADC. Also construct BD | AC which intersects the
semicircle at D. We claim that BD is the required mean proportional.

Construct AD and DC. Since ADC is a semicircle, ZADC is right [3.31]. Since
AADC is a right triangle and BD is a perpendicular from the right angle on the
hypotenuse, BD is a mean proportional between AB and BC [6.8, Cor. 1]. Thus
EF :BD =BD:GH.

This completes the construction. O

Corollary. 6.13.1. Algebraically, we have

a

= z=+ab

R

where a and b are positive real numbers.

Exercises.

1. If through any point within a circle a chord is constructed which is bisected at
that point, prove that its half is a mean proportional between the segments of any
other chord passing through the same point.

2. Prove that the tangent to a circle from any external point is a mean proportional
between the segments of any secant passing through the same point.
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3. If through the midpoint C of any arc of a circle, a secant is constructed cutting
the chord of the arc at D and the circle again at F, prove that the chord of half the
arc is a mean proportional between C'D and CE.

4. If a circle is constructed touching another circle internally and with two parallel
chords, prove that the perpendicular from the center of the former on the diameter
of the latter, which bisects the chords, is a mean proportional between the two
extremes of the three segments into which the diameter is divided by the chords.

5. If a circle is constructed touching a semicircle and its diameter, prove that the
diameter of the circle is a harmonic mean between the segments into which the
diameter of the semicircle is divided at the point of intersection.
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Proposition 6.14. EQUIANGULAR PARALLELOGRAMS.

Equiangular parallelograms are equal in area if and only if the sides about the

equal angles are reciprocally proportional.

Proof. Construct equiangular parallelograms [JHACB and LICGDE. We wish to
prove that IHACB = CCGDE if and only if AC : CE = GC : CB.

71

-~y
N
N T~J ANRN

Figure 6.2.17: [6.14]

Suppose that DHACB = ICGDE; we claim that AC : CE = GC : CB.

Place DJHACB and CCGDE so that AE = AC @ CE and the equal angles ZACB
and /ECG stand vertically opposite each other. Notice that

/ACB + /BCE = /ECG + /BCEFE = two right angles

since ZACB + /BCE equals two right angles [1.13]. By [1.14], BC @ CG = BG.
Construct DBCFEF'. Since HHACB = HCGDE,

AC:CE = [HACB :EBCEF [6.1]
LHACB :LOBCEF = [HNCGDE :EOBCEF  (hypothesis)
OCGDE :EOBCEF = GC:CB [6.1]

Therefore, AC : CE = GC : CB, which proves our first claim.

Now suppose that AC' : CE = GC : CB. We claim that DHACB = OCGDE.
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71
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Figure 6.2.18: [6.14]

By [6.1],

AC:CE = [HACB :EBCEF
GC:CB = [[HOCGDE :EBCEF

Since AC : CE = GC : OB by hypothesis,

LHACB :OBCEF =HCGDE :UBCEF

By [6.9], IHACB = LICGDE, which proves our second and final claim.

An alternative proof:

Proof. Suppose that DHACB = OCGDE; we claim that AC : CE = GC : CB.

273

Construct HE, BE, HD, and BD. The area of the parallelogram DHACB =
2 - AHBE, and the area of the parallelogram LICGDFE = 2 - ABDE. Therefore
AHBE = ABDE, and by [1.39.], HD || BE. Hence HB : BF = DE : EF; that is,

AC:CE=GC:CB.

Part two may be proved by reversing the above, which completes the proof.

O



CHAPTER 6. APPLICATIONS OF PROPORTIONS 274
Proposition 6.15. TRIANGLES WITH EQUAL AREAS.

Construct two triangles which share an equal angle. These triangles have equal
area if and only if their sides about the equal angles are reciprocally proportional.

Proof. Construct AACB and ADCE where /BCA = ZDCE. We claim that AACB =
ADCE if and only if AC : CD = EC : CB.

Figure 6.2.19: [6.15]

Suppose that AACB = ADCE; we claim that AC : CD = EC : CB.

Place /BC A and ZDCE to stand vertically opposite so that AD = AC & C'D; as in
the proof to [6.14], we find that BE = BC & CE. Construct BD.

Since NACB = ADCE,

NACB : ABCD = ADCE:ABCD
ANACB: ABCD = AC:CD [6.1]
ADCE : ABCD = EC:CB [6.1]

Therefore, AC : CD = EC : CB, which proves our first claim.

Now suppose that AC' : CD = EC : CB; we claim that AACB = ADCE.

Using the same construction, we have

AC:CD = EC:CB (hypothesis)
AC:CD = AACB:ABCD [6.1]
EC:CB = ADCE:ABCD [6.1]

Therefore AACB : ABCD = ADCE : ABCD, and so AACB = ADCE [5.9]. This

proves our second and final claim. O
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Remark. [6.15] might have been appended as a corollary to [6.14] since the trian-
gles are the halves of equiangular parallelograms; it may also be proven by con-
structing AF and showing that it is parallel to BD.

Proposition 6.16. PROPORTIONAL RECTANGLES.

Four segments are proportional if and only if the rectangle contained by the ex-
tremes (i.e., the largest and the smallest segments) equals the rectangle contained
by the means (i.e., the remaining segments).

Proof. We claim that AB: CD = LM : NP ifand only if AB- NP =CD - LM.

Let AB =2, CD =1y, LM = u, and NP = v. Then

r  u
— = — <=V =yu
y v

which completes the proof. O

A geometric proof:

Proof. Place the four segments in a concurrent position so that the extremes form
one continuous segment and the means form a second continuous segment.

=\

Figure 6.2.20: [6.16], Alternative proof

Place the four segments in the order AO, BO, OD, and OC. Construct AB and
CD. Because AO : OB = OD : OC and ZAOB = /DOC, the triangles AAOB
and ACOD are equiangular. Thus, the four points A, B, C, and D are concyclic; by
[3.35], AO - OC = BO - OD. O
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Proposition 6.17. LINES AND RECTANGLES.

Three segments are proportional if and only if the rectangle contained by the first
and fourth segments is equal in area to the area of the square of the mean.

Proof. Construct segments AB, CD, and GH so that they are proportional: AB :
CD = CD : GH. We claim that AB - GH = (CD)>.
Let AB =2, CD =y, and GH = 2. Then

x
_:y:> xz=y2
y oz

This proves our claim. O

Remark. This proposition may also be inferred as a corollary to [6.16] by setting

Y = U.

Exercises.

1. If a segment C'D bisects the vertical angle at C of an arbitrary triangle, AACB,
prove that its square added to the rectangle AD - DB contained by the segments of
the base is equal in area to the rectangle contained by the sides.

C

Figure 6.2.21: [6.17, #1]

Hint: Construct a circle about the triangle, and extend C'D to intersect the cir-
cumference at £. Then show that AACB and AECB are equiangular. By [6.4],
AC : CD = CE : CB, and by [3.35]),

AC-CB = CE-CD
= (CD)*’+CD-DE
= (CD)*+AD-DB
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s
2. If CD’ bisects the external vertical angle of an arbitrary triangle, AACB, prove
that its square subtracted from the rectangle AD’- D’B is equal in area to AC - CB.

3. If a circle passing through the angle at point A of a parallelogram L1IABC D
intersects the two sides AB, AD again at the points £, G and the diagonal AC
again at F, prove that AB - AE + AD - AG = AC - AF.

Figure 6.2.22: [6.17, #3]

Hint: construct FF, FG, and ZABH = /AFE. Then the triangles AABH and
AAFE are equiangular: it follows that AB : AH = AF : AE, and so AB - AE =
AF - AH.

Again, it is clear that the triangles ABCH and AGAF are equiangular, and there-
fore BC : CH = AF : AG, and so BC - AG = AF - CH, or AD - AG = AF - CH. But
since AB - AE = AF - AH, we find that AD - AG + AB - AE = AF -CH.

4. If DE, DF are parallels to the sides of AABC from any point D at the base,
prove that AB - AE + AC - AF = (AD)?> + BD - DC.

5. If through a point O within a triangle AABC parallels EF, GH, IK are con-
structed to the sides, prove that the sum of the areas of the rectangles constructed
by their segments is equal to the area of the rectangle contained by the segments
of any chord of the circumscribing circle passing through O.
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L

Figure 6.2.23: [6.17, #5]

Hint: notice that

and

(A0)? = AG - AK + AH - AE — GO -OH
Hence,

AO-OL =BG -AK +CH - AE + GO -OH
or

AO-OL=EO-OF +10-0K + GO -OH

6. Prove that the rectangle contained by the side of an inscribed square standing
on the base of a triangle and the sum of the base and altitude equals twice the area
of the triangle.

7. Prove that the rectangle contained by the side of an escribed square standing on
the base of a triangle and the difference between the base and altitude equals twice
the area of the triangle.

8. If from any point P in the circumference of a circle a perpendicular is drawn to
any chord, its square is equal in area to the rectangle contained by the perpendic-
ulars from the extremities of the chord on the tangent at P.

9. If O is the point of intersection of the diagonals of a cyclic quadrilateral ABCD,

prove that the four rectangles AB-BC, BD-CD,CD-DA, DA-AB are proportional
to the four segments BO, CO, DO, AO.

10. PTOLEMY’S THEOREM. The sum of the areas of the rectangles of the opposite
sides of a cyclic quadrilateral ABCD equals the area to the rectangle contained by
its diagonals.

Hint: construct ZDAO = ZCOAB. Then ADAO and ACAB are equiangular; there-
fore AD : DO = AC : CB and so AD - BC = AC - DO. Again, the triangles ADAC
and AOAB are equiangular, and CD : AC = BO : AB, or AC - CD = AC - BO.
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Hence AD - BC + AB-CD = AC - BD.

11. If the quadrilateral ABC D is not cyclic, prove that the three rectangles AB-CD,
BC-AD, AC-BD are proportional to the three sides of a triangle which has an angle
equal to the sum of a pair of opposite angles of the quadrilateral.

12. Prove by using [6.11] that if perpendiculars fall on the sides and diagonals of a
cyclic quadrilateral from any point on the circumference of the circumscribed circle
that the rectangle contained by the perpendiculars on the diagonals equals the area
of the rectangle contained by the perpendiculars on either pair of opposite sides.

13. If AB is the diameter of a semicircle, and PA, PB are chords from any point
P in the circumference, and if a perpendicular to AB from any point C intersects
PA, PB at D and E and the semicircle at F, prove that C'F is a mean proportional
between CD and CE.
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Proposition 6.18. CONSTRUCTION OF A SIMILAR POLYGON.

We may construct a polygon that is similar and similarly placed to a given polygon

on a given segment.

Proof. Construct polygon CDEFG and segment AB. We wish to construct a poly-
gon on AB similar to polygon C DEF'G and similarly placed.

Figure 6.2.24: [6.18]

Construct CE and C'F. Also construct AABH on AB such that AABH is equiangu-
lar to ACDE and is similarly placed in regards to C'D; that is, construct ZABH =
/CDE and /BAH = /DCE.

Also construct AHAI equiangular to AECF and similarly placed. Finally, con-
struct AIAJ equiangular and similarly placed with AFCG. We claim that ABHIJ
is the required polygon.

By construction, it is evident that the figures are equiangular, and it is only re-
quired to prove that the sides about the equal angles are proportional.

Because AABH is equiangular to ACDE, we find that AB : BH = CD : DE [6.4].
Hence the sides about the equal angles at points B and D are proportional.

Again from the same triangles, we have BH : HA = DE : EC, and from the
triangles ATHA, AFEC, we have HA : HI = EC : EF. Therefore, BH : HI =
DE : EF, or the sides about the equal angles /BHI, /DEF are proportional.

This result follows about the other equal angles, mutatis mutandis. By [Def. 6.1]
and our placement of each triangle, the proof is complete. O
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Remark. In the above construction, the segment AB corresponds to CD, and it is
evident that we may take AB to correspond to any other side of the given figure
CDEFG.

Again, in each case, if the figure ABHI.J is turned round the segment AB until
it falls on the other side, it will still be similar to the figure CDEFG. Hence on
a given segment AB, there can be constructed two figures each similar to a given
figure C DEFG and having the given segment AB correspond to any given side CD
of the given figure.

The first of the figures thus constructed is said to be directly similar, and the second
is said to be inversely similar to the given figure.

Corollary. 6.18.1. Twice as many polygons may be constructed on AB similar to a
given polygon CDEFG as that figure has sides.

Corollary. 6.18.2. If the figure ABHI.J is applied to CDEFG so that the point A
coincides with C and that the segment AB is placed along CD, then the points H,
I, J will be respectively on the segments CE, CF, CG. Also, the sides BH, HI, I.J
of the one polygon will be respectively parallel to their corresponding sides DE, EF,
FG of the other.

Corollary. 6.18.3. If segments constructed from any point O in the plane of a figure
to all its vertices are divided in the same ratio, the segments joining the points of
division will form a new figure similar to and having every side parallel to the
corresponding side of the original.

Exercises.

1. Prove [Cor. 6.18.1].
2. Prove [Cor. 6.18.2].
3. Prove [Cor. 6.18.3].
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Proposition 6.19. RATIOS OF SIMILAR TRIANGLES.

The areas of similar triangles have a ratio equal to the square of the ratio of the
triangles’ corresponding sides.

Proof. Construct AABC and ADEF such that AABC ~ ADEF (where ZABC =
/DEF)and AB : BC = DE : EF. We claim that AABC : ADEF = (BC)” : (EF)”.

A

Figure 6.2.25: [6.19]

Using [6.11], construct AG such that BC : EF = EF : BG.

Since AB : BC' = DE : EF by hypothesis, AB : DE = BC : EF by [5.16]. Taken
together and applying [5.11], AB : DE = EF : BG.

Consider AABG and ADEF': the sides about equal angles are reciprocally propor-
tional. By [6.15], AABG = ADEF.

Since BC : EF = EF : BG, by [Def. 5.9, we have (BC)” : (EF)” = BC : BG.

By [6.1], we also have BC : BG = AABC : AABG, and applying the above, we
obtain AABC : AABG = (BC)” : (EF)”.

Since AABG = ADEF, we have AABC : ADEF = (B—C)2 : (W)Q, which proves

our claim. 0

Remark. [6.19] is the first of Euclid’s Proposition in which [Def. 5.9], the duplicate
ratio, is employed.
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An alternate proof:

Proof. Suppose that AABC ~ ADEF. On AB and DFE, construct squares JAGH B
and LIDLME, respectively. Through points C and F' construct segments parallel
and respectively equal to AB and DE. Extend AG, BH, DL, and EM to points J,
I, O, and N, respectively; this constructs rectangles [1JABI and LJODEN.

C |

.J \ 4
O F N
A B D E
L M

®e 0
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Figure 6.2.26: [6.19] (Casey’s proof)

Clearly, AJAC and AODF are equiangular. By [6.4], JA : AC = OD : DF and
AC : AB = DF : DE; thus, JA : AB = OD : DE. Since AB = AG and DE = DL
by construction, JA : AG = OD : DL. By [6.1], JA : AG = OJABI : JAGHB and
OD : DL =GEODEN :EODLME. Hence

LJABI :JAGHB =UHODEN :HODLME

By [5.16],
LJABI : JODEN = GHAGHB:EDLME
%-E!JABI:%-E!ODEN = (AB)?:(DE)?
AABC : ADEF = (AB)*:(DE)?

Corollary. 6.19.1 If three segments are proportional, then the first is to the third as
the figure described on the first is to that which is similar and similarly described

on the second.*

4https ://proofwiki.org/wiki/Ratio_of_Areas_of_Similar_Triangles/Porism
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Exercises.

1. If one of two similar triangles has a side that is 50% longer than the correspond-
ing sides of the other, determine the ratio of their areas.

2. When the inscribed and circumscribed regular polygons of any common number
of sides to a circle have more than four sides, prove that the difference of their areas
is less than the square of the side of the inscribed polygon.

3. Prove [Cor. 6.19.1].
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Proposition 6.20. DIVISION OF SIMILAR POLYGONS.

Similar polygons may be divided such that:
(1) they divide into the same number of similar triangles,

(2) corresponding triangles have the same ratio to one another as the polygons
have to each other,

(3) the polygons have a duplicate ratio of their corresponding sides.
Proof. Construct polygons ABHIJ and CDEFG such that ABHIJ ~ CDEFG and

sides AB and C'D correspond to each other. Also construct AH, AI, CE, and CF.
We shall prove each claim separately.

Figure 6.2.27: [6.20]

Claim 1: ABHIJ and CDEFG divide into the same number of similar triangles.

Since ABHIJ ~ CDEFG, ABHIJ and CDEFG are equiangular and have pro-
portional sides about their equal angles. It follows that LZABH = ZCDE and
AB : BH = CD : DE. By [6.6], AABH is equiangular to ACDE, and so /BHA =
/DEC. Since /BHI = Z/DEF by hypothesis, it follows that ZAHI = Z/CEF.

Again, since ABHIJ ~ CDEFG,IH : HB = FE : ED. Since AABH and ACDE
are equiangular, AABH ~ ACDEFE and so HB : HA = ED : EC. It follows that
TH:HA=FE: EC.

Since ZAHI = /CEF and IH : HA = FE : EC, NAHI ~ ACEF. Similarly,
we may show that all remaining triangles are also equiangular, which proves our

claim.
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Claim 2: corresponding triangles within ABHIJ and C DEFG have the same ratio
to one another as the polygons have to each other.

Since AABH ~ ACDE, by [6.19], AABH : ACDE is in the duplicate ratio of
AH : CE.

Also by [6.19], AAHT : ACEF is in the duplicate ratio of AH : CE.

Hence, AABH : ACDE = ANAHI : ACEF and AAHI : ACEF = ANAIJ : ACFG,
mutatis mutandis. Clearly, NABH : ACDE = NAIJ : ACFG. By [5.12],

AABH  AABH + AAHI + AAILT
ACDE ~  ACDE+ ACEF + ACFG
ANABH  ABHIJ
ACDE ~ CDEFG

which proves claim 2.

Claim 3: the polygons have a duplicate ratio of their corresponding sides.
By [6.19], AABH : ACDE is in the duplicate ratio of AB : CD. Since

AABH  ABHIJ
ACDE ~ CDEFG

ABHIJ : CDEFG is also in the duplicate ratio of AB : C'D, which proves our third
and final claim. O

Corollary. 6.20.1. The perimeters of similar polygons are to one another in the
ratio of their corresponding sides.

Corollary. 6.20.2. As squares are to similar polygons, the duplicate ratio of two
segments is equal to the ratio of the squares constructed on them.

Corollary. 6.20.3. Similar portions of similar figures have the same ratio to each
other as the wholes of the figures.

Corollary. 6.20.4. Similar portions of the perimeters of similar figures are to each
other in the ratio of the whole perimeters.

Exercises.

1. If two figures are similar, prove that to each point in the plane of one there will
be a corresponding point in the plane of the other.
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Let ABCD and A’B’C’D’ be the two figures and P a point inside of ABC'D. Con-
struct AP and BP, and also construct a triangle A A’ P’ B’ on A’ B’ similar to AAPB.
Prove that segments from P’ to the vertices of A’B’C’D’ are proportional to the
lines from P to the vertices of ABCD.

! .

Figure 6.2.28: [6.20] #1
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2. If two figures are similar and in the same plane, there is in the plane called a
corresponding point with respect to the other (which may be regarded as belonging
to either figure).

Let AB, A’B’ be two corresponding sides of the figures and C their point of inter-
section. Through the two triads of points A, A’, C and B, B’, C construct two circles
intersecting again at the point O. Prove that O is the required point. Notice that
ANOAB ~ AOAB and either may be rotated around O, so that AB and A’B’ will be
parallel.

Figure 6.2.29: [6.20] #2 and [Def. 6.9]

3. Prove that two regular polygons of n sides each have n centers of similitude.

4. If any number of similar triangles have their corresponding vertices lying on
three given lines, they have a common center of similitude.

5. If two figures are directly similar and have a pair of corresponding sides parallel,
every pair of corresponding sides will be parallel.

6. If two figures are homothetic [Def. 6.10], the segments joining corresponding
vertices are concurrent, and the point of concurrence is the center of similitude of
the figures.

7. If two polygons are directly similar, either may be turned round their center
of similitude until they become homothetic, and this may be done in two different

ways.
8. Prove that sectors of circles having equal central angles are similar figures.

9. As any two points of two circles may be regarded as corresponding, two circles
have in consequence an infinite number of centers of similitude. Their locus is the
circle, whose diameter is the line joining the two points for which the two circles
are homothetic.

10. The areas of circles are to one another as the squares of their diameters. For
they are to one another as the similar elementary triangles into which they are
divided, and these are as the squares of the radii.
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11. The circumferences of circles are proportional to their diameters (see [6.20, Cor.

1D.

12. The circumference of sectors having equal central angles are proportional to
their radii. Hence if a, o’ denote the arcs of two sectors which stand opposite equal

’
a

angles at the centers, and if r, 7" are their radii, then we find that & = %.

13. The area of a sector of a circle is equal to half the rectangle contained by the
arc of the sector and the radius of the circle.

14. Prove [Cor. 6.20.1].
15. Prove [Cor. 6.20.2].
16. Prove [Cor. 6.20.3].
17. Prove [Cor. 6.20.4].
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Proposition 6.21. TRANSITIVITY OF SIMILAR POLYGONS.
Polygons which are similar to the same figure are similar to one another.

Proof. Construct polygons ABC, DEF,and GHI such that ABC ~ GHI and DEF ~
GHI. We claim that ABC ~ DEF.

Figure 6.2.30: [6.21] Note that the polygons need not be triangles.

Since ABC ~ GHI, they are equiangular and have the sides about their equal
angles proportional. Similarly, DEF and GHI are equiangular and have the sides
about their equal angles proportional.

Hence ABC and DEF are equiangular and have the sides about their equal angles
proportional; or, ABC ~ DEF. This completes the proof. O

Remark. Our proof did not use any properties of triangles that are absent in an
arbitrary n—sided polygon.

Corollary. 6.21.1. Two similar polygons which are homothetic to a third are homo-

thetic to one another.

Exercises.

1. If three similar polygons are respectively homothetic, then their three centers of

similitudes are collinear.
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Proposition 6.22. PROPORTIONALITY OF FOUR SEGMENTS TO THE POLY-
GONS CONSTRUCTED UPON THEM.

Four segments are proportional if and only if the rectilinear figures similar and
similarly described upon them are also proportional.

Proof. Suppose that AB : CD = EF : GH. Construct similar polygons AABK and
ACDL on AB and CD as well as UM EFI and ONGH.J on EF and GH.

M =
]

Figure 6.2.31: [6.22]

Suppose AB : CD = EF : GH. We wish to show that AABK : ACDL = OHEFI :
CINGHJ. Notice that:

(4B)’:(CD)" = (BF)": (GH)’
AABK : ACDL = (AB)?:(CD)?> [6.20]
OHEFI :EONGHJ (EF)?: (GH)?> [6.20]

It follows that AABK : ACDL =HHEFI : LINGH J, which proves our first claim.

Now suppose ANABK : ACDL = OHEFI : LINGHJ; similarly to the above, we
obtain (AB)? : (CD)? = (EF)? : (GH)?. By [5.22, Cor. 11, AB : CD = EF : GH,
which proves our second and final claim. O
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Proposition 6.23. EQUIANGULAR PARALLELOGRAMS.

The areas of equiangular parallelograms have a ratio to each other equal to the
ratio of the rectangles contained by their sides about a pair of equal angles.

Proof. Construct equiangular parallelograms [1H ABD and L1 BGEC where ZABD =
ZGBC. We claim that HHABD : UBGEC = (AB - BD) : (BC - BG).

Figure 6.2.32: [6.23]

Let the sides AB and BC about the equal angles ZABD and /C BG be placed such
that AC = AB@& BC. Asin[6.14], GB @ BD = GD.

Complete the parallelogram C1IDBCF. By [6.1],

OHABD :ODBCF = AB:BC
ODBCF :EOBGEC = BD:BG
It follows that
(DHABD -BDBCF) : (BDBCF -LUBGEC) = (AB-BD): (BC-BG)
LHABD :HIBGEC = (AB-BD):(BC-BG)
which completes the proof. O
Exercises.

1. Triangles which have one angle of one equal or supplemental to one angle of
the other are to one another in the ratio of the rectangles of the sides about those
angles.

2. Two quadrilaterals whose diagonals intersect at equal angles are to one another
in the ratio of the rectangles of the diagonals.
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Proposition 6.24. SIMILAR PARALLELOGRAMS ABOUT THE DIAGONAL.

In any parallelogram, the parallelograms about the diagonal are similar both to
the whole and to one another.

Proof. Construct JABCD, GH || AB where GH = AB, and EK || AD where EK =
AD. Also construct diagonal AC. We claim that JABCD ~ HAEFG, DABCD ~
LFHCK, and DAEFG ~ HOFHCK.

Consider AABC: since BF | BC, by [6.21 BE : EA = OF : FA.

Consider AACD: since #C | CD, also by [6.2] CF : FA = DG : GA. 1t follows that
BE:FA=DG : GA.

Figure 6.2.33: [6.24]

By[5.18], BA: EA = AD : AG, and so BA : AD = EA : AG. Notice that in JABCD
and [JAFEFG the sides about ZDAB are proportional.

Since GF | DC, ZAFG = ZACD. Since AADC and AAGF share /DAC and
/ACD, it follows that AADC and AAGF are equiangular. Likewise, AACB and
AAFFE are equiangular, and so [JABCD and LJAEFG are also equiangular.

It follows that AD : DC = AG : GF, DC : AC = GF : AF, AC : CB = AF : FE, and
CB:BA=FE : EA. Notice that DC : CB = GF : FE, or the sides about JABCD
and JAFEFG are proportional. By [Def. 6.1], IABCD ~ HAEFG.

Likewise, (JABCD ~ OFHCK. By [6.21], HAEFG ~ OFHCK, which completes
the proof. O

Corollary. 6.24.1. Taken in pairs, the parallelograms HAEFG, OFHCK, and
CIABCD are homothetic.
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Proposition 6.25. CONSTRUCTION OF A POLYGON EQUAL IN AREA TO A
GIVEN FIGURE AND SIMILAR TO A SECOND GIVEN FIGURE.

Proof. We wish to construct a polygon equal in area to ALM N but similar to poly-
gon BCD.

Figure 6.2.34: [6.25] Note that polygon BC'D need not be a triangle.

Wilog, on side BC of the polygon BCD, construct the rectangle DBJEC = ABCD
[1.44], and on C'E construct the rectangle ICEKF = ALMN [1.45].

Construct GH such that BC : GH = GH : CF [6.13]. On GH, construct polygon
GHI ~ BCD [6.18] where BC and GH are corresponding sides. We claim that GH I
is the required polygon.

Since BC': GH = GH : CF,
BC _ (BCY
CF \GH
Since BCD ~ GHI, by [6.20]

BCD  (BC\?
GHI ~ \GH

We also have that BC : CF = OBJEC : OCEKF, and so OBJCE : OCEKF =
BCD :GHI.

But the rectangle [1BJEC is equal in area to the polygon BC D; therefore, ICEK F =
GHI. Since LICEKF = ALMN by construction, it follows that GHI = ALMN
where GHI ~ BCD by construction. O
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An alternate proof:

Proof. Construct squares (JEFFJK and LM NO such that IFFJK = polygon DCB
and CJLMNO = polygon APQS [2.14]. By [6.12], construct GH such that EF :
LM = BC : GH.

Figure 6.2.35: [6.25], alternate proof. Note that BC'D need not be a triangle.

On GH, construct the polygon GHI similar to the polygon BCD [6.18] such that
BC and GH are corresponding sides. We claim that GH] is the required polygon.

Because EF : LM = BC : GH by construction, we find that EFJK : LMNO =
BCD : GHI[6.22]. But FFJK = BCD by construction; therefore, LM NO = GH]I.
But LMNO = APQS by construction. Therefore GHI = APQS and is similar to
BCD. (|
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Proposition 6.26. PARALLELOGRAMS ON A COMMON ANGLE.

If two similar and similarly situated parallelograms have a common angle, then
they stand on the same diagonal.

Proof. Construct HAEFG and [JABCD such that each are similar and similarly
situated where ZGAF is a common angle. We claim that they stand on the same
diagonal, AC.

Figure 6.2.36: [6.26]

Construct the diagonals AF and AC. Because JAEFG ~ [HABCD by hypothe-
sis, they can be divided into the same number of similar triangles [6.20]. Hence,
ANGAF ~ ANCAD, and it follows that /GAF = ZCAD.

Hence, AC contains point F, and so the parallelograms stand on AC. O

Remark. [6.26] is the converse of [6.24] and may have been misplaced in an early
edition of Euclid. The following would be a simpler statement of result: “If two
homothetic parallelograms have a common angle, they stand on the same diagonal.”
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Proposition 6.27. INSCRIBING A PARALLELOGRAM IN A TRIANGLE I.

In a given triangle, we wish to inscribe the parallelogram with maximum area

having a common angle with a given triangle.

Proof. Construct AABC where the given angle is ZABC. Bisect AC at P; through
P, construct PE | BC and Pr | AB. We claim that DEBFP is the required
parallelogram.

Figure 6.2.37: [6.27]

Construct AL = BC where AL | BC as well as CL. By [1.33], CL | BA and
CL = BA.

Take any point D on AC other than P and construct DG | BC which intersects PE
at O, AB at G, and CT at .J. Also construct DH | AB which intersects ER at I and
BC at H.

Since AC is bisected at P, EK is also bisected in P. By [1.36], HEGOP = HPOJK.
Therefore, IEGOP > [UIDJK; but JIDJK = LOFHD [1.43], and so LIEGOP >
LOFHD.

Add CLIGBFO to each, and we find that JEBFP > [JGBHD. Since our choice of D
was any point on AC other than P, and since JEBF P contains ZABC, DEBFP
is the maximum parallelogram which can be inscribed in the triangle AABC and
which contains ZABC. O

Corollary. 6.27.1. The maximum parallelogram exceeds the area of any other par-
allelogram about the same angle in the triangle by the area of the similar parallelo-
gram whose diagonal is the line between the midpoint P of the opposite side and the
point D, which is the corner of the other inscribed parallelogram.

Corollary. 6.27.2. The parallelogramsinscribed in a triangle and having one angle
common with it are proportional to the rectangles contained by the segments of the
sides of the triangle made by the opposite corners of the parallelograms.
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Exercises.
1. Prove [Cor. 6.27.1].
2. Prove [Cor. 6.27.2].
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Proposition 6.28. INSCRIBING A PARALLELOGRAM IN A TRIANGLE II.

We wish to inscribe in a given triangle a parallelogram equal in area to a given poly-
gon (the area of which is less than or equal to the area of the maximum inscribed
polygon constructed in [6.27]) and having an angle in common with the triangle.

Proof. Construct AABC. Bisect AC at P, construct PF | BC, and construct PE |
AB. Applying [6.27], construct CJEBF P, the maximum inscribed parallelogram
within AABC. We wish to inscribe in AABC a parallelogram equal in area to
polygon X (given that area X < [EBF P) and which shares ZABC.

A
<
X
E P J
[
K L
G D Q
© M N
B
F H ¢

Figure 6.2.38: [6.28]

If area X = LIEBF P, the construction is complete.
Otherwise, extend EP to E.J, construct C.J | PF where C.J = PF [1.33].

By [6.25], construct LIK LM N such that OKLMN = HPFCJ — X and DJKLMN ~
CPFCJ. On PJ, construct PI = KL. Construct [H = PF such that TH | AB and
IH intersects AC at D. Also construct DG || BC. We claim that DGBHD is the
required parallelogram.

Clearly, OGBHD shares ZABC' in common with AABC.

Since LIPFCJ and [JPODI stand on the same diagonal, by [6.24] DPFCJ ~ [OPODI.
Since LIPFCJ ~ KM N L by construction, by [6.21] IPODI ~ LIKMNL. Since
KL =PI,0PODI = OKMNL.

By [Cor. 6.27.1], 1PODI = OEBFP—-[GBH D; by the above, HKMNL = [OPFCJ—
X. Hence,

LUEBFP —-UEUGBHD =UHPFCJ - X
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Since BF = FC by construction, JEBFP = [JPFCJ. Thus,

LUGBHD = X

which completes the construction.

Remark. This proposition geometrically solves the equation ay —y? = C where C' =

the area of polygon X.
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Proposition 6.29. ESCRIBING A PARALLELOGRAM TO A TRIANGLE.

Given a polygon, a segment, and a parallelogram, we wish to construct a new par-
allelogram on the given segment whose area is equal to the given polygon. An
extension of this new parallelogram will be similar to the given parallelogram.

Proof. We wish to construct a parallelogram ((JAPOI) equal in area to polygon
CUVWX on segment AB. An extension of JAPOI (JBPOQ) will be similar to
CIDRST.

K
) P [ ] o
D. ° T
C
o
[ { J
X G J
[
F L M
w
® U A
° E B =]
V
[
| N Q (0]

Figure 6.2.39: [6.29]

Bisect AB at E. Construct DFEBL on EB such that OFEBL ~ EODRST and
where [JFEBL is similarly situated to LIDRST. By [6.25] construct IGKHJ =
OFEBL+CUVW X where OGKH.J ~ HODRST. Let K H correspond to FL and KG
correspond to FE.

Since OGKHJ > HOFEBL, it follows that KH > FL and KG > FE.
Extend FL to FM where FM = K H, and extend F'E to 'N where FN = KG.
Construct HFMON; by [6.26] OFMON =HGKHJ and OFMON ~ HOGKHJ.

But UIGKHJ ~ LOFEBL, and so LIFMON ~ LFEBL [6.21]. By [6.26], IFMON
and LF EBL stand on the same diameter.

Construct diameter FO of DFMON. Since OGKH.J = OFEBL + CUVWX and
CLOGKHJ = OOFMON, OFMON = OFEBL + CUVW X. Subtracting the area of
CIFEBL from each side of the equation, we obtain gnomon EBLMON = CUVW X.
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Construct JAINE where AE = EB. Also construct BP = LM where BP || LM,
and BQ = PO where BQ || PO. Finally, construct and BQ = EN.

By construction, JAENI = HEBQEN. By [1.43], DEBQN = HLMBP, and so
CLDAENI = [HLM BP. Hence

HAENI+HEPON = [HOLMBP+UEHEPON
HAPOI = EBLMON
HAPOI = CUVWX

Clearly, APOI is constructed on AB, and IBPOQ ~ LDRST. This completes the
construction. O

Remark. This proposition geometrically solves the equation ax + 22 = C where C =
the area of polygon CUVW X.
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Proposition 6.30. EXTREME AND MEAN RATIO OF A SEGMENT (aka. THE
GOLDEN SECTION)

A segment may be divided into its “extreme and mean ratio.”

Proof. On an arbitrary segment AB, divide AB at E such that AB - BE = (E)2
[2.11].

Figure 6.2.40: [6.30] Copyright Prime.mover & Daniel Callahan, licensed under CC
SA 3.0

Hence, we obtain

AB-BE = AE-AFE
AB BE-# = AF AE-#
BE - AFE BE - AFE
AB_AE
AE BE
or AB: AE = AE : BE. O

Exercises.

1. If the three sides of a right triangle are in continued proportion, prove that the
hypotenuse is divided in extreme and mean ratio by the perpendicular from the
right angle on the hypotenuse.

2. In the same case as #1, prove that the greater segment of the hypotenuse is
equal to the least side of the triangle.
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Proposition 6.31. AREA OF SQUARES ON A RIGHT TRIANGLE.

If any similar quadrilateral is similarly constructed on the three sides of a right
triangle, the quadrilateral on the hypotenuse is equal in area to the sum of the
areas of the quadrilaterals constructed on the two other sides.

Proof. Construct AABC. Denote the sides of AABC by a, b, and ¢ where c is the
hypotenuse, and denote the corresponding areas of the similar polygons by «, £,
and . We claim that o + 3 = 7.

Figure 6.2.41: [6.31]

Because the polygons are similar, by [6.20]

It follows that
a+pB a?® + b?
v
But a? 4 b? = ¢? by [1.47]. Therefore, o + 3 = v, which proves our claim. O
Exercise.

1. If semicircles are constructed on supplemental chords of a semicircle, prove that
the sum of the areas of the two crescents thus formed is equal to the area of the
triangle whose sides are the supplemental chords and the diameter.
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Proposition 6.32. FORMATION OF TRIANGLES.

If two triangles exist such that a pair of sides in one is proportional to a pair of
sides in the other and placed such that their corresponding sides are parallel, then
the remaining sides of the triangles form a segment.

Proof. Construct AABC and ADCE such that AB : AC = DC : DE, AB || DC,
and AC | DE. We claim that BC & CE = BE.

Figure 6.2.42: [6.32]

Since AB || DC and each intersects AC, we find that /BAC = ZACD. Similarly,
/CDE = LZACD; hence, Z/BAC = ZCDE.

Consider AABC and ADCE: /BAC = /CDE and AB : AC = DC : DE. By [6.6],
NABC and ADCE are equiangular, and so ZABC = ZDCE.

Furthermore,
/ACE = J/ACD+ Z/DCE
= J/BAC+ ZABC
=
JACE + Z/ACB = /BAC+ ZABC + ZACB

two right angles [1.32]

Thus, BE = BC & CE, which proves our claim. O
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Proposition 6.33. RATIOS OF EQUAL TRIANGLES.

In equal circles, angles at the centers or at the circumferences have the same ratio
to one another as the arcs on which they stand.

Proof. Construct oG and oH with equal radii. Construct /BGC at the center of oG
and Z/EHF at the center of oH; also construct /BAC at the circumference of oG
and Z/EDF at the circumference of o H. We wish to show that

arc BC : arc FF = /BGC : /ZEHF = /BAC : ZEDF

Figure 6.2.43: [6.33] Copyright Prime.mover, licensed under CC SA 3.0

On oG, construct a finite number n of consecutive arcs C K, K L which are equal in
length to arc BC. On oH, construct n consecutive arcs F'M, M N which are equal
in length to arc E'F.

Construct GK, GL, HM, and HN. Since BC = CK = KL, by [3.27] /BGC =
/CGK = /KGL. It follows that if arc BL = n - arc BC, then Z/BGL = n - ZBGC.
Similarly, if arc EN = n -arc EF, then ZEHN =n - /ZEHF.

Since BL > 0 and EN > 0, 2% = k where k > 0 is a positive real number. Hence,
BL =k-EN.

Since
/EHN /BGL  BL EN
JEHF /BGC "~ BC  EF
it follows that
k-EN k-EN
BC  k-EF
and so
BC

== —k
EF
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Similarly, /BGL =k-/ZEHN, and so BC : EF = /BGC : ZEHF. Applying [3.20],
we obtain
BC:FEF=/BGC:/FEHF = /BAC : /DEF

This proves our claim. O

Corollary. 6.33.1 In equal circles, sectors have the same ratio to one another as the

arcs on which they stand.

Exercises.

#1. Prove [Cor. 6.33.1].
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Exam questions for chapter 6.

1. What is the subject-matter of chapter 6? (Ans. Application of the theory of
proportion.)

2. What are similar polygons?
3. What do similar polygons agree in?
4. How many conditions are necessary to define similar triangles?

5. How many conditions are necessary to define similar polygons of more than three
sides?

6. When is a polygon said to be given in species?

7. What is a mean proportional between two lines?

8. Define two mean proportionals.

9. What is the altitude of a polygon?

10. If two triangles have equal altitudes, how do their areas vary?

11. How do these areas vary if they have equal bases but unequal altitudes?
12. If both bases and altitudes differ, how do the areas vary?

13. When are two segments divided proportionally?

14. If two triangles have equal areas, prove that their perpendiculars are recipro-
cally proportional to the bases.

15. What is meant by inversely similar polygons?

16. How many polygons similar to a given polygon of sides can be constructed on a

given line?
17. What are homothetic polygons?
18. How do the areas of similar polygons vary?

19. What proposition is [6.19] a special case of?

Exercises for chapter 6.

1. If a transversal meets the sides of a triangle AABC at the points A’, B/, C’,
prove that AB’- BC"-CA’ = —A’B- B'C - C'A.

2. If D is the midpoint of the base BC of a triangle AABC, FE the foot of the
perpendicular, L is the point where the bisector of the angle at A meets BC, and
H the point of intersection of the inscribed circle with BC, prove that DE - HL =
HE-HD.

3. As in #2, if K is the point of intersection with BC of the escribed circle, which
touches the other extended sides, prove that LH - BK = BD - LE.
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4. If R, r, 7', 7", ' are the radii of the circumscribed, the inscribed, and the
escribed circles of a plane triangle, d, d’, d”, d""’ the distances of the center of the
circumscribed circle from the centers of the others, prove that R?> = d? 4+ 2Rr =
d? — 2Ry, etc.

5. As in #4, prove that 12R? = d?> + d’? + d'?> + d"".

6. If p/, p”, p"”’ denote the altitudes of a triangle, then:

1 1 1 1
D gt =

@ St = w (ete.)
3) % = 1_ 1 (etc.)
(4) 2 = gt (ete)

7. Suppose that the angle at point A and the area of a triangle AABC are given in
magnitude. If the point A is fixed in position and the point B move along a fixed
line or circle, prove that the locus of the point C is a circle.

8. Find the area of a triangle:
(a) in terms of its medians;
(b) in terms of its perpendiculars.

9. If there are three given parallel lines and two fixed points A, B, and if the lines
connecting A and B to any variable point in one of the parallels intersects the other
parallels at the points C' and D, E and F, respectively, prove that CF and DE each
pass through a fixed point.

10. Find a point O in the plane of a triangle AABC such that the diameters of
the three circles about the triangles AOAB, AOBC, AOC A may be in the ratios of
three given segments.

11. Suppose that ABCD is a cyclic quadrilateral, and the segments AB, AD, and
the point C are given in position. Find the locus of the point which divides BD in a
given ratio.

12. If CA, CB are two tangents to a circle and BE | AD (where AD is the the
diameter through A), prove that C'D bisects BE.

