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Preface

Human beings have an innate need to make things up. People make up sto-
ries, nations make up histories, scientists make up theories to explain how
the world works and philosophers ponder how we know things and how
we should live and behave. These made-up tales often conflict with each
other, but perhaps there is one thing on which we can all agree: that it is
necessary to make up numbers to help us cope with life and with each other,
from times when ‘one, two, many’ seemed to be enough, right down to the
modern concepts of number used by scientists and mathematicians today.
We might not always agree, nor even think about, what numbers are, but
no-one is likely to deny that we need them.

Numbers cropup everywhere inmodern life: on clocks, calendars, coins
and in cash dispensers, for example. At primary school we all spent much
time learning tomanipulate numbers: we added and subtracted, learntmul-
tiplication tables by rote, practised long division—some of us even learnt
how to compute square roots. Much of this is now done routinely with cal-
culators and computers andwe forget the effort spent in acquiring the basics
when we were young—perhaps we even forget how to use them.

If you have ever wondered how all this came about, how our concept
of numbers has developed over the centuries, and how various puzzles and
conceptual problems encountered along the way were resolved, then this
book should be of interest to you. Youmight be a current or intendingmath-
ematics undergraduate, or a keen student of A-level mathematics, or indeed
be teaching the subject at secondary school. Or you might simply be inter-
ested in mathematics and seek to learn more about its development.

The traditional mathematics syllabus, at school, college or university, at
best makes passing reference to the fascinating history of our subject. Stu-
dents seeking to trace the development ofmathematical ideas often find that
there are relatively few detailed but accessible sources to guide them; and
while texts presenting ‘popular mathematics’ can provide much fun with
examples and interesting anecdotes, the thread of conceptual development
sometimes suffers in the process.

This book makes no pretence to be an academic treatise in the history
of mathematics, nor is it a mathematics textbook. It seeks to tell a story, one
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that I hope may inform readers whose prior experience of abstract mathe-
matical arguments is not extensive.

To understand what mathematics does and how it has developed, it
is essential to do some mathematics. In presenting problems whose solu-
tions led to ever wider classes of number, as well as discussing concep-
tual obstacles that were overcome, I make use of mathematical notation,
basic manipulation of equations and step-by-step mathematical reasoning.
Some of this has been placed in shaded sections that readers in a hurry
may decide to skip, hopefully without loss of continuity. To assist readers
seeking more detail on particular points, an online resource—available at
https://www.openbookpublishers.com/product/1279#resources—entitled
Mathematical Miscellany (abbreviated to MM in the text) accompanies this
book. Its purpose is to remind the reader of basic mathematical concepts,
provide simple technical details, as well as some longer proofs, that are
omitted in the text, and provide more background, mathematical and his-
torical, on topics addressed in the book.

It may seem that nothing more needs to be said about numbers. So
it may surprise some readers of the final chapters that mathematicians to-
day are not immune to doubts about the foundations of their subject. After
all, the rigour of mathematical proof and the timelessness of mathematical
truths have been hallmarks of the discipline ever sinceAncient Greece, more
than 2000 years ago. Until quite recently, countless generations of school
pupils spent years wrestling with the inexorable logic of the geometric con-
structions and theorems in Euclid’s Elements. Today they also encounter the
abstraction of algebraic symbols in solving equations and (somewhat later)
marvel at the apparently miraculous success of the Calculus in the quanti-
tative analysis of motion and forces in our physical universe, which led, in
turn, to technological revolutions that now govern our everyday lives. Why,
indeed, should any of this be subject to doubt?

Naturally, I am not claiming that I am beset with doubt. Rather, I regard
mathematics as a human activity, whose historical development reflects the
continuing refinement and abstraction of its concepts—including the con-
cept of number, and even that of proof—as a process of evolution. This
process is conducted collectively and is stimulated by careful observation
of our environment, creative use of the imagination, and intellectual rigour.
From that perspective it does not seem so different from other human en-
deavours. It is not infallible, nor are its precepts beyond question, however
well-hidden or abstruse they may be. In the final chapter of this book this
is illustrated, in a graphic account of disputes over the foundations of the
subject, by the eminent mathematician John von Neumann, who, over sev-
enty years ago, explained the conundrum posed there more vividly than I
can today.
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Viewed in this light, the lives, work, achievements and strivings ofmath-
ematicians, ancient and modern, might perhaps be seen in more human
terms. Those who teach the subject, at any level, might find such histori-
cal perspectives helpful when seeking to overcome the all too prevalent per-
ception of the subject as ‘too difficult’, or even as ‘dry’ and devoid of human
drama, humour or fallibility.
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Prologue: Naming Numbers

In themathematics I can report no deficience, except it be that men do not sufficiently
understand this excellent use of the pure mathematics, in that they do remedy and
cure many defects in the wit and faculties intellectual. For if the wit be too dull, they
sharpen it; if too wandering, they fix it; if too inherent in the sense, they abstract it.

Sir Francis Bacon, The Advancement of Learning, 1605
When I was very young I asked my father: ’What is the largest number

you know?’ and he answered ’octillion’. At the time I diid not know any
compact notation forwriting large numbers, such aswriting them in powers
of 10, but I soon decided that an octillion, whatever it might look like, must
be too small to be the largest number. After all, if you add 1 to it you get a
bigger one!

The obvious answer, I decided, was to count to infinity, or at least far
enough to find a number for which I would need to invent a new name. I
resolved to try this in bed that night, but sleep overcame me soon after the
12, 000th sheep. But Iwas now clear that there is no such thing as ‘the largest
whole number’.

And that is something that strikes me as quite profound. After all,
our senses provide us with information that reflects the finiteness of our
surroundings—even if they may seem forbiddingly large when you’re six
years old—yet here we have a system of allocating names, or symbols, that
is essentially without any limits. How does this system of numbering, ab-
stracted by us as a collective mental construct, reflect the finite physical en-
vironment? Or does our perception of the need for counting not originate
in the observation of our immediate surroundings?

Counting numberswere used for practical purposes in pre-historic times.
Whether hunting or gathering, farming or trading, even in battle, no-one
could readily escape the need to distinguish between ‘one’, ‘two’ and ‘many’:
for example, when describing a pack of wolves, the day’s wild fruit pick-
ings, a flock of sheep, sacks of corn offered for exchange, or the size of the
enemy’s clan. Simple tallying, such as recording the number of any group
with notches on a stick or a collection of pebbles, probably preceded the
actual naming of numbers, but at some stage the need to invent verbal de-
scriptions of the counting process became unavoidable.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.12



2 PROLOGUE: NAMING NUMBERS

Today, we have become so used to our decimal system of naming the
numbers we use every day that questions about the origin of their names
seldom enter our consciousness—we learn them at mother’s knee, at the
same time as the alphabet. Usually we start by counting on the fingers of
both hands.

1. Naming large numbers

In any event, Imight have had troubleworking outwhat ‘octillion’ could
mean, since even now there is no universal agreement about the names of
various (fairly) large numbers! Everyone agrees that we call a thousand
times a thousand a million. In the decimal system we ‘add a zero’ when-
ever we multiply to 10 and we have a convenient shorthand notation, using,
for example, 1000 = 10×10×10 = 103, where the exponent 3 simply shows
how many times we multiplied by 10. Similarly, we write one million as
103× 103 = 106. After that, however, different naming conventions emerge.

If, like my father, you are German, or any continental European, you
would (today) stick to the Latin origins of the terms we might use when
multiplying amillion times—whichmeans thatwe add six zeroes each time:

a billion is a ‘bi-million’, which is obtained bymultiplying amillion (106)
by a million (106), so it becomes 106 × 106 = 1012,

a trillion (tri-million) is a million billion (106 × 1012 = 1018),
a quadrillion becomes a million trillion (106 × 1018 = 1024),
and we continue via quintillion, sextillion, septillion—adding 6 to the

exponent each time—to reach octillion as 1048.
You could go on to nonillion (1054) and decillion (1060), although these

terms reached the Oxford English Dictionary only relatively recently and the
dictionary entry currently stops there. Not to be outdone, Wikipedia lists
100 such number names—each amillion times the previous one—up to cen-
tillion (10600).

This continental European number naming scale is now known as the
long scale. It certainly has a long history. One of the earliest consistent ac-
counts of number names generated in this fashion occurs in a 1484 article
Triparty en la science des nombres by the French mathematician Nicolas Chu-
quet (c.1445-c.1488) who mentions number names very similar to the above,
up to ‘nonyllion’, and continues: ‘and so on with others as far as you wish
to go’.

TheAmerican version of these number names is known as the short scale
In this scale, having reached a million, we then create a new number name
when we’ve reached a thousand times the previous one. In terms of powers
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Figure 1. 1021 pengo banknote1

of 10, in the short scalewe create newnameswheneverwe add 3 to the expo-
nent. In this scale a billion is therefore a thousandmillion (103×106 = 109),
although the Europeans confuse matters by calling 109 a milliard instead!

Continuing up the short scale, we reach a trillion as a thousand (short-
scale) billion (103 × 109 = 1012), so a short-scale trillion is the same num-
ber as a long-scale billion. And so it goes on, confusing us all. Just for the
record: repeatedly multiplying by 103 means that the short-scale octillion is
a mere 1027—while in the long scale, 1027 becomes a thousand quadrillion,
so perhaps it should really be a ‘quadrilliard’?

Currently, the USA, UK andCanada—andwith themmost other Anglo-
phone aswell as Arabic-speaking countries—use the short scale, whilemost
countries in Europe, plusmost French, Spanish or Portuguese-speaking coun-
tries elsewhere, prefer the long scale. Brazil is a rather large South-American
exception to this rule, while many Asian countries, notably China, India,
Japan, Pakistan and Bangladesh, employ different number-naming systems
altogether.

Number names beyondquadrillion (in either scale) are used fairly rarely.
During periods of hyperinflation—in Germany in 1923, Hungary in 1946,
or more recently, Serbia or Zimbabwe—some bank notes with very high
denominations were used briefly. The highest was a Hungarian banknote
nominally worth 1021 pengo, which was printed but never issued. Hungary
uses the long scale and, since 1021 = 109 × 1012, the nominal value of the
note was shown proudly as one milliard billion pengo, or ‘egy milliard b.-
pengo’. (Had they used the short scale they could have called it ‘sextillion
pengo’.)

In any event, there is no real need to invent names for large numbers,
since what we call scientific notation solves problems of this kind at a stroke,
simply by use of the decimal point and powers of 10. So we can write
1, 250, 000 (‘one-and-a-quarter million’) as 1.25 × 106, for example. Scien-
tific notation enables us to compare large numbers quite simply: the order
of magnitude is given by the power of 10 (the exponent) we need to use when

1https://commons.wikimedia.org/wiki/File:HUP_1000MB_1946_obverse.jpg

https://commons.wikimedia.org/wiki/File:HUP_1000MB_1946_obverse.jpg
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we describe the number in this fashion. Thus, the estimated age of the uni-
verse is given as 4.32× 1017 seconds, the number of stars in the observable
universe is around 7× 1022, the most massive black hole so far observed is
said to weigh some 8 × 1040 kilogrammes (recall that a kilogramme is 103

grammes) and so on.
And it works just as well for very small numbers: we simply replace

positive exponents by negative ones (that is, we divide, rather thanmultiply,
by various powers of 10). In this notation, Planck’s constant, the ‘quantum of
action’ in quantum mechanics, is 6.62606957 × 10−34 (the units are metre-
squared kilogramme per second, since you ask), while an electron ‘weighs’
about 9.11 × 10−28 grammes. So the truth is that we needn’t really worry
about ‘naming’ large numbers at all!

2. Very large numbers

I raised my innocent question about large numbers nearly five decades
before the advent of Google, so perhaps it was not altogether surprising that
my father was unaware that in 1920 the nine-year old Milton Sirotta had al-
ready invented the name googol for a large number that his uncle, the math-
ematician Edward Kasner, had dreamt up. A googol can be written as a 1
followed by a hundred zeros—or, more compactly, as 10100.

In [24] Kasner reported that they had then invented ‘googolplex’ as a
number with 1 followed by ‘writing zeroes until you got tired’, upon which
Kasner decided to allocate this name to the number with a googol of ze-
ros; in other words, 1010100 . Of course, we can go on and on. For example,
Googlewill tell you that a ‘googolplexian’ has been defined as 101010100 , which
is written as a 1 followed by a googolplex of zeros!

Why anyone should care, I am not sure, but perhaps we can ask Google.
After all, its name is a misspelling of ‘googol’ (apparently the mistake oc-
curred in 1997 while searching for an available internet domain name for
the new company) and it cheekily misspells its headquarters similarly as
‘Googleplex’.

In the last half-century even larger numbers have been devised, some
of which were put to good use in advanced areas of modern mathemat-
ics. We will not attempt to discuss them here, except to say that several
of these numbers are too large even for our scientific notation. Take, for
example, Graham’s number, which was devised by the US mathematician
Ronald Graham in 1977 and for some years was regarded as the largest yet
defined explicitly. It is so large that the observable universe is much too small
to contain any decimal (base 10) representation of it, even if each digit is
made unimaginably small—for example if each digit occupies only a sin-
gle Planck volume—which is 4.2217 × 10−105 cubic metres (or, if you prefer,
4.2217× 10−78 cubic millimetres).
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Several leadingmathematicians, notablyDonald Knuth, have devised so-
phisticated notational ‘shorthand’ methods to describe such huge numbers.
This, however, is likely to remain a distinctly minority sport!

Butmodern number enthusiasts have an illustrious forerunner; onewho
was active more than 2000 years ago.

3. Archimedes’ Sand-Reckoner

In the third century BCE the Ancient Greek mathematician Archimedes
(287-212 BCE)—arguably the greatest of all time—illustrated the power of
mathematical reasoning by calculating an upper bound for the number of
grains of sand needed to fill the known universe.2 His paper, now known
as the Sand-Reckoner, was addressed to Gelon (also known as Gelo II), the
‘tyrant’ (regent) of his home town of Syracuse in Sicily. It is a careful and
quite accessible exposition of his calculations. It has been called ‘the first
research-expository paper ever written’ (see [45] for details).