13. If three segments from the vertices of a triangle AABC to any interior point O
meet the opposite sides in the points A’, B’, C’, prove that

OA N OB’ N oc’ .
AA’ BB CC'

14. If three concurrent segments OA, OB, OC are cut by two transversals in the
two systems of points A, B, C; A’, B’, C’, respectively, then prove that

AB OC BC OA CA OB

AB OC' _ BC' OA  CA OB

15. Prove that the line joining the midpoints of the diagonals of a quadrilateral
circumscribed to a circle:
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(a) divides each pair of opposite sides into inversely proportional segments;

(b) is divided by each pair of opposite segments into segments which when
measured from the center are proportional to the sides;

(c) is divided by both pairs of opposite sides into segments which when mea-
sured from either diagonal have the same ratio to each other.

16. If CD, C'D’ are the internal and external bisectors of the angle at C' of the

triangle AACB, prove that the three rectangles AD - DB, AC - CB, AD - BD are
proportional to the squares of AD, AC, AD and are:

(a) in arithmetical progression, if the difference of the base angles is equal to a
right angle;

(b) in geometrical progression if one base angle is right;

(¢) in harmonic progression if the sum of the base angles is equal to a right
angle.

17. If a variable circle touches two fixed circles, the chord of contact passes through
a fixed point on the line connecting the centers of the fixed circles.

Figure 6.2.44: Ch. 6, #27

Let O,0’ be the centers of the two fixed circles where O is the center of the variable
circle. Let A, B the points of contact, and let AB and OO’ meet at C, and cut the
fixed circles again in the points A’, B’ respectively.

Construct A’0, AO, BO’. Then AO, BO’ meet at O [3.11]. Now because AOAA’,
AO" AB are isosceles, the angles /O”"BA = /0" AB = ZOA’ A.

Hence OA’ || O’ B; therefore OC : O'C = OA’ : O'B is in a given ratio. Hence, C is a
given point.

18. In #17, if DD’ is the common tangent to the two circles, prove that (DD’)? =
AB' - A'B.

19. If R denotes the radius of O” and p, p’ the radii of O, O’, then (DD’)? : (AB)? =
(R=+p)(R =+ p') : R? where the choice of sign depends on the nature of the contacts.
(This result follows from #18.)
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20. Prove that the inscribed and escribed circles of any triangle are all touched by
its nine-points circle.

21. If a, b, ¢, d denote the four sides of a quadrilateral, and D, D’ denote the
diagonals of a quadrilateral, prove that the sides of the triangle, formed by joining
the feet of the perpendiculars from any of its vertices on the sides of the triangle
formed by the three remaining points, are proportional to the three rectangles ac,
bd, DD'.

22. Prove the converse of Ptolemy’s theorem (see [6.17], #10).

23. Construct a circle which:
(a) passes through a given point, and touches two given circles;
(b) touches three given circles.

24. Prove that if a variable circle touches two fixed circles, the tangent to it from
their center of similitude through which the chord of contact passes is of constant
length. (See #17 above.)

25. If segments AD, BD' are extended, prove that they meet at a point on the
circumference of O” and the line O” P is perpendicular to DD’. (See #17 above.)

26. If a segment FF divides proportionally two opposite sides of a quadrilateral,
and a segment GH the other sides, prove that each of these is divided by the other
in the same ratio as the sides which determine them.

27. In a given circle, inscribe a triangle such that the triangle whose vertices are
the feet of the perpendiculars from the endpoints of the base on the bisector of the
vertical angle and the foot of the perpendicular from the vertical angle on the base
may be a maximum.

28. In a circle, prove that the point of intersection of the diagonals of any inscribed
quadrilateral coincides with the point of intersection of the diagonals of the circum-
scribed quadrilateral whose sides touch the circle at the vertices of the inscribed
quadrilateral.

29. Through two given points construct a circle whose common chord with another
given circle may be parallel to a given line, or pass through a given point.

30. If concurrent lines constructed from the angles of a polygon of an odd number
of sides divide the opposite sides each into two segments, prove that the product of
one set of alternate segments is equal in area to the product of the other set.

31. If a triangle is constructed about a circle, prove that the lines from the points
of contact of its sides with the circle to the opposite vertices are concurrent.

32. If a triangle is inscribed in a circle, prove that the tangents to the circle at its
three vertices meet the three opposite sides at three collinear points.

33. Prove that the external bisectors of the angles of a triangle meet the opposite
sides in three collinear points.
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34. Construct a circle touching a given line at a given point and cutting a given
circle at a given angle.

35. Prove that the center of mean position of the vertices of a regular polygon is the
center of figure of the polygon.

36. Prove that the sum of the squares of segments constructed from any system of
points A, B, C, D, etc., to any point P exceeds the sum of the squares of segments
from the same points to their center of mean position, O, by n - (OP)2.

37. If a point is taken within a triangle so as to be the center of mean position of
the feet of the perpendiculars constructed from it to the sides of the triangle, prove
that the sum of the squares of the perpendiculars is a minimum.

38. Construct a quadrilateral being given two opposite angles, the diagonals, and
the angle between the diagonals.

39. Construct two points, C, D in the circumference of a given circle are on the
same side of a given diameter. Find a point P in the circumference at the other side
of the given diameter, AB, such that PC, PD may cut AB at equal distances from
the center.

40. If the sides of any polygon are cut by a transversal, prove that the product of
one set of alternate segments is equal to the product of the remaining set.

41. A transversal being constructed cutting the sides of a triangle, prove that
the lines from the angles of the triangle to the midpoints of the segments of the
transversal intercepted by those angles meet the opposite sides in collinear points.

42, If segments are constructed from any point P to the angles of a triangle, prove
that the perpendiculars at P to these segments meet the opposite sides of the tri-
angle at three collinear points.

43. Prove that the rectangle contained by the perpendiculars from the endpoints of
the base of a triangle on the internal bisector of the vertical angle is equal to the
rectangle contained by the external bisector and the perpendicular from the middle
of the base on the internal bisector.

44. State and prove the corresponding theorem for perpendiculars on the external
bisector.

45. Suppose that R, R’ denote the radii of the circles inscribed in the triangles
into which a right triangle is divided by the perpendicular from the right angle
on the hypotenuse. If ¢ is the hypotenuse and s is the semi-perimeter, prove that
R?>+ R"? = (s —¢)%

46. If A, B, C, D are four collinear points, find a point O in the same line with them
such that OA-OD = OB - OC.

47. Suppose the four sides of a cyclic quadrilateral are given; construct it.

48. If a circle touches internally two sides of a triangle, CA, CB, and its circum-
scribed circle, prove that the distance from C to the point of intersection on either
side is a fourth proportional to the semi-perimeter, CA and CB.
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49. State and prove the corresponding theorem for a circle touching the circum-
scribed circle externally and two extended sides.

50. Pascal’s Theorem: if the opposite sides of an irregular hexagon ABCDEF in-
scribed in a circle are extended until they meet, the three points of intersection G,
H, I are collinear.

Figure 6.2.45: Pascal’s Theorem

Hint: construct AD. Construct a circle about the triangle AADI, cutting the ex-
tended segments AF', CD, if necessary, at K and L. Construct IK, KL, LI. By
[3.21], we find that ZKLG = ZFCG = ZGAD. Therefore KL || CF.

Similarly, L1 || CH and K1 || FH; hence the triangles AKLI, AFCH are homoth-
etic, and so the lines joining corresponding vertices are concurrent. Therefore, the
points I, H, G are collinear.

51. If two sides of a triangle are given in position, and if the area is given in
magnitude, prove that two points can be found at each of which the base stands
opposite a constant angle.

52. If a, b, ¢, d denote the sides of a cyclic quadrilateral and s its semi-perimeter,
prove that its area =/(s — a)(s — b)(s — ¢)(s — d).

53. If three concurrent lines from the angles of a triangle A ABC meet the opposite
side in the points A’, B/, C’, and the points A’, B’, C’ are joined and form a second
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triangle AA’B’C’, prove that

AABC : AA'B'C' =AB-BC-CA:2. A8 - BO . CA

54. In the same case as #53, find the diameter of the circle circumscribed about the
triangle AABC = AB’ - BC" - C A’ divided by the area of A’B'C".

55. If a quadrilateral is inscribed in one circle and circumscribed to another, the
square of its area is equal to the product of its four sides.

56. If on the sides AB and AC of a triangle AABC we take two points D and F on
their connecting segment such that

BD AE DE
AD CE EF

then prove that ABFC =2- AADE.

57. If through the midpoints of each of the two diagonals of a quadrilateral we
construct a parallel to the other, prove that the lines constructed from their points
of intersection to the midpoints of the sides divide the quadrilateral into four equal
parts.

58. Suppose that CE, DF are perpendiculars to the diameter of a semicircle, and
two circles are constructed touching CE, DE, and the semicircle, one internally
and the other externally. Prove that the area of the rectangle contained by the
perpendiculars from their centers on AB is equal to the area CE - DF.

59. If segments are constructed from any point in the circumference of a circle to
the vertices of any inscribed regular polygon of an odd number of sides, prove that
the sums of the alternate lines are equal.

60. If at the endpoints of a chord constructed through a given point within a given
circle tangents are constructed, prove that the sum of the reciprocals of the perpen-
diculars from the point upon the tangents is constant.

61. If the vertical angle and the bisector of the vertical angle is given, prove that
the sum of the reciprocals of the containing sides is constant.

62. If P, P’ denote the areas of two regular polygons of any common number of sides
inscribed and circumscribed to a circle, and II, IT are the areas of the corresponding
polygons of double the number of sides, prove that II is a geometric mean between
P and P’ and I a harmonic mean between I and P.

63. Prove that the difference of the areas of the triangles formed by joining the cen-
ters of the circles constructed about the equilateral triangles constructed outwards
on the sides of any triangle is equal to the area of that triangle. Prove the same if
they are constructed inwards.

64. In the same case as #63, prove that the sum of the squares of the sides of the
two new triangles is equal to the sum of the squares of the sides of the original
triangle.
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65. Suppose that R and r denote the radii of the circumscribed and inscribed circles
to a regular polygon of any number of sides, R’, r’, corresponding radii to a regular
polygon of the same area, and double the number of sides. Prove that ' = v Rr

and ' = —T(R;”).

66. If the altitude of a triangle is equal to its base, prove that the sum of the
distances of the orthocenter from the base and from the midpoint of the base is
equal to half the base.

67. Given the area of a parallelogram, one of its angles, and the difference between
its diagonals, construct the parallelogram.

68. Given the base of a triangle, the vertical angle, and the point in the base whose
distance from the vertex is equal half the sum of the sides, construct the triangle.

69. If the midpoint of the base BC of an isosceles triangle AABC is the center of
a circle touching the equal sides, prove that any variable tangent to the circle will
cut the sides in points D, E, such that the rectangle BD - C'E is constant.

70. Inscribe in a given circle a trapezoid, the sum of whose opposite parallel sides

is given and whose area is given.
71. Inscribe in a given circle a polygon all of whose sides pass through given points.

72. If two circles OABC, OXY Z are related such that a triangle may be inscribed
in OABC and circumscribed about OXY Z, prove that an infinite number of such
triangles can be constructed.

73. In the same case as #72: prove that the circle inscribed in the triangle formed
by joining the points of contact on OXY Z touches a given circle.

74. In the same case as #72: prove that the circle constructed about the trian-
gle formed by drawing tangents to OABC at the vertices of the inscribed triangle
touches a given circle.

75. Find a point, the sum of whose distances from three given points is a minimum.

76. Prove that a line constructed through the intersection of two tangents to a circle
is divided harmonically by the circle and the chord of contact.

77. Construct a quadrilateral similar to a given quadrilateral whose four sides pass
through four given points.

78. Construct a quadrilateral similar to a given quadrilateral whose four vertices
lie on four given lines.

79. Given the base of a triangle, the difference of the base angles, and the rectangle
of the sides, construct the triangle.

80. Suppose that JABCD is a square, the side CD is bisected at F, and EF is
constructed making the angle ZAEF = /EAB. Prove that EF divides the side BC
in the ratio of 2 : 1.

81. If two circles touch and through their point of intersection two secants be con-
structed at right angles to each other, cutting the circles respectively in the points
A, A'; B, B'; then (AA")? + (BB’)? is constant.
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82. If two secants stand at right angles to each other which pass through one of the
points of intersection of two circles also cut the circles again, and the line through
their centers is the two systems of points a, b, c; d’, V', ¢’ respectively, prove that

ab:bc=a'b :bc.

83. The rectangle contained by the segments of the base of a triangle made by the
point of intersection of the inscribed circle is equal to the rectangle contained by the
perpendiculars from the endpoints of the base on the bisector of the vertical angle.

84. If O is the center of the inscribed circle of the triangle, prove

OA> 0B*> 0C?
- + =

1
be ca ab

85. State and prove the corresponding theorems for the centers of the escribed
circles.

86. Suppose that four points A, B, C, D are collinear. Find a point P at which the
segments AB, BC, C'D stand opposite equal angles.

87. Prove that the product of the bisectors of the three angles of a triangle whose

sides are a, b, ¢, is
8abc - s - area

(a+b)(b+c)(c+a)

88. In the same case as #87, prove that the product of the alternate segments of
the sides made by the bisectors of the angles is

a?b%c?

(a+b)(b+c)(a+c)

89. If three of the six points in which a circle meets the sides of any triangle are
such that the lines joining them to the opposite vertices are concurrent, prove that
the same property is true of the three remaining points.

90. If a triangle AA’B’C” is inscribed in AABC, prove

AB'-BC'"-CA'+ A'B-B'C-C'A

equals twice the area of A A’ B’C’ multiplied by the diameter of the circle OABC.

91. Prove that the medians of a triangle divide each other in the ratio of 2 : 1.



Chapter 7

Elementary Number Theory

All variables represent natural numbers (i.e, positive integers) unless otherwise
specified.

7.1 Definitions

0. The Whole Numbers are the set of numbers containing 0, 1, 2, 3, ... . The Natural
Numbers (the positive integers) are a subset of the Whole numbers, containing 1,
2,3, ... . We define the Rational Numbers as the set of numbers that can be
written § where both p and ¢ are whole numbers where ¢ # 0. (Notice that the
rational numbers include the whole numbers.) We also define the Real Numbers
as the rational numbers and the irrational numbers. We do not require the use of
negative numbers.

1. We define the number 1 as the unit number, or more simply as the unit.

2. A number is a multiple of units; that is, if = is a natural number, then z = zu =
u~+u+ ... +uwhere u = 1 and « is added to itself a total of x times.

3. A number z is a factor of y when = < y and there exists some whole number
n > 1 where nxz = y. We may also write that x is a divisor of y or that y is a multiple
of z.

Notice that the condition nz = y may be rewritten y — nxz = 0.

The proper factors of y are all factors of y except 1 and y.

4. An even number z is any whole number such that x = 2b where b > 1 is whole
number.

5. An odd number is any whole number which is not even. We may write such
numbers as z = 2b + 1 where b > 0 is whole number.

6. An even-times even number x is any whole number which is the product of two

even numbers.

317
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7. An even-times odd number is any whole number which is the product of an even
number and an odd number.

8. An odd-times odd number is any whole number which is the product of two odd

numbers.

9. A prime number p is any whole number such that p > 1 and where p has only
two factors: 1 and itself.

The prime factors of y are all prime numbers which are factors of y.

10. Natural numbers 2 and y are said to be relatively prime (or co-prime) if the only
whole number that evenly divides both x and y is 1.

11. A composite number c¢ is any whole number where ¢ > 1 and where c is not
prime. All natural numbers other than 1 are prime or composite.

12. Natural numbers x and y are said to be relatively composite if © and y are not

relatively prime.

13. A whole number z is said to multiply a whole number y when xy = y+y+...+y
where y is added to itself a total of x times.

14. When two numbers are multiplied to produce a third number, the third number
is called a product. Since both numbers are positive, the product is positive, and
it may be admissible to interpret the product as an area. (Euclid refers to these
numbers as plane numbers.)

15. When three numbers are multiplied to produce a fourth number and the initial
three numbers are positive, the product is positive, and it may be admissible to in-
terpret the product as a volume. (Euclid refers to these numbers as solid numbers.)

16. A square number x is any number such that 2 = b2 = b - b for some real number
b.

17. A cube (or a cubed number) x is any number such that x = b3 = b - b - b for some
real number b.

18. Four numbers a, b, ¢, d are proportional whenever a : b = ¢ : d or equivalently

when

€
b d
19. A perfect number x is a whole number which is equal to the sum of its factors

except for z itself.!

Examples: 6 is a perfect number because 6 =1-6=2-3 and 6 =1 + 2 + 3. Also, 28
is also a perfect number: since 28 =1-28=2-14=4-7and 28 =1+ 2+ 4+ 7+ 14.

20. A proper fraction has a numerator which is less than its denominator.

ISee https://en.wikipedia.org/wiki/List_of_perfect_numbers for a list of known perfect num-
bers.
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Remark. Let k, z, and y be natural numbers. The following statements are equiv-
alent:

Dy=z-k

(2) x is a factor of y

(3) x is not relatively prime to y

(4) y is not relatively prime to x

(5) x divides y

(6) = is a divisor of y

(7) x|y

Remark. Let x and y be natural numbers. The following statements are equivalent:
(1) z is not a factor of y
(2) x is relatively prime to y
(3) y is relatively prime to z

4 zty
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7.2 Propositions from Book VII

Proposition 7.1. THE EUCLIDEAN ALGORITHM TO DETERMINE IF TWO
NUMBERS ARE RELATIVELY PRIME.

Let z1 > x5 be natural numbers. There exists some positive integer n such that
r1—n-x9 >0

and
1 —(n+1)-z2 <0

We begin the algorithm with 21 — n; - 2 = x3 where n; is chosen as above. We
continue as long as the right-hand side of each equation is greater than 1:

1 — N1 - Ty = I3
T2 —Ng X3 = T4
T — Nk - T+l =  Tk+2

stopping when z;.2 = 0 or z31o = 1. If 2140 = 1, then z; and z, are relatively

prime.

Proof. Suppose we use the Euclidean Algorithm and obtain:

r1 — N1 - Ty = I3
T2 —Ng - X3 = T4
Ty — Nk Tpe1 = 1

but 2, and z- are not relatively prime. It follows that 2; and x5 possess a common
factor other than 1. Suppose ¢t > 1 is the common factor where 1 = ty; and x5 = tys.
It follows that

typy —ny -tys = x3

tyr —n1-y2) = a3

or ¢t is a factor of x3; that is, x5 = ty3. Similarly, we can show that all x; possess a
factor of ¢.

But by hypothesis, x; — ng - ©x+1 = zr+2 = 1. By the above, z;12 = tyii2, and so
1 = tyxy2. Hence, t = 1 = yr1o. But ¢t > 1 by the above, a contradiction. Thus, x;
and z, are relatively prime. O



CHAPTER 7. ELEMENTARY NUMBER THEORY 321

Corollary. [7.1.1] If x..o = 0 in the final step of the Euclidean Algorithm, then 1
and x5 share a common factor.

Proof. Suppose we use the Euclidean Algorithm to obtain:

r1 — N1 - To = I3
T2 — Ny - X3 = T4
T — Nk * Tk41 = 0

Notice that x; = ny - z111, and so 1 is a factor of z. Similarly, we can show that
Zr+1 1s also a factor of x4_1, ..., x2, x1. This completes the proof. O

Remark. See also [10.2].

Example. [7.1.1]: Are 363 and 19600 relatively prime?

Let 21 = 19600 and x5 = 363. Then x1 > 2> and:

19600 — (53)(363) = 361

where n; = 53. To justify our choice of 53 for ny, notice that

19600 — (52)(363) = 724
19600 — (54)(363) = —2

We continue:

19600 — (53)(363) = 361
363 — (1)(361) = 2
361 — (180)(2) = 1

where ny = 1 and ng = 180. Since we have continued the algorithm until the RHS
equals 1, by [7.1], 363 and 19600 are relatively prime.?

Example. [7.1.2]: Are 350 and 19600 relatively prime?

Let 1 = 19600 and x5 = 350. Then z7 > z2 and 19600 — (56)(350) = 0. Clearly, no
choice of n; will produce a RHS equaling 1. By [Cor. 7.1.1], 350 and 19600 are not
relatively prime.

2Recall that RHS stands for the right-hand side of an equation and LHS stands for the left-hand side
of an equation.
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Remark. [10.2] shows that the Euclidean Algorithm may not terminate under real

numbers.

Proposition 7.2. THE GREATEST COMMON FACTOR (GREATEST COMMON
DIVISOR).

Given two natural numbers, there exists a largest common factor. We may call this
positive integer the greatest common divisor (GCD) or the greatest common factor

(GCF).

Proof. Let x1 > 25 be whole numbers. We wish to find the greatest common factor
of T and 2.

Suppose we use the Euclidean Algorithm and obtain:

X1 — Ny -T2 = I3
To —Ng - T3 = T4
Tk—1 —Ng—1 Tk = Tg41

If the final equation terminates the algorithm, either z;.1 = 1 or x;4; = 0 [7.1],
[Cor. 7.1.1]; that is, if 1 > 1, we may continue the algorithm until z;,, equals
either 1 or O.

If 21,41 = 1, then z;, z2 are relatively prime and their GCD equals 1.

If x4+1 = 0, then z;, is a common factor of 1, z5. Suppose z; < t and ¢ divides z1, z5.
Since xo = ro -1, and x1 = r1 -2 - 71, we find that ¢ divides z;, and so ¢t < x;.. Hence,
t = 13, and so xy, is the GCD of x1, 5. This completes the proof. O

Example. [7.2.1]: What is the greatest common factor (GCF) of 19600 and 42?

Let z; = 19600 and x5 = 42 (fulfilling the assumption that z; > z5). Then

19600 — (466)(42) = 28
42— (1)(28) = 14
28— (2)(14) = 0

By [Cor. 7.1.1], 19600 and 42 have a common factor. Since the final equation of the
algorithm equals 0, by [7.2], 14 is the GCF of 19600 and 42.
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Example. [7.2.2]: What is the greatest common factor (GCF) of 18792 and 36?

Let z; = 18792 and x> = 36 (fulfilling the assumption that z; > z3). Then

18792 — (522)(36) = 0

By [Cor. 7.1.1], 18792 and 36 have a common factor. Since the final equation of the
algorithm equals 0, by [7.2], 36 is the GCF of 18792 and 36.

Corollary. 7.2.1. If k divides both x1 and xs, then k also divides the GCF of x1, xs.

Exercises.

1. Prove [Cor. 7.2.1].

Remark. David E. Joyce lists some of the assumptions Euclid makes about whole
numbers:

http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html

Remark. Online Euclidean Algorithm calculator:

https://www.calculatorsoup.com/calculators/math/gcf-euclids-algorithm.php

Proposition 7.3. THE GREATEST COMMON FACTOR OF THREE RELATIVELY
COMPOSITE NUMBERS.

Proof. We claim a GCF exists for relatively composite numbers z1, x2, and x3.

By [7.2], the GCF for x; and z, exists; denote it as y. Similarly, the GCF for y and
3 exists; denote it as z. We claim that z is the GCF for x1, 22, and x3.

Since z|y, y|z1, and y|xs, it follows that z|z; and z|z,. Since z|xz3 by the above, we
have proven our claim. O

Remark. The result of [7.3] is identical to the result of [10.4].

Example. [7.3.1]: What is the greatest common factor (GCF) of 19600, 672, and 42?

First, we find the GCF of 19600 and 672:

19600 — (29)(672) = 112
672 — (5)(112) = 112
112 - (1)(112) = 0


http://aleph0.clarku.edu/~djoyce/java/elements/bookVII/propVII2.html
https://www.calculatorsoup.com/calculators/math/gcf-euclids-algorithm.php
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The GCF of 19600 and 672 is 112.
Next, we find the GCF of 112 and 42:

12— (2)(42) = 28
42— (1)(28) = 14
28— (2)(14) = 0

By [7.3], the GCF of 19600, 672, and 42 is 14.

Proposition 7.4. FRACTIONS.
If 21 > x5 are natural numbers, then there exists a proper fraction § such that

Tro = I

b
Proof. Let 1 > x5 be natural numbers. Notice that

X
0<=2<1
Z1

and so i—f is a proper fraction. Also notice that z, = i—f -x1. Write i—f = ¢ where ¢ is
written in lowest terms. Since 22 is a proper fraction, ¢ is a proper fraction. Then

T2 = E * I
This completes the proof. O
Proposition 7.5. DISTRIBUTION 1.
v oy 1
5 + s = 1 (x+vy)

Proof. Let each x; for i = 1,2,3,4 be a positive integer, and let 21 = % - 2o and
T3 = % - x4 (by applications of [7.4]). Then
1

T1+x3 = E'$2+E'!E4
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Corollary. 7.5.1. [7.5] holds for any finite number of terms.

Proposition 7.6. DISTRIBUTION I1.

a
wt sy = T(rty)

a
b b

S

Proof. Let each z; for i = 1,2,3,4 be a positive integer, and let z; = 7 - 22 and
x3 = ¢ - x4 (by applications of [7.4]). Then

a a
T +w3 = 5'1’2-1-5'964

a
= 5(352 +z4)

Corollary. 7.6.1. [7.6] holds for any finite number of terms.

Proposition 7.7. DISTRIBUTION III.
37— pWrmw

Proof. The proofis similar to that of [7.5] and is left as an exercise to the reader.

O

Corollary. 7.7.1. [7.7] holds for any finite number of terms.

Proposition 7.8. DISTRIBUTION 1V.
Yy = %(fc )

Proof. The proof is similar to that of [7.6] and is left as an exercise to the reader.

O

Corollary. 7.8.1. [7.8] holds for any finite number of terms.
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Proposition 7.9. MULTIPLICATION OF CERTAIN FRACTIONS 1.

Proof. Let a, b, ¢, d, g, h, and n be natural numbers such that a = %, d= ¢, and
a = ¥ -d. It follows that

b g
2 - 9.4
n h
b _g.¢
n  h n
g-c
p = 2 -
h
b = % c
O
Proposition 7.10. MULTIPLICATION OF CERTAIN FRACTIONS II.
Proof. Leta, b, c, d, g, h, and n be natural numbers such thata =%-d,e =2 f, and
a = ¥ -e. It follows that
b g
Z.d = Z.
c h ¢
- ¢.9.
d = 5 e
- 9.¢.
d = W e
Since f = { - e, we find that
g
d = 2.
Y f
O

Proposition 7.11. MANIPULATION OF RATIOS I.

a—C

N a
d b—d b

b
Proof. Let a, b, c, d, n, m, r, s, u, and v be natural numbers such that n < m, r < s,
u<vanda=7=-b,c=7%-a,d= % b Notice thata —c= =~ -a.
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Suppose a : b= c: d. Then

a c
b d
n b r
2.2 = l.g-—
m b s ub
n r on v
A
m s m ub
n r on v
m s m u
r
v s

It follows that d = Z - b and so b — d = *-* - b. Then

b b
s;r g 7 a
s;r b - b
a—cC o a
b—d b
which completes the proof. O
Example. [7.11]: since
41
16 4
it follows that
4-1 3 1
16—-4 12 4

Proposition 7.12. MANIPULATION OF RATIOS I1.

c a—+c a

-2
b d  b+d b

Proof. The proofis similar to that of [7.11] and is left as an exercise to the reader.

O

Example. [7.12]: since

then
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Proposition 7.13. MANIPULATION OF RATIOS III.

a_c_ a_b
b d c
Proof. Suppose a:b=c:d. Then
ba _bc
cb ¢ d
a _ 0P
- d
ora:c=~>:d. This completes the proof. O
Example. [7.13]: since
4 1
16 4
then
416
1 4

Proposition 7.14. MANIPULATION OF RATIOS 1V: TRANSITIVE PROPOR-
TIONS

If a;, b; are real numbers fori =1,2,...,n, and

a1 :ay = by:by
as :az = b2 : bg
p-1:0n = byp_1:b,
then
ai:a, = by:b,

Proof. Our hypothesis and claim are stated above. By n — 1 applications of [7.13],
we obtain

al:bl a22b2

a22b2 a3:b3

p-1:bp1 = an:by
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It follows that
M _On
by by
By a second application of [7.13],
@ _b
an,  bn

which completes the proof.

Example. [7.14.1]: Consider § = 2, 2 = {5, and & = 9. By [7.14],

Example. [7.14.2]: Consider 1 = 2, L = 13 and 1% = 23, By [7.14],

14010 — 200
12
21 42

Proposition 7.15. COMMUTATIVITY OF MULTIPLICATION I.

Let n be a real number. We claim that1-n =n - 1.

Proof. Case 1: Let n # 0 be a real number. Suppose that

l-n=an-1

329

where a is a real number. Dividing each side by n, we obtain 1 =« -1, and so a = 1.

It follows 1 -n =n- 1.
Case 2: Let n = 0. Clearly, 1-0=0=0-1.

This completes the proof.

Proposition 7.16. COMMUTATIVITY OF MULTIPLICATION II.

Let m and n be real numbers. We claim that n-m = m - n.
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Proof. Suppose the above. By [7.15], m-1 =1-m, and so

no_ n
m o m
n
1)— = (1 —
(m- 1) = (1-m)
mn
— = n
m
mn
im-1) = 1-
1) = n(1lom)
mn = nm
which completes the proof. O

Proposition 7.17. MULTIPLYING BY ONE I.

a _ ka
b kb
Proof. Suppose a : b. It follows that
@_q.a_k a_ka
b b kb kb
(I
Proposition 7.18. MULTIPLYING BY ONE II.
a _ ak
b bk
Proof. The proof follows by applying [7.16] to [7.17]. O

Proposition 7.19. EQUIVALENCE OF PROPORTIONS.
a:b = c:diffad ="be

Proof. Suppose a : b = c: d for real numbers a, b, ¢, and d; equivalently, suppose

@e_°
b d
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Then
a c
—-bd = -=-bd
b d
ad = c¢b
ad = be

upon applying [7.16]. Starting with ad = bc and working backwards provides the
contrapositive case, completing the proof. O

Proposition 7.20. REDUCTION TO LOWEST TERMS.
If a : b reduces to ¢ : e in lowest terms, then c is a factor of a.

Proof. Suppose that a : b reduces to c : e in lowest terms. Then

a ay - ag - ... Qm
b b1 -by-... by
C ay-ag - ... ag
& blebk

where each a;, b; is a natural number. If this were not the case, then either § # ¢

e

or{=7¢= % where a : b reduces to d : f in lowest terms. Since
(a1-ag-..oap)-t=ag-ag: ... Qg - kg1 o Ay
for some natural ¢, by [Def. 7.3], c is a factor of a. O

Corollary. 7.20.1 If a : b reduces to c : ¢ in lowest terms, then ¢ is a factor of b.

Exercises.

1. Prove [Cor. 7.20.1].

Proposition 7.21. RELATIVE PRIMES 1.

If a is relatively prime to b, then the ratio a : b is reduced to lowest terms.
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Proof. Suppose a is relatively prime to b; that is, a and b share no common factor.
Then

S

- ay - ag ... Am
b bi-by-...-by
whereno a; = b forany 1 <i<moranyl <k <n.

Also suppose that a : b is not reduced to lowest terms. Then some a; = by, contra-
dicting the above. Hence, «a : b is reduced to lowest terms. O

Proposition 7.22. RELATIVE PRIMES II.

If the ratio a : b is reduced to lowest terms, then « is relatively prime to b.

Proof. Suppose instead that « = mk and b = nk for natural numbers k, m,n. Then

_k:m m

@ _ rm
b kn n

where m < a and n < b. This contradicts our hypothesis that ¢ is reduced to lowest
terms. Hence, a is relatively prime to b. O

Corollary. 7.22.1[7.21] and [7.22] state that a : b is reduced to lowest terms iff a is
relatively prime to b.

Corollary. 7.22.2 TRANSITIVITY OF FACTORS. If x is a factor of y and y is a
factor of z, then x is a factor of z.

Proof. If y = kx and z = ry, then z = rk - . O

Proposition 7.23. RELATIVE PRIMES III.

If a and b are relatively prime and ¢ > 1 is a factor of a, then b and ¢ are also
relatively prime.

Proof. Suppose a and b are relatively prime such that ¢ > 1 is a factor of a where
ck = a. We claim that b and c are relatively prime.

Suppose instead that b and ¢ are not relatively prime; specifically, that b = ¢r and

c=ts.

It follows that a = ck = tks and b = tr; hence, a and b are not relatively prime,
contrary to our hypothesis. Thus, b and ¢ are relatively prime. O
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Proposition 7.24. RELATIVE PRIMES 1V.
If z and y are relatively prime to z, then zy is also relatively prime to z.

Proof. Since z is relatively prime to z, any list of prime factors of z will not contain
any prime factors of z. Similarly, any list of prime factors of y will not contain any
prime factors of z.

Since any list of prime factors of 2y can only contain prime factors of 2 and y, such
a list will not contain any prime factors of z, which proves our claim. O

Proposition 7.25. RELATIVE PRIMES V.

If z and y are relatively prime, then 2 is relatively prime to y.

2

Proof. Apply [7.24]: if © and x are relatively prime to y, then z - z = 2z is also

relatively prime to y. O

Proposition 7.26. RELATIVE PRIMES V1.

If z is relatively prime to s and ¢, and if y is also relatively prime to s and ¢, then zy
is relatively prime to st.

Proof. Since x and y are each relatively prime to s, zy is also relatively prime to s
[7.24]. Similarly, zy is relatively prime to ¢.

Since s and ¢ are each relatively prime to xy, by a final application of [7.24], st is
relatively prime to xy . This proves our claim. O

Proposition 7.27. RELATIVE PRIMES VII.
If z and y are relatively prime, then 22 and y? are relatively prime.
Proof. Since x and y are relatively prime, by [7.25] 22 and y are relatively prime.

Since y and 2 are relatively prime, again by [7.25], 4 and 2 are relatively prime,
which proves our claim. O

Corollary. 7.27.1 If x and y are relatively prime, then x and y™ are relatively prime.
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Proof. This proof requires induction.? Suppose z and y are relatively prime. By
[7.25], z and y? are relatively prime. Suppose that = and 3" are relatively prime;
we wish to show = and y**! are also relatively prime.

Notice that y**! = y . y*. If 2 and y**! share a common factor, then x and y - y*

share a common factor. But z is neither a factor of y nor y* by hypothesis. Hence,

and y**! are relatively prime. The completes the proof. O

Corollary. 7.27.2 If x and y are relatively prime, then x" and y™ are relatively
prime.

Exercises.

1. If z and y are relatively prime, then z* and y? are relatively prime.

2. Prove [Cor. 7.27.2].

Proposition 7.28. RELATIVE PRIMES VIII.

Let = and y be natural numbers.
(1) If 2 and y are relatively prime, then x + y is relatively prime to both = and y.

(2) If z +vy is relatively prime to either z or to y, then x and y are relatively prime.

Proof. We prove each claim separately.

Claim 1: if z and y are relatively prime, then z + y is relatively prime to both = and
Y.
If x + y and z are not relatively prime, then there exists some n > 1 such that IT’Ly

and * are integers. Since IT’Ly >

r+y x
n n

3

where ¥ is also a positive integer. Since £ and £ are natural numbers, x and y
are not relatively prime. A similar argument follows if we assume x + y and y are
not relatively prime. Since this is the contrapositive statement of claim 1, we have
completed this part of the proof.

Claim 2: if = + y is relatively prime to z or to y, then x and y are relatively prime.

If x and y are not relatively prime, then there exists some n > 1 such that & and £
are integers. It follows that ””Tﬂ’ is also an integer, and so z + y is neither relatively
prime to x nor to y. Since this is the contrapositive statement of claim 2, we have
completed the proof. O

Shttps://en.wikipedia.org/wiki/Mathematical_induction
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Remark. Notice that [7.28] cannot be written using an “if and only if” statement
without discarding part of the result.

Proposition 7.29. PRIME NUMBERS I.
If p is prime and p t y, then p, y are relatively prime.

Proof. Assume instead there exists some positive integer n > 1 such that n|p and
Since n|y and p { y, n # p. But since n|p where n > 1 and p is a prime number, n = p,
a contradiction. This proves our claim. O

Proposition 7.30. PRIME NUMBERS I1.

Suppose = and y are natural numbers and p is a prime number. If p is a factor of
zy, then p is a factor of either z or y.

Proof. Since p is a factor of xy, there exists some positive integer n > 1 such that
np = xy. By [7.19],

p_Y
X n
Suppose that p is not a factor of z; by [7.29], p and = are relatively prime. By [7.21],
P is written in lowest terms; by [7.20], p is a factor of y.

Similarly, we can show that if p is not a factor of y, then p is a factor of x. This

proves our claim. O

Lemma. 7.30.0 If S is any nonempty set of natural numbers, then any subset of S
contains a minimum element.

Proposition 7.31. PRIME NUMBERS I11.

Let = be any composite number. There exists some prime number p such that p is a
factor of .

Proof. Since = is composite, there exists some number y; < x which is a proper
factor of z. If y; is prime, then the proofis complete. Otherwise, suppose y> < 1
is a proper factor of ;. Clearly, ys is also a proper factor of x; if > is prime, then
the proof is complete. Otherwise, we continue this algorithm to obtain the set of
natural numbers Y = {x, y1,y2,ys, ...} where z > y1 > ya > ...
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By [Lemma 7.30.0], Y contains a minimum element, y;. Since there exists no yx1 €
Y such that yi+1 < yx, it follows that y; is not composite. By [Def. 7.1.3] and [Def.
7.1.11], y is a prime number. Hence y;, = p and is a factor of z. O

Proposition 7.32. PRIME NUMBERS 1V.

Any natural number greater than 1 is either a prime number or a composite of

primes.

Proof. Suppose x > 1 is a natural number that is neither prime nor a composite of
primes. Consider the factors of z: if x = 1 - x is the only possible factoring, then
2 is prime, a contradiction. Otherwise, by repeated applications of [7.31], x = a - b
where a and b are primes, also a contradiction.

Therefore, x is either prime or a composite of primes, which completes the proof. [

Remark. See also the Sieve of Eratosthenes®.

Proposition 7.33. FINDING RATIOS IN LOWEST TERMS.

Given natural numbers a, b, ¢ and the ratio a : b : ¢, we may find the ratiod : e : f
such thata:b:c=d:e: f where no smaller integers exist that make this equality
true.’

Proof. If a, b, and c are relatively prime, then let a = d, b = ¢, and ¢ = f, and our
claim is proven [7.21].

Otherwise, by [7.3] a, b, and ¢ have a greatest common factor g. Let gd = a, ge = b,
and gf =c. Hence,a:b:c=d:¢e: f.

We now wish to show that no smaller natural numbers exist which make this equal-
ity true.

Suppose d, ¢, and f are not the least such natural numbers; instead, suppose h, j,
and k are respectively less than d, e, and f suchthata:b:c= h: j: k. Hence there
exists positive integer m such that mh = a, mj = b, and mk = c.

Suppose m = g; since gd = a = mh, h = d, contradicting our hypothesis that h < d.
Now suppose m < g; since gd = a = mbh, it follows that h > d, also a contradiction.

Finally, suppose m > g; then ¢ is not the greatest common factor of a, b, and ¢, a
contradiction.

It follows that d, e, and f are the least such natural numbers, completing the proof.
O

4https://en.wikipedia.org/wiki/Sieve_of_Elratosthenes
5Recallthata:b:c=d:e: fiffa:d=b:e=c: f.
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Proposition 7.34. LEAST COMMON MULTIPLE I.

Given z and y, we claim that a smallest positive integer exists which has = and y
as factors. This is number is the Least Common Multiple (LCM) of 2 and y.

Proof. We shall prove our claim in two cases.
Case 1: = and y are relatively prime.

Since x and y each divide xy, we claim that 2y is the smallest positive integer which
has z and y as a factor.

If not, suppose that x and y divide some integer d < zy, and there exist natural

numbers ¢ > 1 and f > 1 such that ex = d and fy = d. It follows that ex = fy and

z _ [
y e’

x

Since x and y are relatively prime, v is written in lowest terms by [7.21]; since
z — L by [7.20] z is a factor of f, and by [7.20.1] y is a factor of e. And so there

Y e’
exist natural numbers m > 1 and n > 1 such that mz = f and ny = e; thus,

may = fy = d. Since d < zy and zy = L, we obtain d < %

m?’

when m > 1, a
contradiction. Therefore, 2y is the Least Common Multiple (LCM) of z and y.

Case 2: = and y are not relatively prime.

Let ¢ > 1 and f > 1 be natural numbers such that % = { where { is written in

lowest terms. It follows that xe = yf. We claim that ze is the the smallest positive
integer which has = and y as a factor.

Otherwise, x and y divide some d < xe, and there exists some positive integer g > 1
such that zg = d and some positive integer h > 1 such that yh = d. It follows that
h

xg = yh, and so % =3

Notice that { = %. Since f are written in least terms of all fractions equaling %, by

[7.20.1] e divides g. Hence, e < g.

But 2¢g < xe above, and so g < ¢, a contradiction. Thus, ze = yf is the LCM of  and
Y. O

Example. [7.34.1]: consider 6 and 14. Numbers which have 6 and 14 as factors
include 42, 82, 168, and so on. Notice that

By [7.34], the LCM of 6 and 14 is

6-7=14-3=2-3-7T=42
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Proposition 7.35. LEAST COMMON MULTIPLE II.

Let a be the least common multiple of z and y. If x and y divide z, then « also
divides z.

Proof. Suppose that z = kxy. Clearly, x and y divide 2. If 2 and y are relatively
prime, then by [7.34] a = 2y and so a divides z.

If  and y are not relatively prime, then also by [7.34] a = ze where ¢ is a factor of

y. If y = em, then

z =kxy= kx(em)=a-km

and so a divides z. This completes the proof. O

Example. [7.35]: 6 and 14 are each factors of 168. Therefore, 42 is also a factor of
168. In fact, 168/42 = 4.

Proposition 7.36. LEAST COMMON MULTIPLE III.

If z, y, and z are natural numbers, then the least common multiple of z, y, and z

exists.