The standard translation [19] begins with a bold claim:
There are some, king Gelon, who think that the number of the sand is infinite

in multitude; and I mean by the sand not only that which exists about Syracuse and
the rest of Sicily but also that which is found in every region whether inhabited or
uninhabited. Again there are some who, without regarding it as infinite, yet think
that no number has been named which is great enough to exceed its magnitude. And
it is clear that they who hold this view, if they imagined a mass made up of sand in
other respects as large as the mass of the earth filled up to a height equal to that of
the highest mountains, would be many times further still from recognising that any
number could be expressed which exceeded the multitude of the sand so taken. But I
will try to show you by means of geometrical proofs, which you will be able to follow,
that, of the numbers named by me and given in the work which I sent to Zeuxippus,
some exceed not only the number of the mass of sand equal in magnitude to the Earth
filled up in the way described, but also that of the mass equal in magnitude to the
universe.

3.1. Greek numerals. First of all, Archimedes had to develop a new
system of numerical notation. Like our decimal system, the Greek alphanu-
meric system in his day used 10 as its base, but instead of developing a sys-
tem of number symbols, the Greeks simply assigned different letters of their
alphabet to successive numbers. Three of the letters used, representing our
numbers 6 ϝ, 90 ϟ and 900 ϡ are obsolete and no longer appear in the Greek
alphabet.

Numbers below 1000 are represented bymeans of 27 symbols as follows:

2In keepingwithmodern practice wewill use the letters BCE (Before Common Era) rather
than BC (Before Christ). Dates referring to the Common Era (previously denoted by AD, e.g.
AD 750) will be referred to without prefix or suffix, e.g. Carl Friedrich Gauss (1777-1855).
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Figure 2. Archimedes by Domenico Fetti, 16203

α, β, γ, δ, ε,ϝ, ζ, η, θ denote what we call ‘units’, 1, 2, 3, 4, 5, 6, 7, 8, 9;

ι, κ, λ, µ, ν, ξ, o, π,ϟ denote our ‘tens’ 10, 20, 30, 40, 50, 60, 70, 80, 90;

ρ, σ, τ, υ, φ, χ, ψ, ω,ϡ denote 100, 200, 300, 400, 500, 600, 700, 800, 900.

A number such as 243 is then given in additive notation as σµγ, indi-
cating that we should add together the numbers (200, 40 and 3) that are
denoted by these three symbols. Similarly, what we would write as 571 is
depicted by φoα. The sum of these two numbers (814) is then written as
ωιδ. Although this procedure may suffice for writing down the result of a
simple calculation (possibly performed with an abacus or similar mechan-
ical device) the actual process of addition is not easily memorised. By way
of contrast, in our positional decimal number system, in writing the number
two-hundred-and-forty-three as 243, we perform an addition, not with the
symbols 2, 4, 3 by themselves, but (2× 100) + (4× 10) + 3. Our ten number
symbols are all we need, since the positions of the digits 2, 4, 3 tell us that we
mean two hundreds, four tens and three units.

Moving on to larger numbers, in the Greek system ‘thousands’ were
expressed by preceding the corresponding letter used for units by a mark
to its left: for example, ′θ for 9000, so that 9, 258 would become ′θσνη or,
alternatively, ′θσνη. Here the line above the letters indicated that one is
dealing with a number rather than a word. This gave them specific symbols
that combined to produce numbers up to 9999. The next number, 10, 000,
was denoted by M. They could now combine these symbols and express
larger numbers by using multiples ofM and writing the multiplication fac-
tor above the letterM—for ease of typing this is shown as a ‘power’ in the

3https://commons.wikimedia.org/wiki/File:Domenico-Fetti_Archimedes_1620.jpg

https://commons.wikimedia.org/wiki/File:Domenico-Fetti_ Archimedes_1620.jpg
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following example:
30, 254 = Mγσµδ.

TheGreekword for the symbolM was µυρiας , later translated asmyriad
in Latin, and I will adopt the latter term. For his task, however, Archimedes
needed a system in which much larger numbers could be expressed con-
cisely.

3.2. Archimedes’ number system. In the long scale version of our dec-
imal system, once numbers up to a million have been named, one does
not need a new number name until a million million, that is, a (long-scale)
billion. The system Archimedes developed followed a similar pattern: he
called the numbers up to a myriad myriads ‘first numbers’ and proceeded
to make the final number the unit of his second system of numbers. In other
words, numbers from then on are counted using multiples of this nunber.
Expressed in terms of powers of 10, Archimedes’ first numbers are all the
numbers up to 108 (one-hundred million): sinceM = 10, 000 = 104, a myr-
iad myriads is 104 × 104 = 108.

In order tomake sense of his system, Archimedes used the fundamental
rule for multiplying powers; in our terms this rule is that, for any numbers
a, b,

10a × 10b = 10a+b.

Having made 108 the new unit, or, as he called it, the ‘unit of the sec-
ond numbers’, he was now able to keep counting until he reached a myriad-
myriad times this unit, i.e. 108 × 108 = 1016. This number now became
the ‘unit of the third numbers’ and he counted multiples of 1016 as his ‘third
numbers’ reaching what we would call 1024, since we can count up to 108 of
these units. Then 1024 becomes the ‘unit of the fourth numbers’, etc., and we
can continue until we reach the ‘myriad-myriadth’ unit.

This provides a very large number, obtained bymultiplying 108 by itself
108 times, so we would write it as

(108)108

= 108 × 108 × ....× 108

where the product on the right has 108 entries. Wewouldwrite it as 108×108

;
written out it is 1 followedby 800million zeros. Not yet satisfied, Archimedes
then called all the numbers he had just defined the ‘numbers of the first period’,
and again made the last one, namely (108)108 , the ‘unit of the second period’.
Defining a new period each time, he could now construct a myriad-myriad
periods, the last number therefore being

[(108)108

]108

= 108×1016
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Wewould write this number as a 1 followed by 8× 1016 zeros. In terms
of the long scale, the number of zeros required to write out this number is
eighty-thousand billion (or 80 quadrillion in the short scale). But no-one
lives long enough to write it down in full: a day has 24 × 3600 = 86, 400
seconds, hence, if a million people each wrote down one 0 every second,
this collective would still need over 2500 years to complete the task! Thus
Archimedes’ system certainly names some very large numbers—but would
it suffice to count the number grains of sand required to fill the universe?

3.3. Astronomical models. To determine this, Archimedes needed to
decide on the astronomical model on which he would base his calculations.
The models prevailing in his time were geocentric, placing the Earth at the
centre of the universe and modelling planetary motions though a complex
system of concentric spheres, rotating about the Earth at differing angles of
rotation. As for the size of the universe, he begins by reminding Gelon of
prevailing opinion:

Now you are aware that ‘universe’ is the name given by most astronomers to
the sphere whose centre is the centre of the earth and whose radius is equal to the
straight line between the centre of the sun and the centre of the earth. This is the
common account, as you have heard from astronomers.

It is something of a puzzle (see e.g [11]) whyArchimedes seems to claim
that most astronomers of his time took the Earth-Sun distance as the radius
of the ‘universe’, since the philosopher Aristotle (384-322 BCE) had asserted
confidently, in his Meterologica, that ‘the distance of the stars from the earth is
many times greater than the distance of the sun’. Thisworkwill have been known
to Archimedes and his scientific contemporaries. Perhaps, in addressing
his paper to King Gelon, who was probably more familar with astrology
than astronomy, Archimedes felt that he had to acknowledge the layman’s
perception before contradicting it convincingly.

But Archimedes then draws Gelon’s attention to an earlier proposal by
Aristarchus for a heliocentric model of planetary motion, in which the Earth
and the five visible planets orbit the Sun. Sadly, the original is lost, and
Archimedes’ comments comprise most of what we know about this pro-
posal:

But Aristarchus of Samos brought out a book consisting of some hypotheses,
in which the premisses lead to the result that the universe is many times greater
than that now so called. His hypotheses are that the fixed stars and the sun remain
unmoved, that the earth revolves about the sun in the circumference of a circle, the
sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated
about the same centre as the sun, is so great that the circle in which he supposes the
earth to revolve bears such a proportion to the distance of the fixed stars as the centre
of the sphere bears to its surface.

Archimedes continues:
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Now it is easy to see that this is impossible; for, since the centre of the sphere has
no magnitude, we cannot conceive it to bear any ratio whatever to the surface of the
sphere. We must however take Aristarchus to mean this: since we conceive the earth
to be, as it were, the centre of the universe, the ratio which the earth bears to what
we describe as the ‘universe’ is the same as the ratio which the sphere containing the
circle in which he supposes the earth to revolve bears to the sphere of the fixed stars.
For he adapts the proofs of his results to a hypothesis of this kind, and in particular
he appears to suppose the magnitude of the sphere in which he represents the earth
as moving to be equal to what we call the ‘universe.’

AsArchimedes notes, Aristarchus’ stated assumption would lead to the
conclusion that the fixed stars are ‘infinitely far away’, since the centre of a
sphere (a dimensionless ‘point’) cannot be compared with the surface of the
sphere.4 He recognises that Aristarchus’ model would yield a much greater
radius for the sphere of the fixed stars than what he said was commonly as-
sumed for the geocentric ‘universe’, namely the distance between the Earth
and the Sun.

Thus, in order to find an upper bound for the size of the universe while
continuing to work within a geocentric model (‘since we conceive the earth to
be, as it were, the centre of the universe’), he interpretsAristarchus’ statement by
equating the ratio of the diameter of the Earth (d(E)) to that of the Earth’s
supposed orbit around the Sun (d(ES)), with the ratio of the latter to the
diameter of the sphere of the fixed stars (d(S)). This provides the equation

d(E)

d(ES)
=
d(ES)

d(S)
.

Since d(ES) must be much greater than d(E), the diameter of the universe
is now taken to be d(S), i.e. the diameter of the sphere (centred at the Earth)
containing the fixed stars. The equality means that in order to estimate d(S)
he only needs estimates for the other two diameters. This proved to be a
more manageable task, although the details would lead us too far afield—
for amodern exposition, see [45]. Armedwith estimates for d(E) and d(ES),
Archimedes was able to conclude that the diameter of the universe cannot
be greater than 1014 stadia (a stadium amounts to about 180 metres in our
terms).

3.4. Grains of sand to fill the universe. Finally, Archimedes has to es-
timate the size of a grain of sand and compute how many grains would fill

4Heath [20], p. 309, comments: While it is clear that Archimedes’ interpretation is not
justified, it may be admitted that Aristarchus did not mean his statement to be taken as a math-
ematical fact. He clearly meant to assert no more than that the sphere of the fixed stars is in-
comparably greater than that containing the earth’s orbit as a great circle ; and he was shrewd
enough to see that this is necessary in order to reconcile the apparent immobility of the fixed
stars with the motion of the earth. The actual expression used is similar to what was evidently
a common form ofwords among astronomers to express the negligibility of the size of the earth
in comparison with larger spheres.
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a sphere of radius one stadium. He first estimates that 40 poppy seeds, laid
side-by-side, would measure approximately one finger-breadth (the Greek
dactyl) which is about 1.9cm. A cube of this length contains 403 = 64× 103

seeds. He then claims (without explanation) that, in volume, a poppy seed
equals about a myriad (104) grains of sand, and promptly rounds up the
product (64× 103 × 104) of these numbers to 109. Finally, he rounds up to a
myriad (104) the number of finger-breadths in a stadium—which is only a
slight over-estimate this time. This gives him an upper bound for (the order
of magnitude of) the number of grains of sand filling a sphere of diameter
one stadium: since volumes change as the cube of the diameter, he (over)-
estimates this as (104)3 × 109 = 1021. Therefore, he concludes, the universe,
having a diameter no more than 1014 stadia, can be filled up by using no
more than (1014)3 × 1021 = 1063 grains of sand.

Now 1063 is certainly a pretty big number. Yet, as Archimedes points
out, this number is easily accommodated well within the first period of his
numbering scheme: it is expressed as a thousand myriad units of the eighth or-
der of numbers,whichwewould, in turn, express as 107×1056 in ourmodern
notation.

Today we do not work in terms of grains of sand, but use nucleons (the
fundamental particles with mass making up the nucleus of an atom) and
our best estimate of the number of nucleons making up the observable uni-
verse is in the order of 1080. This is known as Eddington‘s number. And,
since a grain of sand contains about 1017 nucleons, Eddington’s number
has the same order of magnitude as the number of nucleons contained in
Archimedes’ 1063 grains of sand! It would be wise, however, not to read too
much into this surprising coincidence, especially since Archimedes’ objec-
tive was not to find accurate estimates, but simply to show how very large
numbers could be identified within a coherent nomenclature.

4. A long history

Having taken for granted the notion of counting, we have so far encoun-
tered only whole numbers and decimal fractions. Nothing has yet been
said about basic arithmetic. Rather than begin such a discussion with a
pre-ordained set of rules, such as those learned in primary school, I will
explore the gradual development of arithmetic in a historical context to il-
lustrate how our concept of number was widened repeatedly in order to
describe all the possible solutions of various mathematical problems. In the
process we will encounter different notational and conceptual approaches
to the writing and manipulation of numbers, mirrored in the evolution of
the expression of practical problems in mathematical terms, first in verbal
descriptions and later by means of equations.
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One example of this process is the gradual development of awareness
that allowing only solutions consisting of positive whole numbers is an un-
sustainable restriction. Today, of course, handling negative numbers causes
us no difficulties, familiar as we are with temperatures below zero and neg-
ative bank balances! In earlier times, mathematicians in different parts of
the world struggled to accept negative numbers as meaningful entities and
to devise rules for manipulating them. It was only in the sixteenth century
that some European mathematicians began to accept negative numbers as
meaningful entities.5

Although, as we shall see, the Ancient Greeks did not regard fractions
as numbers per se, their deep and highly influential researches into geom-
etry extensively employed ratios of two (positive) whole numbers as a way
of measuring the relative sizes of quantities such as lengths, areas or vol-
umes. While philosophers argued whether such ratios should be regarded
as numbers or not, their practical significance ensured that they were stud-
ied in detail by early mathematicians. Greek mathematics, with few excep-
tions, remained focused on geometry rather than arithmetic; other early tra-
ditions, in Egypt and especially in Babylon, developed effective arithmetical
techniques to handle many specific practical problems involving ratios.

Despite the dominance of rigorous Greek geometry in the surviving
ancient texts, fortunately preserved and further developed by Arab math-
ematicians between the eighth and eleventh centuries, aspects of all these
different traditions can be found in the transmission of the ‘wisdom of the
ancients’ to early modern Europe from the twelfth century onwards. Euro-
pean mathematicians of the Renaissance readily accepted that fractions can
be treated as numbers which can be added or multiplied. They recognised
that one can always express a ratio of two whole numbers in ‘lowest terms’
by cancelling common factors, so that, for example, 2

4 ,
3
6 , etc., all represent

the same relationship as 1
2 , and lead to the same rational number.

On the other hand, an air of mystery continued to surround the results
of a geometric construction (and, later, the nature of certain solutions of an
equation) where the quantity required could not be expressed precisely in
terms of a ratio of two whole numbers. Today we still call such numbers,
like

√
2 or π, irrational. Defining irrational numbers rigorously in arith-

metical terms (rather than describing them negatively, as ‘not rational’, or
by means of geometric constructions) posed a continuing theoretical chal-
lenge, althoughmathematicians throughout the ages found ingenious ways
of approximating these mysterious quantities to a high degree of accuracy

5In this they were much slower than their counterparts elsewhere. In China, for example,
negative numbers appeared in the Nine Chapters on the Mathematical Art (Han dynasty, some
2000 years ago). Rules for their manipulation—including with rods of different colours for
positive and negative numbers—were in place by the third century. See Footnote 1, Chapter
1.)
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by what we now call rational numbers. The question how we should define
irrational numbers as members of a logically consistent number system on
which to base arithmetic, was only tackled consistently in the latter half of
the nineteenth century. It took until the 1870s for the (almost) universally
accepted real number system to be cast in its modern form in a way that could
underpin modern mathematics and its many applications.

It will also take us quite a while to get there in this book. I will start at
the beginning by looking at someof our earliest reliable evidence concerning
number systems.



CHAPTER 1

Arithmetic in Antiquity

The monuments of wit survive the monuments of power.
Sir Francis Bacon, Essex’s Device, 1595

Summary

In this chapter the focus is on two ancient civilisations: Babylonian and
Greek. Our evidence for the former comes from a large number of sun-
dried clay tablets (found inmodern-day Iraq) that were only deciphered less
than a century ago. By contrast, themathematics and philosophy developed
in the Greek city states (notably Athens) and surrounding territories, well
over 2000 years ago, have underpinned Western civilisation ever since the
Renaissance. The content of the thirteen books of Euclid’s famous Elements
of Geometry dominated Western school mathematics well into the twentieth
century, usually giving school pupils their first experience of mathematical
proofs. It remains a beacon of mathematical achievement in antiquity.

In Babylonian arithmetic, on the other hand, we find the first truly po-
sitional number system, essentially equivalent to our decimal system, al-
though its basewas 60 rather then 10. Traces of this system remain in our the
division of an hour into 60 minutes, each of which has 60 seconds, for exam-
ple. We begin the chapter with a brief glimpse of the ways in which this sex-
agesimal number system was used in the area around the Tigris-Euphrates
valley to solve a variety of practical problems, notably including quadratic
equations.

Mathematical development in Ancient Greece is traced back to Pythago-
ras of Samos (c.570-c.495 BCE), who was both a philosopher and a mathe-
matician. Very little survives of the work of the influential quasi-religious
Pythagorean sect he founded, except in occasional accounts by later com-
mentators, of whom Plato (c.428-c.348 BCE) and Aristotle (384-322 BCE) are
perhaps the most reliable. This chapter explores the group’s philosophi-
cal claim that ‘All is Number’ and the arithmetical techniques that led them
to remarkable insights, such as the famous Pythagoras theorem, but also into
logical difficulties. Their influence on the later work of the Athenian school
around Plato, much of it preserved in Euclid’s Elements, can be seen the lat-
ter’s Books VII-IX and in an exhaustive study of incommensurables in Book X.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.01
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Remainingwith arithmetic, the chapter closes with a brief look at the (much
later) Arithmetika of Diophantus (c.210-c.290).

1. Babylon: sexagesimals, quadratic equations

Historical research relies on written records as its primary source of ev-
idence. For this reason I omit mention of tallying or counting with sticks
that precedes the earliest written records. Written records from early civil-
isations in China or India used materials that were not easily preserved,
so that direct evidence of their work is scarce.1 The best-preserved records
from early civilisations are found on Egyptian papyri and hieroglyphs and
on Babylonian clay tablets.

Most Babylonian tablets stem from theOld Babylonian period (1830-1501
BCE), others from the Seleucid period of the last three or four centuries BCE.
A considerable number of mathematical clay tablets has been discovered.
Some contain various tables of numbers, others describe recipes for solv-
ing specific numerical problems. Many are thought to have been used in
schools training scribes for Babylonian society, which was probably an elite
profession, open to a select few.

The tablets were inscribed in cuneiform script with a wedge-shaped sty-
lus as shown in Figure 3—the name derives from cuneus, the Latin term for
‘wedge’—and dried in the sun. The extent of their mathematical sophisti-
cation only became clear when cuneiform script was fully deciphered in the
1930s, much of it by the Austrian-American mathematicianOtto Neugebauer
(1899-1990), [34]. Earlier historians of mathematics had paid more attention
to Egyptian geometry and arithmetic, although its impact on later mathe-
matical development is perhaps less significant. For this reason Egyptian
mathematics will not be considered here.2

The Babylonian number system combined 60 as the number base to-
gether with symbols for tens and units. For digits up to nine, the number
wasmarked by that number of vertical wedges, and the number ofmultiples
of 10 was marked similarly by up to five horizontal (or tilted) wedges. This
enabled them to display numbers 1, 2, ..., 59. We call such a number system
sexagesimal, just as we use the term decimal for our usual (base 10) numbers,
or binary (also dyadic) when using the base 2 (as in modern computing). The
reason for the Babylonians’ choice of 60 is not known, but the fact that 60 =

1An account of Chinese mathematics and astronomy can be found in Volume 3 of Joseph
Needham’s multi-volume work Science and Civilization in China. See also Chinese Mathematics,
A concise history by Li Yan & Du Shiran, (translated by J.N. Crossley and A.W.-C. Lun), Oxford,
Oxford Science Publications, 1987, and the article ‘Chinese Mathematics’, by Joseph Dauben,
in the volume edited by V.J. Katz et al.: The Mathematics of Egypt, Mesopotamia, China, India, and
Islam: A Sourcebook. Princeton, Princeton University Press, 2007.

2For Egyptian mathematics see (e.g.): A. Imhausen, Mathematics in Ancient Egypt. A Con-
textual History, Princeton, Princeton University Press, 2016.
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Figure 3. 10329 in cuneiform script

2×2×3×5 has more divisors (in fact, twelve: 1, 2, 3, 4, 5, 6, 10, 12, 20, 30, 60)
than 10 = 2 × 5 (which has only four: 1, 2, 5, 10) may have been a factor in
this choice.

The key observation, nearly 4000 years ago, was that, once symbols for
1, 2, 3, ..., 59 had been decided upon (and executed with no more than five
horizontal and nine vertical wedge strokes), all other (whole) numbers could
be understood with these symbols. To write numbers outside the range 1
to 59, the Babylonians used a positional (or place-value) system, breaking up
the numbers according to successive powers of 60 and separating these by
a space, as in Figure 3, which shows the number

10329 = 2× (60)2 + 52× (60)1 + 9× (60)0.

(The final term is simply 9, since n0 = 1 for any n. This follows from the
power law na × nb = na+b, using b = −a.)

The spaces between each group of wedges indicate the relative power
of 60 that each group occupies. Here we have implicitly assumed that we
are dealing with a whole number.

However, the positional systemwas also used to include sexagesimal frac-
tions. For example, the numbers

2 + 52× (60)−1 + 9× (60)−2 = 2 +
52

60
+

9

3600

2× 60 + 52 + 9× (60)−1 = 172 +
9

60

would be written exactly as the number given in Figure 3. As no space was
left at the end of a number, its absolute size often had to be inferred from the
problem under discussion, although in some tablets the number would be
followed by a word indicating what power was intended for the final group
of wedges. More seriously, in the Old Babylonian tablets there is no symbol
for 0 to indicate the absence of a power (as would be needed in 7209 =
2 × (60)2 + 9, for example), although some texts appear to indicate this by
leaving an extra internal space.

By the time of the second major set, dating from the Seleucid period (the
last four centuries BCE) the second ambiguity had been removed. The oc-
currence of zerowas now indicated by a spacemarkedwith two small oblique
wedges, showing that that particular power of 60 is ‘skipped’. Towrite down
7209, the scribe would now replace the central group of wedges in Figure
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3 (denoting 52 × 60) by two oblique wedges, rather than simply omitting
it without further indication. However, this practice appears only to have
been used when zero occurs in a intermediate position, such as in this ex-
ample. It was not used at the end of a number, so the absolute size of the
number would continue to be deduced from the context of the particular
problem.

Despite its peculiarities, the Babylonians could use their system to add,
multiply, subtract and divide numbers in much the sameway as we dowith
decimal notation, and to treat fractional parts of the numbers in exactly the
same way as the integral parts. This was a major notational and conceptual
advance.

It is convenient to useNeugebauer’s notation to express the sexagesimal
system in our decimal symbols. For example, the above number 2 × 60 +
52+9× (60)−1 = 172.15 is written by Neugebauer as 2, 52; 9. The powers of
60 are separated by commas, where Babylonians would use spaces instead,
and a semicolon separates the fractional from the integral part.

A large proportion of the cuneiform tables that have been found contain
arithmetical tables, listing, in sexagesimal form, squares, cubes, reciprocals
and even square and cube roots of numbers. They probably served in the
ancient schools for scribes as the precursors of the books of logarithmic ta-
bles that were prevalent in our secondary schools until a few decades ago,
before being replaced by electronic calculators and computers.3

The cuneiform tables were necessarily incomplete: they dealt only with
regular sexagesimals, i.e. numbers that could be expressed simply in sexa-
gesimal form. This was not possible for certain fractions, such as the recip-
rocal of 7, for example. In a tablet containing a typical table of reciprocals
one usually finds two columns, and the two numbers in the same row al-
ways have 60 as their product. But immediately following the row listing
the numbers 6 and 10 (the ‘reciprocal’ of 6 is 60

6 = 10) we find the numbers
8 and 7; 30, which represents 60

8 = 7 1
2 , written to base 60 as 7 + 30

60 . The
row that would contain 7 and its reciprocal is simply omitted. The reason
for this is clear: 60

7 cannot be written as a finite sexagesimal – when using
‘long division’, as in 60

8 = 7 + 30
60 (in Neugebauer’s notation: 7; 30), the ra-

tio 60
7 cannot be expressed as a sum of the form a1

60 + a2
(60)2 + ... + an

(60)n for
any finite sequence of numbers (ai)i≤n of the numbers {1, 2, ..., 59}, since all
remainders are non-zero.

The same problem arises in our familiar decimal notation: at school we
all meet infinite ‘recurring’ decimal expansions such as 1

3 = 0.33333.... and
1
7 = 0.142857142857.... Decimal notation (that is, dividing 1.000000... by 7)
requires the second of these to begin with the finite sum

3The invention and role of logarithms will be discussed in Chapter 3.
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1

10
+

4

(10)2
+

2

(10)3
+

8

(10)4
+

5

(10)5
+

7

(10)6
.

The numerators 1, 4, 2, 8, 5, 7 of the six terms repeat indefinitely, the sum
of these terms is multiplied by 1

(10)6k
for k = 0, 1, 2, ..., and the results are

then summed. Thus the expression in decimal notation even of simple ratio-
nal numbers often leads to summing an indefinite number of terms.4 Notice
that, in the sexagesimal system, 1

7 provides the only ‘irregular’ reciprocal
among numbers below 10, wheras in the decimal system the reciprocals of
3, 6, 7, 9 are all ‘irregular’!

In practice, and in modern computers, we handle this problem by using
‘rational approximation’: we terminate the expansion after a set number of
decimal places, giving us an approximation that is sufficiently close for our
purposes. The Babylonians used the sameprinciple. Babylonian approxima-
tions of irregular sexagesimal reciprocals could easily be given with a high
degree of accuracy, as would be needed for calculationswith large numbers,
for example in astronomy. The use of base 60 has the advantage that good
accuracy can be achieved in relatively few steps: for example, an error of
at most ( 1

60 )4 = 1
12,960,000 (achieved after four steps) is usually negligible in

practice.
The tables of reciprocals allowed division to be carried out easily: taking

a
b as the product a × ( 1

b ) would allow the scribe to ‘look up’ the reciprocal
of b in a table and multiply it by a, while interpreting the product in terms
of the correct powers of 60. Such techniques are well suited to handle arith-
metic with large numbers and can be applied very effectively in calculations
resulting from astronomical or navigational observations.

Going beyond reciprocals, cuneiform tablets have been found showing
that the Babylonians knew generalmethods for approximating square roots.
A simple but effective method to estimate

√
a is to guess a first approxima-

tion, say r1. If its square exceeds a (we write this as r2
1 > a), we see that

as a second guess the ratio a
r1

will be too small. The arithmetical average
of these two guesses, r2 = 1

2 (r1 + a
r1

), provides a better estimate, but will
again be too large, so that r2

2 > a.5 Now repeat this process, starting with
r2 in place of r1, and continue in this fashion. One quickly obtains a good
approximation to

√
a.