Proof. Let d be the least common multiple of  and y. Either z divides d or it does
not.

Claim 1: if z|d, then d is the least common multiple of z, y, and =.

To see this, suppose instead that z, y, and z divide e < d where ¢ is a natural
number. By [7.35], dle, or d < e, a contradiction. This proves our claim.

Claim 2: if z t d and if e is the smallest natural number such that both d and =z are

factors, then e is the least common multiple of z, y, and z.

Let e be defined as above. Since z|d and y|d, we see that ¢ is a common multiple of
x, vy, and z.

If e is not the least common multiple of z, y, and 2, then some natural numer f
exists such that f < e where z|f, y|f, and z|f. By [7.35], d|f. Since e is the smallest
natural number such that both d and z are factors, e < f, a contradiction.

This completes the proof. O
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Example. [7.36]: Consider 6, 15, and 21. The LCM of 6 and 15 is 30. Since 21 is
not a factor of 30, we need the LCM of 21 and 30, which is 210. By [7.36], 210 is the
LCM of 6, 15, and 21.

If we were to list the multiples of 6, 15, and 21 instead of following [7.36], we would
obtain:

Multiples of 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108,
114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210,
216, 222, ...

Multiples of 15: 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225,
240, ...

Multiples of 21: 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, ...

One visual application of [7.36] would be to use a Venn Diagram®:

21

" 15

Figure 7.2.1: https://www.calculatorsoup.com/calculators/math/lcm.php

Corollary. 7.36.1 The least common multiple of any finite set of numbers exists.

Proposition 7.37. FACTORING L.

Let z, y, and z be natural numbers. If z is a factor of y, then there exists a natural
number z such that y/z = z.

Proof. Suppose kz = y for some natural number k. Then k = £. Let k = z, and the
proof is complete. O

Shttps://en.wikipedia.org/wiki/Venn_diagram
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Proposition 7.38. FACTORING II.
Let z, y, and z be natural numbers where y/x = z; then « is a factor of y.

Proof. Suppose that

Z =z
T

It follows that y = zz, and so z is a factor of 3. O

Corollary. 7.38.1 Let z, y, and z be natural numbers. [7.37] and [7.38] state that
y/x = z iff « is a factor of y.

Proposition 7.39. FACTORING III.

Suppose z, y, and z are natural numbers. We claim a smallest positive integer «

exists such that ¢, %, and ¢ are natural numbers.

Proof. Suppose z, y, and z are natural numbers. Let g be the smallest positive
integer that has z, y, and z as factors. It follows that 2, %, and ¢ are natural
numbers. We claim that g = a.

If this is not the case, there exists a positive integer h < g such that £, %, and 2 are
natural numbers. It follows that h has z, y, and =z as factors. But g is the smallest
positive integer that has z, y, and 2 as factors, and so g < h, a contradiction.

Therefore, g = a, which completes the proof. O

Chapter 7 exercises.

=

. Prove [Cor. 7.2.1].

[\

. Prove [7.7].

3. Prove [7.8].

4. Prove [7.12].

5. Prove [Cor. 7.20.1].

6. If z and y are relatively prime, then 2 and y? are relatively prime.
7. Prove [Cor. 7.27.2].

8. Prove [Cor. 7.36.1].



Chapter 8

Proportions & Geometric
Sequences

In this chapter, all variables q, b, ¢, etc., are assumed to be natural numbers unless
otherwise noted.

8.1 Definitions

1. A continued proportion may be written as:

1:2=2:4=4:8=8:16

or
1
2

When simplified, each term equals %, but we refrain from simplifying the ratios
because that would eliminate the continued proportion (which works as if opposing

denominators and numerators are links in a chain).

Continued proportions such as the example above may be said to be written in
lowest possible terms. This is different from being written in lowest terms: the
equations above written in lowest terms become

1:2=1:2=1:2=1:2

but are no longer a continued proportion.

A continued proportion is equivalent to a geometric progression (any theorem re-
garding one also applies to the other). A continued proportion with a constant ratio
will be an important topic in this chapter.

341
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The equivalent geometric progression to the continued proportion

is:
1,2,4,8,16

2. A geometric progression', also known as a geometric sequence, is a sequence of
numbers where each term after the first is found by multiplying the previous one
by a fixed, non-zero number called the common ratio. For example, the sequence 2,
6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 40, 20, 10,

5, ... is a geometric sequence with common ratio 1/2.

Examples of a geometric sequence are powers * of a fixed number r, such as 2F
and 3*. The general form of a geometric sequence is:

a,ar,ar?, ar®, art, ..

where r # 0 is the common ratio and « is a scale factor, equal to the sequence’s
starting value. In many of Euclid’s propositions, a = 1.

3. Supposea =b-cand d = e f where b : ¢ = e : f (equivalently, % = %). We say
that @ and d are similar or write ¢ ~ d. (Euclid describes a and d as similar plane

numbers.)

4. Similarly, if g = h-i-jand k =1-m-n where h : i : j =1 : m : n (where
h:i:7=101:m:nisequivalenttoh :l =14:m = j : n). We say that g and k are
similar or write g ~ k. (Euclid describes g and k as similar solid numbers.)

5. When three numbers can be written as continued proportions, the first is said to
have to the third the duplicate ratio of that which it has to the second.

Algebraically,

RS
0

7N
< |8
N—
Il
w8
IS

and

Ihttps://en.wikipedia.org/wiki/Geometric_progression
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6. When four numbers can be written as continual proportions, the first is said to
have to the fourth the triplicate ratio of that which it has to the second.

Algebraically,
u v w
vow oz
SO
(3)3 _ v
v v ow
@ -
v o X

Example: 1: 125 is the duplicate ratio of 1 : 5 since

1 ) 25

5 25 125

and
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8.2 Propositions from Book VIII

Proposition 8.1. CONTINUED PROPORTIONS 1.

Suppose we have a continued proportion of natural numbers such that

T iXo =To:T3=...=Tp_1:Tp (8.2.1)

and where z; and x,, are relatively prime, and where each fraction equals some
rational number { > 0. Then for 2 < i < n, each x;_; : z; is written in lowest
possible terms.

Proof. Our hypothesis is stated above. We claim that each % for 2 < i< nis
written in the lowest possible terms.

Assume otherwise: let
Y1:1Y2 =Y2:1Y3 = ... =Yn—1:Yn (8.2.2)

be a set of ratios such that each term equals 7 and is written in lower terms than
in equation (8.2.1). It follows that y; < ;.

By [7.14], it follows that &+ = ;’—i Recall that x; and z,, are relatively prime;
by [7.21], ;E—:l is written in least terms. And by [7.20], x; is a factor of y;, and so
x1 < yi1. But y; < 21, a contradiction. Thus (8.2.1) is written in lower terms than
(8.2.2). Since (8.2.2) was chosen arbitrarily, (8.2.1) is written in lowest possible

terms. which completes the proof. O

Example. 8.1.1. Consider the continued proportion

16 : 40 =40 : 100 = 100 : 250 = 250 : 625

[8.1] guarantees that since 16 and 625 are relatively prime, each ratio is written in
lowest possible terms. (If each ratio were written in lowest terms, they would each
equal 2:5.)
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Proposition 8.2. CONTINUED PROPORTIONS II.

If % is written in lowest terms, then there exists a continued proportion written in
lowest possible terms where each term equals e

Proof. Notice that for any positive integer n > 2 each term in the following contin-
ued proportion equals %:

n n—1 2. ,n=2 Can—1
_ y oy " _ry (8.2.3)

znfl,y zn72,y2 e . —

X

We claim that the ratios in (8.2.3) are written in the lowest possible terms.

Since 5 is written in lowest terms, by [Cor. 7.22.1] = and y are relatively prime. By
[Cor. 7.27.1], 2™ and y™ are relatively prime. Notice that we may write (8.2.3) as

By [8.1], each term in (8.2.3) is written in the lowest possible terms. This completes
the proof. 0

Remark. Euclid’s original proof of [8.2] only covers the cases where n = 2 and n = 3.

Corollary. 8.2.1 If we write the continued proportion (8.2.3) as a list of numbers,
we obtain ay, as, ..., Gn_1, an where a1 = "~ and a,, = y*~! for natural numbers x

and y.
Example. 8.2.1. Using equation (8.2.3) where x = 2, y = 5, and n = 4, we obtain
16 : 40 =40 : 100 = 100 : 250 = 250 : 625

The details are left as an exercise to the reader. This continued proportion can also
be written as the geometric progression 16, 40, 100, 250, 625.
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Proposition 8.3. CONTINUED PROPORTIONS III.
Suppose we have a continued proportion of natural numbers

T1 Ty =T2 T3 =...=Tnp-1:Tp

where each ratio is written in lowest possible terms. Then x; and z,, are relatively

prime.

Proof. Suppose z1/z5 is written in lowest terms. By [9.2], there exists the continued

proportion
n—1 2 n—2 n—1
27 R - i~ S (8.2.4)
n—1 - n-=2 9 T n—1 n e
Z1 - 29 21 - 25 21 2y 25
written in lowest possible terms.
By [Cor. 7.27.2], 2" and 2% are relatively prime. Let z; = 2}, each ; = 2" ~"*!. 21!

for 2 <i<n-—1, and z,, = 2%, and our proof is complete. O

Example. 8.3.1. Consider the continued proportion

16 : 40 =40 : 100 = 100 : 250 = 250 : 625

Each ratio is written in lowest possible terms, and so 16 and 625 are relatively

prime.

Corollary. 8.3.1. Suppose we have a continued proportion of natural numbers such
that

T T2 =T 13 =...=Tp-1:Tnp

By [8.1] and [8.3], we find that x| and x,, are relatively prime iff each II—” is written

in lowest possible terms (for 2 < i < n).
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Proposition 8.4. CONTINUED RATIOS I

Write a : b, ¢ : d, and e : f in lowest terms. There exists a continued ratio x; : s :

) . . : T1_a 22 _ ¢ T3 _ e
x3 : x4 written in lowest possible terms where D=352=1 and o=4

Proof. Suppose a:b,c:d,and e : f are written in lowest terms.
Let I, = mb = nc be the least common multiple of b and c. Then write

a_ma gc_ne
b mb d  nd

Let I; = pnd = ge be the least common multiple of nd and e. Then write

pma ¢ pnc e qe

a
b pmb’ d pnd’an f o oqf

Notice that pmb = pnc. We claim that pma : pmb : ge : ¢f is the required continued
ratio.

If it is not, there exists a continued ratio x : y : 2 : u written in least possible terms

exists such that
X1 xr X2 I3 z
—:—,—:g,and—:—
Xro Yy x3 z Xrq u

Since 7 is in lowest terms and § = s bisa factor of y [7.21]. Similarly, § is in

lowest terms and § = ¥, and so cis a factor of .
By [7.35], I1, the least common multiple of b and ¢, is also a factor of y.

Notice that
Ty Yy ¢ _nc 1

xs oz d nd  nd
Since [; is a factor of y, nd is a factor of z. And since

z
u

| o

e is also a factor of z. Again by [7.35], I2, the least common multiple of nd and e,
is also a factor of z; or, I < z. Butly = pndand s = pnd < zsincex : y : 2z : u is
written in least possible terms.

Thus, pma : pmb : ge : qf is the required continued ratio, which completes the
proof. O

Example. 8.4.1. Suppose we have the ratios 1 : 2,2 : 5, and 3 : 4. The required
continued ratiois 3:6:15:20since3:6=1:2,6:15=2:5,and 15:20 =3 : 4.
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Proposition 8.5. COMPOUND RATIOS 1.
Ifa=cdand b=ef, then § = <. 4.

!

Proof. Clearly,

a_«
b ef
O
Proposition 8.6. CONTINUED PROPORTIONS IV.
Let xy : 20 = 29 : 23 = ... = x,_1 : x, be a continued proportion. If 2; does not

divide 2, then z; does not divide z;, whenever j < k < n.

Proof. We shall prove the contrapositive statement of the above: if z; divides x
whenever j < k < n, then z; divides .

Suppose that z; divides z;, whenever j < £ < n. Since 1 < 2 < n, z; divides z,
which completes the proof. O

Proposition 8.7. CONTINUED PROPORTIONS V.

Let zy : 20 = 29 : 23 = ... = x,_1 : x, be a continued proportion. If z; divides z,,,

then z; divides z5.

Proof. Consider the contrapositive statement of [8.6]: if z; divides z; whenever
j < k < n, then z; divides x5. Since 1 < n < n, [8.6] implies: if z; divides x,,, then
z1 divides x2. This completes the proof. O
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Proposition 8.8. CONTINUED PROPORTIONS VI.

Leta:b=e: f, and construct a continued proportion
aG:a1=0a1:03=...=0p-1:0

(with n — 1 middle terms) where each term equals ¢. Then there exists a continued
proportion

e:ep=e1:ea=...=€p_1:f
(also with n — 1 middle terms) where each term equals %
Proof. Let

C:Cl=¢C:C=..=Cp_1:d

be the continued proportion
a:a1=0a1:03 = ... =Ap_1:0

written in the lowest possible terms.

By [8.3], ¢ and d are relatively prime. By [7.21], ¢ : d is written in lowest terms.
Notice that a : b = ¢ : d. By hypothesis,a:b=¢: f,andsoc:d =¢: f. By [7.20], it
follows that e = mc, f = md where m > 0 is an integer. Then

Mme:mey = mey : Meg = ... = MCp_1 : Md

is a continued proportion with n — 1 middle terms where each term equals mc :
md=ce: f. Let e = mc, e = mcy, ..., and f = md, and the proofis complete. O

Remark. David E. Joyce points out that [8.8] and [10.9] can be used to prove that
v/2 is not a rational number.2

Proposition 8.9. CONTINUED PROPORTIONS VII.

Let a and b be relatively prime, and suppose there exists n geometric means be-
tween a and b; then there exist n geometric means between 1 and a and between 1
and b.

Proof. Our hypothesis and claim are stated above. Suppose that ay, ao, ..., a,_o are
the geometric means between a and b; equivalently, suppose we have the continued
proportion

a:a1=0a1:03=...=0Ap_2:b

2http://aleph0.clarku.edu/~djoyce/java/elements/bookVIII/propVIII8.html


http://aleph0.clarku.edu/~djoyce/java/elements/bookVIII/propVIII8.html
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Since a and b are relatively prime by hypothesis, by [8.1] each a;_1 : a; for 2 < i <
n — 2 is written in lowest possible terms.

By [Cor 8.2.1], the terms of this continued proportion are respectively equal to the
terms c" L, ¢ -d, "1 -d?, ..., c-d", d"T! where ¢ and d are written in lowest terms.

Then a = ¢"*! and b = d"*! and the continued proportions

l:d=d:d*=d*>:d>=...=d": """

exist with n geometric terms between 1 and ¢ and between 1 and d. This completes
the proof. 0

Example. 8.9.1. Using equation (8.2.3)

n n—1 2 n—2 n—1

x Y x° -y x-y

xn—1,y*xn—2,y2*"' x,yn—l - ym

X

where x = 2, y = 5, and n = 4, we obtain

16 : 40 = 40 : 100 = 100 : 250 = 250 : 625
By [8.9], we obtain
1:2=2:4=4:8=8:16

and
1:5=5:25=25:125=125:625

Proposition 8.10. CONTINUED PROPORTIONS VIII.

Suppose there exists n geometric means between 1 and a and between 1 and b; then
there exists n geometric means between a and b.

Proof. Suppose the following continued proportions exist:

lid=d:d>=d*:d*=...=d":d"!
We claim that a continued proportion beginning with a = ¢"*! and ending with
b = d"*! exists with n terms in-between.

Multiply term n + 1 in the first proportion by term 1 in the second proportion. Then
multiply term n in the first proportion by term 2 in the second proportion. Repeat
this algorithm until we have a total of n + 1 products, giving us:

ALoened, e ed?, o e dn, dn Y
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Clearly, we may write a continued proportion with these terms; notice that this
proportion has n means between a = ¢"™! and b = d""!, which completes the
proof. O

Remark. [2.10] is only a partial converse of [2.9]: [2.9] requires that « and b be
relatively prime, but [2.10] does not.

Example. 8.10.1. Let ¢ = 2, d = 3, and n = 3. Writing our ratios as fractions, we

obtain

1 3 9 27

379 27 81

By [8.10], we obtain
16 24 36 54

24 36 54 81

Proposition 8.11. CONTINUED PROPORTIONS IX.

Let a and b be natural numbers. Then a? and b? have one and only one geometric

mean (ab).

Proof. Our hypothesis and claim are stated above. Notice that if

@ _
x b2
then
(ab)? = 2?
ab = =z

since a, b, x are natural numbers. It follows that ab is a geometric mean of a? and
b2.

Suppose that ¢ and d are natural numbers such that cd is also a geometric mean of
a® and b2. Then ab = cd, and so ab is unique. This completes the proof. O

Proposition 8.12. CONTINUED PROPORTIONS X.

If @ and b are natural numbers, then a3, a?b, ab?, and b> are in continued proportion.
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Proof. If a and b are natural numbers, then
a3 a’b _ ab?

a_a _ab_av
b a?b  ab? b3

Corollary. 8.12.1 Let a™ and b"™ be natural numbers for any positive integer n > 1.

Then there exist a set of geometric means to a™ and b"™ such that

a” anfl b a- bnfl

an—l,b:an—Q,b27”'7 b

Proposition 8.13. CONTINUED PROPORTIONS XI.

Suppose that a; :as =az:a3=...=a,_1:a,. Thenaf :ab =as:ab = ... =ak_,:

aF for any positive integer k > 1.

Proof. Ifay :as =as:a3=...=ay,_1 : a,, then
ap a2 _ Qn-1
ag as Ay,

a1 o _ (o) a2 _ (a1 Gnoy
a2 a2 a2 a3 a2 2%
a ar [ a2 az [ Gp-1 an—1
a2 az as a3 2% QAp
2 2 2
ay _ [ G2 [ Gn=1
w . .

or

This completes our proof.



CHAPTER 8. PROPORTIONS & GEOMETRIC SEQUENCES 353
Proposition 8.14. FACTORS OF POWERS 1.

1. If a2 is a factor of b2, then « is a factor of b.

2. If a is a factor of b, then a? is a factor of b>.

2

Proof. Suppose a? is a factor of b2. Then b?> = k? - a®> where k is a positive real

number. Hence, b = ka; or, a is a factor of b.

Now suppose that a is a factor of b. Then b = k - a where k is a positive real number,
and
b =(k-a)® =k* a*

Therefore, a? is a factor of b2. O

Remark. Euclid proves this hypothesis using [8.7]. However, it can be more easily
demonstrated via algebra.

Proposition 8.15. FACTORS OF POWERS I1.

1. If ¢® is a factor of b3, then a is a factor of b.
2. If a is a factor of b, then «? is a factor of b3.
Proof. The proof is similar to that of [8.14] and is left as an exercise to the reader.

O

Corollary. 8.15.1 For any positive integer n, a™ is a factor of b" iff a is a factor of b.

Proposition 8.16. FACTORS OF POWERS III.

1. If a2 is not a factor of b2, then « is not a factor of b.

2. If a is not a factor of b, then a? is not a factor of b2.

Proof. Claim 1 is the contrapositive statement of [8.14], claim 2.

Claim 2 is the contrapositive statement of [8.14], claim 1. O



CHAPTER 8. PROPORTIONS & GEOMETRIC SEQUENCES 354
Proposition 8.17. FACTORS OF POWERS IV.

1. If ¢® is not a factor of b3, then « is not a factor of b.

2. If a is not a factor of b, then a3 is not a factor of 3.

Proof. Claim 1 is the the contrapositive statement of [8.15], claim 2.

Claim 2 is the contrapositive statement of [8.15], claim 1. O

Corollary. 8.17.1 For any positive integer n, a™ is not a factor of b" iff a is not a
factor of b. This is the contrapositive statement of [Cor. 8.15.1].

Proposition 8.18. GEOMETRIC MEANS I.

If ab and cd are “similar plane numbers”, i.e., products of factors a, b, ¢, and d such
that a : b = ¢ : d, then there exists one mean proportional between ab and cd. Also,
ab is to cd in the duplicate ratio of a to ¢ or of b to d.

Proof. By [7.13],

a _c a b
pd ¢ d
Furthermore,
ab _ bc
be  cod

Hence, bc is a geometric mean between ab and cd. If z is also a geometric mean
between ab and cd, then 22 = (bc)? = abed, and so = = be; hence, be is unique.

(@) =2- (%)

By [Def. 8.5], ab is to cd in the duplicate ratio of a to ¢ or of b to d. This completes

And since ¢ = 2,
c d

the proof.
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Proposition 8.19. GEOMETRIC MEANS I1.

Ifa:b:¢c=d:e: f, then there exist two geometric means between abc and def
(specifically, bed and cde). Also, abe is to def in the triplicate ratio of a : d.

Proof. Our hypothesis and claim are stated above. Recall thata : b: c=d:e: fiff
a:d=b:e=c: f.
Notice that a : d = abc : bed, that b : e = bed : cde, and that ¢ : f = cde : def. Hence,

abc  bed _ cde

bed  cde  def

and so two geometric means, bed and cde, exist between abc and def.

L) -

By [Def. 8.6], this completes the proof. O

é:

. a c
Since § = ¢ I3

Proposition 8.20. GEOMETRIC MEANS II1.

If a, ¢, and b are in geometrical progression, then a and b each have two factors and

are similar.

Proof. Suppose
a

¢
b
We claim that ¢ and b are similar and that each have two factors.

Let a : v be the ratios a : ¢ and ¢ : b reduced to lowest terms. By [7.20], a = ma,
¢ = m7y = na, and b = ny where m > 0 and n > 0. Hence, ¢ and b each have two
factors.

Finally, notice that
my _m

¢
b ny n

By [7.13], m: a = n: . By [Def 8.3], « = ma and b = n~y are similar. O
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Proposition 8.21. GEOMETRIC MEANS 1V.

If a, ¢, d, and b are in geometrical progression, then a and b each have three factors

and are similar.

Proof. Suppose

We claim that ¢ and b each have three factors and are similar.

By [7.33] or [8.2], let o : 5 : v be the progression a : ¢ : d written in lowest possible
terms. By [8.3], a and ~ are relatively prime; by [8.20], o and « are similar and
each have two factors. Let o« = mn and v = pg where m : n = p : ¢q. It follows that
B8 =mq = np.

Notice that

c a B

. 4 _c_a_ 8 .
Since ¢ = ¢ = 5 =75, we obtain

Ul

Since a and v are relatively prime, a = ra and d = rv. But « = mn and v = pq, and

SO0 a = rmn.

d a B

. c_d_a_B .
Since § = § = 5 =75, we obtain

and so ¢ = s and b = s7v; or, ¢ = smn and b = spq. Hence, a = rmn and b = spq have
three factors. Notice that

Taken with the above, we obtain

Hence, a and b are similar, completing the proof. O
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Proposition 8.22. CONTINUED PROPORTIONS XII.
a 2

If ¢ = £ and a = k? for some k > 0, then ¢ = n?.

Proof. By [8.20], a and c are each the product of two factors, and « is similar to c.
Let a = kk and ¢ = ns. Then we may obtain

k:n=k:s

For this equality to occur, n = s. It follows that ¢ = n? for some integer s. O

Proposition 8.23. CONTINUED PROPORTIONS XIII.
If ¢ =2 = < and a = n for some n > 0, then d = s°.

¢~ d

Proof. By [8.21], a and d are each the product of three factors, and « is similar to d.
Let a = nnn and d = spq. Then

For this equality to occur, s = p = ¢. It follows that d = s> for some integer s. O

Proposition 8.24. CONTINUED PROPORTIONS XIV.
Ifa:b=c?:d?and a = s° for some s > 0, then b = 2.

Proof. Reduce a : b to lowest terms if it is not so already. By [Cor. 7.20.1], b is a
factor of d2. Suppose d?> = k? - b for some natural k. If b is a not a square number,

then d is not a natural number, a contradiction. Hence b = t? for some natural t. O

Proposition 8.25. CONTINUED PROPORTIONS XV.
Ifa:b=c®:d° and a = 53 for some s > 0, then b = 3.

Proof. By [8.19], ¢® : d has two mean proportionals. By [8.8], a : b also has two
mean proportionals. By [8.23], since a = s for some s > 0, then b = 3 for some
t>0. O

Proposition 8.26. RATIOS OF SQUARE NUMBERS.

Similar numbers which each have two factors have the same ratio to each other as
a square number has to a square number.
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Proof. If a and b are similar numbers each with two factors, let ¢ be the mean
proportional between them [8.18].

Take «, 3, and « as the smallest terms in the ratio of a, ¢, and b by either [7.33] or
[8.2].

By [Cor. 8.2.1], @ and ~ are square numbers. It follows that a and b have a ratio to
each other as a square number has to a square number. O

Example. 8.26.1 Consider 21 and 189. Since 21 =3 -7 and 189 =9 - 21 where

3_9

721
21 ~ 189. Also notice that

21 63

63 189

If we simply this equality into least possible terms, we obtain

13
3 9
or
B3 _ 2 63
3 32 63 189

Corollary. 8.26.1 If two numbers have a ratio to each other as a square number to
a square number, then the numbers are similar plane numbers.

Proposition 8.27. RATIOS OF CUBED NUMBERS.

Similar numbers which each have three factors have a ratio to each other as a
cubed number has to a cubed number.

Proof. The proof to [8.27] is similar to the proof to [8.26] except that [8.19] is cited
instead of [8.18]. O

Corollary. 8.27.1 If two numbers have to one another the ratio of a cubed number

to a cubed number, the numbers are similar cubed numbers.
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Chapter 8 exercises.

1. Prove [Cor. 8.2.1].

2. Prove [Cor. 8.4.1].

3. Use [8.8] and [10.9] to prove that 1/2 is not a rational number.
4. Prove [Cor. 8.12.1].

5. Prove [8.15].

6. Prove [Cor. 8.15.1].

7. Prove [Cor. 8.26.1].

8. Fill in the details for the proof of [8.27].

9. Prove [Cor. 8.27.1].



Chapter 9

Applied Number Theory

In this chapter, all variables q, b, ¢, etc., are assumed to be natural numbers unless
otherwise noted.

9.1 Definitions

1. The sigma function of a positive integer n is the sum of the positive factors of n.
This function is denoted o(n). If the prime factorization of n = x5 - z% - ... - 27, then

o(n) and can be calculated in this way:

on) = oxf-2h-...-27)

! ahtt 1 zit —1
n 1 — 1 To — 1 Ty — 1
Example: 45 =1-45=3-15=5-9, and so

o(45)

I
Q
Py
w

[V}
N
Q
~
o
N

- (=) (=)
- (3)-(5)

= 78
= 1+3+5+9+15+45

360
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For any prime number p, o(p) = p + 1.

Example: 7="T7-1, and so

For any perfect number m, o(m) = 2m.

Example: 6 =1-6 = 2- 3 is a perfect number, and so

o(6) = o(2)-0(3)
- (59) (=)
-0

The sigma function is also multiplicative; that is, f(nm) = f(n) - f(m) whenever m
and n are relatively prime. This function used in the proof to [9.36].
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9.2 Propositions from Book IX

Proposition 9.1. PRODUCT OF SIMILAR PLANE NUMBERS.
If two similar plane numbers are multiplied, their product will be a square number.

Proof. Suppose a ~ b are plane numbers. We claim that ab is a square number.

Notice that

By [8.18], there exists one mean proportional between a and b. By [8.8], there exists
one mean proportional between a? and ab. By [8.22], ab is a square number. O

Example. [10.1.1] Let « =21 and b = 189. Sincea =3-7,b=9-21, and

3
721

a and b are similar numbers. [9.1] states that ab = 3969 is a square number, and

V3969 = 63.

Remark. An algebraic proof: suppose a = = -y and b = kx - ky. Since

z_k:z:

y  ky

a and b are similar numbers. Then ab = z - y - kz - ky = k22%y?, and so Vab = kay.
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Proposition 9.2. CONVERSE OF PROPOSITION 9.1

If the product of two natural numbers is a square number, then the numbers are
similar plane numbers.

Proof. Let a and b be natural numbers such that ab = ¢2. We claim that a and b are
similar plane numbers.

Clearly, a? is a square number, and

e _ e
ab ab
a _ ab

T ab

and so a? ~ ¢2. By [8.18], one mean proportional exists between a? and ab = 2. By
[8.8], one mean proportional exists between a and b.

By [8.20], if one mean proportional exists between a and b, then a and b are similar
plane numbers. This proves our claim. O

Example. 9.2.1. Since 10 - 40 = 400 and 400 = 202, it follows that 10 and 40 are
similar plane numbers: 10 =2 -5, 40 = 4 - 10, and

Corollary. 9.2.1. Given that a, b, and c are natural numbers, a and b are similar
plane numbers iff a - b = 2.
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Proposition 9.3. EXPONENTS I.
The product of a cubic number with itself is also a cubic number.

Proof. Using the standard properties of exponents, we obtain

[l
Proposition 9.4. EXPONENTS II.
If k = a3b3, then k is a cubic number.
Proof. Since ab® = (ab)® = k, the proof follows. O

Proposition 9.5. EXPONENTS III.
If a3b = 3, then b = k3.

Proof. Suppose ab = 3. By [9.3], a® - a® = ¢ for some ¢, and so

a®-a® a®
a3b b
3 a®
b

Applying [8.19], there exist two geometric means between t> and 2. By [8.8], there
exist two geometric means between a® and b. By [8.23], b = k? for some k. O

Corollary. 9.5.1. Suppose a*b = c. By [9.4] and [9.5], b is a cubic number if and
only if cis a cubic number.

Proposition 9.6. EXPONENTS 1V.

If a®> = ¢2 for some t, than a = k3 for some k.
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Proof. Suppose a? = t2 for some t. Notice that

a a? 3

a’  a’

By [8.19], there exist two mean proportionals between t> and a>. By [8.8], there
exist two mean proportionals between a and a?. By [8.23], since a? = ¢? for some ¢,
a = k3 for some k. O

Example. 9.6.1. If 22 = 64 = 43, then 2 = 2% = 8.

Proposition 9.7. SOLID NUMBERS.

Euclid refers to natural numbers with two factors as “plane numbers” and natural
numbers with three factors as “solid numbers”. This proposition states that by
multiplying ab (a plane number) by ¢, we obtain abc (a solid number). Algebraically,
the proposition is self-evident.

Proposition 9.8. EXPONENTS OF GEOMETRICAL SEQUENCES 1.

If 1, ay, as, as, ..., a; is a geometrical sequence, then the as, terms have exponents
which are multiples of 2, the a3, terms have exponents which are multiples of 3,
and the ag,, terms have exponents which are multiples of 6.

Proof. Suppose that 1 : a; = a1 : ao = as : a3 = ... = ax_1 : a; is a geometrical
sequence. It follows that a; = 7, as = 72, a3 = %, ay = r%, ..., ar, = r¥. Clearly,

asn = 12", as, = 3", and ag, = r°".

This result holds when the continued proportion is multiplied by a constant scale
factor [Def 8.2], which completes the proof. O

Proposition 9.9. EXPONENTS OF GEOMETRICAL SEQUENCES II.

If 1, a4, as, as, ..., a, is a geometrical sequence where:
(1) a1 = k? for some natural number k, then as, ..., a,, are also square numbers.
(2) a1 = k* for some natural number k, then as, ..., a,, are also cubic numbers.

Proof. Let 1, a1, as, as, ..., a, be a geometrical sequence.
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(1) By hypothesis and [9.8], a1 = r = k. Hence for m > 2,

Ay = rm = (k2)m _ (km>2

(2) By hypothesis and [9.8], a1 = r = k>. Hence for m > 2,

Ay = M= (k,B)m — (km)B

This completes the proof. O

Proposition 9.10. EXPONENTS OF GEOMETRICAL SEQUENCES III.

If1, a1, as, as, ..., a, is a geometrical sequence where:

(1) a1 # k? for some natural number k, then a., are square numbers and all other
terms of the sequence are not square numbers.

(2) a; # k3 for some natural number k, then as,, are cubic numbers and all other
terms of the sequence are not cubic numbers.

Proof. Let 1, a1, as, as, ..., a, be a geometrical sequence.
(1) Suppose a;, # 22 for any z and that a; = k2 for some k. Since ay = (a1)2, as = §2

for some natural number s. Notice that

al ag S
a9 as k2
We may rewrite the above as
52 k2
ay o 8_2
By [8.24], a; = 2 for some z, contradicting our hypothesis. By a similar argument,
all other terms of the sequence are not square numbers.

(2) The proof'is similar to that of case (1) and is left as an exercise to the reader. [

Proposition 9.11. EXPONENTS OF GEOMETRICAL SEQUENCES 1V.

Let s < t. Euclid’s original proposition and its corollary state that a® is a factor of
a' a total of a’~* times. Equivalently, this may be written as

If we take the rules of exponents as axiomatic!, [9.11] becomes self-evident.

1Proof of these rules: http://www.andrusia.com/math/preliminaries/ExponentiationTheorems.
pdf


http://www.andrusia.com/math/preliminaries/ExponentiationTheorems.pdf
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Proposition 9.12. PRIMES AND GEOMETRICAL SEQUENCES I

Let 1, a4, as, ..., a, be terms in a geometrical progression, and let p be a prime
number. If p is a factor of a,,, then p is also a factor of a;.

Proof. A proofby contradiction: assume that prime number p is a factor of a,, but p
is not a factor of a;.

By [7.29], a; and p are relatively prime. By hypothesis, a,, = mp. Since 1, a1, as, .. .,
a, is a geometrical progression, by [9.11], a,, = a1 - a,—1. So

a1 m
mp=ajp-an_1 Or — =

ap—1

Since a; and p are relatively prime, by [7.21] and [7.20] p is a factor of a,,_1. Re-
peating this algorithm a finite number of times, we can show that p is a factor of
a1, contradicting our hypothesis. This completes the proof. O

Proposition 9.13. PRIMES AND GEOMETRICAL SEQUENCES II.

Let 1, ay, ao, ..., a, be a geometrical progression. If a; is prime, the only factors of
a, (besides 1) are the preceding terms in the progression.

Proof. By [9.11] and the fact that 1, a4, as, ..., a, is a geometrical progression, a,
as, ..., a,_1 are factors of a,. Suppose that a; is prime and that a,, is divisible by b
where b does not equal a1, as, ..., a,_1.

By [9.12], if b is prime and a factor of a,,, then b is a factor of a;. Since a; is prime,
a1 = b, contradicting our assumption that b # a;. Hence, b is a composite number.

By [7.31], since b is composite, b = mp where p is prime. Again by [9.12], p is a
factor of a;. But a; is prime, and so a; = p. It follows that a,, = (a;)". Since a,, is
divisible by b = may, it follows that m = 1. But then b is not composite.

It follows that b = 1, and so the only factors of a,, (besides 1) are a4, as, ..., a,—1. O

Proposition 9.14. UNIQUENESS OF PRIME FACTORING.

Let x = py - p2 - ... - p, where each p; is a prime factor and p; < p; < ... < p,, such
that x is the smallest number to have py, ps, ..., p,, as factors. We claim that p,, po,
..., Pn, are unique prime factors of x.

Proof. A proofby contradiction: suppose that  has a prime factor ¢ such that ¢ # p;
for1 <i<n.Letx=q-m.
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Since x = py - p2 - ... pn, by [7.30] each prime p1, ps, ..., p, much divide either ¢ or
m; since ¢ is prime and ¢ # p;, we find that each py, po, ..., p, divides m. Because
m is a factor of x, m < x. Hence, = is not the smallest number to have p1, pa, ..., pn
as factors, contradicting our hypothesis.

Thus, p1, po, ..., p, are unique prime factors of x. O

Proposition 9.15. RELATIVE PRIMES IN CONTINUED PROPORTIONS.

If a, b, and c are a continued proportion in lowest possible terms such that

b

a
b ¢
then:

1) cis relatively prime to a + b.

2) a is relatively prime to b + c.

3) b is relatively prime to a + c.

Proof. By [8.2], a = d?, b = de, and ¢ = €. Notice that a, c are relatively prime. It
follows that d, e are relatively prime.

By [7.28], d + e is relatively prime to both d and e. Since d + e and d are relatively
prime to e, by [7.24] d?+de is relatively prime to e. It follows that d?+de is relatively
prime to €2, or a + b is relatively prime to c (claim 1).

Similarly, b + ¢ is relatively prime to a (claim 2).

Since d + e is relatively prime to both d and e, de is relatively prime to d + e [7.24].
By [7.25], (d + ¢)° is relatively prime to de. It follows that d2 + 2de + ¢ is relatively
prime to de; that is for natural numbers r, s where s # 1,

d? + 2de + €
de

r
S

where r/s is not a natural number. Notice that de = s, and so

-2

d? + €2 T
de s

Since 7/s — 2 is not a natural number, d* + ¢? and de are relatively prime, or a + ¢ is
relatively prime to b (claim 3). O

Proposition 9.16. PRIMES AND GEOMETRICAL SEQUENCES III.
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If @ and b are relatively prime natural numbers and in a continued proportion, then

the third proportional is not an integer.

Proof. Suppose 7 = % where c is the third proportional to ¢ and b, or
e ¥
1 a

By [7.25], b%> and a are relatively prime; by [7.21], % is in lowest terms. If ¢ is

a natural number, then { is also in lowest terms where @ = 1. But a is a prime
number, so a # 1, a contradiction. Hence, ¢ is not an integer, which completes the

proof. O

Proposition 9.17. PRIMES AND GEOMETRICAL SEQUENCES IV.

Let 1, ay, as, ..., a, be a geometrical progression. If a; is relatively prime to a,,
then the geometrical progression cannot be extended.

Proof. Suppose 1, ay, as, ..., a, is a geometrical progression where a; is relatively
prime to a,. If the sequence can be extended, there is some natural number z is
such that

ai G,
a9 X
ay a2
anp x

By [7.21], the LHS is reduced to lowest terms, and so a; is a factor of as. Since 1,
ai, as, ..., a, is a geometrical progression, a; is also a factor of a,,, contradicting our

hypothesis. This completes the proof. O

Proposition 9.18. EXISTENCE OF A THIRD PROPORTIONAL WHICH IS AN
INTEGER.

Given two natural numbers ¢ and b, we claim that the conditions under which «
and b have an integral third proportional are:

(1) a is a factor of b2.

(2) a is a factor of b.

Proof. Suppose a, b, and c are in continuous proportion:
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That is, ac = b?. It follows that a is a factor of b°.

If a and b are relatively prime, then by [7.20], # is reduced to lowest terms, and by
[7.21], a is a factor of b, a contradiction. Hence, a is a factor of b. This completes the
proof. O

Proposition 9.19. EXISTENCE OF A FOURTH PROPORTIONAL WHICH IS
AN INTEGER.

The Greek text of part of this proposition is hopelessly corrupt. However, the propo-
sition and proof are believed to be the following:

Given natural numbers a, b, ¢, and d, under what conditions can we write:

a_’
b d

If this equality exists, then clearly d = % Or, if a divides bc, then d is a natural

number.

Proposition 9.20. INFINITE PRIMES.
Any finite list of prime numbers is incomplete.

Proof. Suppose we obtain a finite and complete list of prime numbers: py, po, ..., p-
(where py <p2 < ..<p.). Let P=p; -po-...-p.+ 1.

If P is prime, then our list is incomplete, a contradiction.

Hence P is composite and can be written P = gx where ¢ is prime and x is a natural

number. It follows that

£:p1'p2'---'pr+1:pl'pz'----pr_'_l
q q q q

xr =
Since our list of primes is complete, ¢ = p; for some 1 < i < r, and so

r=m -+ —
q

where m = %{”pr is a natural number. Since x — m is a natural number, ¢ = 1,
a contradiction since ¢ is prime [Def. 7.9]. This completes the proof. O

Proposition 9.21. ADDITION OF EVEN NUMBERS.
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If each z; is even for 1 < i < n, then }_ z; is also even.

Proof. Suppose that each z; is even for 1 < ¢ < n. Then z; = 2k; for some positive

Hence, > z; is also even. This completes the proof. O

integer k;, and

Proposition 9.22. ADDITION OF ODD NUMBERS I

If each z; is odd for 1 < i < n where n is even, then }_ z; is even.

Proof. Suppose that each z; is odd for 1 < ¢ < n where n = 2t for some natural
number t. Then x; = 2k; + 1 for some positive integer k;, and

1‘1+£L‘2+...+$2t,1 +$2t = ($1 +1‘2)+...+($2t,1 +$2t>
= Z (T + xiq1)

> (2ki+ 1+ 2kipa +1)

= 2.3 (ki+kipa+1)

Hence, Y z; is even. This completes the proof. O

Proposition 9.23. ADDITION OF ODD NUMBERS I1.

If each z; is odd for 1 < i < n where n is odd, then }_ z; is odd.

Proof. Suppose that each z; is odd for 1 < i < n where n = 2t + 1 for some natural
number ¢t. Then x; = 2k; + 1 for some positive integer k;, and

X1+ T+ o+ 2o 221 = (T1+22) + o (T2—1 + T2r) + Torta

= Z (@i + Tig1) + Tor41

Z (2k; + 14 2kj1 + 1) + 2kopyq + 1

— 9. (Z (ki + kit +1)+k2t+1) +1

Hence, > z; is odd. This completes the proof. O
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Proposition 9.24. SUBTRACTION OF EVEN NUMBERS.
If x < y where z and y are even, then y — x is also even.

Proof. Suppose that © < y where = and y are even. Then x = 2k; and y = 2k, where
k1 and k- are natural numbers where k; < k. Then

y7$:2k272k1:2(k27k1)>0

and so y — x is also even. This completes the proof. O

Proposition 9.25. SUBTRACTION OF EVEN AND ODD NUMBERS I.
If x is even, y is odd, and y < x, then 2 — y is odd.

Proof. Our hypothesis and claim are written above. Since z is even, © = 2k; for
some positive integer k;. Since y is odd, y = 2k; + 1 for some positive integer k;.