In the collection held at Yale University, USA, the tablet today known
as Yale7289,which dates from between 1800 and 1600 BCE, displays the ap-
proximation of

√
2 by 1; 24, 51, 10. This equals r3 if one starts with the over-

estimate r1 = 1; 30 (i.e. r1 = 1.5 in decimal notation, which gives r2
1 = 2.25).

Approximating
√

2 by r3 = 1 + 24
60 + 51

(60)2 + 10
(60)3 (which we would write

4We return to this issue in Chapter 7.
5SeeMM for a simple proof of this claim.



18 1. ARITHMETIC IN ANTIQUITY

Figure 4. Approximating
√

2

as 1.4142162963 in decimal form) is accurate to 5 decimal places. The tablet
is incomplete, and no workings are shown, but it seems plausible that the
scribe might have used the above method.

While Egyptian papyri provide evidence that the solution of linear equa-
tions (i.e. of the form ax−b = 0,with solution x = b

a ) formed a standard part
of Egyptian mathematics, few Babylonian texts appear to deal with such
problems. Instead, many tablets include more complex problems that lead
to quadratic equations. A general solution procedure for quadratics is illus-
trated in several Old-Babylonians tablets, although they always deal with
specific numerical problems. A text from the early Hammurabi period, for
example, poses the problem of finding the side of a square, given that the
area less the side is 14, 30. This number is ambiguous, since we don’t have a
symbol for zero at this stage. We will read 14, 30 as (14× 60) + 30 = 870, as
the Babylonians often preferred to start calculations with whole numbers.
If the side is x, the area of the square is x2, and we must solve the equation

x2 − x = 870.

Using Neugebauer’s notation for numbers, we translate the scribe’s in-
structions as: Take half of 1, which is 30, and multiply it by 30, which is 15. Add
this to 14, 30 to get 14, 30; 15. This is the square of 29; 30, and the result is 30, the
side of the square.

To understand the quotation from the tablet, recall that we would write
1
2 as 0; 30 and 1

4 as 0; 15 instead of 30 and 15. The scribe probably found
these from a table of reciprocals, given as the numbers whose products with
2, respectively 4, come to 60. To follow his procedure we reconstruct the
general method in modern terminology. In the equation x2 − x = 870 the
coefficient of the term in x (the linear term) is −1, while 870 is the constant
term. Call these b and c respectively, so that the equation we seek to solve
is x2 + bx = c. Following the scribe’s instruction we now divide b by 2 and
square the result, obtaining ( b2 )2,whichwe add to c.We then take the square
root (the words ‘square’ and ‘square root’ were used interchangably by the
Babylonians) of this sum (probably looking it up in a table) and and subtract
b
2 to find that

x = − b
2

+

√
(
b

2
)2 + c.

This recipe can be derived from the following simple picture (although
we have no direct textual evidence of any geometric figures that may have
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Figure 5. Solving quadratic equations

been drawn): the equation x2 +bx = c says that by adding the square of side
x to a rectangle with base b and height x, we obtain a given area c. To find
x, we cut the base b of the rectangle in half, then arrange these two thinner
rectangles on the square (one on top, one on the side, as in Figure 5, which
is taken from [44]). We ‘complete the square’, which has the new base x+ b

2 ,
and to keep the two sides of the equation equal we need to add the small
(black) square of side ( b2 ) to the area c. Taking the square root on both sides

yields x + b
2 =

√
( b2 )2 + c. The numbers used by the scribe are b = −1,

c = 870. So ( b2 )2 + c = 8701
4 = 3481

4 = ( 59
2 )2 = 29 1

2 , as claimed. Now, to
find x, we subtract b2 to obtain x as the solution of our quadratic equation.6
Since b = −1, this means that we should add 1

2 to 29 1
2 and thus obtain 30,

as required.
It is important to emphasise that there is still much discussion amongst

historians of mathematics on the proper interpretation of cuneiform tablets.
The above discussion reflects one particular reconstruction. Nonetheless, it
is clear that the tablets portray a society in which significant mathematical
techniques were taught and used to solve relatively complex quantitative
problems.

2. Pythagoras: all is number

Speculations about the origins of various systems for counting continue
to occupy historians and philosophers today, and written evidence of such
musings has also been preserved in Ancient Greek texts, though even these

6In MM it is shown how this procedure leads very simply to the general formula for the
‘solution of the quadratic equation’ we all learn at school.
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are unlikely to have been the first to consider such questions. In the ancient
text Problems, attributed to Aristotle, he ponders the reasons why in his time
10 seemed to be used ‘universally’ as the base for number names:

Why do all men, whether barbarians or Greeks, count up to ten, and not up to
some other number, such as two, three, four or five, so that they do not go on to repeat
one of these and say, for example, ‘one-five’, ‘two-five’, as they say ‘one-ten’ [eleven],
‘two-ten’ [twelve]? Or why, again, do they not stop at some number beyond ten
and then repeat from that point? For every number consists of the preceding number
plus one or two, etc, which gives some different number; nevertheless ten has been
fixed as the base and people count up to that.7

He then lists some possible reasons that may provide insight into the fa-
miliar arithmetic of his time –which he attributes primarily to the Pythagore-
ans, followers of Pythagoras of Samos.

Is it because 10 is a perfect number, seeing as it comprises all kinds of number,
even and odd, square and cube, linear and plane, prime and composite? Or is it
because ten is the beginning of number, since ten is produced by adding one, two,
three, and four? Or is it because the moving bodies are nine in number? ..... Or is
it because all men had ten fingers....

Aristotle’s reference to nine ‘moving bodies’ could be an an allusion to
the astronomical system developed by the Pythagorean Philolaus (ca. 470-
385 BCE). This system was reported to postulate the existence of a ‘cen-
tral fire’ around which the earth and the eight celestial bodies visible to the
naked eye, namely the sun, moon, five planets and the ‘sky’ (the fixed stars),
would rotate. The earth would revolve about the central fire daily, the moon
monthly and the sun annually, thus explaining why sun and moon rise and
set. In order to arrive at the number 10 – which had special significance
for the Pythagoreans – Philolaus is said to have claimed the existence of a
‘counter-earth’, which he assumed to be situated directly opposite the Earth
from the ‘central fire’, also revolving about it daily, and which therefore al-
ways remained invisible to us!

I now consider ideas attributed to the Pythagoreans, as reported by later
commentators, a little further, not least to understandmore about the ‘kinds
of number’ Aristotle refers to. Greek mathematics, in its various guises, has
been singularly influential in the development of the subject through the
ages. Let us start with the origins of Pythagorean arithmetic.

2.1. Ratios andmusical harmony. No first-hand written records of the
discoveries of Pythagoras and his immediate followers survive today. Aris-
totle and his teacher Plato have a good deal to say – often highly critical and
sometimes obscure – about Pythagorean beliefs and mathematical achieve-
ments. Their testimony on Pythagoras, though coming a good century after

7T.L. Heath, Mathematics in Aristotle, Taylor and Francis, e-book, 2011.
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the fact, is distinctly more reliable than are the much later and highly par-
tisan accounts produced by the so-called neo-Pythagoreans, who sought to
resurrect and expand the elaborate number mysticism that Pythagoras’ quasi-
religious sect had initiated.

Our focus is on the arithmetic of the Pythagoreans, rather than on their
mystical beliefs. Paradoxically, the major source for our understanding of
the techniques of Pythagorean arithmetic is a work that does not deal pri-
marily with arithmetic at all. It is the vastly influential treatise The Ele-
ments of Geometry (see e.g [21]), widely known simply as the Elements and
produced in the Egyptian port city Alexandria by the mathematician Eu-
clid.8 The thirteen books of this work comprise the most widely studied
mathematical text of all time, and were fundamental in shaping the subject
throughout more than two millennia.

In Aristotle’sMetaphysicswe find a concise summary of Pythagoras’ es-
sential belief system:

in numbers, he thought that they perceived many analogies of things that exist
and are produced, more than in fire, earth, or water: as, for instance, they thought
that a certain condition of numbers was justice; another, soul and intellect, ... And
moreover, seeing the conditions and ratios of what pertains to harmony to consist in
numbers, since other things seemed in their entire nature to be formed in the likeness
of numbers, and in all nature numbers are the first, they supposed the elements of
numbers to be the elements of all things. (Arist. Met. i. 5.)

Here Aristotle refers to the speculations of Empedocles, who argued (ca.
450 BCE) that air, earth, fire and water made up the basic four elements
from which everything was constructed. Aristotle refers to three of those,
to contrast them with Pythagoras’ view that numbers are the basic building
blocks. Assigning numbers to various physical objects or concepts played a
significant part in Pythagorean number mysticism.

Although detailed ancient references to Pythagorean arithmetic are not
numerous, it is a widely held view that they concerned themselves exten-
sivelywith ratios, whichwewill interpret in terms of ratios of positivewhole
numbers, i.e. positive fractions of quantities. Texts suggest that these explo-
rations were prompted by empirical evidence that simple ratios of string or
pipe lengths in musical instruments can produce harmonious sounds.9 The
Pythagoreans calculated that an octave must correspond to the ratio 2 : 1, a
fifth to 3 : 2, a fourth to 4 : 3 (we say ‘two-to-one’, three-to-two’, etc.).

8We know very little about Euclid himself. The fifth-century commentator Proclus tells us
that Euclid was active in Alexandria during the reign of Ptolemy I Soter,who ruled Egypt from
323 to 285 BCE. Euclid may have studied in Athens at Plato’s Academy, and later established a
substantial school in Alexandria. Most writers date the Elements as from around 300 BC.

9Themost comprehensive translation of these ancient sources is found in the German text
Die Fragmente der Vorsokratiker by H. Diels and W. Kranz (6th ed.), Weidmann, Dublin, 1952.
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Their derivations, fortuitously preserved for us in various fragments
that appear as comments in another substantial work by Euclid, The Divi-
sion of the Canon (usually known by its Latin name: Sectio Canonis), seem
to be based on two underlying postulates which they took as not requiring
further proof (see [38]):

(i) musical intervals [the differences in pitch between two notes] can be
quantified by means of ratios of two (whole) numbers;

(ii) harmonic intervals [intervals pleasing to the ear when two notes are
played together, such as in the above examples] are characterised by ratios of
two forms: either n : 1 or (n + 1) : n, for some whole number n. Conversely, for
any whole number n, the ratio n : 1 produces a harmonic interval.

ThePythagoreans had observed experimentally that octaves anddouble
octaves are harmonic, while repeated fifths and fourths are not, and also
that following a fifth by a fourth (or vice versa) produces an octave. With
the postulates (i),(ii), Pythagoreanmusic theory can be derived quite simply,
using the geometric mean G of two given quantities a, b. This is defined via
the proportion a : G :: G : b (in words: ‘a is to G as G is to b’). We represent
this by the identity a

G = G
b , so thatG is the solution of the equationG2 = ab.

If the octave is given by the ratio b
a , the double octave

c
a must satisfy c

b =
b
a since each ratio represents an octave. So b is the geometric mean of c and
a. But then c

a cannot have the form n+1
n .Whenever three quantities a, b, c are

in geometric proportion, we have c : b :: b : a, so that with c = n+ 1, a = n,
we would obtain b2 = n(n + 1) Since n(n + 1) lies strictly between n2 and
(n+1)2, it cannot be a perfect square. So b cannot be awhole number. Hence
postulate (ii) ensures that the double octave c

a has the formm : 1.
Next, consider the fifth and fourth. Both are harmonic intervals, so the

form of their ratios must be either n : 1 or n+ 1 : n. If either of them had the
form b : a = n : 1, their compound ratio c : awould be harmonic. But it was
observed empirically that double fourths anddouble fifths are not harmonic.
Hence the fifth and fourth must each have the form (n+1) : n, (for different
n > 1) and their composition becomes the octave, as above. The simplest
numbers of the form n+1

n are 3
2 and 4

3 .Multiplying those provides 3
2×

4
3 = 2

1 ,
so that the ratio 2 : 1 provides the octave.

The interval leading from the note a fourth up from the starting point to
the note a fifth up – described as a whole tone – became the principal unit in
the tonal scale. Since the ratios representing the fourth and fifth are multi-
plied when we add the intervals, subtraction of the intervals forces division
of the ratios, so that we obtain ( 3

2 )/( 4
3 ) = 9

8 as the ratio representing the
whole tone.

The earliest musical scale based on such simple numerical ratios is cred-
ited to Pythagoras himself, together with the discovery that the frequency
of a vibrating string is inversely proportional to its length. However, the
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earliest reliable manuscripts on Pythagorean music theory stem from Philo-
laus, more than a century after Pythagoras. He derived the above ratios as
well as the three intervals making up the fourth (or tetrachord), which are
9 : 8, 9 : 8, 256 : 243. The adjustment to the final interval is required if
one starts with two whole notes, to ensure that the final interval takes us
to the ratio derived for the fourth: we need 9

8 ×
9
8 ×

a
b = 4

3 , which leads to
a
b = 8

9 ×
8
9 ×

4
3 = 27

35 = 256
243 . Such calculations led to what is today known

as the Pythagorean diatonic scale, which Plato adpoted in constructing the
‘world soul’ in his Timaeus.

The symbolic notation we have used in this reconstruction was not used
by the Pythagoreans. They and their successors did not perceive ratios as
‘numbers’ – this term was reserved for multiples, or what we would call
the positive whole numbers 2, 3, 4, .... Euclid’s Elements provide a strikingly
vague definition of ratio as: ‘a sort of relation in respect of size between two mag-
nitudes of the same kind’.

For the Pythagoreans, ratioswere essentially a tool for comparingmagni-
tudes, whichwere interpreted geometrically, as seen in Euclid’sworks. Num-
bers enter the discussion as multiples that tell us how often, in a ratioA : B,
these quantities are ‘measured’ exactly by some (smaller) unit. Relating
magnitudesA,B to a pair (m,n) ofwhole numbers (whichwewould regard
as the fraction m

n ) then signifies that the common unit ’goes exactlym times
into’ A and n times into B. Thus, in particular, for A and B to have a ratio,
these two quantities must necessarily be of ‘the same kind’: both are mu-
sical intervals, or whole numbers, or geometric lengths, areas, or volumes,
measured by a common unit. The unit itself is not regarded as a number in
the same sense as the ‘multiples’ 2, 3, 4, ...