Then
$—y:(2k/’i)—(2kj+1):2(k/’j—k/‘i)—1

By [Def. 7.5], z — y is odd. This completes the proof. O

Proposition 9.26. SUBTRACTION OF ODD NUMBERS.
If x and y are odd and = < y, then y — x is even.

Proof. Suppose that « and y are odd and < y. Then z = 2k; + 1 and y = 2k; + 1

where k; and k; are natural numbers. Then

y—$:(2/€j+1)—(2ki+1):2(1€j—ki)

Hence, y — x is even. This completes the proof. O

Proposition 9.27. SUBTRACTION OF EVEN AND ODD NUMBERS II.

Suppose that x is even, y is odd, and = < y. Then y — x is odd.
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Proof. Suppose that x is even, y is odd, and = < y. Since x is even, = = 2k; for some
positive integer k;. Since y is odd, y = 2k; + 1 for some positive integer k;.

Then

Hence, y — z is odd. This completes the proof. O

Proposition 9.28. MULTIPLICATION OF ODD AND EVEN NUMBERS.
If x is even and y is odd, then zy is even.

Proof. Suppose that z is even and y is odd. Then = = 2k; and y = 2k; + 1 for some
natural numbers k; and k;. Then

Ty = 2]@ . (2]% + 1) == 4]€z . kj + 2]@ == 2(2]{31 . kj + k1>

Hence, 2y is even. This completes the proof. O

Corollary. 9.28.1. If xy is even, then either x and y are even or x is even and y is
odd.

Proposition 9.29. MULTIPLICATION OF ODD NUMBERS.
If z and y are odd, then zy is odd.

Proof. Suppose that = and y are odd. Then = = 2k; + 1 and y = 2k; + 1 for natural
numbers k; and k;. Then

= 4kikj + 2kq + 2/{/‘j +1
= 2(2kik;+ k1 +kj)+1
Hence, 2y is odd. This completes the proof. O

Corollary. 9.29.1. If xy is odd, then x and y are odd. That is, xy is odd iff x and y
are odd.
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Proposition 9.30. ODD FACTORS OF EVEN NUMBERS.
If 2 is odd, y is even, and z is a factor of 3, then x is also a factor of .

Proof. Suppose y = 2ma where x = 2k + 1. By [10.21] or [10.28], y = 2m(2k + 1)
is even and z is clearly a factor y. Equally clearly, we see that x is a factor of
y/2 = m(2k + 1). O

Proposition 9.31. ODD RELATIVE PRIMES.
If z is odd and relatively prime to y, then x is also relatively prime to 2y.
Proof. Suppose © = 2k + 1 and z t y. If z| (2y), then z is even, a contradiction. O

Corollary. 9.31.1 If x is odd and relatively prime to vy, then x is also relatively prime
to 2%y where k > 1 is a natural number.

Proposition 9.32. MULTIPLES OF 2.

If y = 2% for some natural number k, and if y = s - t for natural numbers s > 1 and

t > 1, then s and ¢ are even numbers.

Proof. Notice that

ok — st
t = 2’“/5

Since ¢ is a natural number and s > 1, it follows that s = 2*~™ where m is a natural
number such that m < £ [9.11]. It also follows that ¢ = 2"*. Thus both s and ¢ are
even numbers, which proves our claim. O

Proposition 9.33. WHEN HALF OF A NUMBER IS ODD.

If = is a natural number such that z/2 is odd, then « is the product of an even
number times an odd number and not the product of an even number times an

even number.

Proof. Suppose § = 2k + 1. Then x = 2(2k + 1), and even times an odd. Suppose

x = 2m where m is even. Then J = m is even, a contradiction. O
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Proposition 9.34. SPECIAL EVEN NUMBERS.

Let x be an even number which is not a power of 2 and where § is not an odd factor.
Then x may be factored into two even numbers as well as into an even number and
an odd number.

Proof. Let z = 2m such that = # 2* and £ = 2n for some k, m, and n. Notice that
r =4n = 2 - 2n, and so z can be factored into two even numbers.

Since = # 2, there exists some ¢ > 1 where £ = 2r + 1. That is, z = (2t) (2r + 1),
which completes the proof. O

Proposition 9.35. CONTINUED PROPORTIONS XVI.

Ifa1 7& 1 and

ap a2 =0a2 a3 = ... = Qp : Qp41

then

(ag—a1) : a1 = (apt1—a1) : (a1 + a2 + ... + ay)

Proof. Notice? that

ai ag as a2
—_ = — :> _— = —
ag as a9 a1
In fact, for 2 < i < n we have
Ai+1 G4
a; -1
Applying [7.11], we also have
Qi1 — A4 _ a; = Qi1 — A4 _ a5 — Q51
Q; — Ai—1 Qi1 a; Qi1
This gives us
an-l—l_an_an_an—l _ _a2_a1
anp anp—1 ai

By a finite number of applications of [7.12], we obtain

Apt1 — Qp + Qp — Ap—1 + ...+ a2 — a1 Gy —a

p +ap—1+...+a2+ay a1
This simplifies to
(p41 — a1 _ a2 — a1
p +ap—1+...+a2+ay a1
which completes the proof. O

2This proof is based on David E. Joyce’s summary of Euclid’s proof:
http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX35.html
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Example. 9.35.1. Consider the continued proportion 2, 4, 8, 16, 32. Since there
are five terms, n = 4, and [9.35] states that

4-2 32 -2
2 24448416

30
30

élf
o=

Corollary. 9.35.1 The ratio above can be written in another form. Let a,+1 = ar”,

a1 =a, ap = ar, and a,, + an_1 + ... +as +a; = S,, and we obtain

—a ar —a

or

Proposition 9.36. PERFECT NUMBERS.

If 2 — 1 is a prime number, then 2¥~1 (2% —1) is a perfect number. Every even perfect
number has this form.

Proof. Suppose?® that p = 2¥ — 1 is a prime number, and let

2k—1 p
= 2k 1ok 1)

We claim that n is a perfect number and that every even perfect number has this
form.

To prove our claim, we use the sigma function to show that o(n) = 2n [Def. 9.1].
Since the sigma function is multiplicative, and since o(p) = p + 1 = 2%, we find that

o(n) = (2" p)
= 0@ o(p)

_ (21
21

= (2F-1)-2"

= 2n

Hence, n is a perfect number.

Now suppose that n is an even perfect number where n = 2*~'m such that m is an
odd integer and k > 2. We wish to show that m = 2F — 1.

3This proof is based on Chris K. Caldwell’s proof:
http://primes.utm.edu/notes/proofs/EvenPerfect.html
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Notice that
on) = o2"1tm)
= o2 o(m)
= (@ = 1) om)
Since n is perfect,
o(n) = 2n
= 2km
Hence
2km = (28 —1)-0(m)

Since o(m) is a natural number,

2km

2k —1

is also a natural number. Since 2 — 1 is a prime number greater than 2, we must
have that 2¥ — 1 is a factor of m. Let m = (2¥ — 1)q. Then

2828 —1)q = (28 —1)-a(m)
2kq

o(m)

Recall that the sigma function adds all positive factors of a natural number. Then
since m and ¢ are both positive factors of m, it follows that o(m) > m + ¢. But

2kq

o(m)

Y]

m—+q

(2" —1)g+q
2" —q+q
= 2k

Hence, o(m) = m + ¢q. Since m is one of its own divisors, m is prime. Since m is
prime, o(m) = m + 1; or, ¢ = 1. Since

we find that m = 2F — 1.

Thus, n = 28~ tm = 2k=1(2¥ — 1), which completes the proof. O
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Chapter 9 exercises.

1. Provide three examples of [Cor. 9.2.1].
2. Finish the proof of [9.10].

3. Provide the details to the proof of [9.11].
4. Prove [9.19].

5. Prove [Cor. 9.28.1].

6. Prove [Cor. 9.29.1].

7. Prove [Cor. 9.31.1].

8. Rewrite [9.35] using the result from [Cor. 9.35.1].



Chapter 10

Irrational Numbers

In this chapter, all variables a, b, ¢, etc., are assumed to be positive real numbers
unless otherwise stated.

10.1 Definitions

0. The Whole Numbers are the set of numbers containing 0, 1, 2, 3, ... . The Natural
Numbers (the positive integers) are a subset of the Whole numbers, containing 1, 2,
3, ... . Rational Numbers are the set of numbers that can be written % where both
p and ¢ are whole numbers where ¢ # 0. (Notice that the rational numbers include
the whole numbers.) The Real Numbers consist of the rational numbers and the

irrational numbers. We do not require the use of negative numbers.

1. That  is a rational number is a necessary and sufficient condition for the exis-
tence of natural numbers m and n and some real number ¢ such that a = mc and

b = nc.! Numbers which cannot be expressed in the form 7 are irrational numbers.

If ab is rational, then /ab is rationally expressible. (Notice that vab may either be
rational or irrational.) In the case of a = b, we have: if a? is rational, then « is

rationally expressible.

2. 1 and z3 are said to be commensurable if z; = § - cand x; = g -cwhere a,b,d, e
are natural numbers and c is either an irrational number or 1. Otherwise a and b

are incommensurable.

3. A medial number x = p - k'/* is a number where p is rationally expressible, z* is
rational, and z, 2? are irrational. They are proven to exist in [10.21].

e 21/4 js a medial number since (21/4)4 = 2 is rational, while 2'/4 and /2 are

irrational.

Ihttps://en.wikipedia.org/wiki/Commensurability_(mathematics)
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e \/2.1/31is a medial number since it is irrational, 2 - v/3 is irrational, and 12 is
rational.

e 3.7Y4is a medial number since it is irrational, 9 - v/7 is irrational, and 567 is
rational.

If 2 is a medial number, then 22 = p? - Vk is a second medial number-.

* Since 3'/4 is a medial number, v/3 is a second medial number.
* Since \/3V/7 is a medial number, 3/7 is a second medial number.

e Since 5 - 3'/* is a medial number, 25-1/3 is a second medial number.

4. A first bimedial number a + b is defined where a and b are medial, a and b are
incommensurable, ¢? and b? are commensurable, and ab is rational.

An alternate definition of a first bimedial number is a + b where a = p - k'/* and
b = p-k3/* where p is rationally expressible and vk and v/k are irrational numbers.

The terms of a first bimedial number are ¢ and b.

5. A second bimedial number a + b is defined where a and b are medial, o and b are
incommensurable, a?> and b? are commensurable, and ab is a second medial number.

An alternate definition of a second bimedial number is a + b where a = p - k'/* and
b=p- /2. kY4 where p is rationally expressible and both vk, v/ are rationally
expressible.

The terms of a second bimedial number are a and b.

6. Let a > b be rationally expressible such that a and b are incommensurable but
a® and b? are commensurable. We define n = a + b as a binomial number.

Remark. Binomial numbers, like apotome numbers, are roots of the equation

ot =2 (14+k)-p- 2+ (1—-k)?-p'=0

7. We define a major number n = a + b where a and b are incommensurable, a?> and
b2 are incommensurable, a? + b? is rational, and ab is a second medial number.

Alternatively, we may define a major number n = a + b where p is rationally ex-
pressible, k is a rational number such that v/k is irrational, and

a = b 1—1—7]{:
2 V1+ k2
y - Pk
2 V1+ k2



CHAPTER 10. IRRATIONAL NUMBERS 381

[10.39] proves that a major number is irrational.

8. We define a + b as the root of the sum of two second medial numbers (or a RSSM
number) when ¢ and b are incommensurable, o and b? are incommensurable, a®+b?
and ab are each a second medial numbers, and ab is incommensurable with a2 + b>.

Alternatively, we may define a + b as

p>\1/4 k
a = a1+ —
V2 V14 k2
b X i
V2 V14 k2

where p is rationally expressible, where v/k is irrational but k is rational, and where
VX and v\ are irrational but ) is rational.

[10.41] proves that the root of a RSSM number is irrational.

9. Let a and b exist where a? and b? are incommensurable, a? + b? is a second medial
number, and ab is rational. Then n = a + b is defined as the root of a rational plus a
second medial number (or a RPSM number).

Alternatively, we may define a + b as

. r k++14+ k2
“ = V2 1+ k2

A —k+V1+ k2
V2 1+ k2

[10.40] proves that the root of a RPSM number is irrational.
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10.2 Book X, Propositions 1-47

Proposition 10.1. THE ARCHIMEDEAN PROPERTY.

Let 2 and y be real numbers. If 0 < 2 < y, then there exists some natural number
n such that n -z > y.

Proof. Suppose instead that there does not exist a natural number n such that
n - x > y; equivalently, suppose that for any natural number »n we obtain n < £.

Since £ < oo, it follows that there exists a largest natural number »’ such that
n < n'; otherwise, there would exist some n’ + k such that »’ + k > y. But by [9.20],
there exists a prime number p such that n’ < p. Since p is a natural number, we
obtain a contradiction.

Hence, no largest n’ exists, contradicting our hypothesis that n < £ for all n. Thus,
there exists some natural number n such that n -z > . O

Remark. Although this property is named for Archimedes, Archimedes attributed
the property to Eudoxus of Cnidus.

Proposition 10.2. THE MODIFIED EUCLIDEAN ALGORITHM TO DETERMINE
IF TWO NUMBERS ARE INCOMMENSURABLE.

Let z; > x5 be positive real numbers. There exists some positive integer n such
that

1 —n-x9 >0

and
1 —(n+1) 22 <0

We begin the algorithm with z; — ny - 2 = 23 where n; is chosen as above and
continue:

r1 — N1 -T2 = I3
T2 — Ny - X3 = T4
T — Nk Te+1 =  Tk42

If ;1 does not divide z; for i = 3,4, ... no matter how many times the algorithm is

repeated, then z; and z» are incommensurable.
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Proof. Let 1 > x3 be real numbers we input into Euclid’s Algorithm, and consider
the contrapositive statement of the above: if 2; and x> are commensurable, then
after k < oo repetitions of the algorithm, 2.5 and ;.1 will share a common factor.

We shall use a proof by contradiction on the contrapositive argument: suppose x;
and x2 are commensurable and that z;,; does not divide z; for i = 3,4, ... no matter

how many times the algorithm is repeated.

Since z1 and x5 are commensurable, then either z; and z» are natural numbers or

they are not. If they are, we continue.

By [7.1], z1 > @2 > w3 > ... > xpio > ... where each z; is a natural number. If
set S is the set of all z;, by [Lemma 7.30.0], S contains a minimum element. This
contradicts our hypothesis that the algorithm may be repeated indefinitely.

If 71 and z are not natural numbers, then z; = § - cand 23 = g -cwhere a,b,d, e

are natural numbers and c is either an irrational number or 1. Let f = the least
common multiple of b and ¢; g = the multiplicative inverse of c; and let 717 = z; - fg,
Ty = x9 - fg. It follows that 77, T3 are natural numbers. Following the argument
above, we reach the same contradiction.

This completes the proof. O

Remark. See also [7.1].

Example. [10.2.1] Let z; = 7w and 25 = 3, and so x; > x3. If 2;,1 does not divide
x; for i = 3,4, ... no matter how many times the algorithm is repeated, by [10.2], 7
and 3 are incommensurable (which they are).

Example. [10.2.2] Let 2; = 2 - 2'/3 and 2, = £ - 2'/3. Then z; > z and 1, 25 are
commensurable. Using the proof of [10.2], 77 = 25 and 73 = 21, and after k <
repetitions of the Euclidean Algorithm, 2,5 and z;; will share a common factor.
(In fact, &k = 2. Details are left as an exercise to the reader.)

Proposition 10.3. THE GREATEST COMMON FACTOR OF TWO COMMEN-
SURABLE NUMBERS.

Let z; and x5 be commensurable real numbers. There exists a greatest common
factor of z; and x> which is greater than 1.

Proof. The proof follows that of [7.2], mutatis mutandis. O

Corollary. 10.3.1. If k divides both z1 and x-, then k also divides the GCF of w1,

Z9.
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Proposition 10.4. THE GREATEST COMMON FACTOR OF THREE COMMEN-
SURABLE NUMBERS.

Let 21, 22, and 23 be commensurable real numbers. There exists a greatest common

factor of z1, x5, and x3 which is greater than 1.

Proof. The proof follows that of [7.3], mutatis mutandis. O

Corollary. 10.4.1. If k divides both x1, xs, and w3, then k also divides the GCF of

Ty, T, and 3.

Proposition 10.5. COMMENSURABILITY & RATIONAL NUMBERS I.

If 21 and x5 are commensurable, then n=gq where ¢ is a rational number.

d

Proof. Suppose x; and 3 are commensurable. It follows that y = ¢-cand z2 = £ -c

where a, b, d, e are natural numbers and c is either an irrational number or 1. Then

Let ¢ = 5, and the proof'is complete. O

Proposition 10.6. COMMENSURABILITY & RATIONAL NUMBERS II.

If i—; = g where ¢ is a rational number, then x; and x5 are commensurable.

, . . _ _d
Proof. Suppose 7> = g where q is a rational number. Then x; = 25 - q. If 25 = £ -

T2

c

thenz; =¢-2.c. If¢g- % =%, thenz; = £ ¢, which completes the proof. O

Corollary. [10.6.1] By [10.5] and [10.6], x1 and x2 are commensurable if and only

if &2 = q where q is rational.
T2

Proposition 10.7. INCOMMENSURABILITY & IRRATIONAL NUMBERS 1.
If 1 and z; are incommensurable, then 2! # ¢ for any rational q.

Proof. This is the contrapositive statement of [10.6] O
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Proposition 10.8. INCOMMENSURABILITY & IRRATIONAL NUMBERS II.
If 21 # g for any rational ¢, then x; and z, are incommensurable.

Proof. This is the contrapositive statement of [10.5] O

Proposition 10.9. COMMENSURABILITY OF SQUARES.

1) a and b are commensurable iff there exists natural numbers ¢ and d such that
()" =(5)"

2) a and b are incommensurable iff there does not exist natural numbers ¢ and d
such that such that (%)2 = (5)2.

Proof. 1) Suppose a and b are commensurable. By [Cor. 10.6.1], # = ¢ where ¢ is

rational. If ¢ = & for natural numbers c, d, then (%)2 = (5)2.

(&) a (9

Suppose (%)2 = (3)2. Then ¢ = q where ¢ = §. By [Cor. 10.6.1], a and b are
commensurable.

2) This statement is the contrapositive of statement 1, which completes the proof.
(I

Remark. If a is commensurable with b, then a? is commensurable with 2. How-
ever, if a? is commensurable with b2, it does not necessarily follow that a and b are

commensurable (e.g., 4 is commensurable with 2, but 2 is incommensurable with

V2).

Corollary. 10.9.1. Two numbers have a ratio which a square number has to a
square number iff they are similar plane numbers. (And numbers which are not
similar plane numbers do not have a ratio which a square number has to a square
number.)

Lemma. 10.10.0 If § and 4 are rational, then 75 is also rational.
Proof. Since { and § are rational, a, b, c,d are natural numbers. It follows that ab

and bd are also natural numbers, completing the proof. O

Lemma. 10.10.1 If § is rational and § is irrational, then {5 is irrational.
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Proof. Suppose 3 is rational, § isirrational, and {7 is rational. Since § is irrational,
either c or d is irrational. Wlog, let ¢ be irrational. If {5 is rational, then 35 = %

X

where © and y are natural numbers. Since ¢ = aiyd where a, b, d, z,y are natural

numbers, c is rational, a contradiction. Thus, {5 is irrational. O

Proposition 10.10. CONSTRUCTION OF INCOMMENSURABLE NUMBERS.

We wish to find real numbers a, b, ¢ such that a,b are incommensurable, a2, b* are

commensurable, and both a, c and a?, ¢? are incommensurable.

Proof. Let

where m, n are natural and \/m/n is irrational. By [Cor. 10.6.1], ¢ and b are
incommensurable while a? and b? are commensurable.

2

Choose real number z such that x and z* are irrational. Since m is a natural

number, by [Lemma 10.10.1], 2 is irrational. By [Cor. 10.6.1], 2 and m are incom-

mensurable.
Suppose
a [
- X
By [10.11], @ and c are incommensurable. Since z? is irrational, a? and ¢? are
incommensurable. This completes the proof. O

Proposition 10.11. COMMENSURABILITY OF FRACTIONS.
Given § = z,a and b are commensurable if and only if z and y are commensurable.
Proof. Suppose that a and b are commensurable. Then

a oz
biqiy

where ¢ is rational. O

Remark. The contrapositive statement of [10.11]: given § = %, a and b are incom-

mensurable if and only if 2 and y are incommensurable.
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Proposition 10.12. TRANSITIVITY OF COMMENSURABLE NUMBERS.

If @ and b are commensurable and b and ¢ are commensurable, then a and ¢ are

commensurable.

Proof. Notice that a« = bq and b = ¢r where ¢,r are rational. Then a = rq - ¢ and

a

2 = rq. By [Lemma 10.10.0], @ and c are commensurable. O

Proposition 10.13. COMMENSURABLE & INCOMMENSURABLE NUMBERS.

If a is commensurable with b but b is incommensurable with ¢, then a is incommen-
surable with c.

Proof. Notice that a = bqg where ¢ is rational and that b = cx where z is irrational.
Then a = gz - c and ¢ = gz. By [Lemma 10.10.1], the RHS is irrational, and so a

and c are incommensurable. O

Proposition 10.14. COMMENSURABILITY OF SQUARES.

Let ¢ = 4. If va? — b? is commensurable with a, then v/c? — d? is commensurable
with c.

Proof. Let 7 = 4. It follows that

2 2
22
By [5.17],
a? —bv? 2 — 2
b2 = 2
And since
2 CQ b2 d2
[ C TR
we have
a® —b%> b2 A —d? &2
T2 a2 @2 2
a2 _ b2 C2 _ d2
a2 = 2
Va?—b> Ve —d?
a c

If Va? — b? is commensurable with a, by [10.11] /¢? — d? is commensurable with
c. (I
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Corollary. 10.14.1. Suppose x > y. Then x> > 32, and there exists a real number z
such that x? — y% = 22, or 22 = % + 22

Lemma. 10.15.0 If a and b are rational, then a + b is rational.

c

Proof. Suppose a and b are rational. Then a = § and b = % where c,d,e, f are

f
natural numbers. It follows that a + b = <£ ;}ed, and so a + b is rational. O

Proposition 10.15. COMMENSURABILITY OF THE SUM OF COMMENSU-
RABLE NUMBERS.

(1) If 21 and x5 are commensurable, then x; & x5 is commensurable with z; and

(2) If 21 £ 25 is commensurable with either x; or x5, then 21 and x5 are commensu-
rable.

Proof. (1) Since z; and x5 are commensurable, z1 = x5 - ¢ where ¢ is rational. Then
1+ Ty =29 - (1+q),and

ST R
T2

T t+x g+l
T1 q

Since each RHS is rational, z1 + 2> is commensurable with both x; and z5. A similar
proof follows for 1 — x».

(2) Wlog, suppose x1 + z2 = gz where ¢ is rational. Then z2 = z; - (¢ — 1), and so
i—f = g — 1 is rational. Hence, ; and x> are commensurable. A similar proof follows

for 1 — 2. O

Remark. [10.15] cannot be rewritten as an “if and only if” statement without losing
part of the result.

Proposition 10.16. INCOMMENSURABILITY OF THE SUM OF INCOMMEN-
SURABLE MAGNITUDES.

(1) If 21 and x> are incommensurable, then z; &+ 25 is incommensurable with both

T and 9.

(2) If a & b is incommensurable with either x; or z», then z; is incommensurable
with ZTo.
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Proof. Statement (1) is the contrapositive statement of [10.15] (2).

Statement (2) is the contrapositive statement of [10.15] (1). O

Proposition 10.17. CONDITION FOR COMMENSURABILITY OF ROOTS OF
THE QUADRATIC EQUATION.?

Let 22 = bz — %2 where a < b. The following three statements are equivalent:

1. z is commensurable with b
2. bis commensurable with /02 — a2

3. bis commensurable with » where b = a2 + h?

Proof. Notice that

2 — b 70‘_
T x 1
2
9 a
by = =
T T 1
b2 b2_ 2
xQ—szrZ = 4a
b\ > b2 — a2
2y - 5
b > _ 2
L 2 _ v¥-a
2 2
I b+ vb% —a?
N 2
r b+ Vb2 —a?
b 20

(where we are only interested in positive values of x). If 2 is commensurable with
b, then by [10.11], b & v/b% — a? is commensurable with 20. That is,

b+ Vb2 —a? B
2b B

where ¢ is rational. But this is equivalent to

b2 — a2
b

2The formulation of this proposition and the outline of its proof comes from David E. Joyce’s edition
of Euclid’s Elements: http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX17.html.

= 2qF1



http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX17.html
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By [Lemma 10.15.0], 2¢ ¥ 1 is a rational number, and so /b2 — a? is commensurable
with b.

Suppose Vb2 — a? is commensurable with b and let h = /b2 — a2. Then h is com-
mensurable with b where b? = a? + hZ.

Finally, suppose h is commensurable with b where b? = a2 + h?. Since h = v/b? — a2,

we find that v/b2 — a2 is also commensurable with 2b, or ¥ b;gaz = r where r is a

rational number.

By the above,
T _ b+ Vb2 —a? —lir
b 20 2

By [Lemma 10.15.0], 1 +r is a rational number, and so z and b are commensurable.
This completes the proof. O

Proposition 10.18. CONDITION FOR INCOMMENSURABILITY OF ROOTS
OF THE QUADRATIC EQUATION.

Let 22 = bz — %2 where a < b. Then the following three statements are equivalent:

1. z is incommensurable with b
2. bis incommensurable with /b2 — a2

3. bis incommensurable with & where b2 = a2 + h?

Proof. This is the contrapositive statement to [10.17] and so follows immediately.
(I

Proposition 10.19. THE PRODUCT OF COMMENSURABLE RATIONALLY EX-
PRESSIBLE NUMBERS.

If 21 and x5 are rationally expressible and commensurable, then x; - x5 is rational.
Proof. Since 1 and z» are commensurable, 21 = ¢ - 22 where ¢ is rational. Then

2
Tl -T2 = ({-Ty

Since - is rationally expressible, by [Lemma 10.10.0] z; - 2 is rational. O
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Proposition 10.20. THE QUOTIENT OF COMMENSURABLE RATIONALLY
EXPRESSIBLE NUMBERS.

If 2, is rationally expressible and x; - x5 is rational, then x5 is rationally expressible

and commensurable with 2.

Proof. Notice that z; - zo = ¢ where ¢ is rational. Hence, z; = %. Since x; is
rationally expressible and ¢ is rational, = is rationally expressible.

Also notice that

Since z- is rationally expressible, the RHS is rational. Thus, z; and z, are com-
mensurable. This completes the proof. O

Lemma. 10.21.0 The square root of an irrational number is irrational.

Proof. Suppose ¢ is irrational and /g is rational. Then there exists natural num-
bers a and b such that

a
viTy

But then ‘;—2 = ¢, and ¢ is rational, a contradiction. Therefore ,/q is irrational. [

Proposition 10.21. EXISTENCE OF MEDIAL NUMBERS.

Suppose p and p - Vk are rationally expressible and incommensurable but p? and
p2k are commensurable. Then p - k'/* is a medial number and p? - vk is a second
medial number.

Proof. Notice that

p_ 2
a p-Vk
2 = 2 Vk
a = p-k'/4

We claim that p - '/ is a medial number and p? - vk is a second medial number.
Since p and p - vk are incommensurable and

p p?

p-vVE  p?-Vk
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by [10.11] p? and p? - 'k are also incommensurable. Since p? is rational, it follows
that p? - Vk is irrational; by [Lemma 10.21.0], p - '/ is also irrational.

Since p and p - vk are rationally expressible, p> and p?k are rational. By [Lemma
10.10.0], p*% is also rational. By [Def. 10.3], p - k/* is a medial number.

Also by [Def. 10.3], (p- k'/ 4)2 = p? -k is a second medial number, which completes
the proof. 0

Proposition 10.22. FACTORS OF THE SQUARE OF A MEDIAL NUMBER.

a?

;- is rationally

Let a be a medial number and b be rationally expressible. Then ¢ =
expressible and incommensurable to b.

Proof. Suppose a = p-k'/* is a medial number and b is rationally expressible. Then

Since ¢? is rational, c is rationally expressible. Since

c _ vk
b b2

2

where 5 is rational [Def. 10.3] and V'k is irrational by hypothesis, by applying

[Lemma 10.10.1], we find that b and ¢ are incommensurable. O

Proposition 10.23. A NUMBER COMMENSURABLE WITH A MEDIAL NUM-
BER IS MEDIAL.

If @ and b are commensurable where b is a medial number, then « is a medial num-
ber.

Proof. Suppose a and b = p - k'/* are commensurable. Then

a

p ka1

where ¢ is rational. It follows that a« = ¢ - p - k'/%. Since ¢ is rational and p is
rationally expressible, it follows that ¢p is rationally expressible. By [Def. 10.3], a
is a medial number. O

Corollary. 10.23.1 If a and b are commensurable where b is a second medial num-
ber, then a is a second medial number.
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Proof. Suppose a and b = p? - vk are commensurable. Then

a

RV

where ¢ is rational. It follows that a = ¢ - p? - V/k. Since ¢ and p? are rational, by
[Lemma 10.10.01, gp? is also rational. By [Def. 10.3], a is a second medial number.
(I

Proposition 10.24. PRODUCT OF COMMENSURABLE MEDIAL NUMBERS 1.

If @ and b are medial numbers where a is commensurable with b, then ab is a second

medial number.

Proof. Notice that a = bg where ¢ is rational. Then ab = ¢ - b>. Since b is medial,
b = p- k'/* where p is rationally expressible and where k'/%, vk are irrational but &
is rational. Then ab = ¢p? - Vk.

Since ¢, p? are rational, gp? are rational [Lemma 10.10.0]. By [Def. 10.3], ab is a
second medial number. O

Proposition 10.25. PRODUCT OF COMMENSURABLE MEDIAL NUMBERS II.

If ¢ and b are medial numbers where a? and b? are commensurable but a and b are
incommensurable, then (ab)” is rational.

Proof. Let a = pk'/* and b = pk'/*\/m where \/m is irrational but m is a rational.
Then a, b are medial such that a?,b? are commensurable but a, b are incommensu-
rable. Notice that (ab)2 = p*km is rational by [Lemma 10.10.0]. This completes the
proof. O

Proposition 10.26. DIFFERENCES OF MEDIAL NUMBERS.
If @ and b are second medial numbers where a > b, then a — b is irrational.

Proof. Suppose a = p* - vk and b = ¢* - \/m are second medial numbers such that
a > b. We claim that a — b is irrational .’

3The formulation of this proposition and the outline of its proof comes from David E. Joyce’s edition
of Euclid’s Elements:
https://mathcs.clarku.edu/~djoyce/java/elements/bookX/propX26.html


https://mathcs.clarku.edu/~djoyce/java/elements/bookX/propX26.html

CHAPTER 10. IRRATIONAL NUMBERS 394

If a — b is rational, then (a — b) is also rational. Furthermore,

(a—b)? = a®—2ab+ b
= pk— 22 Vim+q¢*m
= r

where r is rational. Or,

%-(p‘lk:—l—q‘lm—r) =ab

Since the LHS is rational, ab is rational; that is, ab = ¢ for some rational ¢. It follows

that § = biz Since b is a second medial number, b? is rational, and so ¢ is rational.

Notice that (a —b) =b- (% —1). Then a — b is rational while b- (% — 1) is irrational
by [Lemma 10.10.1], a contradiction. Thus, a — b is irrational. O

Lemma. 10.27.0 If x is irrational, % is irrational.

Proof. Suppose that  is irrational but 1 is rational. Then 1 = £ where r,s are
natural numbers. It follows that » = 2, and so x is rational, a contradiction. Thus,

1 is irrational. O

Proposition 10.27. COMPONENTS OF A FIRST BIMEDIAL NUMBER.

We wish to construct medial numbers a and b such that ¢ and b are incommensu-
rable, a® and b? are commensurable, and ab is rational. ([Def. 10.4 defines a + b as
a first bimedial number.)

Proof. Using [10.21], construct medial number a = p - k'/4. Notice that

P p'k/’l/4
' b
b = p-k3/

We claim that a and b are the required numbers. Notice that v = p2k-v/k. Since pk
is rational and /k is irrational by hypothesis, b? is irrational by [Lemma 10.10.1].
By [Lemma 10.21.0], b is irrational. Since b* = p* - k? is rational, b is medial.

Also notice that 7 = ﬁ Since vk is irrational by hypothesis, applying [Lemma
10.27.0], we find that a and b are incommensurable. Since & is rational by hypoth-
esis, a® and b? are commensurable.

Also notice that ab = p?k. Since p is rationally expressible [10.21], ab is rational,
which completes the construction. O
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Lemma. 10.28.0 Let q be a rational number. /q is rational if and only if ¢ = ’S—z for
natural numbers r, s.

Proof. Suppose /q is rational. Then ,/g = % for natural numbers r, s and so ¢ = Z—z

Suppose g = ’;—z Then ,/q = %, and so ,/q is rational. O

Remark. In the proof of [Lemma 10.28.0], let s = 1. Then for all natural numbers
n: /n is a natural number if and only of n = k? for some natural number k.

Proposition 10.28. COMPONENTS OF A SECOND BIMEDIAL NUMBER.

We wish to find medial numbers a and b such that a and b are incommensurable, a?
and b? are commensurable, and ab is a second medial number. ([Def. 10.5 defines
a + b as a second bimedial number.)

Proof. Suppose p, p- vk, and p-\/m are rationally expressible and incommensurable
such that % + Z—z for any natural numbers r, s. Let

p_ _a

a p\/E

a = p-k'/4

and

p-VEk B p- k14

p-vm b
p o~ Pvm

- k1/4

We claim that a and b are the required numbers. By [10.21], a, b are medial.

Notice that

A~}

a _p2k

2m

b2

bt

. . 2
and so a?,b? are commensurable. Since % # = for any natural numbers r, s, by

[Lemma 10.28.0], / % is irrational, and so a, b are incommensurable.

Finally, notice that ab = p? - \/m, and so ab is a second medial number. This com-
pletes the construction. O
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Lemma. 10.29.0 We wish to find two square numbers such that their sum is square.
Take similar planes numbers mnp? and mng? which are either both even or both odd
(so their difference is divisible by 2). We claim that

mnp? — mng? ) 2 B (mnp2 + mng? ) 2
2 B 2

(mnpq)® + (

so that the sum and the difference of mnpq and %(man — mnq?) are each square
numbers.

Corollary. The above Lemma provides a way to generate Pythagorean Triples: if n
and m are natural numbers and m < n, then Pythagorean Triples follow the ratio

Example. If n = 3 and m = 1, we have the triple 3: 4 : 5. If n = 30 and m = 10, we
have the triple 300 : 400 : 500 (a multiple of the triple 3 : 4 : 5).

Lemma. 10.29.1 We wish to find two square numbers such that their sum is not
square. (Recall that [Lemma 10.29.0] states that there exist natural numbers a,b, ¢
such that a® + b = ¢ and how to construct them.) Suppose we have

2 2

, , mp? —mg>\> [ mp® +mag?

mp--mqg -+ | —m— ) = ——
2 2

where mp? and mpq® are both odd or even. Using a proof by contradiction, it can be

shown that
2 2 mp2 — mq2 :
mp” -mq” + — s 1
is not a square number.

. 2 2 2 2 2 2
Consequently, if mp? - mq® > (% - 1) , then mp? - mq® — (w - 1) isa
positive, non-square number.

Proposition 10.29. CONSTRUCTION 1.
We wish to construct rationally expressible numbers a and b such that a and b are

incommensurable, ¢? and b? are commensurable, and a® = b? + f2 where a and f
are commensurable.
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Proof. Let p be rationally expressible and choose natural numbers m > n such that

m? — n? is not a square number. Let

m2 P2
m2—_nZz b2
o P (m2 _ n2)
— —
b = p-V1—k?

where k£ = -. We claim that « = p and b = p- V1 — k? are the required numbers.

Notice that g = /1 — k2. Since 1 — k? is not a square number, by applying [Lemma
10.28.0] we find that a,b are incommensurable. Since 1 — k? is rational, a?, b> are

commensurable.

Let f = Va? — b2. Then a? = b + f2. Notice that

a2_b2 — p2_p2(1_k2)
= -k
_ p2 k2
and so f = pk. Then
a_p _1
[ pk
and so ¢ and f are commensurable. O

Proposition 10.30. CONSTRUCTION I1.

We wish to construct rationally expressible numbers a and b such that a and b are
incommensurable, a?> and b?> are commensurable, and a®> = b + f2 where o and f

are incommensurable.

Proof. Let p be rationally expressible and choose natural numbers m > n such that
m? 4+ n? is not a square number. Let

m2 + 7’L2 p2

m?2 b2

p2m2
m2 + TL2

Vo=

p

V1+E2

where k = -. We claim that a = pand b = ﬁ are the required numbers.
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Since ¢ = /1 + k2 and 1 + k? is not a square number, by applying [Lemma 10.28.0]
we find that a, b are incommensurable. Since 1 + k2 is rational, a?,b? are commen-

surable.
Let f = v/a? — b2. Then a® = b? + f2. Notice that

2

2 32 _ .2 P
@b = 1+ k2
p2 + p2k2 o p2
14+ k2
- p2 k2
14k
Then f = \/ffT' Notice that
a _ V1I+k?
f k
Applying [Lemma 10.10.1], we find that a, f are incommensurable. O

Proposition 10.31. CONSTRUCTION III.

Let ¢ be a medial number. We wish to find medial number d such that ¢ and d are
incommensurable, ¢?> and d?> are commensurable, cd is rational, and ¢ = d? + t2
such that c and ¢ are commensurable.

Proof. Using [10.29], construct rationally expressible numbers ¢ and b = a-v/1 — k2
where 0 < k < 1is rational and 1 — k? is rational but not a square number. Let

e - ¢
T aVie
A = a?-\V1-k2
c = a-(l—kz2)1/4
and
a~(1—k2)1/4 _a-V1—k?
a-vV1—k? B d
a2-(1—k2)
d =
a-(1—k2)Y*

d = a-(1-#r)""

We claim that ¢ and d are the required medial numbers.
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Since 1 — k2 is not a square number, by [Lemma 10.28.0], v/1 — k2 is irrational. By
[Lemma 10.21.0], (1 — k:2) /% is also irrational. Since a is rationally expressible, by
[10.21],c=a- (1 — k2)1/ * is a medial number. Similarly, d is a medial number.

Notice that g = V1 — k2. By [Lemma 10.28.0], c,d are incommensurable. Since

1 — k2 is rational, 2, d? are commensurable.
Notice that cd = a? - (1 — k?). By [Lemma 10.10.0], cd is rational.
Let t = v/c2 — d2. Then ¢® = d* + t. Notice that
Ao = a* (1-k)7 —a? (1- 127
= - -]
= [((1 K)"7) (1= (1-#2)]
— 2.\/1—k2

and sot =ak- (1— k:2)1/4. Finally,

c a-(1-k2)""
t ak - (1 — k2)M*
1

Since k is rational, c and ¢ are commensurable. This completes the construction. [

Corollary. [10.31.1] Let ¢ be a medial number. We wish to find medial number d
such that c and d are incommensurable, ¢> and d? are commensurable, cd is rational,
and ¢ = d? + t% such that c and t are incommensurable.

Proof. Using [10.30], construct rationally expressible numbers a and b = \/1‘_1?

from [10.30] where 0 < k < 1 is rational where 1 + k2 is rational but not a square
number. Let

E — 5.1/14_]{;2

C a

2 = o’
V14 k2
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and
a VI+k2 a
1+k)7* o« d-V1+ k2
/4 a
1+ = — L
( ) d-VI+k?
a
d = ———
(1+k2)*

We claim that ¢ and d are the required numbers. We leave as an exercise to the
student to show that ¢, d are medial numbers. Notice that

E a (1+k2)3/4
d (1+ k2)'/4 a

V14 k2

By the proof of [10.30], ¢, d are incommensurable; also, c?, d* are commensurable.

Also notice that cd = is rational.

_a®_
T+52

Let t = v/c2 — d2; then ¢? = d? + t°. First, notice that

—d* = o - o
1+&)7? (14 k22
a’- (1+k2) —a?
(14 k2)%/2
s [ (14K -1
= a . _—
(14 k2)%/2
a’k?
(1R
Then t = (1&% Finally,
2)3/4
c a (1 + k )
t 1+ k)Y ak

V14 k?

1
k

Since /1 + k2 is irrational by the above, ¥ 1;"”’2 isirrational [Lemma 10.10.1]. Hence,

c and t are incommensurable. O
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Proposition 10.32. CONSTRUCTION 1V.

Let d be a medial number. We wish to find a medial number ¢ such that d and e
are incommensurable, d2 and e? are commensurable, de is a second medial number,

and d? = 2 + t? such that d and t are commensurable.

Proof. Construct rationally expressible numbers p, p\/m, pv1 — k% such that m is
rational, \/m is irrational, v/1 — k? is irrational, 1 — k? is rational, and k = 2. Let

po_ _d
d  pJym
d = p-m/*
and
p.m1/4 - p.q/likQ
p-vm e

e = p.m1/4.1/1_k2

We claim that d and e are the required medial numbers. By hypothesis, d is medial.
Since e* = p? - (1 — k?) - /m where p? - (1 — k?) is rational and /m is irrational, by
[Lemma 10.10.1] €2 is irrational. By [Lemma 10.21.0], e is also irrational. Since
et =p'm-(1- k2)2 is rational by [Lemma 10.01.0], e is a medial number.

Notice that § = /1 — k2. Applying [Lemma 10.28.0], we find that e, d are incom-
mensurable. Since 1 — k? is rational, 2, d*> are commensurable.

Notice that de = p? - vVm — mk2. Since m — mk? is rational, de is a second medial
number.