However, the Pythagoreans could compare any two ratios A : B and
C : D, irrespective of whether these were ‘of the same kind’ (e.g. if A,B
were lines, while C,D were areas). These four quantities are in proportion if
the pairA,B, measured by some common unit (e.g. a length), generates the
same pair of numerical multiples (m,n) as does the pair C,D, when mea-
sured by some other common unit (e.g. an area). This Pythagorean theory
of proportions, largely preserved in Books VII to IX of Euclid’s Elements,was
central to their mathematical framework.

While the Pythagoreans discussed such arithmetical relationships ver-
bally, without symbolic notation, they made considerable progress in their
efforts to quantify musical relationships. Their triumphant conclusion was:
‘All is Number‘. By this theymeant that all natural phenomena can be under-
stood in terms of the ratios of positive whole numbers. This turned out to
be a rather sweeping conclusion, as they themselves discovered! Nonethe-
less, their ideas mark an important step (and the earliest that has been pre-
served) in humanity’s attempts to describe natural phenomena systemati-
cally through quantitative analysis.
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Figure 6. Pythagoras’ Theorem

2.2. Pythagorean triples. Formany, the namePythagoras evokesmem-
ories of school mathematics, whether they be pleasant or painful! His fa-
mous theorem about the relationship of the sides of a right-angled triangle
is probably the best-known result of Greek mathematics.

Pythagoras’ Theorem
In any right-angled triangle the square on the hypotenuse is the sum of the

squares on the other two sides.
If we denote the lengths of the sides by a, b, c with c as the hypotenuse,

then this means that a2 + b2 = c2.

A simple proof is illustrated in Figure 6, where we consider two ways
of dividing up the square with side (a + b). On the left, on each side mark
off lengths a, b in order, starting at top right and going clockwise, and join
points to produce four copies of the right-angled triangle with sides (a, b, c),
situated around a quadrilateralwhose sides all have length c, ‘tilted’ through
the base angle θ between sides b and c of the triangle. At each vertex of this
quadrilateral we have angles θ and (90◦−θ) in the triangles that meet there,
hence the remaining angle is a right angle, and therefore the tilted figure is
a square.

On the right mark off the length a in both directions from the top right
vertex, and similarly length b from the bottom left vertex, to construct squares
with sides a, b,meeting in a point. What remains are two copies of the rec-
tangle with sides a, b. The total area of the two rectangles equals that of the
four right-angled triangles with sides (a, b, c) on the left, as they have the
same base and height. Subtracting the triangles on the left leaves the square
on the hypotenuse, while subtracting the two rectangles on the right leaves
the squares on the legs of the triangle.

We have proved that a2 +b2 = c2. (As Euclid would have put it: we have
taken equals from equals, so the remaining areas are equal.) This proof has
been called the ‘Chinese proof’ of the theorem, as it occurs in the ancient
Chinese text Chou Pei Suan Ching. Euclid’s Elements, Book I, has a quite
different proof.
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This relationship between the sides of a right-angled triangle was well-
known to the Old Babylonians, who routinely made use of the theorem a
thousand years before Pythagoras was born. Various tablets use it in a vari-
ety of problems: on a tablet now in the British Museum (BM85196), a beam
of length 30 standing against a wall is said to have slipped from a verti-
cal position so that the top has slipped 6 units. The scribe asks how far
the lower end moved. Thus we have a right-angled triangle (a, b, c) with
hypotenuse c = 30 and leg b = 24 units. To find a the scribe computes√

(30)2 − (24)2 = 18. The Babylonians applied this recipe, as one with gen-
eral validity, in varied practical settings; the modern notion of verifying its
validity diagrammatically stems from the later development of Greek ge-
ometry.

The best-known example displaying the depth of Babylonian under-
standing of the theorem is the tablet Plimpton 322 in the Yale collection,
which dates from 1800 BCE. Although now broken and incomplete, this
lists a considerable array of triples (a, b, c) of whole numbers, now com-
monly known as Pythagorean triples, which satisfy the equation a2 + b2 = c2.
The simplest Pythagorean triples will be familiar: (3, 4, 5) uses the smallest
whole numbers possible, giving 32 +42 = 52 (our example above multiplies
each side by 6). It is also easy to check that the triples (5, 12, 13), (8, 15, 17)
and (7, 24, 25) are Pythagorean.

In Plimpton 322, the scribe’s methodology in choosing his particular
triples still leads to lively discussions amonghistorians, but there is no doubt
that he was familiar with very many such triples, including some with im-
pressively large numbers, and that he arranged them in a consistent pattern,
whose purpose we can only guess today.10

The two basic methods for generating Pythagorean triples were well
known in Ancient Greece. In our terms they are:

(a) if m > 1 is an odd number, then (m, 1
2 (m2 − 1), 1

2 (m2 + 1)) is a
Pythagorean triple;

(b) ifm is an even number greater than 2, then (m, (m2 )2 − 1, (m2 )2 + 1)

is a Pythagorean triple.11

The influential fifth-century neo-Platonist commentator, Proclus, (while
not notable as a reliable source, and writing nearly a millennium later) at-
tributes (a) to Pythagoras himself and (b) to Plato. Both are easily checked

10See, for example, a trenchant rebuttal of earlier interpretations in Eleanor Robson: Nei-
ther Sherlock Holmes not Babylon: A Re-assessment of Plimpton 322, Historia Mathematica 28
(2001) 167-206. See [25] for an account of the tablet.

11For m = 2 the formula in (b) yields (m
2
)2 − 1 = 0, which leads to the trivial triple

(2, 0, 2), corresponding to the ‘triangle’ with base angle 0. Note also that the triples do not all
lead to distinct triangles. Form = 3 andm = 4 we obtain (3, 4, 5) from the first formula and
(4, 3, 5) from the second.
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by simple algebra: write out the squares in (a):

m2 +
1

4
(m2−1)2 =

1

4
[4m2 +m4−2m2 +1] =

1

4
[m4 +2m2 +1] = [

1

2
(m2 +1)]2.

proving that (a) is Pythagorean.
The proof of (b) is almost identical to the above and is left as a simple

exercise for the reader. Readers allergic to algebra or who dislike powers
higher than 3 (as did the Ancient Greeks) may safely skip these algebraic
arguments. We will focus instead on simple geometric techniques by which
the Pythagoreans may have derived these results.

2.3. Pebbles, triangles and squares. Four aspects of the arithmetic of
the Pythagoreans are widely accepted as tools that were available to them.
They

(i) used ‘pebble arithmetic’ for visual displays of number patterns,
(ii) regarded odd and even as ‘the two proper forms of number’,
(iii) used triangular, square and oblong numbers (for definitions see be-

low),
(iv) explored Pythagorean triples.
An ancient (apparently Babylonian) technique of using an L-shaped fig-

ure, which the Pythagoreans called a gnomon (or stick and shadow), to gen-
erate particular number patterns also seems to play a significant part in their
reasoning.

Books VII-IX of Euclid’s Elements contain arithmetical results that are
generally seen as exemplars of Pythagorean methods, although his proofs
use geometrical figures contructed by straightedge and compass rather than
diagrams consisting of groups of pebbles. (Here a straightedge is a rulerwith-
out marked lengths.)

Closely following [26], we now reconstruct some of these techniques
in modern terms. Recall, however, that the visual character of early Greek
mathematics (later expressed so elegantly in Euclid’s Elements) meant that
only multiples of the chosen ‘unit’, and not the unit itself, were regarded as
actual numbers. In a geometric construction, a given length (area, volume)
willmeasure an arbitrarily chosen unit (length, area, volume) a certain num-
ber of times.

Beginning with pebble arithmetic, one can combine (i) and (iii) above to
define three kinds of figurate numbers reportedly used by the Pythagoreans
to represent different numbers (see Figure 7). A whole number is said to be:

Triangular if it is represented in triangular form, using rows of 1, 2, 3, ...
pebbles; 3, 6, 10, ... are examples.

Square if it is a perfect square, made up of equal numbers of pebbles in
each row/column; e.g. 4, 9, 16, ...
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Figure 7. Figurate Numbers

Figure 8. Sum formulae

Oblong if it is a rectangle, with one more pebble in one direction than
the other, thus of the form n(n+ 1); e.g. 6, 12, 20, ...

Larger triangular numbers can be built simply by adding more rows -
each row having one more pebble than the previous one. This immediately
begs the question: how dowe find the sum 1+2+3+ ...+n? Does it help to
look at our pebble representation? The triangular number itself appears not
to provide immediate enlightenment. However, looking instead at the peb-
bles in an oblong number we can immediately find the answer—see Figure
8(a).

Drawing a diagonal (from just above the top right to just below the bot-
tom left pebble) we have divided our oblong number into two equal pieces.
But the area of the rectangle with sides n and (n + 1) units is obviously
n(n+1), as represented by our oblong number. Each of the two equal trian-
gular pieces intowhichwe have split this oblong number has n pebbles in its
bottom row, so the nth triangular number is one-half of the oblong number
n(n + 1). Summing over all the rows in the triangle, we obtain the familiar
formula for the sum of the first n numbers:

1 + 2 + 3 + ...+ n =
1

2
n(n+ 1).

Square numbers give us immediate insight into the sum of the first n
odd numbers – see Figure 8(b). Successive square numbers can be built up
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Figure 9. Putting gnomons about the unit

by starting with one pebble and adding successive gnomons – here taken as
symmetrical L-shaped figures, the first having 3 pebbles, the next 5, then 7,
etc. To obtain a square with n pebbles on each side we need the last gnomon
to contain (2n − 1) pebbles (the corner pebble serves both sides). In other
words, we have demonstrated the identity

1 + 3 + 5 + ...+ (2n− 1) = n2.

These examples show that such summation formulae will have been
well within the range of Pythagorean arithmetic.

2.4. Pebbles and gnomons. Aristotle discusses the Pythagorean prac-
tice of constructing square numbers by ‘setting the gnomons round the unit’ -
see Figure 9(a). In [26] this is interpreted as follows: start with one pebble
at the centre, add a gnomon containing 3 pebbles below and to its right, fol-
low this by 5 pebbles above and to its left, and continue alternating in this
fashion, each time adding the next odd number of pebbles.

This idea leads one quite naturally to a ‘pebble proof’ that for odd M,
the triple

(M,
1

2
(M2 − 1),

1

2
(M2 + 1))

is Pythagorean: sinceM is odd, so is its squareM2. ThusM2 ± 1 are both
even, so all three the above are whole numbers. For any K, the difference
of squares (K + 1)2 −K2 = 2K + 1 (which is also the number of pebbles in
the gnomon we would add to the square of side K to obtain the next one).
WhenM is oddwe can thereforewrite asM2 = 2K+1.NowK = 1

2 (M2−1)

is the side of the smaller square and K + 1 = 1
2 (M2 + 1) is the side of the

larger square obtained by adding the gnomon M2 to the smaller one. In
other words, we have three squares, with sides, respectively, given by

(M,
1

2
(M2 − 1),

1

2
(M2 + 1)).
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The sum of the areas of the first two squares equals that of the third, so these
numbers form a Pythagorean triple.

For evenM, similar ideas lead to the construction of Pythagorean triples
of the form

(M, (
M

2
)2 − 1), (

M

2
)2 + 1).

For any evenM, the squareM2 equals 4K for someK, andwe canwrite
this asM2 = (2K − 1) + (2K + 1). These are two successive gnomons, taking
us from the square with side (K − 1) to that with side (K + 1). In other
words,

(K + 1)2 − (K − 1)2 = 4K = M2,

which again shows that the triple (M, (M2 )2 − 1), (M2 )2 + 1) is Pythagorean.
Figure 9(b) shows this for K = 4, with the perimeter of the larger square
split into four equal parts.

There is no direct written evidence that suchmethodswere actually em-
ployed by the Pythagoreans. The simple tools used here suggest that these
results were within their range. The above arguments have an advantage
over the purely algebraic proofs in that they do not involve powers greater
then 2, rather than using fourth powers. Since early Greek mathematicians
reasoned largely via geometric pictures, they had no use for powers beyond
cubes, as there are three spatial dimensions.

Although other interpretations of the Pythagoreans’ obsession with the
number 10 have been given (see e.g. [44]), the triangle representing 10 may
help us understand the quotation from Aristotle at the start of this section.
The triangular number 10, the tetractys, (shown in Figure 7) has four rows,
the top containing a single pebble (a point, dimension 0), the second two
pebbles (two points define a line, dimension 1), the third three pebbles (three
points define a triangle in the plane, dimension 2), and the bottom line has
four pebbles (whichdefine a tetrahedron in space—a triangular pyramidwhose
faces are four equilateral triangles, one serving as the base, with the other
three meeting at the top vertex—dimension 3). The number 10, the sum of
these four rows (the tetrad), thus represents the universe – while also serv-
ing as the unit for the dekad, the next higher order of counting (making 10
the base of the number system).

Figure 9(b) illustrates a simple result in what is today known as number
theory: any square whose sides consist of an odd number of pebbles can be
built from the unit (a single pebble) by adding pairs of consecutive gnomos
around the unit. Each such pair can be split—as we did in Figure 9(b)—into
4 equal pieces. Hence an odd square number always leaves remainder 1 (the
central pebble!) when it is divided by 4.

On the other hand, a square with even sides obviously divides into four
equal pieces, each having sides with length one-half that of the original. So
even squares are divisible by four.
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Today we would describe these facts by saying that a perfect square
leaves remainder 0 or 1 when divided by 4. This relationship is expressed
as: n2 ≡ 0 or 1 (modulo 4). In other words, when we divide 4 into a perfect
square, we will never get 2 or 3 as the remainder.

This has consequences for right-angled triangles whose sides are whole
numbers. It means that if C is even in a Pythagorean triple (A,B,C) then
so are A and B : if both A and B are odd, the squares A2, B2 each leave
remainder 1 upon division by 4, so the sum A2 +B2 leaves remainder 2, so
the sum cannot equal C2, which is divisible by 4. If exactly one of A,B is
odd, then A2 +B2 would be odd, while C2 is even. So if A2 +B2 = C2 and
C is even, we are forced to conclude that A and B are even.

So: if the hypotenuse C of a right-angled triangle with integer sides
is even, then so are the other two sides. Next, suppose that not all sides
(A,B,C) are even. Then C cannot be even, so it must be odd, by the above.
IfA,Bwere either both even or both odd, thenA2 +B2 would be even, hence
C would be even. So if any sides are odd, then C, and exactly one ofA orB,
must be odd.

We summarise this as a result that will be useful in Section 3 below –
we will call it our

First Divisibility Lemma:
In a right-angled triangle whose sides (A,B,C) are whole numbers:
(i) if C is even, then are all three sides are even.
(ii) if any sides are odd, then C is odd, one of A,B is even and the other odd.

2.5. Side and diagonal. These ‘pebble proofs’ illustrate some of the
techniques probably available to the Pythagoreans for the analysis of var-
ious geometric shapes as well as number relationships. However, Aristotle
tells us that in this analysis they came acrossmagnitudes that are incompati-
ble with their bold claim that ratios of whole numbers (formed bymultiples
of a fixed unit), which were so useful in the analysis of musical harmony,
could explain all natural phenomena. Since no original records remain to
tell us how this came about, we again offer what constitutes one of several
plausible scenarios for this discovery, rather than historical fact.

Construct a square of side 2 (in whatever units you prefer) and divide
it into four unit squares by joining opposite midpoints of its sides. Divide
each unit square into two isosceles right triangles by drawing diagonals that
meet at the midpoints of the larger square. (See Figure 10).

Take any of the eight triangles. By Pythagoras’ theorem, the square on
its hypotenuse is 12 + 12 = 2. Thus the hypotenuse, which is a line segment
with length l, say) is the side of a square whose area is exactly double that
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Figure 10. Side and diagonal

of a unit square.12 So what is this length l–is it representable by a number,
and if so, by what sort of number?

Aristotle answers this question with a logical argument showing that
l cannot be expressed as a ratio of two whole numbers. It is his favourite
example to illustrate proof by contradiction, an important proof technique we
will come across repeatedly. He starts by assuming that the claim he is try-
ing to prove is false, and shows that this must lead to a contradiction, so that
the claim cannot be false, hence must be true.

To justify this logical principle, Aristotle argued that a propositionmust
either be true or be false. Thus either the proposition (P ), or its negation
(notP ), must hold. The assertion that these are the only possibilities is Aris-
totle’s famous principle of the ‘excluded middle’. Like the great majority of
modern mathematicians, I will side with him in this book, and utilise proof
by contradiction frequently to justify my claims – although, as we will see
in Chapter 10, this attitude is not quite universal.

Aristotle’s proof that the diagonal of the unit square cannot be expressed
as a ratio of two whole numbers goes as follows. Suppose that the relation-
ship between the side and diagonal of the unit square can be expressed as a
ratio of two whole numbers. (In modern terms, this amounts to the asser-
tion that l =

√
2 is a rational number.) This would mean that we can write

l = a
b for some whole numbers a, b with no common factors.
Multiplying both sides by b, then squaring the results, we would have

a2 = l2b2 = 2b2,

since the square on the side with length l has area 2. If a were odd, then a2

would be odd, but in fact it equals 2b2. Hence a must be even and can be
written as a = 2c for some whole number c. Then 2b2 = a2 = (2c)2 = 4c2,

12This fact is exploited famously in Plato’s dialogue Meno, where ‘Socrates’ teaches a
young slave how to construct a square with double the area of a given one, while arguing
that what the youngster was doing was not learning, but that he was simply ‘remembering’ a
true statement that he had known subconsciously all along.
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which, after cancellation, becomes

2c2 = b2.

This is turn shows that b2, and therefore b, is also even.
So a and b have common factor 2, contrary to our assumption that they

have no common factors. This contradiction shows that l = a
b is impossible

for whole numbers a, b.
But this proof, used by Aristotle as an example that would be well-

known to his readers, seems rather unlikely as amethod of discovery. In order
to begin the above proof, one would need to suspect, at least, that l cannot
be a ratio of two whole numbers. How might this possibility present itself
to an unsuspecting Pythagorean?

Well, we have seen that the diagonal cuts the unit square into isosceles
triangles, and our Pythagorean might wish to identify how such a triangle
would produce a Pythagorean triple by adopting a suitable (smaller) unit
length. The sides of the triangle would then be lengths expressible as whole
number multiples (A,A,C) of this unit length, since the two sides meeting
at the right-angle have equal length. Using part (i) of the First Divisibility
Lemma proved at the end of Section 2.4, we see that, if the hypotenuse C is
even then so is A, as in that case all three sides must be even. It that case
we can halve each side and retain an isosceles triangle. Continuing to do
this we must eventually arrive at an isosceles triangle whose hypotenuse C
is odd. But now (ii) of the same result tells us that one of the legs of the
triangle must be even and the other odd. But here the two legs have the
same length A! This is a contradiction, proving that the ratio of diagonal to
side in the unit square cannot be expressed as a ratio of whole numbers.

The fact that the side and diagonal of any square cannot simultane-
ously be multiples of the same unit means that they are not ‘co-measurable’
(or, more elegantly, commensurable) in terms of any chosen unit. They pro-
vide an example of two magnitudes (lengths) that are incommensurable. The
Pythagoreans would presumably have found this highly disturbing, as they
had noway of expressing the relationship between these two lengths byway
of a number, yet it is clear that one can easily construct such lengths.

Of course, this is just one possible (if plausible) reconstruction of ‘the
discovery of incommensurables’ by the Pythagoreans. There is a continuing
debate among historians whether the ratio of diagonal and side of a square
was actually the first quantity of this type to be considered. The fragmen-
tary nature of surviving ancient texts and commentaries allows a variety of
interpretations. Prominent among the alternatives put forward as the first
known incommensurable quantity is the ratio of the diagonal to the side
of a regular pentagon, often called the ‘golden section’ and given in mod-
ern terminology as 1

2 (1 +
√

5) = 1.61803399... (see also Chapter 2, Section
2.2). I will not take sides in such disputes, but will continue to use

√
2 as
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Figure 11. Sides and areas in proportion

our prototype of incommensurables, since it is the familiar example cited
by Aristotle.

The existence of incommensurable magnitudes in geometry presents a
problem for a Pythagorean world view that asserts that all objects can be
measured in terms of ratios of whole numbers. As mentioned earlier, this
world view is still visible, two centuries later, in the definition of propor-
tionality that Euclid uses in Book VII of his Elements, where he reports and
develops arithmetical results attributed to the Pythagoreans.

In Book VII, Euclid says that the magnitudes A,B and C,D are in pro-
portion (recall that we denote this by A : B :: C : D) if A is ‘the same multiple,
part or parts’ ofB asC is ofD.13 In otherwords, ifmA = nB for some natural
numbers m,n, then we need mC = nD for the two ratios to be in propor-
tion. In our language, this says that D must be the same ‘rational multiple’
of C as B is of A: if B = m

n A thenD = m
n C, and we describe the ratio as the

rational number m
n . For Euclid, on the other hand, ratio and proportion are

not about ‘numbers’, so he does not express the ratio in this way.
With the above definition the following basic fact about rectangles can

no longer be said to hold in general:
In a rectangle, a line parallel to one side divides the other side in the same pro-

portion as the resulting areas.
This simply means that A : B = AC : BC with A,B,C as in Figure 11.
This relationship between a ratio of line segments and the ratio of ar-

eas with these segments as their bases, while obviously true, can in some
circumstances become a meaningless statement in the Pythagorean world-
view: we need only take B as the chosen unit length and choose A as a
length incommensurable with this unit. In modern notation, we might take
A =

√
2 = C and B = 1. In that case the rectangles AC and BC comprise

2 and
√

2 area units respectively, while the line segments A,B have lengths
of
√

2 and 1 linear units. But the claim that
√

2 : 1 = 2 :
√

2 makes no sense

13A more general definition (due to Eudoxus) of proportion is given in Book V of the Ele-
ments, but it is generally accepted that in Book VII Euclid follows the Pythagorean concepts.
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according to the above definition of proportions, since
√

2 is not ‘a multiple,
part or parts’ of 1 (nor 2 of

√
2), precisely because

√
2 = m

n is impossible for
whole numbersm,n.

In his treatiseTopics, Aristotle highlights this difficulty clearly and sug-
gests that a way out would be to alter the definition of proportionality so that
it can encompass the above. We will see later how this problem was solved
conclusively, reportedly by Eudoxus (408-355 BCE). The new definition is
central to Book V of the Elements.

Despite the difficulties posed by incommensurables, it clear that the
problem posed by

√
2 did not stop early Greek mathematics in its tracks,

although it may have been instrumental in shifting its focus decisively from
arithmetic to geometry, which appeared to be where a systematic study of
these newly discovered magnitudes could be undertaken.

3. Incommensurables

Plato, whose Academy was, in its time, the most influential philosophi-
cal school in ancient Athens, frequently phrased his writings in the form of
dialogues between ‘Socrates’ and other characters to drive home the main
tenets of his philosophy. In one such dialogue the mathematician Theaetetus
appears as a youngman, relating how a Pythagorean lecture on incommen-
surables inspired him to make a significant breakthrough in identifying an
unlimited number of examples of such magnitudes. The dialogue is less
a historical account than a graphic lesson illustrating Plato’s philosophical
beliefs.

3.1. The Theodorus lesson. The passage describes, in the words of the
youthful Theaetetus, his reaction to a lesson given around 400 BCE by the
PythagoreanmathematicianTheodorus of Cyrene, inwhich he demonstrated
the incommensurability of the square roots of 3, 5, 6, ...‘up to 17’ with the
unit.

It is worth reading an excerpt to gain insight into its strongly visual de-
scription of mathematical statements – the translation is from [23]:

THEAETETUS: Theodorus was writing out for us something about roots,
such as the roots of three or five, showing that they are incommensurable by the
unit: he selected other examples up to seventeen—there he stopped. Now as there
are innumerable roots, the notion occurred to us of attempting to include them all
under one name or class.

SOCRATES: And did you find such a class?
THEAETETUS: I think that we did; but I should like to have your opinion.
SOCRATES: Let me hear.
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THEAETETUS: We divided all numbers into two classes: those which are
made up of equal factors multiplying into one another, which we compared to square
figures and called square or equilateral numbers;—that was one class.

SOCRATES: Very good.
THEAETETUS: The intermediate numbers, such as three and five, and every

other number which is made up of unequal factors, either of a greater multiplied by a
less, or of a less multiplied by a greater, and when regarded as a figure, is contained
in unequal sides;—all these we compared to oblong figures, and called them oblong
numbers.

SOCRATES: Capital; and what followed?
THEAETETUS: The lines, or sides, which have for their squares the equilateral

plane numbers, were called by us lengths or magnitudes; and the lines which are the
roots of (or whose squares are equal to) the oblong numbers, were called powers or
roots; the reason of this latter name being, that they are commensurable with the
former [i.e. with the so-called lengths or magnitudes] not in linear measurement,
but in the value of the superficial content of their squares; and the same about solids.

SOCRATES: Excellent, my boys; I think that you fully justify the praises of
Theodorus, and that he will not be found guilty of false witness.

In summary, Theaetetus is here distinguishing between square numbers
(what we today call ‘perfect squares’) and all other positive whole numbers
(conveniently lumped together as ‘oblong’, since he is thinking only about
areas of rectangles). He argues that in the former case, where the area is
a perfect square, the sides (whose length is the square root of the area) are
commensurable with the unit, hence may, in true Pythagorean fashion, be
called ‘magnitudes’. In the latter case, however, the side of a square whose
area is an ‘oblong’ number (hence equals that of a non-square rectangle) is
commensurable with the unit ‘in square only’ and so is not a Pythagorean
magnitude – since it is not a ‘multiple, part or parts’ of the unit length.

As a simple example of this terminology, 3 is represented by a 3 × 1

rectangle; the side of a square with this area is
√

3. Although the area, 3

(= (
√

3)
2
) is obviously commensurable with the unit, the side

√
3 is not, as

(according to Theaetetus) Theodorus showed. So:
√

3 and the unit are ‘com-
mensurable in square only’. Euclid also adopts this terminology in Book X
of his Elements.

In other words, the square root of a positive whole number either is
itself a whole number (so the original number is a perfect square), or else
it is irrational (cannot equal the ratio of two whole numbers). Confusingly
for us, Theaetetus describes irrational square roots as ‘roots’ or ‘powers’ to
distinguish them from his ‘magnitudes’, but the distinction between the two
classes is clear nonetheless. The passage does not contain any indication of
the proof of Theaetetus’ bold claims.
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We state the key result announced by Theaetetus rather more succinctly
in modern terminology, as:

Theaetetus’ Theorem
(i)
√
n is incommensurable with the unit unless n is a perfect square.

(ii) 3
√
n is incommensurable with the unit unless n is a perfect cube.

The second claim is contained in Theaetetus’ remarkably nonchalant –
almost throw-away – remark ‘and the same about solids’. Not surprisingly,
Socrates is impressed: ‘Excellent, my boys.’

Theaetetus’ claims can be proved in a manner analogous to that given
by Aristotle for

√
2. However, rather than simply relying on the fact that a

whole number can be either odd or even, this proof (whichwe give inChap-
ter 8) crucially makes use of what is now called the Fundamental Theorem of
Arithmetic,which we will discuss in Chapter 7.

We may wonder how Theodorus’ case-by-case analysis might have em-
ployed the limited techniques we ascribed earlier to the Pythagoreans; in
particular, whether this throws light on the reason he stopped at 17. This
question has been debated extensively among historians. Our account pro-
vides a brief glimpse of the reconstructions in [26].