Let t = vVd2 — 2. Then d? = 2 + t2. Notice that
d>—e? = pQ-\/E—pQ-\/ﬁ-(l—kQ)

=’ Vm- (1= (1-#%)
k*p® - v/m

and so t = kp - m'/%. It follows that % = k. Hence, d and ¢ are commensurable. [
Lemma. 10.32.1 Let d be a medial number. We wish to find a medial number

e such that d and e are incommensurable, d*> and ¢*> are commensurable, de is a
second medial number, and d*> = e + t* such that d and t are incommensurable.
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Proof. Construct rationally expressible numbers p, py/m, ﬁ such that 1 + k2 is
rational but not a square number. Let

p _ _d_
d  pym
d = p-m1/4
and
p-m'/t p
p-V/m e-\V1+k2
p-mi/A
e — P M
V1+k?

We claim that d, e are the required numbers. The remainder of the proof is left as
an exercise to the reader. O

Lemma. 10.33.0 If x is irrational and y is rational, then v + y is irrational.

Proof. Suppose = + y is rational, or = + y = ¢ where ¢ is rational. It follows that
x = q — y. Since the RHS is rational, x is rational, a contradiction. Hence, = + y is
irrational. O

Proposition 10.33. CONSTRUCTION V.

We wish to find numbers » and s where 2 and s? are incommensurable, r2 + s is

rational, and rs is a second medial number.

Proof. Using [10.30], construct rationally expressible numbers a = pand b = \/%T
and let z + y = p and zy = % for real numbers z, y.
Notice that y = #ﬁrk&), and so
2
D _
Tt 7
2
2, P _
x° + 1 (1182 px
R
4-(1+k2)
2 2 2
22 — px + . _ P p

4 4 4-(1+k2)
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(73)2 _ (4R —p?
TTa) T 4(1+k2)
(_13)2 N
T3) T ia+ e
Y R
2 2.4/1+ k2

Since p > 0 and k > 0, the RHS is positive. Then

p,__ Pk
2 21+ k2

N3

(7 75m)

(VI+E2 +k)
2.1+ k2

3

Theny =p—z, or

p- (VI+k2+k)
2-V1+k2

20 V1+Ek2—p-vV1+kZ—p-k
2-v1+4 k2

p- (VI+k%—k)
2-V1+k2

Let r? = px and s? = py. We claim that r, s are the required numbers.
Notice that :—Z =2 Since
y p<1L>2<;>
x 2 Vitr2) p \1+
<—k: ' m) | < VITR )
VIt k+V1+k2

—k+VI+k2
kE+VI+k2

where /1 + k2 is irrational and k is rational. Let z = v/1 + k2. By [Lemma 10.33.0],
z —k and z + k are irrational. If £ is rational, then z — k = ¢ - (2 + k) for some



CHAPTER 10. IRRATIONAL NUMBERS 404

rational ¢. Solving for z, we obtain

z—k = qz+qk
z—qz = k+qk

2(1-q) = k(l+q)
1

l1—q

Since k, ¢ are rational, z is rational. But z = /1 + k2 is also irrational, a contradic-
tion. Hence, > and s? are incommensurable.

Notice that

2 2 p k p k )
P ( 1+k2) Py ( V14 k?

= P
and so 72 + s? is rational.
Finally, notice that

rs = p-Jay

<3 (o) 5 (o)

- 5 w) ()
. k2

1 —
1+ k2

p? 14+ k2 — k2

2 1+ k2
1
2 V1+k?

Let t? = % and w = 7. Then rs = ¢* - \/w. Since ¢* is rational and /w is irra-
tional, by [Lemma 10.10.1] rs is irrational. By [Lemma 10.21.0], \/rs is irrational.
Lastly, (rs)2 = t*w is rational, and so rs is a second medial number. This completes
the construction. O
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Proposition 10.34. CONSTRUCTION V1.

We wish to find numbers r and s such that »? and s? are incommensurable, where

r? + s? is a second medial number, and where rs is rational.

Proof. Using [Cor. 10.31.1], construct medial numbers ( 1+kp2)1 - and

let

Tty =

Yy =

for real numbers z,y. If

82 =

p
REVEEE and

p

(14 k2"

p2

(14 k2)%2

pr

(14 k2)*

py

(14 k2

we claim that r, s are the required numbers.

Notice that :—z = ¢. By [10.11], r* and s” are incommensurable if and only if = and

y are incommensurable. Notice that

2
x + P

2
2, D
2 pr

Tr° —

2 pr ?

p
" = +
(1+ k2)1/4 4.1+ k2

I
2. (14 k2)/*

I
2. (14 k2)Y*

_r
2. (1+ k2)*

T —

Az (1 + k2)3/?
4-(1+k2)%?

(14 k)"

N
(1+k2)H*

D
(1+ k2)Y*

p2

4-(1+ K27

2 p2

p
4-VT+E 4. (1+82)%7

p2-(1+/€2)—p2
4-(1+k2)?

p2k‘2
4-(1+ K27

pk

= +
2. (1+k2)**
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Since p > 0 and k > 0, the RHS is positive. Then

. P _ pk
2. (14 k2)* 2. (14 k2)%/*
pk p
r = +
2 1+ 2 (14 k)
pk p-vV1+k?

2. (1+ k2% 2. (1+k2)%*
p-(k+vV1+k?)
2. (14 k2)%/*

<k+\/1+—k2>

(1+ k2%

N |3

Since zy = we have

p2
4-(1+K2)3/22
y = P’ 2 (1+42)""
4-(14+k2)%% p-(k+V1I+E2)
1 1
1+ k2% (k+V1I+E2)
1

(1+ k2% (k+ VT 1 £2)

N |3

N3

And so

e (kevVIFR) ()Y (k+VITE)
= (1+k2)3/4 1

- <k+\/1+k2)2
= 2k 4+1+2k-V1+k2

Since 2k? + 1 is rational but 2k - /1 + k2 is irrational, by applying [Lemma 10.33.0],
we find that % is irrational, and so r? and s? are incommensurable.

Notice that
vy = p_2. k+vi+k*\ [ 1
4\ (14 k2% (14 k2 (k+ VT +E2)

p2

4.(1+k2)%2
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Then
(rs)? = pr . Py
L+E)YY (1 +k2)V
= p2 xy
V1+k?
o
4-(1+k2)?

2
— D 3 3
and so rs = SRGERE Hence, rs is rational.

Finally, notice that

2 2 p
r+s = W . (IL' + y)
2
Y N
(14 k2)M*
V1+Ek?
Let ¢ = 174=. Then r? + s> = p? - |/ is a second medial number. O

Proposition 10.35. CONSTRUCTION VII.

We wish to construct » and s where 2 and s? are incommensurable, 72 + s? is a sec-

ond medial number, s is a second medial number, and 2 + s? is incommensurable

with rs.
Proof. Let
r+y = p- ml/4
p?-/m
oy = 2NV
Y 4-(1+k2)
for real numbers z,y. If
7'2 = p . m1/4 -
2 = p.mi/t.y

we claim that r, s are the required numbers.
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Notice that

.ml/4 k
z = 20 -(1+ )
2 1+ k2

_ p-m'/t (1 Kk )
Y- 2 V1t k2
(we leave all verification steps to the student). Also notice that :—z = % and that

Loy 142%- V2 + 1
y

By the proof of [10.34], = and y are incommensurable. By [10.11], »? and s are

incommensurable if and only if z and y are incommensurable.
Notice that 2 + s = p? - \/m, and so r? + s? is a second medial number.

Also notice that
P’ m
rsS = —m———
2-VEk2+1

Let t* = % and w = Then rs = t? - \/w, and rs is a second medial number.

Finally, notice that

2 2
e +s o Vi1

rs

Since Vk2 + 1is irrational, 7> + s? and rs are incommensurable. This completes the
construction. O

Proposition 10.36. A BINOMIAL NUMBER IS IRRATIONAL.

Let a and b be rationally expressible numbers such that a and b are incommensu-
rable and ¢ and b? are commensurable. Then a + b, defined as a binomial number
[Def. 10.6], is irrational.

Proof. Let a = p and b = p - Vk as in [10.21]. It follows that T = ﬁ Apply-

ing [Lemma 10.27.0], @ and b are incommensurable. Since ‘g—z = +, a* and b? are

commensurable.

Notice that

2
<p+p~\/E) = p?+2p* VEk+p%k

Since p? + p°k is rational and 2p? - V/k is irrational by [Lemma 10.10.1], by [Lemma
10.33.01 (a + b)” is irrational. By [10.21.01, a + b is irrational. O



CHAPTER 10. IRRATIONAL NUMBERS 409
Proposition 10.37. A FIRST BIMEDIAL NUMBER IS IRRATIONAL.

Suppose a and b are medial numbers where a and b are incommensurable, a? and b>
are commensurable, and ab is rational [10.27]. Then a+b, defined as a first bimedial
number [Def. 10.4], is irrational.

Proof. Leta=p-k'*and b =p- k%* as in [10.27]. Since ab = p?k, ab is rational.

Notice that
a_@a 1
b ab  VEk
where # is irrational. Clearly, a2, b?> are commensurable. Notice that
a2+b2 B p2\/E+p2k/’\/E
ab N P2k
_ VEk+kVE
V-V
VE-(1+k)
k
and so
a®+2ab+ b 2k+VEk-(1+k)
ab n k
(a+0)?  2k+VEk-(1+k)
2ab B k

By [Lemma 10.33.0], the RHS is incommensurable. Since 2ab is rational, (a + b)” is
irrational. By [Lemma 10.21.0], a + b is irrational. O

Proposition 10.38. A SECOND BIMEDIAL NUMBER IS IRRATIONAL.

Suppose a and b are medial numbers where o and b are incommensurable, a?> and
b? are commensurable, and ab is a second medial number. Then a + b, defined as a
second bimedial number [Def. 10.5], is irrational.

Proof. Leta = p-k'/* and b = péﬁ as in [10.28]. Since ab = p? - \/m, ab is second

medial number.

Notice that

where \/—\/% is irrational and % is rational. Hence, a,b are incommensurable but

a?,b? are commensurable.
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Finally,

pk1/4+p\/ﬁ

a-+b i/

p-Vk+p-vm
vk

If the RHS is rational, then p - V& 4 p - /m = ¢ - vk where ¢ is rational. Hence

P’k +20°Vkm +p’m = ¢’k
Vim = Chopk-pim

2p>2

Since the RHS is rational, vkm is rational for all choices of km, a contradiction.
Thus, a + b is irrational, which completes the proof. O

Proposition 10.39. A MAJOR NUMBER IS IRRATIONAL.

Let 72 and s? be incommensurable such that »? + s? is rational and rs is a second
medial number. We claim that r + s, defined as a major number [Def. 10.7], is

irrational.

Proof. Let

2
2 = p_.<1+ b >
2 1+ k2

s = p—2-(1— F )
2 V14 k2

from [10.33]. It follows that r2 + s? is rational and rs is a second medial number.

Notice that
2 TRtk
2 VIR —k

= 2K°+1+2k-VE2+1

By the proof of [10.34], 2 and s? are incommensurable.

Also notice that

(r+s)° = r2+s>+2rs
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By [Lemma 10.33.0], the RHS is irrational; hence, (r + s)* is irrational. By [Lemma
10.21.0], » + s is also irrational. O

Proposition 10.40. CONSTRUCTION OF A “ROOT OF A RATIONAL PLUS A
SECOND MEDIAL NUMBER” [RPSM] NUMBER.

Let 72 and s? be incommensurable such that 2 + s2 is a second medial number and
where rs is rational. We claim that r + s, defined as a RPSM number [Def. 10.9], is
irrational.

Proof. Let

[

) p_.<k+\/1+k2>
2

1+ k2

2 p2.<k4»v1+k2>

1+ k2
from [10.34]. By the proof of [10.34], 72 and s? are incommensurable. Notice that
2

s’ = P /1 + k2

1+ k2

p2

2. (1+K2)

rs =
and so 72 + s? is a second medial number and rs is rational.
Also notice that

(r+s)2 = r?+52+2rs

By [Lemma 10.33.0], the RHS is irrational; hence, (r + s)? is irrational. By [Lemma
10.21.0], » + s is also irrational. O

Proposition 10.41. CONSTRUCTION OF A “ROOT OF THE SUM OF TWO SEC-
OND MEDIAL NUMBERS” [RSSM] NUMBER.

Let r? and s? be incommensurable such that 72 + s2 and rs are each second medial
numbers, and where 2+ s? is incommensurable with rs. We claim that r+ s, defined
as a RSSM number [Def. 10.8], is irrational.
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Proof. Using [10.35], let

2.
P (1
2 V14 k2
. pz'ﬁ(lL)
2 1/1_*_]{:2

By the proof of [10.35], % and s? are incommensurable. Notice that
r? s = p2 vm

_pVm
2.1+ k2

rs =

and so r? + s2 and rs are each second medial numbers. Also,

r2+52

rs

= 2-4/14+k2

and so 72 + s? is incommensurable with rs. Finally,

2 2 2
rTAarst+st 24+92.4/14+k2

rs

(r+s)? = 242-V14k2

Since the RHS is irrational, (r + s)® is irrational. By [10.21.0], r+s is irrational. [

Proposition 10.42. THE TERMS OF A BINOMIAL NUMBER ARE UNIQUE.
Let n be a binomial number. If n =a+b=c+ d and a # d, then a = cand b = d.

Proof. Suppose n is a binomial number such that n = a +b = ¢+ d where a # d and
a > c. Notice that

n? = a4 2ab+b?
= A +42d+d?
and so
(a®> =)+ (b —d*) = 2:(cd—ab)
%.((atg)ﬂbtd?)) — cd—ab

By [10.361], a, b, ¢, d are rationally expressible, and so the LHS is rational. Also from
[10.36] a = p, b = pVk, ¢ = r, and d = r/m, and so c¢d = r?>\/m and ab = p*Vk. By
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[10.26], the RHS is irrational, a contradiction. A similar contradiction arises if we

assume a < c.

Therefore, a = c. To prevent a similar contradiction, we must also have b = d. Thus,
the terms of a binomial number are unique. O

Lemma. 10.43.0 If a and b are medial numbers such that a and b are commensu-
rable, then a + b is also a medial number.

Proof. Since a and b are commensurable, a = bq where ¢ is rational. Then a + b =

b-(¢g+1). Since band b- (¢ £ 1) are commensurable, by [10.23] b- (¢ £ 1) is a medial

number. =
Lemma. 10.43.1 If a and b are second medial numbers such that a and b are com-
mensurable, then a £ b is also a second medial number.
Proof. The proof'is identical to the above except that [Cor. 10.23.1] is cited instead.

O
Proposition 10.43. THE TERMS OF A FIRST BIMEDIAL NUMBER ARE UNIQUE.
Let n be a bimedial number. If n =a+b=c+dand a # d,thena =cand b = d.

Proof. Suppose n is a bimedial number such that n = a+b = ¢+ d and a > c. Notice
that

n®> = a4+ 2ab+ b
= A +2cd+d?
and so
(a®+c*) = (b +d*) = 2-(cd—ab)

By [10.371, ab, cd are rational; by [Lemma 10.10.0], the RHS is rational. Also by
[10.371, a2, b2, c%, d? are second medial numbers. By [Lemma 10.43.1], a? + ¢? and
b + d? are also second medial numbers. By [10.26], the LHS is irrational, a contra-
diction. A similar contradiction arises if we assume a < c.

Therefore, a = c. To prevent a similar contradiction, we must also have b = d. Thus,
the terms of a first bimedial number are unique. O



CHAPTER 10. IRRATIONAL NUMBERS 414

Proposition 10.44. THE TERMS OF A SECOND BIMEDIAL NUMBER ARE
UNIQUE.

Let n be a second bimedial number. If n = a+ b =c+ d and a # d, then ¢ = c and
b=d.

Proof. Suppose n is a second bimedial number such thatn =a+b=c+dand a > c.
Notice that

n? = a4 2ab+b?
2+ 2c¢d + d2

By [10.38], @ and b are medial numbers where a and b are incommensurable. It
follows that a? and ab are incommensurable. Since a? and b? are commensurable,
a® + b and a? are commensurable [10.38]. Clearly, ab and 2ab are commensurable.

It follows that a? + b? and 2ab are incommensurable [10.13]. Let © = a? + b? and
v = 2ab; notice that u, v are incommensurable.

Since
w2 (k+1)°

V2 4k
2

u?,v? are commensurable and u, v are incommensurable.

By [Def. 10.5], a2, b* are commensurable, and so let a? = k - b> where k is rational.

Since u? = a* + 2a2b? + b* and v? = 4a2b?, we obtain

u? = Kb +2k-bt 40t
= b (K +2k+1)
= b (k+1)°

and v? = b* - 4k. Notice that u, v are rationally expressible.

By [10.36], v + v is a binomial number. By [10.42], u, v are unique. Thus, if a # d,
thena =cand b =d. O

Proposition 10.45. A MAJOR NUMBER HAS UNIQUE TERMS.
Let n be a major number. If n =a+b=c+dand a # d, then a = cand b = d.

Proof. Suppose n is a major number such that n = a + b = ¢+ d and a > c. Notice
that

n? = a4+ 2ab+b?
= A +2cd+d?
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and so

(a®+*)— (b +d*) = 2-(cd—ab)

By [10.39], the LHS is rational while cd and ab are second medial numbers. By
[10.26], the RHS is irrational, a contradiction. Then if a # d, a = ¢. To prevent a
similar contradiction, we must also have b = d. Thus, the terms of a major number

are unique. O

Proposition 10.46. TERMS OF A “ROOT OF A RATIONAL PLUS A SECOND
MEDIAL NUMBER” [RPSM] NUMBER ARE UNIQUE.

Let n be a RPSM number. If n =a+b=c+dand a # d, thena =cand b = d.

Proof. Suppose n is a RPSM number such that n = a+ b = ¢+ d and a > ¢. Notice
that

n®> = a%+2ab+ b
= A+ 2cd+d?
and so
(a®+*)— (b +d*) = 2-(cd—ab)

By [10.40] and [Lemma 10.43.1], the LHS is a second medial number, and hence is

irrational.

By [10.40], the RHS is rational, a contradiction. Then if a # d, a = ¢. To prevent a
similar contradiction, we must also have b = d. Thus, the terms of a RPSM number

are unique. O

Proposition 10.47. TERMS OF A “ROOT OF THE SUM OF TWO SECOND ME-
DIAL NUMBERS” [RSSM] NUMBER ARE UNIQUE.

Letnbea RSSM. If n =a+b=c+danda # d, thena =cand b =d.
Proof. Suppose n is a RSSM such that n = a + b = ¢+ d and a > c. Notice that

n®> = a4+ 2ab+b?
= A +2cd+d?



CHAPTER 10. IRRATIONAL NUMBERS 416

Let u = a®>+b? and v = 2ab. By [10.41], a® +b? and ab are incommensurable. Clearly,
ab and 2ab are commensurable, and so a® + b? and 2ab are incommensurable [10.13].
Hence, v and v are incommensurable.

By [10.41], a® + b? and ab are second medial numbers, and so (a* + 172)2 and (ab)’

are rational. Since u? = a* + 2a?b? 4 b* and v? = 4a°b?, we have
u? = Kb +2k-bt 40t
= b (K +2k+1)
= bt (k+1)°

and v? = b* - 4k. Notice that u, v are rationally expressible, and since

ur (k+1)°

v2 4k
we find that u2,v? are commensurable.

By [10.36], v + v is a binomial number. By [10.42], u, v are unique. Thus, if a # d,
then a = c and b = d. Thus, the terms of a RSSM number are unique. O

10.3 Book X, Propositions 48-84

Definitions.

Let n = a + b be a binomial number. Euclidean number theory constructs six types
of binomial numbers. Let p be rationally expressible.

(6a) n is a first binomial number when a and p are commensurable and a?> =
b? + h? where h is commensurable with a.

(6b) n is a second binomial number when b and p are commensurable and a? =
b? + h? where h is commensurable with a.

(6¢) n is a third binomial number when both a and b are incommensurable with
p, and a? = b?> + h? where h is commensurable with a.

(6d) n is a fourth binomial number when a and p are commensurable and a? =

b% + h? where h is incommensurable with a.

(6e) n is a fifth binomial number when b and p are commensurable and a? =
b? + h? where h is incommensurable with a.

(6f) n is a sixth binomial number when both a and b are incommensurable with

p, and a? = b? 4+ h? where h is incommensurable with a.

10. Let a and b be rationally expressible such that a« and b are incommensurable
but a? and b? are commensurable. We define a — b as an apotome number (or simply

an apotome).
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Remark. Apotome is Greek for "portion cut off", i.e., instead of propositions about
irrational sums, we have propositions about irrational differences.

[10.73] proves that both a — b and (a — b)” are irrational.

Euclidean number theory constructs six types of apotome numbers. Let p be ratio-
nally expressible, and assume a > b.

(a) a—b1is a first apotome iff @ and p are commensurable, and a? = b? +h? where

h is commensurable with a.

(b) @ — b is a second apotome iff b and p are commensurable, and a? = b2 + h?
where h is commensurable with a.

(¢) a — b is a third apotome iff both a and b are incommensurable with p, and

a? = b? + h? where h is commensurable with a.

(d) @ — b is a fourth apotome iff o and p are commensurable, and a® = b + h?

where § is incommensurable with a.

(e) a—bis a fifth apotome iff b and p are commensurable, and a? = b? + h? where

h is incommensurable with a.

(f) a — b is a sixth apotome iff both a and b are incommensurable with p, and

a? = b + h? where h is incommensurable with a.

Let a — b be an apotome and let z be rationally expressible. By [10.73], a — b + =
and z are each rationally expressible, « — b + z and z are incommensurable, and
(a—b+ 2)2 and 22 are commensurable. By [10.79], z is unique. We sometimes refer

to z as an “annex” of a — b.

Remark. Binomial numbers, like apotome numbers, are roots of the equation

ot =2 (14+k)-p- 2P+ (1—-k)?-p'=0

11. Let a and b be medial numbers such that a > b where ¢ and b are incommensu-
rable but ¢? and b? are commensurable, and where ab is rational. We define ¢ — b as
a first apotome of a medial.

[10.74] proves that a — b is irrational.

12. Let a and b be medial numbers such that a > b where a and b are incommensu-
rable but ¢? and b? are commensurable, and where ab is second medial number. We

define ¢ — b as a second apotome of a medial.

[10.75] proves that a — b is irrational.

13. Let @ > b where a and b are incommensurable, ¢? and b? are incommensurable,
a® + b? is rational, and ab is a second medial number. We define a — b as a minor

number.
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[10.76] proves that a — b is irrational.

14. Let a > b where o and b are incommensurable, a? and b are incommensurable,
a® + b? is a second medial number, and where 2ab is a rational number. We define
a — b as a WR-medial. (WR stands for “with rational”.)

[10.77] proves that a — b is irrational.

15. Suppose a and b exist such that a > b where a and b are incommensurable,
a’ and b? are incommensurable, a® + b? is a second medial number, where 2ab is a
second medial number, and where a? + b? and 2ab are incommensurable. We define
a — b as a WM-medial. (WM stands for “with medial”.)

[10.78] proves that a — b is irrational.

Lemma. 10.48.0 If d is rationally expressible, and d and e be commensurable, then

e is also rationally expressible. Let

o |

where k is rational. Then )
£
k
By the above, the LHS is rational, and so € is rational. Thus, e is rationally ex-

pressible.

Proposition 10.48. CONSTRUCTING A FIRST BINOMIAL NUMBER.

If p is rationally expressible, then n = a + b is a first binomial number when a and
p are commensurable and a? = b + h? where h is commensurable with a.

Proof. Let p be rationally expressible and construct kp such that p and kp are com-
mensurable. By [Lemma 10.48.0], kp is rationally expressible. Also construct pn?
and p- (m? — n?) where m, n are natural numbers such that m? —n? is not a square

number. Notice that

pm? B k2p>
p(m?—n?) B
2o k2p? - (mz - n2)
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where ¢ = . Let a = kp (and so a and p are commensurable). We claim that

n = a + b is a first binomial number.

Notice that that ¢ and b are rationally expressible, that ¢ and b are incommensu-
rable [Lemma 10.28.0], and that a? and b are commensurable. By [10.36], a + b is

a binomial number.

Suppose a®> — b> = h? for some real h. Notice that a®> = b> + h?, and

pm2 2
pm—n?) P
m2 —n? b2
m2 T oa?
m2 —n2 — m2 b2 _ o2
m? a?
n? a? —v?
m2 a?
2 h2
m2 a2
n h
m a
Hence, a and h are commensurable, which completes the construction. |

Remark. A first binomial number can be written in the form
a+b=kp+kp-v1—c?

A first apotome will be written

a—b=kp—kp-1—¢?

Both are roots of the equation

x? —2kp- -z + kP2 =0

Proposition 10.49. CONSTRUCTING A SECOND BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a second binomial number when b
and p are commensurable and a? = b? + h? where h is commensurable with a.

Proof. Let p be rationally expressible and % be rational. Then p and kp are com-
mensurable. By [Lemma 10.48.0], kp is rationally expressible. Also construct pn?
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and p- (m? — n?) where m, n are natural numbers such that m? — n? is not a square
number. Notice that

p- (m? —n?) k2
pm? a2
) k2p2m2
a® = ——
(2 =)
kpm
a = —_—
mZ — n2
kp
a =
V1—c2

where ¢ = . Let b = kp (and so b and p are commensurable). We claim that
n = a + b is a second binomial number.

Notice that that a« and b are rationally expressible, that ¢ and b are incommensu-
rable [Lemma 10.28.0], and that a? and b? are commensurable. By [10.36], a + b is

a binomial number.

Let a® — b®> = h2. Notice that a®> = > + h?, and

p- (m?—n?) b?
pm? a?
m? —n? b?
m2 a?
m2 —n2 —m2 b2 — 2
m2 a?
TL2 h2
m2  a?
n
m a
and so ¢ and h are commensurable. This completes the construction. O

Remark. A second binomial number can be written in the form

A second apotome will be written as

a—b=Fkp-—
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Both are roots of the equation

2kp c?

2 2,2

- N .k Z) _0
V1 — 2 . 1—c2

Proposition 10.50. CONSTRUCTING A THIRD BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a third binomial number when both
a and b are incommensurable with p, and o> = b? + h? where h is commensurable

with a.

Proof. Let p be rationally expressible. Construct ¢ - (m? — n?) and gn? where m,n

2

are natural numbers such that m? — n? is not a square number and where ¢ is

rational. Also construct ¢ such that ? is rational but \/? is irrational. Notice that

~+
¥

B
qm? a?
R
» ot
_ q
2 = meat
t
_ q
a = pm-4/=

It follows that a,p are incommensurable and that « is rationally expressible. Also
notice that

qm

PR

©o=

b = a-v/1-¢c2

where ¢ = >. It follows that b, p are incommensurable.

Since a is rationally expressible, b is rationally expressible. Notice that a,b are
incommensurable but a2, b? are commensurable. By [10.36], ¢ + b is a binomial

number.
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Suppose a®> — b> = h%. Then a® = b> + h?, and

m? —n? b?
m2 a?
m2 —n? —m? b? —a?

m?2 a?
n? a? —b?
m2 a?

2 h2
m2  a?

n h

m a

Then a and h are commensurable, which completes the construction. O

Remark. A third binomial number can be written in the form

a+b=pm-Vk+pm-Vk-/1—¢2

A third apotome will be written as

a—b:pm~\/E7pm.\/E.1/1,CQ

Both are roots of the equation

2% = 2mpaVk + kPm?p® = 0

Proposition 10.51. CONSTRUCTING A FOURTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a fourth binomial number when a
and p are commensurable and a? = b? + h? where h is incommensurable with a.

Proof. Let m,n be natural numbers such that =2 = Z—z and Tt o :—z for any
natural numbers r, s. Consider

m+n k2p?
m I
b2 _ k2p2m
m+n

b = kp-vV1+ec
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where c = 7-. Let a = kp. Notice that a = kp and b = a-/1 + c are incommensurable
but a? and b? are commensurable. Since a? and b? are rational, « and b are rationally
expressible. By [10.36], a + b is a binomial number.

Clearly, a,p are commensurable. Suppose a? — b?> = h%. Then a? = b> + h% and

m b?
m-+n a?
m—-m-—-n b? — a?
m+n a?
n a? —b?
m-+n a?
n h?
m+n a?
n h
m+n  a
and so ¢ and h are incommensurable, which completes the construction. O

Remark. A fourth binomial number can be written in the form

k
atb=kpt \/lp_ﬂ
A fourth apotome will be written as
a—b=kp— %
Both are roots of the equation
% —2kp-x + %—i—ckaQ =0

Proposition 10.52. CONSTRUCTING A FIFTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a fifth binomial number when b and
p are commensurable and a? = b + h? where h is incommensurable with a.

7,2 2

Proof. Let m,n be natural numbers such that ™% - L and 242 -4 L for any

n
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natural numbers r, s. Consider

m B k2p2
m+n  a?
o2 = k2p? - (m+n)
m
a = kp-V1+c¢

where ¢ = >. Let b = kp. Clearly, b, p are commensurable. Notice that a = b- /1 + ¢
and b = kp are incommensurable but a2, b? are commensurable. Since a? and b? are
rational, a and b are rationally expressible. By [10.36], a + b is a binomial number.

Suppose a?> — b> = h%. Then a? = b> + h? and

m b?

m-+n a?

m-m-n b? — a?
m+n a?

n h?

m-+n a?
n h

m-+n a

and so ¢ and h are incommensurable, which completes the construction. O

Remark. A fifth binomial number can be written in the form

a+b=kp+kp-vV1+c

A fifth apotome will be written as

a—b=kp—Fkp-v1+c

Both are roots of the equation

2?2 = 2kpV1+c-x+ck’p®> =0
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Proposition 10.53. CONSTRUCTING A SIXTH BINOMIAL NUMBER.

If p be rationally expressible, then n = a + b is a sixth binomial number when both
a and b are incommensurable with p, and a? = b> + h? where h is incommensurable

with a.

Proof. Let p be rationally expressible. Construct natural numbers m,n such that
min o 75—2 and 2t o ;—z for any natural numbers r,s. Construct ¢ such that

2 .
mdn -4 I3 for any natural r, s. Consider

t B p2
m+n  a?
o2 = P%
m-+n
t
a - .
p m-4+n
and
m-+n . 2
m Top2
B2 — a’m
m-+n
b = a m
m-+n
b = «a 1+e¢

where ¢ = . Notice that *,b* are commensurable and a, b are incommensurable.
Since g =+/1+ ¢, a,bare incommensurable. By [10.36], a + b is a binomial number.

Clearly, both «a,p and b, p are incommensurable.

Suppose a? — b> = h2. Then a? = b? + h?, and

m-+n a

m b2

m b?
m+n a?
-n b? — a?
m4+n a?
n h?
m-+n a?

n

3
+
3
Q|
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Since —2— # ;ﬁ—z by hypothesis, applying [Lemma 10.28.0], we find that « and h are

m—+n
incommensurable. O

Remark. A sixth binomial number can be written in the form

a+b=pVk+pJ/m

A sixth apotome will be written as

a—b=pVk—py/m

Both are roots of the equation

x2—2px\/E+(k:—m)2p2:0

Proposition 10.54. ROOT OF A FIRST BINOMIAL.

Given a rationally expressible number p and first binomial number
n=kp-+kp- m

\/Pn is a binomial number.

Proof. Construct u+v = kp and uwv = 1 - k?p? - (1 — ¢*) where k is rational, kp is
rationally expressible, and 1 —c? # Z_; for any natural r, s. Solving for u, v, we obtain

1

u = —-kp-(1+¢)
2
1

vo= §~kp~(1fc)

If 22 = pu and y? = pv, we claim that x + y = ,/pn.
Notice that

r = p- (1+c¢)

Do I

Do I

and so

x—i—y:p-(\/g-(l—i—c)—i—\/g-(l—c))
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Also notice that z, y are rationally expressible, that 22, y? are commensurable, and
that x and y are incommensurable. By [10.36],  + y is a binomial number.

Since
2 +y* = p’k
20y = p’k-/1—¢2
it follows that
(@+y)’ = Ph+p’k-V1-¢

= P (kp+kp'\/1762)

= pn
Hence, = + y = \/pn is a binomial number. O

Corollary. 10.54.1 [10.60] iff [10.54].

Proposition 10.55. ROOT OF A SECOND BINOMIAL NUMBER.

Given a rationally expressible number p and second binomial number

kp
1—c¢

n==kp-+ =

/pn is a first bimedial number.

Proof. Construct u+v = —~2 — and uv = 1-k%*p? where k is rational, kp is rationally

Vi-c2
expressible, and 1 — ¢? # :—z for any natural r, s. Solving for u, v, we obtain

kp  1+c
u o= —-

2 V1-¢2

kp  1-—c
’l) - —_—

2 V1-¢2

If 2 = pu and y* = pv, we claim that = +y = /pn.

Notice that
22 = k:_p2 . (1+¢)
2 V1-—¢c2
2 kP2 (1 —c)
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Since

x? 1+e¢

Y2 1—c

x,y are incommensurable and 22, y? are commensurable.

. 1 2 1—¢)? . .
Notice that u = k—Qp 1/ % and v = %p . \/% are second medial numbers; since

22 = pu and y? = pv, it follows that x, y are medial numbers. Finally, 2y = %, and
so xy is rational. By [10.37], « + y is a first bimedial number.

Notice that
kp?
IL'2 4 2 —
Y V1 —¢c?
20y = kp?
Then
@+y)? = 2®+y’+2uy
kp?
= kp?4+
b V1—¢?
kp
p (b+ =2)
and so x + y = /np, which completes the proof. O

Corollary. 10.55.1[10.61] iff [10.55].

Proposition 10.56. ROOT OF A THIRD BINOMIAL NUMBER.

Given a rationally expressible number p and third binomial number
n=p Vk- (1 + M)

\/Pn is a second bimedial number.

Proof. Construct

u+v = p~\/E
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where k is rational such that k # r? for any natural r and where kp is rationally
expressible. Solving for u, v, we obtain

u = p%-(l—i—m)
v o= p@(lfm)

If 2 = pu and y* = pv, we claim that = +y = /pn.

Notice that z,y are medial numbers where z,y are incommensurable and 22, 32 are
commensurable. Also notice that zy = % -v/k-(1—m?), and so zy is a second
medial number. By [10.38], « + y is a second bimedial number.

Since
221y = pVE
20y = p’k-\/1—m?
we obtain
(@+y)? = pPVE+pk-V1-m?
= np
and so x + y = /np. This completes the proof. O

Corollary. 10.56.1 [10.62] iff [10.56].

Proposition 10.57. ROOT OF A FOURTH BINOMIAL NUMBER.

Given a rationally expressible number p and fourth binomial number

kp + 2

n =

b V1i+m

\/pn is a major number.

Proof. Construct v +v = kp and uv = i . fi—p; where k is rational such that k # r2

for any natural r and where kp is rationally expressible. Solving for u, v, we obtain

w = (e )

m—+1

o= (- )

m—+ 1
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If 22 = pu and y? = pv, then we claim that z + vy = /pn.

Notice that 22 and y? are incommensurable and that 22 + y? = p?k is rational. Also,

Ty = psz . \/W%H Since p is rationally expressible and k is rational, ¢ = ”27’“ is

rational. Since n is a fourth binomial number, /m + 1 is irrational, and so zy =
1

q°\/ 7.7 1s a second medial number. By [10.39], = + y is a major number.
Since
?+y* = p’k
2
p°k
2xy =
4 m+ 1
we obtain
2
2 2 p°k
T+ = k+
(+y) p —
and so x + y = /np, which completes the construction. O

Corollary. 10.57.1[10.63] iff [10.57].

Proposition 10.58. ROOT OF A FIFTH BINOMIAL NUMBER.

Given a rationally expressible number p and fifth binomial number

n=kp+kp-vV1+c
/pn is a RPSM number.

Proof. Construct u+v = kp-+/1+ c and uwv = 1 - k?p? where k is rational such that
k # r? for any natural » and where kp is rationally expressible. Solving for u, v, we
obtain

u = B (et verD)

v o= B (ve-ver)

If 22 = pu and y? = pv, then we claim that « +y = ,/pn.

Clearly, 2% and y? are incommensurable. Notice that 2% + 32 = p?k - v/c + 1. Since n
is fifth binomial number, \/c + 1 is rationally expressible. Hence, 22 + %2 is a second
medial number. Also, zy = % is rational. By [10.40], z + y is a RPSM number.
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Since
224y = phoverl
20y = p’k
we obtain
(x+y)? = ph+p’k-Ve+1
= np
and so = + y = /np, which completes the construction. O

Corollary. 10.58.1 [10.64] iff [10.58].

Proposition 10.59. ROOT OF A SIXTH BINOMIAL NUMBER.

Given a rationally expressible number p and sixth binomial number
n = p\/E + p\/g

/Pn is a RSSM number.

Proof. Construct u+ v = p- vk and uv = ’)277” where k is rational such that & # 2
for any natural r and where kp is rationally expressible. Solving for u, v, we obtain

u o = ]—2)(\/E+M)
v = g.(ﬁfm)

If 22 = pu and y? = pv, then we claim that 2 +y = ,/pn.

2

Clearly, 22 and y? are incommensurable. Notice that z2 + y? = p?Vk and that

Ty = % -v/1—=m, and so 22 + 32 and zy are second medial numbers. Finally notice

that 22 + y? and 2y are incommensurable; by [10.41], = + y is an RSSM number.

Notice that

2 +y? = pVk

20y = p*-V1-m
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Ift =1 — m, then

(z+y)? = pWk+pV1I-m

= pVEk+p*Vi
= np
and so = + y = /np, which completes the construction. O

Corollary. 10.59.1 [10.65] iff [10.59].

Proposition 10.60. FACTORS OF A SQUARE 1.
If n = p + pVk is a binomial number, then a first binomial number is a factor of n2.

Proof. Let n = p+ pvk be a binomial number. Also let z, y, z be real numbers such
that sz = p?, sy = p?k, and 2sz = 2p>Vk such that p, s are rationally expressible,
V'k is irrational, k is rational, and where = + y > 2z. Notice that

(erp\/E)2

(z+y)+22 = .

3

We claim that (z + y) + 2z is a first binomial number where its terms are x + y and
2z.

Since z +y = p? - (%) where p, s are rationally expressible and k is rational, it

2p° vk
T2

follows that x + y is rationally expressible. Since 2z = is also rationally

expressible. Notice that

(z+y)? _ 2.(1+k)2. s?
F 7 s? Apk
(k)

N 4p2k

and so (z + y)” and (2z)® are commensurable while z + y and 2z are incommensu-
rable. By [10.36], (z + y) + 2z is a binomial number.

By hypothesis s is rationally expressible, and

2

Tty P
= 8—2-(1+k)

S

where p?, s> and 1 + k are rational. Hence, = + y and s are commensurable.
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Let = /(2 + y)* — (22)°. Then (z + y)? = (22)* + h2.

2
Notice that (22)* = (@) = 42k - Also notice that

S

2pk  Ap'k p'k?
P2k Apkp

2
(z+y)" —42* = 52 52 52

p4 2p4k‘ p4k‘2

p 2
= 8_2.(16,1)
andsoh:§~(k—1). Finally,
T+y p_2 (k+1) S
o 2. (k—1)
_ k+1
k-1

Since k is rational, = + y and h are commensurable. By [10.48], (z + y) + 2z is a first
binomial number and a factor of n2. O

Remark. [10.54] iff [10.60].

Proposition 10.61. FACTORS OF A SQUARE II.

Ifn=p-k'*4p-k**is a first bimedial number, then a second binomial number is
a factor of n2.

Proof. Let n = p - k'* + p - k3/* be a first bimedial number. Also let z,y, z be real
numbers such that sz = p*Vk, sy = p?k3/2, and 2sz = 2p%k such that p, s are
rationally expressible, vk is irrational, k is rational, and x + y > 2z. Notice that

p2\/E+ 2p2k +p2k3/2

(r+y)+22 = .

3

We claim that (z + y) + 2z is a second binomial number such that its terms are = +y
and 2z.

3
Since = +y = p*Vk - (k%l) where p, s are rationally expressible and k is rational,
it follows that = + y is rationally expressible. Since 2z = @, 2z is also rationally
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expressible. Notice that (z + y) = p>Vk + p*k*/2, and so

(z+y)? = p'k+2p'% + 'k

= p'k- (K +2k+1)

= p'k-(k+1)°
Hence
(z+y)?®  pk-(k+1)?  $°
(22)2 - 52 4p4k2
 (k+1)?
B 4k

and so (z +y)* and (22)° are commensurable while = + 5 and 2z are incommensu-
rable. By [10.36], (« + y) + 2z is a binomial number.

By hypothesis, s is rationally expressible, and

2z 2%k
s 52

where p?, s> and k are rational. Hence, 2z and s are commensurable.

Let = /(z + y)* — (22)°. Then (z + y)? = (22)* + h2.

2 47, . 2
Notice that (22)* = (M) = 2} Since (z+y)? = ;71%.(5)%1),

S S

A (B2 +2k+1) — p*k - (4k
(x+y)° - (22)? = - ( sz) vk

k- (k* — 2k +1)

pik - (k- 1)
it follows that h = ZE(¢=D Then
h V- (k—1) s
T+y 5 P2V (k+1)
k-1
 k+1

and so = +y and h are commensurable. By [10.49], (z + y) 4+ 2z is a second binomial
number and a factor of n?. O
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Remark. [10.55] iff [10.61].

Proposition 10.62. FACTORS OF A SQUARE III.

If n = pk'/*+pk=1/*/m is a second bimedial number, then a third binomial number
is a factor of n?.

Proof. Let n = pk'/* 4 pk='/*\/m be a second bimedial number. Also let z,y, 2 be
real numbers such that sz = p>Vk, sy = mp?k~'/2, and 2sz = 2p>/m such that p, s
are rationally expressible, v/k is irrational, k is rational, and = +y > 2z. Notice that

p2\/E+mp2k*1/2+2p2\/ﬁ

(z+y)+2z = .

We claim that (z + y) + 2z is a third binomial number such that its terms are = + y
and 2z.