The only tools to be used are: pebble arithmetic with figurate numbers,
the duality of odd and even, and Pythagorean triples.

Figure 12 displays three examples. We will consider (a) and (c) here.
SeeMM for (b).

Theodorus is reported as dealing with each square root individually
and he ‘stopped at 17’, which could suggest that he encountered some diffi-
culty with this case. We will see below why this might have been so.

Rather than look at each case in turn, we can use the duality between
odd and even, to consider the numbers 1, 2, 3, ..., 16 in four groups according
to their remainders when divided by 4 = 22. In each group, the numbers
can be handled similarly.

First, 4, 8, 12, 16 are divisible by 4, with 4, 16 as perfect squares, and√
8 = 2

√
2,
√

12 = 2
√

3. So, dealing with
√

2 and
√

3 also deals with these
cases.

Next, 1, 5, 9, 13, 17 leave remainder 1.Of these, 1 and 9 are perfect squares.
Among numbers before 17, this leaves only 5 and 13. We give the proof for√

5 below.
Thirdly, 2, 6, 10, 14 leave remainder 2 when divided by 4, so they have

the form 4N + 2 = 2(2N + 1). Of course,
√

2 has already been done. Proofs
for the remaining cases are slightly longer – for

√
6 seeMM.



3. INCOMMENSURABLES 37

Figure 12. Theodorus’ lesson

Finally, 3, 7, 11, 15 leave remainder 3, so have the form 4N + 3.Here we
again just consider the first of these.

The ‘Theodorus proof’ given below for
√

5 (and inMM for
√

6) requires
a lemma on divisibility by 4.

Second Divisibility Lemma:
In a Pythagorean triple (A,B,C) where not all numbers are divisible by 4, the

only number divisible by 4 is either A or B.
This result follows readily from the duality of odd and even. A ‘pebble

proof’ can be found in MM.
Thus

√
3 and

√
5 provide typical examples to illustrate what may have

been Theodorus’ approach.
Begin with

√
3. If there are multiples of the unit, A,B, such that

√
3 :

1 = A : B, then the right-angled triangle with legs A,B gives rise to a
Pythagorean triple (A,B, 2B), since (

√
3)2 + 12 = 22, so that A2 + B2 =

(2B)2. The two triangles in Figure 12(a) are similar, as corresponding sides
are in proportion. If A andB are both even, we can halve them successively
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until at least one of them is odd. But the hypotenuse (2B) will then still be
even, and, as in statement (i) of the First Divisibility Lemma (see the end of
Section 2.4), this makes all three sides even. Since at least one side is odd,
this contradiction shows that we cannot have

√
3 : 1 = A : B, proving that

(in our terms)
√

3 is not a rational number.
Next, we consider

√
5 : 1 = A : B. As 5 is odd, our Pythagorean triple

is (
√

5, 1
2 (5 − 1), 1

2 (5 + 1)) = (
√

5, 2, 3), and our similar triangle has sides
(A, 2B, 3B), (see Figure 12(c)). Now if B is even, so is 3B, which means
that all sides are even, and the ratio A : B is not in lowest terms. Hence we
can assume that B is odd, in which case 3B is odd, so 2B is the only even
side (by statement (ii) of the First Divisibility Lemma). This means that B is
even, since by the Second Divisibility Lemma, the only even side, 2B,must
be divisible by 4. This contradicts our assumption that B is odd. Hence

√
5

cannot be rational.
Why does Theororus’ method fail at 17? Observe that it is the first non-

square number of the form 8N + 1. If we attempt a ‘Theodorus proof’ that it
is incommensurable with the unit, we would, as usual, assume thatA : B =√

17 : 1. This will provide a triple (A, 8B, 9B), since 17 = 92 − 82.

But now our ‘Theodorus’ methods will no longer provide the desired
contradiction: the hypotenuse, 9B, is even only if B is even, and then all
three sides will be even, so we can halve them repeatedly and confine our-
selves to the case where B is odd. But then, with the odd hypotenuse 9B,
statement (ii) of the first Divisibility Lemma tells us that one leg is even and
the other odd. This does not conflict with our triangle, since we now haveA
odd, 8B even and 9B odd. An appeal to the Second Divisibility Lemmawill
not help either: we know that not all sides are divisible by 4, as A is known
to be odd. But now the other leg of the triangle, 8B, is divisible by 4, while
the hypotenuse, 9B, is not. So the lemma cannot lead to a contradiction.

The two results we have relied on so far are not conclusive. We need a
different analysis to deal with

√
17. But all we need is to consider divisibility

by 3. So here is another divisibility lemma:
Pythagorean triples and divisibility by 3 :

In a right-angled triangle with sides (A,B,C), if 3 divides the hypotenuse C,
then it also divides A and B.

For a ‘pebble proof’, consider a square number represented by peb-
bles. If its side is divisible by 3, then so is the square itself. Starting with
a square of side 3n, we build ever larger squares by adding gnomons: the
first gnomon has 2(3n) + 1 pebbles. The next gnomon is divisible by 3 (it
has 2(3n+ 1) + 1 pebbles), so the resulting square also leaves a remainder 1
when divided by 3, while the third gnomon again produces a square with
side divisible by 3. Thus a perfect square cannot leave remainder 2 when
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divided by 3.14 Now suppose than A2 + B2 = C2 and that 3 divides C. If
neither ofA,B is divisible by 3, thenA2 +B2 leaves a remainder of 2, which
is impossible, while if only one of them is divisible by 3, we cannot have
A2 +B2 = C2, since C2 is divisible by 3.We have shown that 3 divides both
A and B,which completes the proof of the lemma.

We apply this lemma to the triangle with sides (A, 8B, 9B). The hy-
potenuse 9B is divisible by 3, hence so are A and 8B. This means that B is
also divisible by 3, henceA,B have 3 as a common factor and are not in low-
est terms. This contradicts the choice of A and B, since we always assume
them given in lowest terms. The contradiction shows that

√
17 : 1 = A : B

is not possible for whole numbersA,B, so that
√

17 is irrational, as claimed.
The above arguments suggest that a first step towards the ‘generalisa-

tion’ needed for the proof of the result announced by Theaetetus is to con-
sider divisibility by 3. This takes us past 17. To continue indefinitely, how-
ever, we must assume that the whole numbers represented by A,B have no
common factors at all, rather than simply avoiding 2 as a common factor, as
Theodorus does.

3.2. Euclid’s classification. This excursion into early Greek arithmetic
‘by reconstruction’ illustrates how the number concept can be widened pro-
gressively through the analysis of particular problems—even if, as in this
case, the mathematicians of the time reacted by refusing to regard the ‘new
magnitudes‘, the incommensurables, as numbers, and decided that they
should be studied by geometric methods instead.

The later books of Euclid’s Elements give a clear account of the degree to
which they succeded in providing such a classification. The straightedge-
and-compass constructions developed in the Elements, producing what we
would today describe as various combinations of square roots, are extensive.
Book X, by far the longest of the 13 books, is in largemeasure a compendium
of these techniques. It includes 115 propositions, almost a quarter of the 465
propositions contained in the Elements. Since the constructions presented
there are often quite complex, and have in any case been superseded by
algebraic descriptions of the quantities in question, we will not attempt any
proofs.

Euclid begins his definitions by distinguishing (just as Theaetetus had
done in our extract from Plato) between commensurable magnitudes (multi-
ples of the same unit) and magnitudes that are commensurable in square only
(i.e. in our terms, the ratio A : B does not equate to a rational number, but
A2 : B2 = m : n for some natural numbers, giving equal areas, nA2 = mB2).

We should recall that Euclid does not deal directly with numbers, but
with geometric magnitudes. So, saying that two lengths are commensurable

14In modern notation (see also Section 2.4): n2 ≡ 0 or 1 (modulo 3).
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in square onlymeans that they are incommensurable, but the squares on them
‘are measured by the same area’, as above. He starts by assuming a fixed
assigned line (which serves as the unit of measurement) and calls a line rhētos
if it is commensurable with the assigned line (either in length or in square
only). He refers to an area commensurable with the square of the assigned
line by the same term. Following [13], we use the term expressible to translate
rhētos.

Expressible lines and areas (which are, at worst, square roots of ratio-
nal numbers in our language) represent the ‘easy case’ for Euclid; his main
interest is in classifying the inexpressible lines and areas. The first 18 propo-
sitions of Book X provide a detailed account of the properties of expressible
magnitudes.

The next eight deal with the first subclass of inexpressible magnitudes,
the medial: a medial area is equal to a rectangle with expressible sides com-
mensurable in square only, and the side of a medial square is called amedial
line. To express this in modern notation, fix the length of the assigned line
as a. The lengths a and

√
2a (the side and diagonal again!) are incommen-

surable, but commensurable in square, since the squares on these sides are
a2 and 2a2. The rectangle with sides a and

√
2a has area

√
2a2, so the square

with this area has side 4
√

2a. So the whole collection of fourth roots forms
part of Euclid’s class of medial lines.

He next considers sums and differences of incommensurable lengths
and areas. In our notation this includes surds like

√
2 ±
√

3 or 1 ±
√

5. He
shows that neither can be a medial. He calls the sum a binomial, the dif-
ference an apotome (terms still used in the sixteenth century by Cardano –
see Chapter 2) and subdivides each of the binomials and apotomes into six
different classes, analysing the relations between them and the medial.

In modern terminology what he deals with are sums and differences,
repetitions and other combinations of various irrational square roots. Alto-
gether, his classification amounts to the identification of 23 different classes
of incommensurables, all of which can be recovered as solutions of polyno-
mial equations with integer coefficients and of degree at most 4.

One motivation historians frequently cite for Euclid’s extensive classifi-
cation is that it includes, in particular, all the incommensurables needed for
the construction of the five Platonic solids—the tetrahedron, cube, octahedron,
dodecahedron and icosahedron—whichEuclid achieves in the final books of the
Elements. It turns out that comparing the edges of these three-dimensional
figures, especially the last two, with the diameter of the sphere in which he
assumes them to be inscribed, requires much of the sophisticated analysis
Euclid develops in Book X.
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4. Diophantus of Alexandria

While geometry remained the focus of most classical Greek mathemat-
ics, Archimedes, not all that long after Euclid, had a freer approach to the
number concept, as testified in his Sand-Reckoner and in his approximations
of particular irrationals, such as his remarkably accurate estimate that π lies
strictly between 3 10

71 and 3 10
70. .

More consistent moves away from the visual approach emerged during
the Hellenistic period, from the death of Alexander the Great in 323 BCE
to the battle of Actium in 31 BCE. This battle confirmed the dominance of
Octavian – the future Emperor Augustus – over the forces of Mark Antony
and Cleopatra. Early in this period the Egyptian port of Alexandria (estab-
lished by Alexander the Great in 331 BCE) became a pre-eminent centre of
learning. The city maintained this exalted status for nearly six centuries,
throughout much of the Roman Empire. Major fires – the first during Julius
Caesar’s invasion of Egypt in 48 BCE – led to the destruction of the large
Royal Library and the probable loss of the bulk of its estimated 400,000
manuscripts. Its daughter library, housed in the Serapeum (a pagan tem-
ple) survived and protected Alexandria’s status as a centre of learning for
another three centuries. It was finally destroyed in 391, following the Roman
Empire’s adoption of Christianity, under Emperor Constantine in 313.

Fortunately, significant parts (at least 6 out of a reported 13 volumes)
of one of the most influential mathematical works written near the end of
the period, the Arithmetica of Diophantus (ca. 210 to ca. 290) have survived.
Four further books were found in a ninth-century Arabic transcription in
1968; these are thought by some scholars to include translations of later
notes on Diophantus’ work made by Hypatia (ca. 370-415), the first known
female mathematician, who was killed by a Christian mob during conflicts
in Alexandria in 415.

Despite its title, the Arithmetica is, in effect, a substantial work in what
we might call algebra (although written more than five centuries before the
term itself existed). Diophantus invented a system of scribal abbreviations
(rather than a symbolic notation) to describe, analyse and solve various types
of equation. He also broke with Greek tradition by considering powers
higher than the third, removing the constraints imposed by geometric in-
terpretations. He listed categories of numbers—which he still described as
made up of some multiple of units, although, as we shall see, he accepted ratios
of these among the solutions of various problems he posed. His notation
for various species of number he particularly sought to investigate started
with squares (designated by capital delta, ∆) and cubes. He went on to de-
fine square-squares (fourth powers), indicated by ∆Υ∆ (two deltas together
with a separating index) as well as higher powers up to cube-cubes. His no-
tation distinguished carefully between what we would today call variables
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and constants, and he discussed problems involving various equations, ex-
pressed verbally and solved using his abbreviated notation. Diophantus
consistently used symbols for the ‘unknown’ variable, but he usually as-
signed specific integer values to the constants he considered. He studied
systems of linear as well as quadratic equations (which, as we have seen,
have their origin in Babylonian times and also appear, in geometric guise,
in Book II of Euclid’s Elements), cubic equations and beyond, up to the sixth
degee (cube-cubes).

He was only interested in positive rationals as solutions (there is no ev-
idence that he accepted negative numbers), and frequently posed indetermi-
nate problems, with more unknowns than equations, where the conditions
imposed by the equations do not specify a unique solution. In complete
contrast to Euclid’s Elements, the Arithmetica contains no theorems, but con-
sists of a series of solved problems that display various methods by which
one may find two or more unknowns, usually under the requirement that
certain expressions of them result in perfect squares or perfect cubes.

For example, in Book II, Problem 8 asks the reader: To divide a given
square number into two squares.

In other words, we want to find (positive rational) x, y that satisfy x2 +
y2 = b2 for some given number b. Typical of his methods is that Diophantus
chooses a specific example, b = 4, so that x2+y2 = 16.His generalmethod of
solution seeks to ensure that either the quadratic term or the constant term
in the equation disappears. He first notes that if the first square is x2, the
other is y2 = 16−x2, and then says that y should be taken in the form ax−b
for some whole number a, again using y = 2x − 4 as his specific example.
In this case he obtains

16− x2 = y2 = (2x− 4)2 = 4x2 + 16− 16x

and the constant term (16) cancels, so that, grouping like terms together,

5x2 = 16x.