Notice that (z +y)* = p4k+m2pZ§7l+2mp4 and (2z)° = 4'm where p, s are rationally

52

expressible and &, m are rational. Hence, « + y and 2z are rationally expressible.

Notice that
(x + y)? kw4 2mpt $?
(22) s dptm
~k n m n 1
 dm k2

It follows that (z + ) and (2z)* are commensurable but = + y and 2z are incom-
mensurable. By [10.36], (x + y) + 2z is a binomial number.

Now notice that

r+y p*Vk + mp2k—1/2
s N s
2z 2p*/m
s 52

and so s is incommensurable with both = + y and 2z.
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Let h = \/(z +y)*> — (22)°. Then (z + y)* = (22)> + h2. Notice that

prk 4+ m2ptk—! 4+ 2ptm — dpim
52

(z+y)” - (22)°

p4k 4 m2p4k71 _ 2p4m
2

S

- %~(k2f2mk+m2)
S
4
p 2

= gz mm)

and so h = % - (k — m). Finally, notice that

h sp? - (k—m)
Tty B (sx/E) (pz\/Eijpzkfl/z)
k—m
- k+m

and so h and = + y are commensurable. By [10.50], (z + y) + 2z is a third binomial
number and a factor of n?. O

Remark. [10.56] iff [10.62].

Proposition 10.63. FACTORS OF A SQUARE 1V.

Let u = \% 41+ ﬁ andv =L . /11— ﬁ where p is rationally expressible,
k is rational, and /% is irrational.

S

If n = u + v is a major number, then a fourth binomial number is a factor of n2.

Proof. Let n = u + v is a major number, and let s be rationally expressible. By
[10.39], u* and v are incommensurable, (u? + v?) is rational, and uv is medial.

Also let z,y, z be real numbers such that sz = u?, sy = v?, and 2sz = 2uv. Notice
that

u? + 2uv + v?

(z+y)+2z = .

3
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We claim that (z + y) + 2z is a fourth binomial number such that its terms are =+ y
and 2z.

Notice that z +y = # Since u? + v? is rational and s is rationally expressible,
x + y is rationally expressible. Also notice that 2z = ﬁ , and so 2z is also
rationally expressible.

Notice that

() = (=

= 4-(1+k%)

and so (z + y)” and (22)° are commensurable. Since k may be any rational number,
x4y and 2z are incommensurable. By [10.36], (x 4+ y) + 2z is a binomial number.

Notice that
r—+vy . u2—|—v2
s a 52
2 k k
= p—2~<1+ +1- )
2s V14 k2 V14 k2
p2

Since p, s are rationally expressible, x + y and s are commensurable.
Let h = \/(z +y)* — (22)°. Then (z + y)* = (22)* + h2. Notice that

4 4
2 2 p p
— 2 = - -
(.I' + y) ( Z) 52 452 . (1 ¥ kg)

apt (1452 —
452 - (1 + k2)

p4 k2
52 1+ k2
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and soh:§~ \/ﬁT.Therefore,
h o ks
T+y s V1+k2 p?
B k
iy

Hence, z+y and h are incommensurable. By [10.51], (z + y)+2z is a fourth binomial
number and a factor of n?. O

Remark. [10.57]iff [10.63].

Proposition 10.64. FACTORS OF A SQUARE V.

Let

pVVI+HE +k

2 (1+K2)

p-VV1I+EZ—k

2-(1+K2)

where p is rationally expressible, k is rational, vk is irrational, and 1 + % is not a
square number.

If n = w + v is a RPSM number, then a fifth binomial number is a factor of n2.

Proof. By [Def. 10.9], n = u + v is a RPSM number when u? and v? are incommen-
surable, u? + v? is a second medial number, and wv is rational. First, we wish to
show that n is a RPSM number.

Notice that

and so

u? p- (VI+E2+Ek) 2 (1+4?)

v 2-(1+k2) p- (VI+k%—k)
VI+HE2+k

V1+Ek2—k
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If u2,v? are commensurable, then

1+k2+k=q- <\/1+—k2—k)
where ¢ is rational. It follows that

V1I+k?2—q-V1+k2 = —k—qk
V1I+Ek2-(1-¢q) = —k-(1+9q)

JiTE L ke

(1-q)
Since k, g are rational, the RHS is rational. But the LHS is irrational by hypothesis,
a contradiction. Hence, u?, v? are incommensurable.
Also notice that

) p- (VI+E+k)+p- (VI+E —k)

2 —
u” vt = 2 (1472

2p -1+ k2
2-(1+k2)

- 1
- VTR

and so u? + v? is a second medial number. Finally, notice that
p2-( \/1+k2+k) ( \/1+k2—k:)
5 (1+ K2

p? V14 k2 —k?

2. (1+k2)

uv

p2

EHTRYS)

and so uv is rational. It follows that n = v + v is a RPSM number [10.40].

Let x,y, z be real numbers such that sz = u?, sy = v?, and 2sz = 2uv. Notice that

u? + 2uv + v?

(r+y)+22 = .

3

We claim that (z 4 y) + 2z is a fifth binomial number such that its terms are = + y

and 2z.

Notice that z +y = 2+> where s is rationally expressible. By the above, u2 + v? =

S
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. . 2 4 .
m? where m? is a second medial number. Hence, (z +y)° = ", and so x +y is

rationally expressible. Since uv is rational, 2z = “” is rationally expressible.

Notice that
r+y u? +v?
2z B uv
- [ 1 2-(1+k?)
=P 1+ k2 p?
2.1+ k2
p

Since 1+ k? is not a square number, x + v and 2z are incommensurable. Also notice
that (z +y)° and (2z)” are commensurable. By [10.36], (z + ) + 2z is a binomial

number.

Notice that i—z = %7 is rational, and so 2z and s are commensurable.

Let h = \/(z + ) — (22)°. Then (z + y)* = (22)> + h2. Notice that

(z+y)?—(22)% = <U2+v2)2(ﬂ)2

S S

ut + 2u2v? + vt — u?

s2

ut + u?v? + vt
2

S
VAT uZoi ot
Orh—%.Then

h Vut + u2v? 4+ vt s

T+y s U 02

\ /u4 + ’LL2’U2 + ’U4

u? 4 v?

4k? + 3
2-Vk2+1

If h and x + y are commensurable, then 4k"”;2f13 is rational for all k. But if k = /2,

then / 4k’?22:13 = @, a contradiction. Thus, h and z + y are incommensurable. By

[10.52], (x + y) + 2z is a fifth binomial number and a factor of n?. O

Remark. [10.58] iff [10.64].
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Proposition 10.65. FACTORS OF A SQUARE VI.

Let
1/4 k
——— pm . 1+7
V2 V1t k2
pm1/4 ) k
v o= . -
V2 VIF k2

where p is rationally expressible, k is rational, 'k is irrational, 1+ 2 is not a square

1/4

number, m*/*, \/m are irrational but m is rational.

If n = u 4+ v is a RSSM number, then a sixth binomial number is a factor of n?.

Proof. By [Def. 10.8], n = u + v is a RSSM number when « and v are incommen-
surable, ©? and v? are incommensurable, u?> + v? and wv are each a second medial
numbers, and uv is incommensurable with u? + v2.

We wish to show n is a RSSM number. Notice that

w?  V1+E+k
v VT R2 -k

By the proof of [10.64], u?, v? are incommensurable. Notice that

p*/m
2

U2+U2 _

_ 7 m
YT T2

and so u? + v? and wv are second medial numbers.

Finally,

2 2
us+ v _ /—1—|—k:2

uv

and so uv is incommensurable with u? + v2. It follows that n = u + v is a RSSM
number [10.41].

Let z,y, z be real numbers such that sz = u?, sy = v?, and 2sz = 2uv. Notice that

u? + 2uv + v?

S

(z+y)+2z =

3

We claim that (z + y) + 2z is a sixth binomial number such that its terms are = + y
and 2z.

Notice that x +y = pzf and 2z = g—z *\/ T+%=» and so z + y and 2z are rationally

expressible. Since ””Q—J;y = V1 + k2, we find that = + y and 2z are incommensurable
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but (z + y)* and (2z)* are commensurable. By [10.36], (z +y) + 2z is a binomial
number.

Recall that p is rationally expressible. Notice that

r+y  pym
p N 2s
2z p m
- 2s 1+ k2

and so p is incommensurable to both = + y and 2z.
Let h = \/(z +y)® — (22)°. Then (z + y)* = (22)* + h2. Notice that

p*m p*m

v’ -2)° = T3 4 (1+ k2

pim - (1 + k2) —p*m

452 (1+ k2)
B p*k*m
4s% - (1+k?)
and so h = ’i—f V1 Finally,

h _ ]ﬁ m 2s
r4+y  2s 1+ k%2 pym

and so h and x + y are incommensurable. By [10.53], (z + y) + 2z is a sixth binomial
number and a factor of n?. O

Remark. [10.59] iff [10.65].

Remark. We may summarize the previous six propositions as: let v?> = pr where p
is rationally expressible. Then:

(1) If v is a medial number (and hence v? is a second medial number), then r is a
first binomial.

(2) If v 1s a first bimedial number, then r is a second binomial.
(3) If v is a second bimedial number, then r is a third binomial.
(4) If v is a major number, then r is a fourth binomial.

(5) If v is a RPSM number, then r is a fifth binomial.

(6) If v is a RSSM number, then r is a sixth binomial.
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Proposition 10.66. NUMBERS COMMENSURABLE WITH BINOMIAL NUM-
BERS ARE BINOMIAL.

Suppose a = m + n is a binomial number where « is a first, second, third, fourth,
fifth, or sixth binomial number. Also suppose that a and ¢ are commensurable. We
claim that c is a binomial number of the same type as a.

Proof. Since a and ¢ are commensurable, ¢ = ga where ¢ is rational. Since a is a
binomial number, by [10.36] a contains a rationally expressible term p. Since ¢ is

rational, ¢p is rationally expressible. Since ¢ has no effect on any other component
of a, c is a binomial number of the same type as a. O

Proposition 10.67. NUMBERS COMMENSURABLE WITH BIMEDIAL NUM-
BERS ARE BIMEDIAL.

Suppose a = m + n is a bimedial number where « is a first or second bimedial num-
ber. Also suppose that a and ¢ are commensurable. We claim that ¢ is a bimedial

number of the same type as a.

Proof. The proofis similar to [10.66] as is left as an exercise to the reader. O

Proposition 10.68. NUMBERS COMMENSURABLE WITH MAJOR NUMBERS
ARE MAJOR.

Suppose a = m+n is a major number. Also suppose that a and c are commensurable.
We claim that ¢ is a major number.

Proof. The proof is similar to [10.66] as is left as an exercise to the reader. O

Proposition 10.69. NUMBERS COMMENSURABLE WITH RPSM NUMBERS
ARE RPSM.

Suppose a = m + n is a RPSM number. Also suppose that a and ¢ are commensu-
rable. We claim that c is a RPSM number.

Proof. The proofis similar to [10.66] as is left as an exercise to the reader. O
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Proposition 10.70. NUMBERS COMMENSURABLE WITH RSSM NUMBERS
ARE RSSM.

Suppose a = m + n is a RSSM number. Also suppose that ¢ and ¢ are commensu-
rable. We claim that ¢ is a RSSM number.

Proof. The proof'is similar to [10.66] as is left as an exercise to the reader. O

Proposition 10.71. SQUARE ROOT OF THE SUM OF A RATIONAL AND A
SECOND MEDIAL NUMBER.

If kp? is rational and p?\/m is a second medial number, then p - \/k + /m is either
a bimedial number, a binomial number, a major number, or a RPSM number.

Proof. Let su = kp? and sv = p?\/m where s is rationally expressible. Notice that

2_k24
u® = =

4 . . .
and v? = 25" are rational, and so u, v are rationally expressible. Since

<
o

2 are commensurable. By [10.36], u + v is a

u,v are incommensurable but u?, v
binomial number.

2
First case: v < u. Since * = ks%, u and s are commensurable. If vu? — v2 and v are
commensurable, then u + v is a first binomial number. Otherwise, u + v is a fourth

binomial number.

Hence, /s - (u+ v) is a binomial number [10.54] or a major number [10.57].

Second case: u < v. As above, u and s are commensurable. If v2 — v? and u are
commensurable, then u + v is a second binomial number. Otherwise, u + v is a fifth

binomial number.

Hence, /s - (u+ v) is a first bimedial number [10.55] or a RPSM number [10.58].
O

Proposition 10.72. SQUARE ROOT OF THE SUM OF TWO INCOMMENSU-
RABLE SECOND MEDIAL NUMBERS.

If p>\/k and p?\/m are incommensurable second medial numbers, then p-\/Vk + /m

is either a second bimedial number or a RSSM number.
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Proof. Let u = p*>vk and v = p?/m. Notice that u, v are rationally expressible and
incommensurable and that 2, v? are commensurable. By [10.36], u+v is a binomial
number.

Suppose that vu2 — v2 is commensurable with u. Then u + v is a third binomial
number, and by [10.56] /s - (u + v) is a second bimedial number.

Otherwise, u + v is a sixth binomial number, and by [10.59], \/s - (u + v) is a RSSM
number. .

Proposition 10.73. APOTOME NUMBERS 1.

Let = > y be rationally expressible such that » and y are incommensurable but 2
and y? are commensurable. By [Def. 10.10], = — y is an apotome number. Both = —y
and (z — y)° are irrational.

Proof. Let = = pvk and y = ¢\/m such that k,m, p, ¢ are rational, vk, /m, VE,
and km are irrational. Since

22, y? are commensurable but z, y are incommensurable and rationally expressible.

Since z2,y? are commensurable, 22 = ¢qy? where ¢ is rational. It follows that z> +
y? =y?- (g +1). Since y is rationally expressible, 22 + 32 is rational.

We claim that 2 — y and (z — y)® are irrational.

Notice that
22 4 42 B P2k + p*m
2zy 2pgV km
2% — 2xy + 2 B P2k 4+ p?>m — 2pgVkm
2zy 2pgV km
(x—y)® _ p*k+p*m—2pqVkm
2zy 2pgV km

Ty - (p2k + p’m — 2pqV km)
pgVv km

(x—y)?® =

Since vkm is irrational, (x — y)2 is irrational. By [Lemma 10.21.0], z — y is also
irrational, which completes the proof. O
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Proposition 10.74. FIRST APOTOME OF A MEDIAL NUMBER.

If 2 = pk'/* and y = pk3/* where p is rationally expressible, k/4, \/k are irrational,
and k is rational, then z — y, the first apotome of a medial number, is irrational.

Proof. Clearly, z,y are medial numbers. If 0 < k < 1, then x > y. Since £ = VE, we
find that z,y are incommensurable but 22, y? are commensurable. Also, zy = p°k is
rational. By [Def. 10.13], x — y is a first apotome of a medial.

Consider 22 + > = p>Vk - (1 + k). Since p? - (1 + k) is rational and vk is irrational,
22 + 2 is irrational by [Lemma 10.10.1]. Since 2zy is rational, 2> + y? and 2zy are
incommensurable. That is

z? + y2 t
2zy 1

where ¢ is irrational. It follows that

2% = 2zy + 12 t—1
2zy 1

The RHS remains irrational, and so (z — y)2 and 2xy are incommensurable. Since
2xy is rational, (x — y)2 is irrational. By [Lemma 10.21.0], = — y is irrational, which
completes the proof. O

Proposition 10.75. SECOND APOTOME OF A MEDIAL NUMBER.

If
r = pk1/4
_ pym
vy o= k1/4

where p is rationally expressible, k'/*, \/k, /m, Vkm are irrational, % #+ ’;—z for nat-
ural numbers r, s, and k, m are rational, then x — 1, the second apotome of a medial

number, is irrational.

Proof. Clearly, x,y are medial numbers. We choose m such that m > k. Since % =

\/ £, z,y are incommensurable but 2%, y* are commensurable. Finally, zy = p?/m
is a second medial number. By [Def. 10.14], a — b is a second apotome of a medial.

Let s be rationally expressible where su = 2% + 32 and sv = 2zy. Then su = ﬁ'—’“;—‘zz—m
and sv = 2p?\/m; notice that each are second medial numbers.

Since 2zy = 2p?/m and 22 + y? = %’

2 +y° _k+m
2zy 2V km
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Since vkm is irrational by hypothesis, 22 +42, 22y are incommensurable. Therefore,
u, v are also incommensurable. Notice that

2
u?  (k+m)
v2  dkm
2 2 2
. p k+p“m .
and so u?, v? are commensurable. Since u? = % and v? = 4p*m are rational,

u, v are rationally expressible. By [10.73], © — v is an apotome number and hence
irrational.

It follows that s - (u — v) = (x — y)° is irrational, and by [Lemma 10.21.0], z — y is
also irrational. O

Proposition 10.76. CONSTRUCTION OF A MINOR NUMBER.

If
p k
= — 414+ —
’ V2 V1+k2

P k

Y V2 V1+ k2

then z — y is a minor number and is irrational.

Proof. Notice that x,y are constructed using [10.33]. Since

(E)Q VI E+k
y VI+EE—k

By the proof of [10.64], 22, y? are incommensurable. But 2% +y? = p?, and so 22 + 32
is rational. Finally,

Yy o 1
2 V14+k2

and so zy is a second medial number. By [Def. 10.15], x — y is a minor number.
Since 22 + y? is rational and zy is a second medial number,

(z-y)° = 2°+y*—2zy

where the RHS is irrational, and so (z — y)? is irrational. By [Lemma 10.21.0], z —y
is irrational, which completes the proof. O
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Proposition 10.77. CONSTRUCTION OF A WR-MEDIAL.

If

p-VVI+EZ+k

2 (1+&2)

p-VVI+EkZ—k

2 (1+k2)

then z — y is a WR-medial and is irrational.

Proof. Notice that x,y are constructed using [10.34]. Since

($)2 _ VIt RZ+k

y V1+k2—k
2 2 s 2 2 .2 1
By the proof of [10.64], z*, y* are incommensurable. But z* + y* = p* - T and

so x2 + y? is a second medial number. Finally, since

2y =

2xy is rational. By [Def. 10.16], a — b is a WR-medial.

Since 22 + 42 is a second medial and zy is rational, > + y? and 2xy are incommen-
surable. That is

22 + 1y ot
2zy 1
where t is irrational. It follows that
2% = 2zy + 1 i1
2zy N 1

The RHS remains irrational, and so (z — y)2 and 2zy are incommensurable. Since
2xy is rational, (z — y)2 is irrational. By [Lemma 10.21.0], 2 — y is irrational, which
completes the proof. O
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Proposition 10.78. CONSTRUCTION OF A WM-MEDIAL.

If
1/4
e o= 214 L
V2 V1+ k2
pm!t/4 k

— N
Y V2 V1t k2
then z — y is a WM-medial and is irrational.

Proof. Notice that x,y are constructed using [10.34]. Since

Y

(z)2 VIt R4k
V1I+E2—k

By the proof of [10.64], 2%, y? are incommensurable. Notice that 2% + y? = p?\/m

and
m
Qe =2 -y —
Ty =p 11 k2

Hence, both 22 + y? and 2xy are second medial numbers. Finally, notice that

2 2
7 +y _ /—1+k2

2xy

and so 22 + y? and 22y are incommensurable. By [Def. 10.17], x —y is a WM-medial.

Suppose su = 22 + y? and sv = 2xy where s is rationally expressible. Then

w2 = pm
S

v? = p4m
s-(1+k2)

It follows that u, v are rationally expressible and u?,v? are commensurable. How-
ever,

1
V14 k?

v
- =
and so u,v are incommensurable. By [10.73], © — v is an apotome and irrational.

Since s (u—v) = (z —y)°, we find that (z — y)” is irrational. By [Lemma 10.21.0],
x — y is irrational, which completes the proof. O
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Proposition 10.79. APOTOMES ARE UNIQUE.
Let  — y be an apotome. If v —y = a — b, then © = a and y = b.

Proof. Suppose z —y = a — b but x > a. Then

r—y = a-—>»
(@—y° = (a—b)’
2 —2zy+y®> = a®—2ab+b?
(x2 + y2) — (a2 + b2) = 2zxy — 2ab

By the proof of [10.73], the LHS is rational. By [10.26], the RHS is irrational, a
contradiction. A similar contradiction follows if we assume 2 < a. Thus, = a. The

case of y = b follows mutatis mutandis. O

Proposition 10.80. FIRST APOTOMES OF A MEDIAL NUMBER ARE UNIQUE.

Let = — y be a first apotome of a medial number. If z — y = a — b, then z = ¢ and
y = b.

Proof. The proofis similar to [10.79] as is left as an exercise to the reader. O

Proposition 10.81. SECOND APOTOMES OF A MEDIAL NUMBER ARE UNIQUE.

Let 2 — y be a second apotome of a medial number. If x — y = a — b, then z = ¢ and
y =b.

Proof. Our hypothesis and claim are stated above. Suppose v —y = a — bbut = > a.
Let su = 22 4+ 42, sv = 2zy, su’ = a® + b2, and sv’ = 2ab.

By [10.75], u, v are incommensurable and rationally expressible but 1?2, v2 are com-
mensurable. By [10.73], u — v is an apotome number.

Similarly, ©" — v’ is an apotome number such that v — v = v/ —v’. By [10.79], u = «/
and v = v’; this contradicts our hypothesis that = > a.

A similar contradiction occurs if we assume = < a. Thus, 2 = a, and so y = b. O
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Proposition 10.82. MINOR NUMBERS ARE UNIQUE.
Let  — y be a minor number. If  —y = a — b, then x = a and y = 0.

Proof. The proofis similar to [10.79] as is left as an exercise to the reader. O

Proposition 10.83. WR-MEDIALS ARE UNIQUE.
Let z — y be a WR-medial number. If x —y = a — b, then x = a and y = b.

Proof. The proof'is similar to [10.79] as is left as an exercise to the reader. O

Proposition 10.84. WM-MEDIALS ARE UNIQUE.
Let z — y be a WM-medial number. If x —y = a — b, then 2 = a and y = b.

Proof. The proofis similar to [10.81] as is left as an exercise to the reader. O

10.4 Book X, Propositions 85-115

Proposition 10.85. CONSTRUCTION OF A FIRST APOTOME.

Let p be rationally expressible and a > b. Then n = a — b is a first apotome number
when ¢ and p are commensurable and a? = b 4+ h? where h is commensurable with

a.

Proof. Construct kp such that k& is rational (and so p, kp are commensurable). Also

2

construct m?,n? such that m,n are natural numbers but m? — n? # d? for any

natural d. Let

m2 B k2p2
m2 —n2 b2
m2 — n2
b = kp- 5
m

b = kp-v1—-¢2

where c = . We claim that n = a — b is a first apotome number where a = kp and

b=kp-v1—c2
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Clearly, a,b are incommensurable and rationally expressible while a?,b? are com-
mensurable. By [10.73], a — b is an apotome number.

Notice that a, p are commensurable by hypothesis.

Let h? = a® — b%. Then h = Va2 — b2 and

m? —n? b?
m2 a?
—n? b? —a?
m2 a?
2 a2
7’L2 (12 _ b2
m a
n h
and so a, h are commensurable. This completes the construction. O

Proposition 10.86. CONSTRUCTION OF A SECOND APOTOME.

Let p be rationally expressible and a > b. Then n = a — b is a second apotome when
b and p are commensurable, and a?> = b + h? where h is commensurable with a.

Proof. Let p be rationally expressible and a > b. Construct kp such that & is rational
(and so p, kp are commensurable). Also construct m?, n? such that m, n are natural
numbers but m? — n? # d? for any natural d. Let

m2 — n2 k2p>
m2 T a2
2
™m
a = kp- mZ — 2
kp
a =
V1—c2
_n : [ A _ _kp
where ¢ = -. We claim that n = a — b is a first apotome number where a = it

and b = kp.

Clearly, a, b are incommensurable and rationally expressible but a2, b?> are commen-
surable. By [10.73], a — b is an apotome number.

Notice that b, p are commensurable by hypothesis.
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Let h? = a? — b2. Then h = Va2 — b2. Notice that

m? —n? b?
m2 a?
_n2 b2 _ 2
m2 a?
2 a2
n? h?
m a
n h
and so a, h are commensurable. This completes the construction. O

Proposition 10.87. CONSTRUCTION OF A THIRD APOTOME.

Let p be rationally expressible and a > b. Then n = a — b is a third apotome when
both a and b are incommensurable with p, and a? = b?> + h? where h is commensu-

rable with a.

2 2

Proof. Construct gm? and ¢ - (m? — n?) such that, if divided, neither p, gm?, nor

. . 2
q- (m2 - n2) have a ratio which equals %> where r, s are natural numbers. Let

R
qm? a?
a’> = pgm?
a = m-\/pq
and
qm? 2
¢-(m=n?) ~ ¥
b e (mt =)

qa-(m? —n?)

We claim that n = a — b is a third apotome number where a = m - \/pq and b =

v gqa-(m2—n?)

m

Clearly, a, b are incommensurable and rationally expressible but a2, b> are commen-

surable. By [10.73], a — b is an apotome number.

Also notice that a,p and b, p are incommensurable.



CHAPTER 10. IRRATIONAL NUMBERS 454

Let h? = a? — b2. Then h = Va2 — b2. Notice that

m2 2
m2 _ n2 b2
m? — n? b2

m2 a?
_n2 b2 — o2
m2 a?

n? h?
m2 a?
n h
m o a
and so a, h are commensurable. This completes the construction. O

Remark. We may also write a third apotome as n = mpVk - (1 — V1 —c2).

Proposition 10.88. CONSTRUCTION OF A FOURTH APOTOME.

Let p be rationally expressible and a > b. Then n = a — b is a fourth apotome when
a and p are commensurable, and a? = b? + h? where h is incommensurable with a.

Proof. Construct kp such that k is rational (and so p, kp are commensurable). Also
construct m, n such that neither m, n, nor m +n have a ratio which equals :—z where
r, s are natural numbers. Let

m+n k2p?
n B2
b2 _ nk2p2
m-+n
b=
V142
where ¢ = . We claim that n = a — b is a fourth apotome number where a = kp
_ _kp
and b = T

Clearly, a, b are incommensurable and rationally expressible but a2, b> are commen-

surable. By [10.73], a — b is an apotome number. Also, a, p are commensurable.
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Let h? = a? — b2. Then h = Va2 — b2. Notice that

m-+n

n b2

n b?
m+n a?
—-m b? — a?
m-+n a?
m h?
m4+n a?

m
m-+n a

By hypothesis, we find that a, h are incommensurable. This completes the construc-
tion. O

Proposition 10.89. CONSTRUCTION OF A FIFTH APOTOME.

Let p be rationally expressible and a > b. Then n = a — b is a fifth apotome when b
and p are commensurable, and a? = b?> + h? where h is incommensurable with a.

Proof. Construct kp such that k£ is rational (and so p, kp are commensurable). Also
construct m, n such that neither m, n, nor m +n have a ratio which equals ’;—z where
r, s are natural numbers. Let

n - k’2p2
m+n a2
o = kp- m+n
n
a = kp-V1+c¢

where ¢ = . We claim that n = a—bis a fifth apotome number where a = kp-v/1 + ¢
and b = kp.

Clearly, a, b are incommensurable and rationally expressible but a?, b?> are commen-
surable. By [10.73], a — b is an apotome number. Also, b, p are commensurable.

Let h%2 = a? — b%. Then h = Va2 — b2. Notice that

n b2
m-+n a?
—-m b? —a?
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m h?
m+n a?
m

m-4+n a

By hypothesis, we find that a, h are incommensurable. This completes the construc-
tion. O

Proposition 10.90. CONSTRUCTION OF A SIXTH APOTOME.
Let p be rationally expressible and a > b. Then n = a — b is a sixth apotome when
both a and b are incommensurable with p, and a? = b? + h? where h is incommen-

surable with a.

Proof. Construct m + n and n such that mT*" =+ Z—z for any natural r, s. Let

p _ P
m+n a?
a> = p-(m+n)
a = /p-(m+n)
and
m+n 2
n T2
B2 a’n
 m+4n
b = a n
m-+n
b o= ——
1+c¢
where ¢ = ™. We claim that n = a — b is a sixth apotome number where a =

Vp-(m+n)and b = Vit

Clearly, a,b are incommensurable and rationally expressible but a2, b? are com-
mensurable. By [10.73], a — b is an apotome number. Also, both a,p and b,p are
incommensurable.
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Let h? = a? — b2. Then h = Va2 — b2. Notice that

m-+n

n

n

m-+n

m-4+n

m-+n

m

m-4+n

SRSy

457

By hypothesis, we find that a, h are incommensurable. This completes the construc-

tion.

Remark. We may also write n = pvk — py/m.

Proposition 10.91. ROOT OF A FIRST APOTOME.

Given a rationally expressible p and first apotome

n==kp—kp-v1—c2

\/pn is an apotome.

Proof. Let

where c, k is rational. Then v = *2 . (1 —¢) and v = 22

Since uv =

1

4

ut+v = kp

uw = i-kaQ-(l—CQ)

2

k2p? . (1 _ 02),

u
1kpv1—c2
2

a
%kpzx/l —c?

2

%kp\/ 1—¢2

v

%kpzx/ 1—c2
b2

O

- (1+4¢). Let a®> = pu and
b? = pv; we claim that a — b = \/pn is an apotome number.
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and so ab = 1kp?v/1 — ¢2. It follows that
(a—b)? = a>+b>—2ab
= p~(u+v)f%kp2\/17c2
= kp* —kp*V/1—¢2

It follows that a — b = /np.

Notice that a® = k—’; (1—c)and b? = k—’; - (1 + ¢) are rational, and so a, b are ratio-
nally expressible. Clearly, a?, b*> are commensurable but a, b are incommensurable.
By [10.73], a — b is an apotome. Therefore,

np~<\/§~(lc)\/§~(1+c))

which completes the construction. O

Remark. n=7p- <\/% (1—¢)— \/§ (1+ c)) is a root of the equation

ot = 2kp? - 2?4+ Pkt =0

Proposition 10.92. ROOT OF A SECOND APOTOME.

Given a rationally expressible p and second apotome

kp i
n— _
V1—c2 P
\/pn is a first apotome of a medial.
Proof. Let
kp
ut+v =
V1 — 2
1
— . k2 2
UV 1 P
where ¢, k is rational. Then u = %\/1:%) and v = %\/1_;2 Let a®> = pu and b* = pu;

we claim that ,/pn = a — b is a first apotome of a medial.

Since uv = 1 - k%p?,

u B %kp
skp v
a? %ka
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and so ab = 1kp. It follows that

(a—b)® = a>+b>—2ab

1
= p(u+v) =k’

and so a — b = \/np.

By the above, a,b are medial numbers where a,b are incommensurable but a2, b?

are commensurable. Also notice that

ab = p-vVuv

and so ab is rational. By [Def. 10.11], a — b is a first apotome of a medial. This
completes the construction. O

Remark. We may also write the above as

B E 1+C 1/2_ E 1—C 1/2
nEP\y\T ¢ P Al \15¢

which is a root of the equation

4 2kp? 9 c?

* 7\/1—02.$ +1—02.

Proposition 10.93. ROOT OF A THIRD APOTOME.

Given a rationally expressible p and third apotome
n=pVk-pVk-V1-¢&

/P is a second apotome of a medial.

Proof. Let

u+v p\/E
1
w = kaQ . (1 — 02)

where ¢, k is rational. Then u = # ‘(I+c¢)andv = # (1 —c). Let a®> = pu and

b? = pv. We claim that a — b = ,/pn is a second apotome of a medial.
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Since uv = 1kp? - (1—¢?),

u _ ipVk-(1—c?)
3Pk (1—c?) v

2 sP°VEk-(1-¢2)

a
302/ k- (1—c?) b2

and so ab = 1p?\/k - (1 — c2). It follows that

(a—b)® = a>+b>—2ab
= putpv—pVk-(1-¢?)
2V 2VEk
- p;/_'(1+0)+p;/_.(1—0)—1?2 k- (1—c?)

_ p2\/E*p2\/E' /1 — 2

or (a —b)*> = np. It follows that a — b = ,/np.

Notice that u, v are second medial numbers. It follows that a, b are medial numbers
where a > b. Since u,v are commensurable, a?,b?> are commensurable. It also
follows that a,b are incommensurable. Finally, ab is a second medial number. By
[Def. 10.12], a — b is a second apotome of a medial. O

Remark. We may also write n = p -4/ 4 (I4+c¢)—p- 4 - (1 — ¢) which is a root
of the equation

zt = 2p*VEk 22 + kPpt =0

Proposition 10.94. ROOT OF A FOURTH APOTOME.

Given a rationally expressible p and fourth apotome

kp
n=kp—
P 1+c¢
\/pn is a minor number.
Proof. Let
u+v = kp
1 k2p2
uw = —-
4 1+4c

where c, k is rational. Then u = k—Qp . (1 + \/‘1/%) and v = %p . (1 - \/‘1/%) Let a® = pu

and b? = pv. We claim that a — b = ,/np is a minor number.
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Since uv = % . ]ffj ,
v _ 2 ke
1. _Fkp o v
2 Vit
2 1, _kp?
a _ 3 ViEe
1. _kp? - b2
2 Vit
and so ab= 1 - \}‘% It follows that
(a—0b)° = a®+b*>—2ab
2 2 2
_ R (Ve N R (Ve R
2 Vi+te 2 V1i+e V1ite
_ 2 kp2
1+¢
kp
— p-{kp—
P ( P 1+ c)
and so (a — b)’> =np, ora — b= /mp.
Notice that
u_Vite+e o
v \/1—|—c—\/E T2
and so a2, b? are incommensurable. By [Lemma 10.21.0], a, b are incommensurable.
Since ab = 1 - f%, ab is a second medial number. Finally, a® + > = kp?, and so
a? + b? is rational. By [Def. 10.13], a — b is a minor number. O

Remark. We may also write n = p - ,/% . (1 + ljc) —p- ,/% . (1 - ljc) which is a

root of the equation
C

x4—2kp2~:r2+1 k*pt=0

+c

Proposition 10.95. ROOT OF A FIFTH APOTOME.

Given a rationally expressible p and fifth apotome

n=kp-V1+c—kp
/pn is a WR-medial.
Proof. Let
ut+v = kp-vV1+c¢
uw = i . k2p2
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where c, k is rational. Then u = %2 . (VI +c+/c) andv = 22 . (\/ T+ ¢~ /c). Let
a’® = pu and b? = pv. We claim that a — b = ,/np is a WR-medial.

Since uv = i - k2p?,

U B % -kp
% -kp v
a? B % - kp?
% - kp? b2
and so ab = 1 - kp?. It follows that
(a—b)?® = a®+b*—2ab

= %ﬁ'(\/l—ﬂﬁL\/E)Jrksz'(\/l—ﬁLC*\/E)fk]P

= kp? - V1+c—kp?
= p-(kp-\/l—i-c—kp)

and so (a—b)2 =mnp,ora—>b= /np.

Since u, v are incommensurable, a2, b? are incommensurable. By [Lemma 10.21.0],
a,b are incommensurable. Since a? + b? = kp? - /1 + ¢, a? + b? is a second medial
number. Finally, 2ab = kp? is rational. By [Def. 10.14], a — b is a WR-medial. O

Remark. We may also write n = p\/g (V1+c+ o) —p~\/§ - (vV1+¢— /c) which

is a root of the equation

ot —2kp? V1+c- 2?4+ ck*p* =0

Proposition 10.96. ROOT OF A SIXTH APOTOME.

Given a rationally expressible p and sixth apotome

n=pVk —pvm
v/pn is a WM-medial.
Proof. Let
u+v = p\/E
Loy
w = —mp
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where ¢, k, m are rational such that % #* ’S—z for natural numbers r,s. Then u =
. (\/E+\/k—m) andv =L - (\/E—\/k—m). Let a? = pu and b? = pv. We claim
that a — b = \/np is a WM-medial.

Since uv = Tmp?,

U _ %-p\/m
%-p\/m v

@@ ppYm
1.p2ym b2

and so ab = 1 - p?\/m. It follows that
(a—1b)° = a®+b>—2ab

= L (VE+VETm) + L (VE— VR m) iy

= pPVEk—pVm
p- (p\/E *p\/ﬁ)

and so (a — b)* = np. It follows that a — b = /mp.

Since u > v, a > b. Since u, v are incommensurable, a2, b?> are incommensurable. By
[Lemma 10.21.0], a, b are incommensurable. Since a? +b? = p?>Vk, a®>+b? is a second
medial number. Similarly, 2ab = p?,/m is also a second medial number. Finally,

a® 4+ b? k

2ab m

By hypothesis, a?> + b> and 2ab are incommensurable. By [Def. 10.15], a — b is a
WM-medial. O

Remark. Wemayalsowritenp~\/%~(\/E+\/km)p~\/§~(\/E\/km)

which is a root of the equation

at = 2p*Vk-2® + (k—m)p* =0

Proposition 10.97. ROOTS OF THE SQUARE OF AN APOTOME.
If s is rationally expressible and p — pvk is an apotome, then
2
(P - p\/E)
S

is a first apotome.



CHAPTER 10. IRRATIONAL NUMBERS 464

Proof. Let z,v, z be real numbers such that sz = p?, sy = kp?, 2sz = 2p*Vk where
Vk is irrational but k is rational. Hence

(r-2v7)

— 2z =
(x+y)—2z .

We claim that (z + y) — 2z is a first apotome.

Notice that (x + y)2 = 174'(17;%)2, and so z + y is rationally expressible. Since 422 =

4’5’;1"‘, 2z is also rationally expressible. Also

z+y (1+k)

2z 2k

Hence, = + y and 2z are incommensurable while (z + y)* and (2z)° are commensu-
rable. By [Def. 10.11], (z + y) — 2z is an apotome.

2.(1+k
%, x + y and s are commensurable.

Since X =

Suppose h = \/(z +y)*> — (22)°. Then (z 4+ y)* = (22)* + h2. Notice that

4 2 4
p* - (14 k)" —4p°k
(o +9)? - (202 = 20D

and so h = @. Then

and so x + y and h are commensurable. By [Def. 10.10], (z +y) — 2z is a first
apotome. (I

Remark. (z+y) —2z= % . ((1 + k) — 2\/E)

Proposition 10.98. ROOTS OF THE SQUARE OF A FIRST APOTOME OF A
MEDIAL.

If 5 is rationally expressible and pk'/* — pk?/* is a first apotome of a medial, then

L1/4 _ pr3/4)?
(p pk*'t)

S

is a second apotome.
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Proof. Let x,y, z be real numbers such that sz = p2vk, sy = p?k3/2, and 2sz = 2p2k
where /% is irrational but k is rational and p is rationally expressible. Hence

E1/4 _ pp3/4 2
(p pk*'t)

— 2z =
(x+y)—22 .

We claim that (z + y) — 2z is a second apotome.

Notice that (z + y)* = ﬁk(&# and (2z)* = 4’“2174; it follows that = + y and 2z are

52

rationally expressible. Also
r+y k+1

2z ok
and so z + y, 2z are incommensurable but (z +y)?, (2z)° are commensurable. By
[Def. 10.11], (z + y) — 2z is an apotome.

. 2
Notice that i—z = 2’;—2’“ and so 2z and s are commensurable.

Suppose h = \/(z +y)*> — (22)°. Then (z + y)* = (2z)° + h2. Notice that

k- (k+1)° — 4k2p?
(1:+y)2—(2z)2 _ b ( 2) p

and so h = %. Then

v+y  pVEk-(1+k)

h p2VE - (k—1)
_ k+1
k-1

and so z + y, h are commensurable. By [Def. 10.10], z — y is a second apotome. [

Remark. (l’-i-y)—QZ:%-(\/E-(l-i-k)—Qk)
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Proposition 10.99. ROOTS OF THE SQUARE OF A SECOND APOTOME OF A
MEDIAL.

If s is rationally expressible and pk'/4 — i‘l/f is a second apotome of a medial, then

2
(k' — 57)

S

is a third apotome.

Proof. Let x,vy, z be real numbers such that sz = p>Vk, sy = p? - -, and 25z =

2p%\/m where Vk is irrational but k is rational and p is rationally expressible.
Hence 9
("~ 5%)

) pop
(x+y)—2z .

We claim that (z + y) — 2z is a third apotome.

Notice that (z + y)* = w and (22)° = dmp’ . it follows that x + y and 2z are

52

rationally expressible. Also

r+y k+m
2z 2vkm

and so x + y, 2z are incommensurable but (z +y)°, (2z)” are commensurable. By
[Def. 10.11], (z + y) — 2z is an apotome.

Notice that
c+y  p(k+m)
S 52\/E
2z 2p*ym
s 52

and so x + y and 2z are each incommensurable with s.

Suppose h = \/(z +y)* — (22)°. Then (z + y)* = (22)> + h2. Notice that

(i) (202 = P 2km+m?)

ks?
_ pt(k-m)’
ks?
_ 2 k—m
andsohfp~8\/E.Then

ety _ pP(k+m)  sVk
h sVk p*- (k—m)

_ k+m

T k—m

and so z, h are commensurable. By [Def. 10.10],  — y is a third apotome. O
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Remark. (z+y)— 2z = £ . (%*2\/E)'

S

Proposition 10.100. ROOTS OF THE SQUARE OF A SECOND APOTOME OF
A MEDIAL.

If s is rationally expressible and % 4 /14 ﬁ — \% /1= ﬁ is a minor
number, then
(L. 14+ -k _ P . /1 _k )2
V2 V1+k2 V2 V1+k2
S

is a fourth apotome.

Proof. Let

w o= L. ek
V2 V1+ k2

P k
v e . 177
V2 V1+ k2

Also let z, y, = be real numbers such that sz = u2, sy = v2, and 2sz = 2uv where Vk
is irrational but k is rational and p is rationally expressible.

Hence
uw—v)?

S

(w+y)*2z:(

We claim that (z + y) — 2z is a fourth apotome.

Notice that (z +y)* = 5—;1 and (22)° = ﬁiw); it follows that = + y and 2z are
rationally expressible. Also
2
2z

and so (z +y)?, (22)® are commensurable but z + y, 2z are incommensurable. By
[Def. 10.11], (z + y) — 2z is an apotome.

. 2
Notice that I‘:y = 55, and so x + y and s are commensurable.

Suppose h = 1/(z +y)* — (22)°. Then (z + y)* = (22)* + h2. Notice that

kQ 4

2 2 p

($ =+ y) - (22) = k252 + $2
and so h = % Finally,

T+y p? VE2s2 4 52

h s P2k

N
ks
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and so z + y and h are incommensurable. By [Def. 10.10], a — b is a fourth apotome.
O

Remark. ($+y)72z:§.<1, 1 )

Proposition 10.101. ROOTS OF THE SQUARE OF A WR-MEDIAL.

If s is rationally expressible and ( VAV E? RVAVAREE )

2(1+k2 2(1+k2
is a WR-medial, then

<2(1+k2 VVIHR + k=

S

2(1+k2

is a fifth apotome.

Proof. Let

u = —2 e VIt R +k

2(1+k2)
P
vo= ———— \/VI1+k2—k
2(1+ k2)

Also let z, y, = be real numbers such that sz = u2, sy = v2, and 2sz = 2uv where vk
is irrational but k is rational and p is rationally expressible. Hence

u—v)?

S

(+y)—2: = |

We claim that (z + y) — 2z is a fifth apotome.

and (2z)° = ; it follows that = + y and 2z

p4
s2(14k2)2”

2
(w il y) =k +1
2z
and so (z +y)°, (22)* are commensurable but z + y, 2z are incommensurable. By
[Def. 10.11], (z + y) — 2z is an apotome.

. 4
Notice that (z +y)° = PRy
are rationally expressible. Also

Notice that i—z = and so 2z and s are commensurable.

p2
Suppose h = 1/ (z +y)* — (22)°. Then (z + y)* = (22)* + h2. Notice that

k2p4

(z+y)” —(22)° = 2 1)
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and so h = % Finally,

r+y p? s+ (k*+1)
h s-Vk2+1 P’k
VR +1
k

and so z+y and h are incommensurable. By [Def. 10.10], —y is a fifth apotome. O

2
Remark. (z+y)—2z= 2. ( 11}92 _ 1+1k2)

Proposition 10.102. ROOTS OF THE SQUARE OF A WM-MEDIAL.

If s is rationally expressible and (p”f/? /14 ﬁ - % 4 /1= ﬁ) is a
WM-medial, then
(p”}/4~,/1+ L L - )2
2 V1+k? V2 1+k2

S

is a sixth apotome.

Proof. Let
1/4
u = pm 1+ K
V2 1+ k2
v o= pm1/4 1-— i
V2 1+ k2

Also let z, y, = be real numbers such that sz = u?, sy = v, and 2sz = 2uv where Vk
is irrational but k is rational and p is rationally expressible. Hence

@+y)—2: = L

S

We claim that (z + y) — 2z is a sixth apotome.

Notice that (z +y)° = %5—4 and (22)° =
rationally expressible. Also

ﬁﬁ?k—z)Q; it follows that z + y and 2z are

2
(z i y> =k*+1
2z
and so (z +y)°, (2z)” are commensurable but z + y, 2z are incommensurable. By
[Def. 10.11], (z + y) — 2z is an apotome.

Notice that “X = i—z -y/m and % = ﬁiw) -v/m, and so both = + y and 2z are

incommensurable with s.
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Suppose h = 1/ (z +y)° — (22)°. Then (z + y)* = (22)° + h2. Notice that

mk2p4

(z+y)” —(22)° = ERE

and so h = pzk‘ﬁ. Then

S-

o
£

x4y p’ym s -VE2+1

ho 2 p’k-ym

VvVEZ+1
ks

and so z+y and h are incommensurable. By [Def. 10.10], a—bis a sixth apotome. [

Remark. (z+vy) —2z= é ) (\/ﬁi \1/@2)

Proposition 10.103. NUMBERS COMMENSURABLE WITH APOTOME NUM-
BERS ARE APOTOME.

Suppose a = x — y is an apotome number where « is a first, second, third, fourth,
fifth, or sixth apotome number. Also suppose that a and ¢ are commensurable. We
claim that c is an apotome number of the same type as a.

Proof. Since a,c are commensurable, ¢ = ga where ¢ is rational. If a contains the

rationally expressible term p, then ¢p is rationally expressible. Since ¢ has no other
effect on the remaining terms, c is an apotome of the same type as a. O

Proposition 10.104. NUMBERS COMMENSURABLE WITH APOTOMES OF
THE MEDIAL ARE APOTOMES OF THE MEDIAL.

Proof. The proofis similar to [10.103] as is left as an exercise to the reader. O

Proposition 10.105. NUMBERS COMMENSURABLE WITH MINOR NUMBERS
ARE MINOR NUMBERS.

Proof. The proofis similar to [10.103] as is left as an exercise to the reader. O
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Proposition 10.106. NUMBERS COMMENSURABLE WITH WR-MEDIALS ARE
WR-MEDIALS.

Proof. The proofis similar to [10.103] as is left as an exercise to the reader. O

Proposition 10.107. NUMBERS COMMENSURABLE WITH WM-MEDIALS ARE
WM-MEDIALS.

Proof. The proofis similar to [10.103] as is left as an exercise to the reader. O

Proposition 10.108. SQUARE ROOTS L.
If kp? is rational and p?\/m is a second medial number, then
\ kp? — p2v/m
is either an apotome or a minor number.
Proof. Suppose k, m are rational and p is rationally expressible. Also suppose that

su = kp? and sv = p?\/m. It follows that su is rational and sv is a second medial
number. Notice that s - (u —v) = kp? — p?\/m. Also

< |
%M
B

and so u,v are incommensurable but «2, v? are commensurable. Also notice that

u,v are rationally expressible. By [Def. 10.11], v — v is an apotome.

Suppose vu? — v2 and u are commensurable. Then u — v is a first apotome, and so
\/s- (u—v)is an apotome [10.91].

Otherwise, u—uv is a fourth apotome, and so /s - (u — v) is an minor number [10.94].
O
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Proposition 10.109. SQUARE ROOTS II.

If kp? is rational and p?\/m is a second medial number, then
p*vm — kp?
is either a first apotome of the medial or a WR-medial.

Proof. Suppose k, m are rational and p is rationally expressible. Also suppose that
su = p?y/m and sv = kp?. It follows that su is a second medial number and sv is
rational. Notice that s - (u — v) = p*\/m — kp?. Also

p>v/m

-5 z

and so u,v are incommensurable but «?, v? are commensurable. Also notice that

u,v are rationally expressible. By [Def. 10.11], v — v is an apotome.

Suppose vu? — v2 and u are commensurable. Then u — v is a second apotome, and
S0 \/s - (u—w) is a first apotome of the medial [10.92].

Otherwise, u — v is a fifth apotome, and so /s - (u — v) is a WR-medial [10.95]. O

Proposition 10.110. SQUARE ROOTS II1.

If p>\/k and p?\/m are second medial numbers, then

VpVE - p*vm

is either a second apotome of the medial or a WM-medial.

Proof. Suppose k, m are rational, % =+ ’S—j for any natural r, s, and p is rationally
expressible. Also suppose that su = p>Vk and sv = p2Vk. It follows that su and sv
are second medial numbers. Notice that s - (u — v) = p*\/m — p*Vk. Also

u Vk

v Jm
and so u,v are incommensurable but «2,v? are commensurable. Also notice that
u,v are rationally expressible. By [Def. 10.11], v — v is an apotome.

Suppose vu? — v2 and v are commensurable. Then v — v is a third apotome, and so
/s (u—v) is a second apotome of the medial [10.93].

Otherwise, u — v is a sixth apotome, and so /s - (u — v) is a WM-medial [10.96]. O
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Proposition 10.111. BINOMIAL NUMBERS ARE DISTINCT FROM APOTOMES.

Proof. Let p+ pvk be a binomial number and s — s,/m be an apotome where p, s are
rationally expressible, vk, /m are irrational, and k,m are rational. We claim that

p+pVk #s—sym.
Assume instead that
(povE)" = (s—svm)’
pQ-(1+2\/E+k) = & (1-2v/m+m)
p*-(L+k)—s*-(1+m) = —(82-2\/E+p2-2\/5)
$-(1+m)—p*>-(1+k) = s>-2vm+p> 2vVk

Clearly, the LHS is rational. If we square both sides, the RHS becomes

s? - 4m + 8ps - Vkm + p? - 4k

and must be rational for all choices of k&, m. But k,m may be chosen arbitrarily, a
contradiction. Thus, p + pVk # s — sy/m. O

Proposition 10.112. COMMON DENOMINATORS I.

Let p + pvk be a binomial number, and let s be rationally expressible. Then

2
s
— = mp—mpVk
p+pVk

where m = ﬁ.

Proof. Our hypothesis and claim are stated above. Notice that

s _ s p-pvk
p+pVk p+pvk p—pvk
$2p — 2pVk
p27p2k
52
L N k)
pE—— (p pVk
2 52

Proposition 10.113. COMMON DENOMINATORS II.
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Let p — pv/k be an apotome, and let s be rationally expressible. Then

82

:mp-i-mp\/E
p—pVk

2
here m = 2 —+.
where T

Proof. The proofis similar to [10.112] as is left as an exercise to the reader. O

Proposition 10.114. SPECIAL PRODUCTS.

VVE = VB) (mvE+myi) = Vm(z—y)

V=i e +myg) = Vm@E—y)

Proof. The proofis left as an exercise to the reader. O

Proposition 10.115. A PROOF OF INFINITE IRRATIONALS.

Let pk'/* be a medial number and s be a rationally expressible. Infinitely many

irrational numbers may be constructed from pk'/* and s.

Proof. Clearly, pk'/* is irrational. Notice that

pk1/4 oz
x s
2 = spk1/4
1/2
r = (spk1/4)

Suppose spk!/* is rational. Then s2p?\/k is rational and also irrational by [Lemma
10.10.1] since vk is irrational. This contradiction demonstrates that spk!'/* is irra-
tional. By [Lemma 10.21.0], « is also irrational.

Suppose we find that (spk!/ 4)1/ °* is rational for some natural number k. By ap-
plying [Lemma 10.10.0] a finite number of times, we find that spk'/* is rational, a
contradiction. This completes the proof. O
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Chapter 10 exercises.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Provide the details of [Example 10.2.2].
Prove [10.3].

Prove [10.4].

. Prove [Cor. 10.14.1].

. Complete the proof of [Cor. 10.31.1].

Complete the proof of [Cor. 10.32.1].

Provide the verification steps from [10.35].

Is 10 4 5v/3 is a first binomial number? (See [10.48])

Is 3v/5 + 5 is a second binomial number? (See [10.49])
Is 5v/7 + 7v/3 is a third binomial number? (See [10.50])
Is 5 + /2 is a fourth binomial number? (See [10.51])

Is 3v/2 + 2 is a fifth binomial number? (See [10.52])

Is 3v/2 + 2v/3 is a sixth binomial number? (See [10.53])
Prove [10.67].

Prove [10.68].

Prove [10.69].

Prove [10.70].

Prove [10.80].

Prove [10.82].

Prove [10.83].

Prove [10.84].

Write a new proof which shows that [10.91] iff[10.97], simplifying the existing
proofs as much as possible.

Write a new proof which shows that [10.92] iff[10.98], simplifying the existing
proofs as much as possible.

Write a new proof which shows that [10.93] iff[10.99], simplifying the existing
proofs as much as possible.

Write a new proof which shows that [10.94] iff [10.100], simplifying the exist-
ing proofs as much as possible.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

476

Write a new proof which shows that [10.95] iff [10.101], simplifying the exist-

ing proofs as much as possible.

Write a new proof which shows that [10.96] iff [10.102], simplifying the exist-

ing proofs as much as possible.

Prove [10.104].
Prove [10.105].
Prove [10.106].

Prove [10.107].

Prove that the irrational numbers constructed in this chapter are distinct:

Medial

Binomial

First bimedial

Second bimedial

Major number

RSSM number

RPSM number

Apotome

First apotome of a medial
Second apotome of a medial
Minor number
WR-medial

WM-medial

Prove [10.113].

Prove [10.114].



Chapter 11

Spacial Geometry

11.1 Definitions

1. When two or more lines exist in one plane, they are coplanar; that is, there exists
a plane that contains both lines. The definition can be easily extended to include
rays and segments.

2. The angle which one plane makes with another is called a dihedral angle.

3. A solid angle is that which is made by more than two plane angles in different
planes which meet a point.

4. The point from [Def. 11.3] is called the vertex of the solid angle.

5. If a solid angle is composed of three plane angles, it is called a trihedral angle; if
of four, a tetrahedral angle; and if of more than four, a polyhedral angle.

6. A line which is perpendicular to a system of concurrent and coplanar lines is
said to be perpendicular to the plane of these lines and is also called normal to it.
(We may also have rays and segments which are normal to a plane.)

7. If normal lines are constructed from every point in a given line to a given plane,
the locus of their base is called the projection of the given line on the plane.

8. Two planes which intersect are perpendicular to each other when the lines con-
structed perpendicular in one of them to their common section are normals to the
other.

9. When two planes which meet are not perpendicular to each other, their inclina-
tion is the acute angle contained by two lines drawn from any point of their common
section at right angles to it (one in one plane, and one in the other).

10. If at the vertex O of a trihedral angle O — ABC we construct normals OA, OB,
OC to the faces OBC, OCA, OAB, respectively, in such a way that OA is on the
same side of the plane OBC as OA, etc., the trihedral angle O — A’B'C’ is called
the supplementary of the trihedral angle O — ABC.

477
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11.2 Propositions from Book XI

Proposition 11.1. If part of a line stands on a plane, then each part of that line

must stand on that plane.

Proof. Construct 4B on the plane X and cut 4B at point C. We wish to show that
B? is also on plane X.

Figure 11.2.1: [8.1]

Since AB is on the plane X, it can be extended on X [1.2]: extend it to AD.

Then, if B? is not on X, let any other plane passing through fﬁ be rotated fﬁ
until it passes through the point C.

Because the points B, C are in this second plane, ﬁ is on it. Therefore, the two
lines ABQ%, ABD lying in one plane have a common segment AB, a contradiction.
O

Corollary. 8.1.1. [8.1] holds for rays, mutatis mutandis.
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Proposition 11.2. Two segments which intersect at any point are coplanar as are

any three segments which form a triangle.

Proof. We claim that two segments (AB, C D) which intersect one another at a point
(E) are coplanar as are any three segments (EC, CB, BE) which form a triangle
(AECB).

Figure 11.2.2: [8.2]

Let any plane pass through EB and be rotated it until it passes through C. Then
because the points £, C are in this plane, the segment EC is in it [Def. 1.6]. For
the same reason, the segment BC is on it. Therefore, EC, CB, BE are coplanar.

Since AB and CD are two of these segments, AB and C'D are coplanar. O
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Proposition 11.3. If two planes cut one another, their intersection is a line.

Proof. We claim that if two planes (AB, BC) cut one another, their intersection is

a line (ﬁ).

Figure 11.2.3: [8.3]

Otherwise, construct in the plane AB the line %Eﬁ and in the plane BC construct
the line §F13 Hence the lines gEﬁ, §F13 enclose a space, which contradicts
[Axiom 1.10].

Therefore, the common section of the two planes is a line, % O
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Proposition 11.4. If a line is perpendicular to each of two intersecting lines, it
will be perpendicular to any line which is both coplanar and concurrent with the

intersecting lines.

Proof. We will prove this statement using segments, but the proof for rays and lines

follows mutatis mutandis.

If EF 1 AB and EF 1 CD, we claim that EF' | GH where GH is an arbitrary

481

segment which is both coplanar and concurrent with AB and CD.

Through any point G in GH construct BC which necessarily intersects AB, CD and

is itself bisected at G.

Since I’ may be any point in EF (the length of the segment is arbitrary), we choose

F

Figure 11.2.4: [8.4]

it to construct segments F B, FG, and F'C.

Because EF | EB and EF | EC, we find that

Also,
(BE)* + (CF)?
(BE)? + (CE)?
2-(BG)?*+2-(GF)?
(GF)?

(BF)?

(CF)?

—~

NN N

—~,

5

Bk

@Q
e
[N~}

]

+

(BE)* + (EF)?

(CE)?

(BE

A
+ + +

N~~~

o
=

4 (EF)?

>+ (CE)? +2- (EF)?

2

~

2

Q @ @
SEE

)2 +2. (EF)?

Hence, the angle Z/GEF is right, and so EF | EG.

and

[2.10, Ex. 2], and
=
=
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Corollary. 8.4.1. The normal is the shortest segment that may be constructed from
a given point to a given plane; of all others that may be constructed to it, the lines of

any system making equal angles with the normal are equal to each other.

Corollary. 8.4.2. A perpendicular to each of two intersecting lines is normal to their

plane.
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Proposition 11.5. If three concurrent lines have a common perpendicular, then the

concurrent lines are coplanar.

Proof. If three concurrent lines (%, %, ﬁ) have a common perpendicular (fﬁ),

then %, ﬁ, and ﬁ‘ are coplanar.

Figure 11.2.5: [8.5]

Suppose that % is not coplanar with % or ﬁ, and let the plane of fﬁ, %

intersect the plane of ﬁ, BE at BE.

By [8.3], BE is indeed a line. Notice that Z/CBF > 0.

Since ﬁ is coplanar with ﬁ, we find that W L @ by [8.4]. Therefore, the angle
/ABF is right.

We also have that the angle ZABC is right by hypothesis. Hence, ZABF = ZABC
and LABF = ZABC + ZCBF, and so ZCOBF = 0, a contradiction.

Therefore, %, ﬁ, and ﬁ‘ are coplanar. O
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Proposition 11.6. TWO NORMAL LINES. If two lines are normals to the same

plane, then they are parallel to one another.

Proof. We will prove this statement using segments, but the proof for rays and lines
follows mutatis mutandis.

If AB, CD are normals to the same plane, X, we claim that AB || CD.

B \ SMdo

Figure 11.2.6: [8.6]

Let AB, C'D intersect the plane X at B, D, respectively.

Construct BD, and in the plane X construct DE | BD. Take any point F in DE
and construct BE, AE, AD.

Because AB is normal to X, the angle ZABFE is right. Because the angle Z/BDE is
also right, it follows that

(AE)? = (4B)+ (BE)

)’ + (BD)* + (DE)?

I
EE
SRS

But (AB)? + (BD)? = (AD)? because the angle ZABD is right. Hence
(AE)? = (AD)? + (DE)?

Therefore the angle Z/ADFE is right [1.48].

And since C'D is normal to the plane X, DE 1. CD. Hence DE is a common perpen-
dicular to the three concurrent segments CD, AD, BD. Therefore these segments
are coplanar [8.5].

But in whatever plane BD and AD lie, AB also lies, because every triangle lies
in one plane [8.2]. Therefore AB, BD, and AD are coplanar; and since the angles
/ABD, /BDC are right, we find that AB || CD [1.28]. O
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[8.6] Exercises.
1. The projection of any line on a plane is a straight line.

2. The projection on either of two intersecting planes of a normal to the other plane
is perpendicular to the line of intersection of the planes.

Proposition 11.7. PARALLEL LINES AND THEIR INTERSECTIONS. Two par-

allel lines and any line intersecting them are coplanar.

Proof. We claim that two parallel lines (j@, Cﬁ) and any line (ﬁ) intersecting
them are coplanar.

F

Figure 11.2.7: [8.7]

Otherwise, let the intersecting segment EGF lie outside of the plane. Inside the
plane, construct the segment FHF'.

Then we have two segments EGF, FHF enclosing a space, which contradicts [Ax-
iom 1.10].

Hence, /@ and Cﬁ and the transversal, ﬁ, are coplanar. O

Alternatively:

Proof. Since the points E, F' are in the plane of the parallels, the segment joining
these points also lies in that plane. O
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Proposition 11.8. NORMAL PARALLEL LINES. If one of two parallel straight

lines is normal to a plane, the other is normal to the same plane.

Proof. We will prove this statement using segments, but the proof for rays and lines
follows mutatis mutandis.

Figure 11.2.8: [8.8]

Let AB, C'D meet in the plane X at the points B, D, respectively and construct BD.
It follows that AB, BD, and CD are coplanar.

Wlog, suppose that AB is normal to the X. Construct DE | BD. Take any point £
in DE and construct BE, AE, AD. Because AB is normal to the plane X, AB is is
perpendicular to the line BE in that plane [Def 8.6].

/ABE is right. Because the angle /BDFE is also right, it follows that

(AEy = (AB) + (BE)

)> + (BD)* + (DE)?

[
N
5 5

Similarly to the proof of [8.6], we obtain that the angle ZADE is right.

Hence, DE is at right angles both to AD and BD. Therefore DE L CD by [8.4],
where CD is coplanar and concurrent with AD and BD.

Again, since AB || CD, ZABD + /BDC is two right angles [1.29]. Since Z/ABD is
right by hypothesis, it follows that ZBDC is also right. Hence C'D is perpendicular
to the two lines DB, DE, and therefore it is normal to the plane X by [8.4]. O
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Proposition 11.9. TRANSITIVITY OF PARALLEL LINES. Two lines which are

each parallel to a third line are also parallel to one another.

Proof. We claim that if 1B I EF and CD I ﬁ, then A I OD.

A H B
E G F
C K D

Figure 11.2.9: [8.9]

If the three lines are coplanar, the proposition is evidently the same as [1.30].

Otherwise, take any point G on ﬁ On the plane ﬁ, fﬁ, construct G<—H) such that
G<—I—>[ il ﬁ«“ And on the plane ﬁ’, Cﬁ, construct G<—H) such that G<—H) L Cﬁ [1.11].

Because ﬁ is perpendicular to each of the lines (<¥—f>l, (<¥—I>(, it is normal to their
plane [8.4]. And because /@ I ﬁ by hypothesis and ﬁ is normal to the plane
GHK, f@ is normal to the plane GH K [8.8].

Similarly, &D is normal to the plane GH K. Hence, since 4B and OD are normals
to the same plane, they are parallel to one another. O
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Proposition 11.10. ANGLES AND PARALLEL LINES. If two intersecting lines
are respectively parallel to two other intersecting straight lines, the angle between
the former is equal to the angle between the latter.

Proof. If two intersecting lines (j@, %) are respectively parallel to two other
intersecting lines (ﬁ, ﬁ), then we claim that the angle between the former
(LABC) is equal to the angle between the latter (/DEF).

B

Figure 11.2.10: [8.10]

If both pairs of lines are coplanar, the proposition is the same as [1.29, #2].

Otherwise, take any points A4, C in the lines fﬁ, BC and cut off ED = BA, and

Because AB is equal and parallel to DE, it follows that AD is equal and parallel to
BE [1.33]. Similarly, CF = BE and CF | BE. Hence, AD = CF, AD || CF [8.9],
and AC = DF [1.33].

Consider ANABC, ADEF': they have the three sides of one respectively equal to the
three sides of the other. By [1.8], /ZABC = /DFEF. O
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Proposition 11.11. CONSTRUCTION OF A NORMAL LINE I. We wish to con-

struct a normal to a given plane from a given point not in the plane.

Proof. We wish to construct a normal to a given plane (BH) from a given point (A)

not in the plane.

Figure 11.2.11: [8.11]

In the given plane BH construct any line %, and from A construct AD | BC
[1.12];if @ is perpendicular to the plane, the proof follows.

Otherwise, from D construct DE in the plane BH at right angles to % [1.11] and
from A construct ?17“ 1 ﬁ [1.12]. We claim that ?17“ is normal to the plane E)I

To see this, construct GF H I BC. Because BC is perpendicular both to ED and
Ei, it is normal to the plane of ﬁ, DA [8.4]. And since GH I %, it is normal to
the same plane [8.8]. Hence jﬁ L (<¥—f>l [Def. 8.6], and /ﬁ 1L ﬁ by construction.

Therefore, /ﬁ is normal to the plane of ﬁ[ s ﬁ, which is the plane BH. O
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Proposition 11.12. CONSTRUCTION OF A NORMAL LINE II. Construct a nor-

mal to a given plane from a given point in the plane.

Proof. We wish to construct a normal to a given plane from a given point (A4) in the

plane.

Figure 11.2.12: [8.12]

From any point B not in the plane construct R’ normal to it [8.11]. If this line
passes through A, it is the required normal.

Otherwise, from A construct )Y5) I BC [1.32]. Because )Y5) I BC and BC is normal
to the plane, fﬁ is also normal to the plane [8.8], and it is drawn from the given
point. Hence, the proof. O
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Proposition 11.13. UNIQUENESS OF NORMAL LINES. From a given point,

there exists a unique normal to a given plane.

Proof. From a given point (A), we claim that there exists a unique normal to a
given plane (X).

Figure 11.2.13: [8.13]

We shall prove this claim in two parts:

1. Let A be in the given plane and suppose that /@, /ﬁ are both normals to it on
the same side of the plane. Let the plane of /@, j@ cut the given plane X at the
line DE. Because AB is a normal, the angle /BAFE is right. Similarly, Z/CAF is
right. Hence /BAFE = Z/CAF, a contradiction, since in the plane fﬁ, % we must
have that /BAFE = /BAC + Z/CAE where /BAC > 0.

2. If the point A is above the plane, there can exist only one normal; otherwise, the
two would be parallel to one another by [8.6], a contradiction.

Hence, the proof. O
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Proposition 11.14. PARALLEL PLANES. Planes which have a common normal

are parallel to each other.

Proof. Let any straight line B be normal to each of the planes CD and EF. We

claim that the planes are parallel.

B ¢

Figure 11.2.14: [8.14]

If the planes are not parallel, they must intersect at a line [8.3]: we choose GH.
Take an arbitrary point K on G<—P>I, and construct AK and BK.

Since iﬁ is normal to the plane EF, therefore iﬁ is also normal to BK which is a
straight line on EF. Therefore, /ABK is right. Similarly, / BAK is also right.

Consider ANABK: /ABK + /BAK = two right angles, a contradiction by [1.17].

Therefore the planes C'D and EF are parallel, and the proof follows. O



CHAPTER 11. SPACIAL GEOMETRY 493

Exercises.

1. The angle between two planes is equal to the angle between two intersecting
normals to these planes.

2. If a line is parallel to each of two planes, the sections which any plane passing
through the line makes with the planes are parallel.

3. If a line is parallel to each of two intersecting planes, it is parallel to their
intersection.

4. If two lines are parallel, they are parallel to the common section of any two
planes passing through them.

5. If the intersections of several planes are parallel, the normals drawn to them
from any point are coplanar.
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Proposition 11.15. A CHARACTERISTIC OF PARALLEL PLANES. Two planes
are parallel if two intersecting lines on one plane are respectively parallel to two

intersecting lines on the other plane.

Proof. Two planes (AC, DF) are parallel if two intersecting lines (j@, %) on
one plane are respectively parallel to two intersecting lines (ﬁ, ﬁ“) on the other
plane.

E

\.F

C > €

Figure 11.2.15: [8.15]

From B construct BG perpendicular to the plane DF [8.11] and let it intersect
plane DF at point G. Through G construct GH || ED and G [ EE.

Since GH || ED by construction and 1B [ ED by hypothesis, 1B | GH [8.9].

Hence, /ZABG+ /BGH equals two right angles [1.29]. Since /BGH is a right angle
by construction, ZABG is also right. Similarly, /C'BG is right.

Hence % is normal to the plane AC [Def. 8.6] as well as normal to DF by con-
struction. Hence the planes AC, DF have a common normal %; therefore, they
are parallel to one another. O
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Proposition 11.16. PARALLEL PLANES AND AN INTERSECTING PLANE. If
two parallel planes are cut by a third plane, their common sections with the third

plane are parallel.

Proof. If two parallel planes (AB, C'D) are cut by a third plane (F'G), we claim that
their common sections with the third plane (jﬁ, &)I) are parallel.

K

\E\ \G\

Figure 11.2.16: [8.16]

If ﬁ«", G<—H) are not parallel, they must meet at some finite distance. Let them meet
at K.

Since K is a point on E}’ and ﬁ is on the plane AB, it follows that K is in the
plane AB. Similarly, K is a point on the plane CD.

Hence, the planes AB, C'D meet at K, a contradiction, since they are parallel by
hypothesis. Therefore, ﬁ«", G<—H) are parallel. O

Exercises.
1. Parallel planes intercept equal segments on parallel lines.
2. Parallel lines intersecting the same plane make equal angles with that plane.

3. A straight line intersecting parallel planes makes equal angles with he parallel
planes.
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Proposition 11.17. PROPORTIONAL AND PARALLEL LINES. If two parallel
lines are cut by three parallel planes in two triads of points, their segments between

those points are proportional.

Proof. If two parallel lines (/@, @) are cut by three parallel planes (GH, KL,
MN) in two triads of points (4, F, B and C, F, D where each triad is respectively
collinear), we claim that the segments between those points are proportional; or,

AEFE :EB::CF : FD.
)
C
A
1

Figure 11.2.17: [8.17]

Construct AC, BD, AD. Let AD intersect the plane K L at point X. Construct £ X,
XF.

Because the parallel planes KL, M N are cut by the plane ABD at the segments
EX, BD, these segments are parallel [8.16]. Hence AE : EB :: AX : XD [6.2].

Similarly, AX : XD :: CF : FD. By [5.11], it follows that AE : EB :: CF : FD. O
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Proposition 11.18. TRANSITIVITY OF PERPENDICULAR PLANES. If a line is
normal to a plane, any plane passing through the line is also perpendicular to that

plane.

Proof. Ifaline (j@) is normal to a plane (CI), we claim that any plane (D E) passing
through AB is also perpendicular to C1.

D G A H

[ 11
\/

Figure 11.2.18: [9.18]

.‘
@
m

Let @ be the common section of the planes DE, CI. From any point F' on @,
construct FC; in the plane DE such that e I 4B [1.31].

Since FC I 1B and 4B is normal to the plane CI, we find that FC is normal to CT
[8.8].

Also since % I j@, we find that ZABF + ZBFG are equal to two right angles
[1.29]. Since ZABF is right by hypothesis, Z/BFG is right and therefore FG L CE.

Hence every line in the plane DFE drawn perpendicular to Cﬁ, the common section
of the planes DE, CI, is normal to the plane CI. Therefore by [Def. 8.11], the
planes DE, CI are perpendicular to each other. O
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Proposition 11.19. INTERSECTING PLANES. If two intersecting planes are each

perpendicular to a third plane, their common section is normal to that plane.

Proof. If two intersecting planes (AB, BC) are each perpendicular to a third plane
(ADC), their common section (%) is normal to ADC.

B

Figure 11.2.19: [8.19]

Suppose otherwise and construct ﬁ from D in the plane AB such that ﬁ 1 f@
where /ﬁ is the common section of the planes AB, ADC.

Similarly in the plane BC, construct E)“ perpendicular to the common section %
of the planes BC, ADC.

Because the plane AB is perpendicular to ADC, we find that ﬁ in AB is normal
to the plane ADC [Def. 8.8]. Similarly, W is also normal to the plane ADC.

Therefore from the point D there are two distinct normals to the plane ADC, a
contradiction [8.13]. Hence, BD is normal to the plane ADC. O
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Exercises.

1. If three planes have a common line of intersection, the normals drawn to these
planes from any point of that line are coplanar.

2. If two intersecting planes are respectively perpendicular to two intersecting
lines, the line of intersection of the former is normal to the plane of the latter.

3. In the last case, show that the dihedral angle between the planes is equal to the
rectilinear angle between the normals.
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Proposition 11.20. TRIHEDRAL ANGLES. The sum of any two plane angles of a
trihedral angle is greater than the third.

Proof. We claim that the sum of any two plane angles of a trihedral angle (wlog,
choose point A and angles Z/DAB, /DAC) is greater than the third (/BAC).

Figure 11.2.20: [8.20]

If /BAC, /CAD, and /D AB are equal to one another, then it is clear that the sum
of any two is greater than the remaining one.

Otherwise let ZBAC be greater in measure than either ZDAB or ZDAC.

In the plane through AB and AC, construct the angle /BAFE = /DAB through
AB. Construct 4F = AD, BEC , BD, and DC.

Consider ADAB and AEAB: AE = AD, they share side AB, and /BAE = /DAB.
By [1.4], BD = BE.

Consider ABDC: since BD + DC > BC [1.20] and BD = BE, it follows that by
subtracting BD from each side of the inequality that DC > EC.

Consider ADAC and AEAC: AE = AD, they share side AC, and DC > EC; by
[1.25] it follows that /DAC > Z/EAC.

However, /BAE = ZDAB, and so

LDAC > <ZEAC
LDAB+ /DAC > /BAE+ /FEAC
/DAB+ /DAC > /BAC

The proof follows. U
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Proposition 11.21. SUM OF PLANE ANGLES. The sum of all the plane angles

forming any solid angle is less than four right angles.

Proof. The sum of all the plane angles (/BAC, ZC AD, etc.) forming any solid angle
(at A) is less than four right angles.

Figure 11.2.21: [8.21]

Suppose for the sake of simplicity that the solid angle at A is contained by five
plane angles /BAC, /CAD, /DAE, /EAF, /F AB. Let the planes of these angles

be cut by another plane at the lines %, @, ﬁ, ﬁ, ﬁ
By [8.20], we have /ABC + /ABF > /FBC, /ACB + Z/ACD > /BCD, etc.

Adding these, we obtain the sum of the base angles of the five triangles ABAC,
ANCAD, etc., is greater than the sum of the interior angles of the pentagon BCDEF;
that is, the sum is greater than six right angles.

But the sum of the base angles of the same triangles, together with the sum of the
plane angles ZBAC, ZCAD, etc., forming the solid angle at A is equal to twice as
many right angles as there are triangles ABAC, ACAD, etc.; that is, equal to ten
right angles. Hence, the sum of the angles forming the solid angle is less than four
right angles. O

Observation: this proposition may not hold if the polygonal base BCDEF contains

re-entrant angles.
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TO DO: the remaining 18 propositions.
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Chapter 11 exercises.

1. Any face angle of a trihedral angle is less than the sum (but greater than the
difference) of the supplements of the other two face angles.

2. A solid angle cannot be formed of equal plane angles which are equal to the
angles of a regular polygon of n sides except when n = 3,4, 5.

3. Through one of two non-coplanar lines, construct a plane parallel to the other.

4. Construct a common perpendicular to two non-coplanar lines and show that it is
the shortest distance between them.

5. If two of the plane angles of a tetrahedral angle are equal, the planes of these
angles are equally inclined to the plane of the third angle, and conversely. If two
of the planes of a trihedral angle are equally inclined to the third plane, the angles
contained in those planes are equal.

6. Prove that the three lines of intersection of three planes are either parallel or

concurrent.

7. If a trihedral angle O is formed by three right angles and A, B, C are points
along the edges, the orthocenter of the triangle AABC is the foot of the normal
from O on the plane ABC.

8. If through the vertex O of a trihedral angle O—ABC any line b_ﬁ is constructed
interior to the angle, the sum of the rectilinear angles ZDOA, ZDOB, ZDOC is
less than the sum but greater than half the sum of the face angles of the trihedral.

9. If on the edges of a trihedral angle O—ABC three equal segments OA, OB, OC
are taken, each of these is greater than the radius of the circle described about the
triangle AABC.

10. Given the three angles of a trihedral angle, find by a plane construction the
angles between the containing planes.
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11. If any plane P cuts the four sides of a Gauche quadrilateral ABCD (a quadri-
lateral whose vertices are not coplanar) at four points, a, b, ¢, d, then given the four

ratios
Aa Bb Ce Dd
aB’ bC’ ¢D’ dA

we find that

Aa Bb Ce Dd _

Conversely, if

then the points a, b, ¢, d are coplanar.

12. If in #11 the intersecting plane is parallel to any two sides of the quadrilateral,
it cuts the two remaining sides proportionally.

13. If O—A'B’C’ is the supplementary of O—ABC, prove that O—ABC is the
supplementary angle of O—A'B'C’.

14. If two trihedral angles are supplementary, each dihedral angle of one is the
supplement of the corresponding face angle of the other.

15. Through a given point, construct a line which will meet two non-coplanar lines.
16. Construct a line parallel to a given line which will meet two non-coplanar lines.

17. Given an angle ZAOB, prove that the locus of all the points P of space where
the sum of the projections of the line W on O<—/i and @ are constant is a plane.
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Volumes of Cones, Pyramids,
and Cylinders
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Platonic Solids
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Chapter 14

Solutions

14.1 Solutions for Chapter 1

[1.1] Exercises

1. If the segments AF and BF are constructed, prove that the figure JACBF is a

D E

Figure 14.1.1: [1.1, #1]

Proof. Construct AF and BF. By an argument similar to the proof of [1.1], AB =
AF = BF. Since AC = AB = BC from [1.1],

AC = BC = BF = AF

and so AC'BF is equilateral.

By [1.8], AABC = AN ABF and since each are equilateral, /CAB = /FBA. By [Cor.
1.29.1], AC || BF. Similarly, AF || BC, and so ACBF is a parallelogram. Since it is
also equilateral, by [Def 1.29] LIACBF is a rhombus. O

507



CHAPTER 14. SOLUTIONS 508

[1.1] Exercises

2. If C'F is constructed and AB is extended to the circumferences of the circles (at
points D and E), prove that the triangles ACDF and ACFEF are equilateral.

Proof. Construct CF, and extend AB to AB where AB intersects OA at D and OB
at E. Finally, construct ACDF and ACEF. We wish to show that ACDF and
ACEF are equilateral.

F

Figure 14.1.2: [1.1, #2]

By [1.1]1, AABC is equilateral. By the proof of [1.1, #1]!, AAF B is also equilateral.
Since AC = AF, by [1.8]1 AABC = NAFB. Since AB is a radius of OA and OB, it
follows that the radii of OA are equal in length to radii of OB, and so

AB = AC = AD = AF = BC = BE = BF

Since AABC is equilateral, /BAC = ZABC. Since DE is a segment, Z/BAC +
ZCAD = two right angles = ZABC + ZCBE. 1t follows that ZCAD = ZCBE.
Similarly, we can show that /FAD = /FBE.

INotice that it is permissible and encouraged to cite the results of previous exercises. This is the
opposite of most K-12 math courses, where students can be punished for treating problems as parts
of an interconnected whole. Students should unlearn this “lesson” as soon as possible; math and the
sciences are not about isolated pieces, but connections.

What is not permissible is circular reasoning: to cite the result of problem #1 in the proof of problem
#2 and also cite the result of problem #2 in the proof of problem #1.

That said, some problems in this chapter will be solved without referring to previous solutions if only

to prevent this document from becoming more frustrating than it already is.



CHAPTER 14. SOLUTIONS 509

F

Figure 14.1.3: [1.1, #2]

Since NABC =2 NAFB, /BAC = /BAF, and so /DAF = Z/CAD. That is,
/FAD = /FBE = /DAC = /EBC

Consider AADC, AADF: AF = AD = AC by the above and /FAD = /DAC. By
[1.4], AADC = AADF.

Consider AADC, ABEC: AC = AD = BC = BE by the above and ZCAD =
/CBE. By [14], NADC = ABEC.

Similarly, we can show that ABEC =~ ABEF, and so
NADC = NADF =2 ABEF = ABEC

Hence, DF = DC = CE = EF.

By [1.32], the sum of the three interior angles of a triangle equals two right angles.
To make our calculation easier, define the measure of two right angles to equal =
radians.

Let o = each interior angle of AABC. By [1.5.1], AABC is equiangular, and so
3a=m,or o =7/3.

By [1.13], ZCAL + ZCAD = w. Since ZCAL = 7/3, ZCAD = 2x/3. Similarly,
/FAL = 1/3.

Consider ACAF, ACAD: AD = AC = AF since each are radii of OA, ZCAD =
27/3, and LCAF = LCAL + Z/FAL = 2x/3. By [14], ACAF = ACAD, and so
CD=CF.

Hence, CD = CF = DF, or ACDF is equilateral. By the above and [1.8], ACDF =
ACEF, which completes the proof. O
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Corollary. /1.1, #1.1]LICDFE IS A RHOMBUS.
Applying [1.1, #1] to ICDFE, we find that JICDFE is a rhombus.

[1.2] Exercises

1. Prove [1.2] when A is a point on BC.

Given a point on an arbitrary segment, it is possible to construct a segment with:
(1) one endpoint being the previously given point

(2) its length is equal to that of the arbitrary segment.

Proof. Let BC be an arbitrary segment where A is a point on BC. We claim that
we can construct a segment with A as an endpoint such that its length is equal to
that of BC.

If A= Bor A= C, the proofis trivial.2

Suppose that A is not an endpoint of BC. Construct the equilateral triangle AABD

[1.1]. Also construct the circle OA with radius equal in length to AC. Extend side
_> .

DA to ﬂ where DA intersects OA at E.

Figure 14.1.4: [1.2, #1]

Construct the equilateral triangle A EGH where G is also a point on m and EG =
AD[1.2]. So AE @ EG = AG and

AG = AE+EG
= AC+AD
= AC+ AB

= BC

which completes the proof. O

2A trivial proof is one that is immediately obvious. In this case, if A = B or A = C, then BC itself
is the segment we require. Since it already exists, there is nothing to do but acknowledge that the proof
took no effort on our part, i.e., it is trivial.
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[1.4] Exercises
Prove the following:

1. The line that bisects the vertical angle of an isosceles triangle also bisects the
base perpendicularly.

Proof. Suppose NABC is an isosceles triangle where AB = AC. Further suppose
that the ray AD bisects ZBAC.?> We claim that BD = CD and AD | BC.

B D C

I

Figure 14.1.5: [1.4, #1]

Consider AABD, ANACD: the triangles share side AD, and by hypothesis AB = AC
and /DAB = /DAC. By[1.4], AABD = ANACD. Hence, BD = CD. Also, /ADB =
/ADC; since they are supplements, they stand at right angles [Def. 1.14], and so,
AD 1 BC. O

2. If two adjacent sides of a quadrilateral are equal in length and the diagonal
bisects the angle between them, then their remaining sides are also equal in length.

Proof. Suppose that ABCD is a quadrilateral where AB = AC and where the di-
agonal AD bisects Z/BAC. We claim that BD = CD.

Consider ANACD, NABD: since AC = AB, each shares side AD, and Z/DAC =
/DAB by hypothesis, by [1.4] AACD = ANABD. Therefore, BD = CD.

3A line or a segment of appropriate size may be substituted, mutatis mutandis.
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Figure 14.1.6: [1.4, #2]

3. If two segments stand perpendicularly and each bisects the other, then any point
on one segment is equally distant from the endpoints of the other segment.

Proof. Suppose AB | CD and that AB and CD bisect each other at £. Wlog, let F
be a point on AB. We claim that F' is equidistant from C and D.

A
®

F

Figure 14.1.7: [1.4, #3]

Construct ACEF and ADEF. Since AB 1. CD and AB and CD bisect each other
at F by hypothesis, /CEF = /DEF and CE = DE. Since ACEF and ADEF
share side F'F, by [1.4] we find that ACEF = ADEF Hence, CF = DF.

The proof for any point on C'D is similar to the above, mutatis mutandis. Therefore,
we have proven our claim. O

Corollary. to [1.4, #3]: fﬁ is the Axis of Symmetry of ANCF D.



CHAPTER 14. SOLUTIONS 513

[1.5] Exercises

2. Prove that AH is an Axis of Symmetry of AABC.

Proof. Construct the figure from [1.5], construct fﬁ, and let I be the intersection
of BC and AH. We claim that AH is the Axis of Symmetry of AABC.

A

w
@]

Figure 14.1.8: [1.5, #2]

Consider ABHF and ACHG: by the proofof[1.5] /BFH = Z/CGH and BF = CG.
By [1.15] /BHF = ZCHG, and so by [1.26], ABHF = ACHG. It follows that
BH =CH.

Consider AABH and AACH: by the above, BH = C'H; by the proof of [1.5] AB =
AC; finally, the triangles share side AH. By [1.8], AABH = ANACH. It follows that
/BAH = Z/CAH.

Consider AABI and AACI: by the above /BAI = ZCAI, AB = AC, and the
triangles share side AI. By [1.4], AABI = NACI. It follows that AABI = NACI.

Since AABC = ANABI & ANACI, we find that <A—H) is the Axis of Symmetry of AABC
by [Def 1.35]. This proves our claim. O
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[1.5] Exercises

4. Take the midpoint on each side of an equilateral triangle; the segments joining

them form a second equilateral triangle.

Proof. Suppose that AABC is equilateral. Construct the midpoints I, J, and K on
sides BC, AB, and AC, respectively. We claim that AIJK is equilateral.

o
o
[

Figure 14.1.9: [1.5, #4]

Since I is the midpoint of side BC, IB = IC. Similarly, JA = JB. Since AABC is
equilateral, /B = JB. Continuing in this way, we can show that

IB=JB=JA=AK =KC=1IC

And by [1.5, Cor. 1] we also have that

LABC = LACB = Z/BAC

Hence by multiple applications of [1.4],

AJBI =2 ANKCI = ANJAK

It follows that IJ = JK = K1, and so AIJK is equilateral. This proves our claim.
[l
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[1.9] Exercises

2. Prove that AF | DE.

Figure 14.1.10: [1.9, #2]

Proof. Consider AADH, NAEH: by construction in [1.9], ZDAH = ZFEAH and
AD = AE, and each triangle shares side AH. By [1.4], AADH = ANAEH. It follows
that DH = HE. Also, /DHA = /EHA. Since these are adjacent angles, they are
right angles [Def. 1.14]. By [1.15], /DHF and Z/EHF are also right angles. Thus,
AF 1 DE, which concludes the proof. O

3. Prove that any point on AF is equally distant from points D and F.

Proof. Construct K on AF. We claim that DK = KE.

Consider ADHK and AFHK: by [1.9, #2], DH = HE, the triangles share HK,
and /DHK = /FHK. By [14], ADHK = ANEHK. It follows that DK = KFE, and
which proves our claim. O
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[1.10] Exercises

1. Bisect a segment by constructing two circles.

Proof. Construct the figure from [1.1, #2]. We claim that CF bisects AB.

F
Figure 14.1.11: [1.1, #2]

Since IDCEF = ACDF @& ACEF and ACDF = ACEF, we find that CF is an
axis of symmetry of IDCEF [Def. 1.35]. It follows that DL = LE. Since DA = BE
by the proof of [1.1, #2], AL = LB, which completes the proof. O
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[1.10] Exercises

2. Extend CD to 0‘—15 Prove that every point equally distant from the points A and
B are points on @

Proof. Extend CD to % and construct £ on Cﬁ We claim that F is equally distant
from A and B.

Figure 14.1.12: [1.10, #2]

By the proof of [1.10], AACB is isosceles. By [Cor. 1.9.1], @ is an Axis of Sym-
metry to AACB. It follows that ED is an Axis of Symmetry to any triangle with
vertices A, B, and F, where E is any point on Cﬁ except D itself. Hence, AE = EB
for any point F on CD. Since AD = DB by [1.10], we have proven that every point
on @ is equally distant from A and B.

Suppose point K exists where AK = BK but K is not on ED. Tt follows that
AABE is distinct from AABK where the triangles share side AB, AFE = AK, and
BE = BK. But this construction contradicts [1.7]. Hence, no such K exists, which

completes the proof. O
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[1.11] Exercises

1. Prove that the diagonals of a rhombus bisect each other perpendicularly.

Proof. Construct the figure from [1.11], and also construct the equilateral triangle
ADEG where G lies on the opposite side of AB from F. By the proof of [1.11],
ADFE is equilateral. By [1.8], ADFFE = ADGE.

Construct GC; by the proof of [1.11], GC L AB. We claim that JF EGD is a rhom-
bus, GF and DE are its diagonals, and GF and DFE bisect each other.

Figure 14.1.13: [1.11, #1]

Consider ADCF and ADCG: since ADEF = NDEG, DF = DG and ZCDG =
/CDF; the triangles also share side DC. By [1.4], ADCF = ADCG. Similarly, we
can show that AECF = AECG.

By the proofto [1.11], ADCF = AECF. By the above, it can be shown that
ADCF =2 ADCG = ANECF = ANECG

Hence, FD = FE = GD = GE, and so FEGD is a equilateral.

Since /DGF = /EFG by the above, DG | EF; since /EGF = /DFG, EG |
FD. Hence, JFEGD is an equilateral parallelogram. By [Def. 1.29], DFEGD is a
rhombus. Clearly, DE and GF are the diagonals of JFEGD.

By the above, DC = CE and FC = CG, so the diagonals of JF EGD bisect each
other. By [1.11], Z/DCF is a right angle, and so DE | GF, which completes the
proof. O
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[1.11] Exercises

3. Find a point on a given line that is equally distant from two given points.

Proof. Let 4B be a given line, and let C, D be points not on AB. We wish to find a
point F' on AB such that FC = FD.

Figure 14.1.14: [1.11, #3]

Construct C'D; by [1.10], locate its midpoint, £. Construct FE such that CD | FE
and F'is a point on AB. We claim that F is equally distant from C' and D.

Consider ACEF and ADEF: CE = DFE by construction, /CEF = /DFEF by con-
struction, and the triangles share side EF. By [1.4], ACEF = ADEF. Hence,
CF = DF, which completes the proof. O
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[1.12] Exercises

1. Prove that circle OC cannot intersect @ at more than two points.

¢
T

Figure 14.1.15: [1.12, #1]

Proof. Suppose OC' intersects /@ at more than two points. If the third point lies
between points I’ and G, then the radius of OC must decrease in length; this con-
tradicts the definition of a radius (that it must have a fixed length).

Similarly, if the third point lies to the left of F' or to the right of G, the radius of OC

must increase in length, resulting in a similar contradiction.

Hence, OC cannot intersect /@ at more than two points. [l

[1.19] Exercises

3. Prove that three equal and distinct segments cannot be constructed from the
same point to the same line.

Proof. Suppose such a construction were possible. Consider the common point to
be the center of a circle and the three equal yet distinct segments to be radii of
that circle. Then we could construct a line such that the circumference of the circle
intersects the line at three points. This contradicts [1.12, #1], which completes the
proof. O
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[1.19] Exercises

5. If AABC is a triangle such that AB < AC, then a segment AG, constructed from
A to any point G on side BC, is less than AC.

Proof. Construct AABC where AB < AC. Construct AG where G is a point on side
BC (other than B and C). We claim that AG < AC.

A

Figure 14.1.16: [1.19, #5]

If AB = AC, then by [1.19, #3], AG < AC.

If AB < AC, extend AB to AH such that AH = AC and construct CH. Extend AG
to AJ where .J is on CH. Clearly, AG < AJ.

Since AH = AC, by [1.19, #3], AJ < AC. Since AG < AJ, AG < AC, which
completes the proof. O
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[1.20] Exercises

5. The perimeter of a quadrilateral is greater than the sum of its diagonals.

Proof. Suppose that ABCD is a quadrilateral with diagonals AC and BD. We claim
that

B+BC+CD+DA>AC+B

C

Figure 14.1.17: [1.20, #5]

By [1.20], we have

AD+CD > AC
AB+BC > AC
AD+ AB > BD
BC+CD > BD

Or,
2-(AB+BC+CD+ DA) > 2-(AC+ BD)
—
AB+BC+CD+DA > AC+ BD

which proves our claim. O
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[1.20] Exercises

6. The sum of the lengths of the three medians of a triangle is less than 2 times its

perimeter.

Proof. Construct AABC with medians AF, BE, and CD. We claim that

Figure 14.1.18: [1.20, #6]

Consider AABE: by [1.20], we have

Similarly, in ADBC, we have

and in AACF, we have

Recall that AE =
find that

which proves our claim. O
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[1.23] Exercises

1. Construct a triangle given two sides and the angle between them.

Proof. Suppose we have arbitrary segments AB and CD and an arbitrary angle
/EFG. We claim that we can construct AHM N from AB, CD, and /EFG.

Figure 14.1.19: [1.23, #1]

By [1.23], construct rays IT[]) and Iﬁ( such that /JHK = /EFG. Construct HM
on H.J and TN on HK such that AB — HM and CD — HN. Construct 7N. Notice
that AM N H has sides equal in length to segments AB and CD and contains an
angle equal in measure to ZEFG. This proves our claim. O
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[1.29] Exercises

2. Construct AB containing the point C' and EF containing the point D such that
B I EF. Construct OH and OJ such that TJ bisects ZACD and CH bisects
/BCD. Prove that DH = DJ.

Proof. Our hypothesis and claim are stated above. Construct the above as well as
JK and HL such that JK | CD and CD || HL. By [1.30], JK [ HL.

K_/:A C :B_/
e L

e \

< \
/2 ¢ /'H .

Figure 14.1.20: [1.29, #2]

Since OH is a bisector of /BCD, /BCH = /DCH. Since CD || HL, /DCH =
Z/CHL. And since AB | EF, /BCH = /DHC. This gives us

/BCH =/DCH = /DHC = Z/CHL

Consider ACDH. Since /DCH = /DHC, by [1.6] DC = DH.

Similarly, it can be shown that

£JCD = ZLJCK = £ZDJC = £ZDCJ

and so DJ = DC.

Thus, DJ = DH, which completes the proof. O
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[1.29] Exercises

5. Two lines passing through a point which is equidistant from two parallel lines
intercept equal segments on the parallels.

Proof. Construct 4B and OD such that AB I ED. Construct LM such that 45 L
m and bisect m at G [1.10]. Construct arbitrary lines ﬁ and ﬁ){ such that
each passes through G. We claim that HI = JK.

Figure 14.1.21: [1.29, #5]

Consider AGLI and AGMK: /LGI = /MGK by [1.15]; GL = GM by construction;
/GMK = /GLI by construction. By [1.26], AGLI 2 AGMK, and so GI = GK.

Now consider AGHI and AGJK: by the above, GI = GK. /ZHGI = /JGK by
[1.15], and since AB || CD, /GIH = Z/GKJ by [1.29, Cor. 1]. By [1.26], we find
that AGHI = AGJK. Therefore, HI = JK, which proves our claim. O
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[1.31] Exercises

1. Given the altitude of a triangle and the base angles, construct the triangle.

Proof. We propose to construct the triangle with altitude » and base angles a and

3.

Figure 14.1.22: [1.31, #1]

Let AB = h. Extend AB to f@, and construct BC such that A8 | BC [Cor. 1.11.1].

Since fﬁ € %, /DBA = «/2 radians (a right angle). Construct ﬁ such that D
is a point on %‘ and ZDAB = § — . Then ZBDA = o [1.32].

Similarly, construct C—le so that /ZBAC = % — . Then ZBCA = p.

This constructs AACD with altitude h and interior angles o and j. O



CHAPTER 14. SOLUTIONS 528

[1.32] Exercises.

3. If the line which bisects an external vertical angle of a triangle is parallel to the

base of the triangle, then the triangle is isosceles.

Proof. Construct AABC with external vertical angle ZACFE such that @ bisects
/ACE and CD I 1B. We claim that AABC is isosceles.

E
D C

o>

Figure 14.1.23: [1.32, #3]

By [1.29, Cor. 1], ZDCE = ZABC. Also by By [1.29, Cor. 1], ZDCA = ZBAC.

But /DCFE = ZDCA by hypothesis, and so ZABC = /BAC. By [1.6], AABC is

isosceles. O



CHAPTER 14. SOLUTIONS 529

[1.32] Exercises

5. Prove that the three altitudes of a triangle are concurrent. [Note: We are proving
the existence of the orthocenter of a triangle: the point where the three altitudes
intersect, and one of a triangle’s points of concurrency.]

Proof. Construct the following: AABC, altitudes AG and CF, and also BD where
D is the intersection of AG and CF. Extend BD to BE where E is a point on AC.
We claim that BE is an altitude of AABC.

Figure 14.1.24: [1.32, #5]

By the construction of /BDA, wehave /EDB = /BDA+/EDA. Consider NAED:
by [1.32] /BDA = /DEA + ZEAD. Applying [1.32] again, we obtain

/EDB = /BDA+ /EDA
= /UDEA+ /FEAD + /EDA
= g radians

since /DEA, /ZEAD, and ZEDA are the interior angles of AEDA. Hence, BE =
BD ¢ DE. It remains to be shown that /BEA is a right angle.

Suppose /BEA < /BEC. It follows that AC is not a straight segment, which
contradicts its construction as a side of AABC. We obtain a similar result if
/BEA > /BEC. Hence, /BEA = /BEC. Since the angles are adjacent, each
are right angles.

Thus, EB is an altitude of AABC, and the three altitudes of A ABC are concurrent.
This completes the proof. O
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[1.32] Exercises

6. The bisectors of the adjacent angles of a parallelogram stand at right angles.

Proof. Construct [JABDC'. Also construct Z/CBD such that it bisects ZABD as well
as ZCAD such that it bisects ZC AB. We wish to show that CB | AD.

Figure 14.1.25: [1.32], #6

By [Cor. 1.29.1], «DCB = ZCBA. By hypothesis, Z/CBA = ZCBD, and so
/DCB = Z/CBD. We may continue this line of reasoning until we obtain

/CBA=/CBD=/DCB = /ZACB

and
/ADC = /ADB = /DAC = /DAB

Consider ACED, NACEA: /ECD = /ECA (since /DCB = /ACB), /ZEDC =
/FEAC (since ZADC = /DAC), and each shares side CE. By [1.26], ACED =
ACFEA. Hence, /CED = Z/CFEA. Since ZCED, /CFEA are adjacent, they are right
angles. It follows that CB | AD, which completes the proof. O
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[1.33] Exercises

1. Prove that if two segments AB, BC are respectively equal and parallel to two
other segments DE, EF, then the segment AC joining the endpoints of the former
pair is equal in length to the segment DF joining the endpoints of the latter pair.

Proof. Construct segments AB, DE, BC, and EF such that AB = DE, BC = EF,
AB || DE, and BC || EF. Construct segments AC and DF. We wish to show
AC = DF.

Figure 14.1.26: [1.33, #1]

Construct IC such that IC | AB and JE such that JE | DE. Also construct AT
such that AT || BC and DJ such that D.J || EF.

Suppose ZABC < ZDEF. It follows that % and ﬁ intersect at a point; this con-
tradicts the construction that BC | EF. A similar contradiction arises if ZABC >
/DFEF. Hence, /ZABC = /DEF.

Consider AABC, ADEF: AB = DE, /ABC = /DEF, and BC = EF. By [1.4],
ANABC = ADEF, and so AC = DF. O
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[1.34] Exercises

1. Show that the diagonals of a parallelogram bisect each other.

Proof. Consider JABCD and diagonals AD, BC. Let point F be the intersection of
AD and BC. We claim that AE = ED and CFE = EB.

Figure 14.1.27: [1.34], #1

Since AB || CD, /BCD = /CBA. Similarly, we find that /CDA = /DAB. Con-
sider AECD and ANAEB: since /ECD = /EBA, /EDC = /EAB, and CD = AB,
by [1.26] we find that AECD = AAEB. Hence, AE = ED.

A similar argument shows that CE = EB, mutatis mutandis, which proves our

claim. O
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[1.34] Exercises

2. If the diagonals of a parallelogram are equal, each of its angles are right angles.

Proof. Construct JABCD and suppose that AD = BC. We wish to show that each
interior angle of L1IABCD is a right angle.

Figure 14.1.28: [1.34], #2

By [1.34], AC = BD and AB = C'D. By [1.34, #1], E bisects both AD and BC'. Since
AD = BC by hypothesis,
AE=ED=CE =EB

By [1.32, #6], ZCED = /DEB = Z/BEA = ZAEC = 7 radians in measure. By
[1.4],
ANECD = ANEDB = ANEBA= AFAC

and so
AB=BD=DC =CA

Consider AACD, ABAC: AD = BC by hypothesis and their sides are equal by
the above. By [1.8], AACD = ABAC. It follows that ZACD = /BAC. By [1.34],
/ACD = Z/ABD. Clearly,

LACD = LABD = /BAC = ZBDC

By [1.29], we find that the sum of the interior angles of 1ABC D = 27 radians (four
right angles). Since each angle equals ZACD in measure, ZACD = 7/2 radians;
or, each interior angle of L1IABCD is a right angle, which completes the proof. [
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[1.37] Exercises

1. If two triangles of equal area stand on the same base but on opposite sides of the
base, the segment connecting their vertices is bisected by the base or its extension.

Proof. Suppose AABG and AABI share base AB such that G stands on the oppo-
site side of AB than I. Also suppose AABG = AABI. We claim that GT is bisected

by ﬁ
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Figure 14.1.29: [1.37, #1]

Extend AB to f@, and let J be the point where GI intersects AB. Construct GK
and L1 such that GK I 4B and LI I AB. By [1.30], K I 1. Also construct GB

and K1 such that GB I K1. Hence, JGKIL is a parallelogram.

Construct JL and JK. If ZLJK = & radians in measure, then LK is a segment.
Since G1 is a segment, /GJL + /LJI = 7 radians. By [1.15], /K JI = /GJL, and
so /LJK = /KJI + /LJI = r radians. Hence, LK = JL & JK. Furthermore, LK
and GJ are diagonals of IGKIL.

By [1.34, #11, GJ = JI. Since GI = GJ @ JI, GI is bisected by AE at J, which
completes the proof. O
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[1.38] Exercises

1. Every median of a triangle bisects the triangle.

Proof. Construct AABC where AF is the median of side BC. We claim that AABF =
ANACF.

Figure 14.1.30: [1.38, #1]

Construct AE such that AL | BC. Clearly, AABF and AACF stand between the
same parallels. Since BF = F'C by hypothesis, by [1.38] we find that AABF =
ANACF. This completes the proof. O

Remark. We do not claim that the triangles are congruent, merely equal in area.
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[1.38] Exercises

5. One diagonal of a quadrilateral bisects the other if and only if the diagonal also

bisects the quadrilateral.

Proof. Construct quadrilateral ABC'D and diagonals AC and BD.

Claim 1: If BD bisects AC, then BD bisects ABCD.

Figure 14.1.31: [1.38, #5]

Extend AC to AC and construct DY and BZ such that DY I A0 and BZ I A0 by
[1.301, DY || BZ.

Since AE = EC by hypothesis, by [1.38] AABE = ACBE and AADE = ACDE.
Since AADB = NABE & NADE and ACDB = ANCBE & ACDE, it follows that
ANADB = ACDB. Since ABCD = ANADB & ACDB, BD bisects ABCD.

Claim 2: If ABCD is bisected by BD, then BD bisects AC.

Consider AADB and ACDB: the triangles stand on the same base (BD) but on
opposite sides, and AC connects their vertices. By [1.37, #1], BD bisects AC.

This completes the proof. O
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[1.40] Exercises

1. Triangles with equal bases and altitudes are equal in area.

Proof. Suppose we have two triangles with equal bases and with equal altitudes.
Since the altitude of a triangle is the distance between the parallels which contain
it, equal altitudes imply that the triangles stand between parallels which are equal
distances apart. Therefore [1.37], [1.38], [1.39], and [1.40] prove the claim. O

[1.40] Exercises

2. The segment joining the midpoints of two sides of a triangle is parallel to the
base, and the medians from the endpoints of the base to these midpoints each bisect
the original triangle. Hence, the two triangles whose base is the third side and
whose vertices are the points of bisection are equal in area.

Proof. Construct AABC with midpoint D on side AB and midpoint ¥ on side AC.
Construct DE, DC, and EB. We claim that DE || BC and

AADC = ABCD = ACBE = AABE

Figure 14.1.32: [1.40, #2]

Construct EF = DE & DF where DE = DF; also construct F'B. Consider AADFE
and ABDEF: by [1.15], ZADE = /BDF}; by hypothesis, AD = BD; DE = DF by
construction. By [1.4], AADE = ABDF,and so /FBD = /DAE. By [1.29, Cor. 1],
FB | AC.

Since AADE = ABDF, FB = AE. Because AE = EC by construction, FB = EC.
By the above, FB | EC; by [1.33] EF = BC and EF || BC. Hence, OFECB is a
parallelogram, and so DE || BC.

By [1.38, #1], BE bisects AABC, and so AABE = ACBE. Similarly, CD bisects
ANABC, and so AADC = ABDC.
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Figure 14.1.33: [1.40, #2]

By applying [1.38, #1] again,

ABDC = % -ANABC = ACBE

By the above, we obtain

ANADC = ABCD = ACBE = AABE

which completes the proof. O
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[1.40] Exercises

4. The segments which connect the midpoints of the sides of a triangle divide the
triangle into four congruent triangles.

Proof. Suppose AABC has midpoints D on side BC, E on side AC, and F on side
AB. Construct segments DE, EF, and DF. We claim that

NAEF 2 NECD =2 ANFDB = ADFE

Figure 14.1.34: [1.40, #4]
By [1.40, #2], we find that DE || AB, DF || AC, and EF || BC. By [1.29, Cor. 1], we
find that:

/EDC =/FFA=/DBF =/DEF
LCED = /EAF = /DFB = ZEDF
LECD = /ZAEF = /FDB = /ZEFD

Since JEFCD is a parallelogram, EF = CD. Since DEFBD is a parallelogram,
EF = BD, and so

EF =CD =DB
By multiple applications of [1.26],

NAEF 2 ADEF =2 ANECD = DBF

which proves our claim. O
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[1.46] Exercises

1. Two squares have equal side-lengths if and only if the squares are equal in area.

Figure 14.1.35: [1.46, #1]

Proof. Construct squares JABCD and DEFGH as well as BD and FH.
Claim 1: If AB = EF, then JABCD =HOEFGH.

Consider AADB, AEHF: AB=FEF = AD = EH and /DAB = /HET (since each
are right angles). By [1.4], AABD =2 AEFH. 1t follows that AABD = AEFH.

By [1.41], HDABCD = $AABD and DEFGH = ;AEFH. By the above, we obtain
LHABCD = HEFGH, which proves our claim.

Claim 2: If HABCD = OEFGH, then AB = EF.

By [1.41], HABCD = A AABD and DEFGH = LAEFH, and so AABD = AEFH.
Let b; equal the base of AABD, h; equal the altitude of AABD, by equal the base
of AEFH, and hs equal the altitude of AEFH. Since the area of a triangle = %bh,
we have

lblhl = lbghg

2 2

Since [JABCD and LJEFGH are squares, by = hy and by = hy. Hence, b2 = b3, or
(AB) = (ﬁ)2 It follows that AB = EF, which completes the proof. O
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[1.47] Exercises

4. Find a segment whose square is equal to the sum of the areas of two given

squares.

Proof. Let DABCD and EFGH be the given squares. We wish to construct BF
such that (BF)? = DABCD + HEFGH. Position JABCD and JEFGH such that
C = F and BC L DF.

[}
K
[
A B
D Cc
- QF
H G
o 9

Figure 14.1.36: [1.47, #4]

Construct DBF K such that DBF KT is a square with side-length BF. By [1.47],
(BC)? + (CF)? = (BF)?. Since (BC)? = JABCD and (CF)? = OEFGH, BF is the
required segment. O
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[1.47] Exercises

10. Prove that each of the triangles AAGK and ABEF formed by joining adjacent
corners of the squares in [1.47] is equal in area to AABC.

Proof. Construct the polygons as in [1.47] as well as KG and EF. We claim that

AKAG = ANABC = ABEF

Figure 14.1.37: [1.47, #10]

Recall that the sum of the interior angles of a triangle is = radians in measure.
Consider AABC' notice that if ZACB = 7 radians and ZBAC = v radians, then

ZABC = 3 — vy radians. Since /K AC = /GAB = 7 radians and

LKAG + ZKAC + Z/BAC + ZGAB = 2rradians
it follows that, in radians:

LKAG = 27— /ZLKAC — /ZBAC — LGAB

™ ™

= 2 _— — —_ —

Ty

= ﬂ'—’y
Similarly
™ i

/FBE = 2 —2-——(—— )
ey
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Recall that the general form of the equation of the area of a triangle is:

1
Area = 5%y sin 6
where 0 is the interior angle to sides = and y. So

Area AKAG = 1AK - AG-sin(ZKAG)
= 1AC-AB-sin(r —7)
= 1AC-AB-sin(y)

by the properties of the sine function. We also have

Area AABC = 1AB-AC-sin(/BAC)
1AC - AB - sin(v)
= Area AKAG

Similarly,

Area ABEF = 1BEBF -sin(/FBE)
= 1iBC-AB-sin(Z +7)
= 1BC-AB-cos(y)

and

Area AABC = 1AB-BC-sin(f —7)
%BC’ - AB - cos(7)
= Area ABEF

Therefore AK AG = NABC = ABEF which proves our claim. O



CHAPTER 14. SOLUTIONS 544

Chapter 1 exercises

1. Suppose A; is constructed inside A, such that each side of A, passes through
one vertex of Ay and each side of A\, is parallel to its opposite side in /\;. We claim
thatA2:4-A1 .

Proof. Construct AABC, DF | BC such that A is on DF, EF | AB such that C is
on ﬁ, and DE | AC such that B is on DE. We claim that ADEF = 4 - AABC.

Figure 14.1.38: Chapter 1 exercises, #1

Since DF' || BC, by [1.41], AABC = 1 . HAFCB. Also by [1.41], AAFC = 1.
CLAFCB, and so AABC = ANACF. Similarly, AABC = NABD, or

ANABC = NACF = ANABD

Also by [1.41], since EF | AB, AABC = ABEC, or

AABC = AACF = ANABD = ABEC

Since ADEF = NABC & NACF & ANABD & ABEC, the proofis complete. O
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Chapter 1 exercises

8. Construct a triangle given the three medians.

Proof. Suppose we are given the medians of a triangle: AE, BF, and CD. We shall
construct AABC.

w

m
(@]

Figure 14.1.39: Chapter 1 exercise #8

Construct AB, AC, and BC. Since AF is amedian, BE®EC = BC where BE+EC.
Similar statements can be made for the remaining sides, mutatis mutandis. Hence,
AABC is constructed. O
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Chapter 1 exercises

16. Inscribe a rhombus in a triangle having for an angle one angle of the triangle.

Proof. Construct AABC. Let Z/DAB bisect Z/CAB where D is a point on the side
BC. Construct E aswell as ZADF, /ADE such that

LADF = /DAB = ZADE

We claim that LIAEDF is the required rhombus.

Figure 14.1.40: [Ch. 1 Exercises, #16]

Consider ADFA and ADEA: AF = AE, Z/DAF = ZDAFE by construction, and the
triangles share side AD. By [1.4], ADFA= ADFEA.

Applying [1.6], we obtain

DF =FA=AF =FED
Since ZADE = /DAF, by [Cor. 1.29.1], FA | DE. Similarly, we can show that
FD || AE.

By [Def. 1.29], HJAEDF is a rhombus. Since [JAEDF is inscribed in AABC and
AABC shares ZBAC with JAEDF, our proofis complete. O
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14.2 Solutions for Chapter 2

[2.4] Exercises

2. If from the right angle of a right triangle a perpendicular falls on the hypotenuse,
its square equals the area of the rectangle contained by the segments of the hy-

potenuse.

Proof. Construct right triangle AABC where /BAC is a right angle. Construct
segment AD such that AD | BC. We claim that (AD)? = DB - DC.
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Figure 14.2.1: [2.4, #2]

Construct rectangle IDCHG where BD = DG. (Note: geometrically, we claim that
(AD)? = EDCHG.)

By [1.47], we find that

(AD)*+(DC)> = (AC)?
(AD)* + (DB)* = (AB)?
as well as
(AB)* + (AC)* = (DB+ DC)?
= (DB)?+2-DB-DC + (DC)?
Hence,
(AD)? + (DC)* + (AD)* + (DB)* = (AB)?+ (AC)*
2. (AD)?> 4+ (DC)? + (DB)> = (DB)?>+2-DB-DC + (DC)?
2-(AD)? = 2.-DB-DC
(AD)> = DB-DC

which completes the proof. O
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[2.4] Exercises

9. Prove [Cor. 2.4.4]: The square on a segment is equal in area to four times the
square on its half.

c

Figure 14.2.2: [2.4, Cor. 3]

Proof. Suppose we have AABD such that AB =2- AC, CD 1 AB, and CD = AC.
We claim that (AB)% =4 - (AC).

Let AC = x. Then AB = 2z. It follows that

(AB)? = (22)? = 42> =4 - (AC)?

This proves our claim. O

[2.6] Exercises

7. Give a common statement which will include [2.5] and [2.6].

Proof. Construct fﬁ and on AB, locate midpoint C. Choose a point D on fﬁ such
that D is neither A, B, nor C. We have two cases:
1) D is between A and B. By [2.5], AD - DB + (CD)? = (CB)?

2) D is not between A and B. By [2.6], AD - DB + (CB)? = (CD)?

This completes the proof. O
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[2.11] Exercises
3. If AB is cut in “extreme and mean ratio” at H, prove that

(a) (AB)? + (BH)? = 3 - (AH)>

F G
o—0

A H B

C K D

Figure 14.2.3: [2.11]

Proof. Using the construction from [2.11], z = —§(1 £ V/5). (We may ignore results
where = < 0.) Since AB = a, BH = a — z, and AH = z, notice that 2% = % (3+V5)
and (a — z)? = & (7+3V5). Or,

@By + (BH)? = o

which completes the proof. O
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Chapter 2 exercises
15. Any rectangle is equal in area to half the rectangle contained by the diagonals

of squares constructed on its adjacent sides.

Proof. Construct rectangle L1ADC B, squares [JGABH and [JBCFE, and diagonals
GB and BF. We claim that 1 - GB - BF = AB - BC.

G A
(] L ]

Figure 14.2.4: [Ch. 2 Exercises, #15]

Let AB = z and BC = y. By [1.47], it follows that GB = /2 and BF = yv/2. Then

1.GB-BF = 1.2z

which completes the proof.
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14.3 Solutions for Chapter 3

[3.3] Exercises

5. Prove [3.3, Cor. 4]: The line joining the centers of two intersecting circles bisects
their common chord perpendicularly.

Proof. Construct the figures from [1.1, #2]. We claim that AB | CF and that AB
bisects CF.

=
Figure 14.3.1: [1.1, #2] and [3.3, #5]

From the proof of [1.1, #2], ZALC = ZALF. Since the angles are adjacent, they
are right angles; otherwise, CF would not be a side of ACDF and ACFEF. Hence,
AB 1 CF.

Notice that AACL and AAF 'L are right triangles. By [1.47], (4L)°+(ZC)” = (AC)”
and (AL)" + (LF)" = (AF)".

Since AC and AF are radii of OA, AC = AF. Hence, (AL)° + (LC)° = (AL)" +
(F)Q, which simplifies to LC' = LF. Since CF = LC & LF, AB bisects CF, which
completes the proof. O
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[3.5] Exercises

2. Two circles cannot have three points in common without coinciding.

Proof. Suppose instead that two circles (OC, OA) have three points in common (Z,

F, and G) and do not coincide.

Figure 14.3.2: [3.5, #2]

By [3.3, Cor. 4], the line joining the centers of two intersecting circles (j@) bisects
their common chord perpendicularly; hence, AC | BF.

Similarly, AC bisects EG. But EG can be constructed so that EG and AC do not
intersect, a contradiction. Therefore, OC and OA coincide. O
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[3.13] Exercises

3. Suppose two circles touch externally. If through the point of intersection any
secant is constructed cutting the circles again at two points, the radii constructed

to these points are parallel.

Proof. Suppose OA and OC touch at point B. By [3.13], these circles touch only at
B. Construct secant DBE. We claim that AD || CE.

Figure 14.3.3: [3.13, #3]

Construct AC. By [3.12], AC intersects B.

Consider AABD and ACBE: Z/ABD = ZCBE by [1.15]; since each triangle is
isosceles, ZADB = Z/CEB. By [1.29, Cor. 1], AD || CE. This proves our claim. [

Corollary. If two circles touch externally and through the point of intersection any
secant is constructed cutting the circles again at two points, the diameters con-

structed to these points are parallel.
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[3.13] Exercises

4. Suppose two circles touch externally. If two diameters in these circles are par-
allel, the line from the point of intersection to the endpoint of one diameter passes
through the endpoint of the other.

Proof. Suppose OA and OC touch at point B. By [3.13], these circles touch only at
B. Construct AC, and construct diameters DE and F'G such that DE || FG and
DE 1| AC. 1t follows that AC | FG. We claim that DB intersects G.

Figure 14.3.4: [3.13, #4]

Suppose that DB does not intersect G. Extend FG to F( and suppose that DB
intersects ﬁ at H.

Consider AABD and ACBH: by hypothesis, /DAB = Z/HCB; by [1.15], /ZABD =
/CBH; applying [1.32], we obtain ZADB = ZCHB. That is, AABD and ACBH

are equiangular.

However, AABD is an isosceles triangle and ACBH is not since BC = CG and
CG < CH; hence, the triangles are not equiangular, a contradiction.

An equivalent contradiction is obtained if DB intersects % at any point other than

G, mutatis mutandis. This proves our claim. O
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[3.16] Exercises
1. If two circles are concentric, all chords of the larger circle which touch the smaller

circle are equal in length.

Proof. Construct OA; with radius AB and O A, with radius AC. On OA,, construct
chord DE such that DE touches OA; at B. Also on OAs, construct chord H.J such
that H.J touches OA; at G. We claim that DE = HJ.

D

Figure 14.3.5: [3.16, #1]

Notice that AG = AB since each are radii of OA;. By [3.16], DE and H.J have no
other points of intersection with OA,. Hence, DE and H.J are equal distance from
A, the center of OA,. By [3.14], DE = HJ. This proves our claim. O
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[3.30] Exercises

1. Suppose that ABCD is a semicircle with diameter AD and a chord BC. Extend
BC to BC and AD to B, and suppose each ray intersects at E. Prove that if CE
is equal in length to the radius of ABCD, then arc AB = 3-CD.

Proof. Our hypothesis and claim are stated above.

Figure 14.3.6: [3.30, #1]

Construct CD, CF, FB, and AB. Notice that

CE =DF =CF = BF = AF

By [1.5], we find that /CEF = /COFE, /FCB = /FBC, and /FBA = /FAB.

Define /CEF = a, /ECF =b, /FCB = ¢, /OFB = d, /FBA = e, and /BFA = f.
Using linear algebra, we obtain:

b+c¢ = 180
2a+b = 180
2c+d = 180
2¢e+ f = 180

a+d+f = 180
a+c+2 = 180

where the RHS is in degrees. In matrix form:

[0 1 1 0 0 0180 ]
210 0 0 0]180
002 1 0 0]180
000 0 2 1]180
1001 0 1]180
10 1 0 2 0180 |
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In reduced row echelon form, this becomes:

1 0 0 0 0 020 |
01 0 0 0 0]140
001 0 0 040
000 1 0 0]100
0000 1 060
100000 1]60 |

Or, /CEF = 20°, /ECF = 140°, /FCB = 40°, ZCFB = 100°, ZFBA = 60°, and
/BFA = 60°.

Since ACEF is isosceles, ZCFD = /CFFE = 20°, and so ZBFA =3-ZCFD = 60°.
By [7.29, Cor. 1], it follows that AB = 3-CD. O
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14.4 Solutions for Chapter 4

[4.4] Exercises

Figure 14.4.1: [4.4, #1]

1. In [4.4]: if OC is constructed, prove that the angle ZACB is bisected. Hence, we
prove the existence of the incenter of a triangle.

Proof. Consider AOFC and ACDO: by the proof of [4.4], ZOFC = ZCDO since
each are right angles. By [1.47],

Since OF = OD (each are radii of 00), FC = DC. By [1.8], AOFC = ACDO, and
so ZOCF = £ZOCD.

It follows that OC bisects ZACB, and therefore O is the incenter of AABC; that
is, O is the point of intersection of the bisectors of the three internal angles of
ANABC. O
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[4.5] Exercises

1. Prove that the three altitudes of a triangle (A ABC') are concurrent. (This proves
the existence of the orthocenter of a triangle.)

Proof. Construct AABC; also construct altitudes AE, BD, and CF. We wish to
show these altitudes are concurrent.

Figure 14.4.2: [4.5, #1]

Through vertex A, construct Q<—F>B such that Q<—})2 | BC. Similarly, construct FC)) | AB
through C and PR | AC through B. Notice that the segments QR, PQ, and PR
constitute APQR.

We have also constructed DRACB, HQABC, and DPBAC. It follows that AR = BC
and AQ = BC, or AR = AQ. Hence, A is the midpoint QR; similarly, B is the
midpoint PR and C is the midpoint of PQ.

Since AE 1 BC and BC || QR, AE 1 QR; or, AE is the perpendicular bisector of
QR. Similarly, BD is the perpendicular bisector of RP, and CF is the perpendicular
bisector of PQ. All are concurrent at the circumcenter of APRQ by [4.5].

Since these segments are also the altitudes of A ABC, the proofis complete. O
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[4.7] Exercises

1. Prove [Cor. 4.7.1]: the circumscribed square, LJEHGF, has double the area of
the inscribed square, [1BC D A.

Figure 14.4.3: [4.7]

Proof. Consider IBFCO: by [1.34], BC bisects IBFCO, and so OBFCO = 2 -
ANOBC.

Consider AOBA and AODC: ZAOB = £ZDOC by [1.15] and the adjacent sides to
these angles are equal since they are radii of ©OO. By [1.4], AOBA = AODC.

Consider AOBA and AOBC: ZAOB = /COB since AC is a segment and the
adjacent sides to these angles are equal since each are radii of OO. Again by [1.4],
AOBA = NOBC. It follows that AOBA = NOBC = AODC = NOAD, and so each
of these triangles is equal in area.

Consider AEBA and AOBA: EB = OA = AE = OB since JEBOA is a square,
and each triangle shares AB. By [1.8], AEBA = AOBA, and so AEBA = ANOBA.

Since JEBOA = AEBA® AOBA,HEBOA =2- AEBA.

By the proof of [4.7], HEBOA = LIBFCO = [HAODH = [HOCGD. Since
UEHGF =UHUEBOA®HBFCO & HQAODH & BOCGD

it follows that HEHGF = 4-LDEBOA =8 - AEBA.

Notice that 1 BCDA = 4- AEBA, and so UEFHGF = 2 - BCDA, which completes
the proof. O
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[4.10] Exercises

1. Prove that AACD is an isosceles triangle whose vertical angle is equal to three

times each of the base angles.

Figure 14.4.4: [4.10]

Proof. We claim that AACD is isosceles where

/JACD =3-/DAC =3- LZADC

Since /BDA = /DBA =2-/DAB by the proof of [4.10], we must have that

/DAB = 36°
/DBA = T72°
/BDA = 72°

Notice that
/DAB = /DAC = /ZADC = 36°

By [1.13], ZACD = 108°, and since 36 - 3 = 108, the proofis complete. O
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14.5 Solutions for Chapter 5

Chapter 5 Exercises

2. If four numbers are proportionals, their squares, cubes, etc., are proportionals.

Proof. Let a, b, x, and y be natural numbers such that

We claim that

where n > 1 is a positive integer.

The equality holds for n = 1 by assumption. Assume that the equality holds for

n=k:

Then

And so the equality holds for n = k + 1, and therefore it holds for n > 1. The proves

our claim. 0
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14.6 Solutions for Chapter 6

[6.7] Exercises

3. Prove the Transitivity of Similar Triangles, i.e., if ANABC ~ ADEF and ADEF ~
AGHI,then AABC ~ ANGHI.

Proof. Suppose NABC ~ ADEF and ADEF ~ AGHI. We wish to show that
NABC ~ ANGHI.

By [Cor. 6.4.1], AABC and ADEF are equiangular; also, ADEF and AGHI are
equiangular. Clearly, AABC and AGHI are equiangular.

Applying [Cor. 6.4.1] again, AABC ~ AGHI. This completes the proof. O

Questions? Comments? Did you find an error?
Email me at: dpcallahan@protonmail.com

Make sure to include the version number, which can be found at the beginning of
this document.
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