Therefore x = 16
5 and y = 12

5 would solve the problem, and the two required
squares are 256

25 and 144
25 ,whose sum is 400

25 = 16.

This example shows that, while apparently unwilling to consider con-
sider negative quantities as ‘numbers’, Diophantus nonetheless makes use
of an assertion that is commonly learnt in primary school today. This is the
familiar claim that ‘a minus times a minus is a plus’.

This is evident when he multiplies out (2x − 4)2 and obtains the term
(−4)(−4) = 16. Diophantus’ notation differs from ours: he invents a ‘sub-
traction sign’, which looks like a capital Greek letter lambda (Λ) with a ver-
tical line through the middle – it may be an abbreviation of lepsis, which
means negation. He has no symbol for addition, so terms after the sub-
traction sign are simply grouped together. Nevertheless, without specific
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mention, he correctly applies the convention that multiplying out two terms
starting with a negation sign must result in a termwithout one. This is fully
in keeping with Aristotle’s principle of the excluded middle (cf. Section 2.5):
if the negation of a proposition is false, the proposition itself must be true;
that is, a proposition is the negation of its negation.

As we can see, Diophantus was satisfied with obtaining rational num-
bers as solutions for the problems he posed. He thus moved beyond the
restrictions imposed by classical Greek mathematicians, in effect regarding
rational numbers as numbers in their own right, for instance by accepting
rationals such as 256

25 and 144
25 as ‘squares’, which provide the solution of

the above problem II.8. In similar fashion, various rationals of the form m3

n3

would be included included among his ‘cubes’. However, he never articu-
lated a fully consistent system of adding or multiplying fractions; nor did he
use fractions explicitly when formulating his problems, or in arithmetical
operations to simplify the equations he set up to solve these problems.

In modern number theory, Diophantus’ name is invoked today for the
modern field of diophantine analysis, which was mostly inspired by the work
of Pierre de Fermat (1601-1665). In this field of research attention is focused
on the more difficult task of finding integer solutions to indeterminate prob-
lems.





CHAPTER 2

Writing and Solving Equations

..to invent is to discover that we know not, and not to recover or resummon that
which we already know.

Sir Francis Bacon, The Advancement of Learning, 1605

Summary

We review the development and acceptance of our current decimal sys-
temof number symbols, known to historians asHindu-Arabic numerals. This
reflects its Indian origins as well as its further development in the Arab
caliphates that conquered the Middle East, parts of Central Asia, North
Africa and Spain in the eighth and ninth centuries. In addition, while also
taking initial steps towards algebra in a systematic study of quadratic and cu-
bic equations, Arab scholars were crucial in the preservation and translation
of Greek manuscripts.

The Hindu-Arabic numerals (together with most classical Greek math-
ematics) remained largely unknown in Europe until the twelfth century. A
key figure in its transmission was Leonardo of Pisa (or Fibonacci), whose in-
fluence led to the replacement of reliance on the abacus by the use of Arabic
numerals, with intermediate steps recorded on paper. This practice spread
quickly, first in commerce, where symbolic notation served as shorthand.
This, together with the study of equations, led to ‘formulae’ for the solution
of cubics and quartics, first published in 1545 in the influential Ars Magna
by Girolamo Cardano.

1. The Hindu-Arabic number system

While classicalGreek textswere highly influential in cementing the dom-
inance of geometry as the principal domain of certainty and proof, quite dif-
ferent sources influenced the development of arithmetical techniques and
the symbolic representation of numbers. One key example was the early
development, primarily in India, of the decimal number systemwe all take for
granted today. However, piecing together this history today is complicated
by an almost total lack of primary written sources, so that much of what is
known is based on secondary sources.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.02
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A brief summary of results from recent scholarship on this topicis given
in [25].1 The classic text [31] describes in greater detail the gradual evolu-
tion, fromorigins in the Brahmin period in India (third century BCE) to early
modern Europe, of the number symbols we use today. The earliest appear-
ance of the nine number symbols that preceded the number digits 1, 2, ..., 9
of our decimal system is found in decrees inscribed on pillars during the
reign of King Ashoka (third century BCE). Over the next millennium the
symbols were gradually transformed – together with the addition of zero by
a dot (denoting ‘absence’) – although number symbols for 10, 20, ..., 90 also
remained in use, while combinations of symbolswere initially needed to de-
pict higher numbers. The earliest known Indian mathematician, Aryabhata
(b.476) had a systemof names for powers of ten, for example. The individual
symbols for the nine digits were further developed by Arabmathematicians
from the eighth century onwards, introduced to Spain during itsMuslim oc-
cupation and transmitted via Italy to the rest of mediaeval Europe.

The crucial advantages of a place-value system using only nine symbols
were realised quite early on. From at least 2000 years ago, columns on Chi-
nese counting boards represented different powers of 10. It has been spec-
ulated that trading between the Chinese and Hindu cultures in South-East
Asia may have led to an exchange of ideas, culminating (probably around
600) in the ‘Hindu’ numerals for numbers beyond 9 being dropped in favour
of a full place-value system, including using the nine digits, together with a
dot (later a circle) for zero. Evidence for this suggestion includes an inscrip-
tion found in Cambodia dated to the year 683, shown as the 605th year of
the Saka period and displaying the symbols then used for 6 and 5, separated
by a dot. Similarly, an early eighth-century Chinese astronomical work ex-
plicitly describes the ‘Hindu’ use of a place-value system, including use of
the dot, and comments that it made calculation ‘easy’.

The earliest extant fragment referring to this ‘Hindu system’ comes from
a Syrian priest, Severus Sebokht, who commented as early as the year 662 that
the Hindus had a valuable calculation method ‘done with nine signs’. He
did not refer to the dot.

In any event, themost significant impact of Indianmathematics onmod-
ernmathematical techniques really beganwith the transmission of these nu-
merals to theArabworld, apparently dating fromabout 770, when an Indian
scholar visiting Baghdad showed his hosts a Sanskrit text containing calcu-
lationmethods based on a decimal place systemusing nine number symbols
and a symbol indicating zero (or ‘absence’). Their use in the development of
arithmetical techniques, including square root extraction, clearly impressed
Islamic scientists, although it took a considerable time for the newmethods

1This nomenclature ’Hindu-Arabic number system’ has traditionally been used to de-
scribe aspects of mathematical development and innovation originating in the Middle East
and/or the Indian subcontinent. Current debates on more appropriate terminology continue.
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to gain wide acceptance in practice. The Sanskrit text was translated into
Arabic, providing the basis of what gradually became widely known and
eventually prized as ‘Hisāb al-Hind’ (‘Indian calculation’).

As argued in [25], it seems likely that, while Indian mathematicians
worked with a well-developed decimal place-value system for integers by
the early eighth century, first steps in the extension of the system to include
decimal fractions were due to somewhat later Arab mathematicians (per-
haps beginning with al-Uqlidisi in the tenth century). Over the next few
centuries Arab mathematicians also gradually modified the numerals, be-
queathing to Europe what became the familiar number symbols of today’s
decimal system.

More generally, in the eighth and ninth centuries, a wide variety of sci-
entific andmathematical texts was gathered together in Baghdad during the
reign (786-809) of the caliphHarun al-Rashid and translated into Arabic. The
different techniques and notations arising from these disparate sourceswere
gradually harmonised and developed further. His influential House of Wis-
dom, became a public academy under his son, al-Ma’mun (reigned 813-33),
who brought together Islamic as well as other scholars, often from Jewish,
Zoroastrian or Christian backgrounds.

Mathematical research flourished in an atmosphere of free intellectual
enquiry not dissimilar to that of the Greek city states. Although these re-
searches were undertaken under amonotheistic regime, for at least two cen-
turies secular enquiry was not regarded as creating conflict with religious
dogma, and was openly encouraged. Nonetheless, such openness to new
ideas was never fully universal throughout the caliphate and sadly it did
not last. By the eleventh century the atmosphere had changed drastically.
Greater religious orthodoxy in the madrasas focused more and more exclu-
sively on Islamic law, to the effective exclusion of ‘foreign sciences’. From
that time onwards, mathematical activity other than basic ‘practical’ arith-
metic, was increasingly discouraged, although some important exceptions
remained, as described below.

Fortunately, by this time Europe was beginning to emerge from a pro-
longedperiod of turmoil and became receptive to the knowledge being trans-
mitted, at first piecemeal but increasingly effectively, by scholars visiting the
Arabworld. European scholars discovered thework ofArabmathematicans
such as al-Khwarizmi (ca. 780-850 AD) and his successors, who had adopted
and gradually modified the numerals from India into a superior symbolic
number system. The English word algorithm stems from a Latin transcrip-
tion (Algoritmi) of his name. His most influential text deals with the simpli-
fication of equations, and our word algebra is a corruption of al-jabr, which
describes the practice of transposing a term from one side of an equation to
the other (with the attendant change of sign).
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The earliest extant Arabic text (by al-Uqlidisi) shows that, by 962 AD,
this number system included the symbol 0 and had a clear place value no-
tation, as well as taking (still somewhat incomplete) steps towards handling
decimal fractions. The author extols the flexibility and convenience of the
‘Hindu’ notation, and points to its advances over earlier ‘finger-bending’
methods to denote numerals, as well as to the ease of recording and check-
ing complex calculations in the new system.

The final steps towards a fuller understanding of the decimal system,
and of the convenience afforded by using the decimal notation when cal-
culating with fractions, developed relatively slowly. However, treatises dis-
cussing approximations to fractions whose denominators include numbers
other than 2 or 5 (so that the decimal expansion does not terminate), ap-
peared in the Arab world in the twelfth century, showing that the authors
clearly understood that the approximation can be made arbitrarily close by
continuing far enough, providing ‘an infinite number of answers, each being
more precise and closer to the truth than the preceding one’. The full decimal no-
tation, with a vertical line separating the integral and fractional parts, first
appears around 1500, in the work of al-Kashi. By then, Europe was catching
up fast, with similarly sophisticated use of both finite and infinite decimal
expansions, starting with the work of Francois Viète and Simon Stevin in the
1570s. All these developments played a fundamental role in creating the
decimal number system we have today.

1.1. Arabic algebra. The great merit of the contributions of the Islamic
mathematicians was not only that they preserved and transmitted the clas-
sical Greek works. They combined systematic geometrical methods devel-
oped byEuclid andhis successorswith earlier ad hocmethods inherited from
the ancient Babylonians on linear and quadratic equations. In this, they con-
structed algebraicmethods bywhich equations could be solved, yielding (as
al-Khwarizmi already observes) numbers as the result of their calculations.
Geometric arguments then served to justify the methods used—something
which appears to be absent from Babylonian ‘algebra’.

As noted above, the term ‘algebra’ stems from the term al-jabr, popu-
larised in the famous work of al-Khwarizmi, ‘Al-Kitāb al-muhtasar fı̄ hisāb al-
jabr wa’l muqabāla (‘The Compendious Book on the Calculation of al-jabr
and muqabāla’), written around 825.2 In his writings al-Khwarizmi does not
make explicit use of equations, but describes the terms and steps in his so-
lutions verbally – he was apparently unaware of the work of Diophantus.

Key to his solution of problems leading to quadratic equations of the
form

ax2 + bx+ c = 0

2More details can be found in [6].
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was the classification of problems involving an unknown, its square and
constants (what he would call ‘squares, roots and constants’) into six basic
categories as follows (the modern symbolic notation is given in brackets):

squares equal roots (ax2 = bx)

squares equal numbers (ax2 = c)

roots equal numbers (bx = c)

squares and roots equal numbers (ax2 + bx = c)

squares and numbers equal roots (ax2 + c = bx)

roots and numbers equal squares (bx+ c = ax2)

Note that this enables him to avoid negative coefficients, as well avoid-
ing 0 on the right. His justification for the solution techniques he uses is
always given in geometric constructions – essentially the ‘completion of the
square’ that we discussedwhen looking at Babylonian cuneiform problems.
For these, he compares two geometric figures, so that all quantities con-
cerned must remain strictly positive.

A solution recipe (or ‘algorithm’) was then given for each of the six
types. For the fourth (squares plus roots equal numbers) he gives the fol-
lowing example (here taken from [6]), where a = 1, b = 10, c = 39, giving
the equation x2 + 10x = 39 :

You halve the number of roots, which, in this problem, yields five, you multiply
it by itself, result is twenty-five; you add it to thirty-nine; the result is sixty-four;
you take the [square] root, that is eight, from which you subtract half of the root,
which is five, The remainder is three, that is the root of the square you want, and the
square is nine.

In our notation his general solution of x2 + bx = c is therefore

(

√
(
b

2
)2 + c)− b

2
),

which is exactly what we saw in our earlier Babylonian example. Unlike the
Babylonians, however, al-Khwarizmi takes great care to produce a geometric
proof – in fact, he produces two proofs, one of which is virtually identical
to our square-completion in Figure 5.

The influence of the ‘six problems of al-Khwarizmi’ is clear from subse-
quent texts throughout the Islamic period and early European mathemat-
ics – his solution methods were learnt by rote, and apparently more com-
plex problems were systematically reduced (both by al_Khwarizmi and his
successors) to one of the six types. He compared various combinations of
‘squares, roots and numbers’ and modified them by means of al-jabr (typi-
cally bymoving terms to be subtracted to the ‘other side’, where they would
be added), or muqabāla (‘compensating’), which was done by reducing an
apparentlymore complex equation by grouping like terms on the sidewhere
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the net result is positive. For example, 5 + x2 = 3x + 12 is simplified to
x2 = 3x + 7. He also simplified both sides by cancelling common factors,
finally arriving at one of the six types. Throughout, his comparisons were of
aggregates of quantities that could be represented geometrically by means
of squares and rectangles, so that the dimensions of the figures represented
on each side remained the same.

From these beginnings, various generations of Islamic mathematicians
fashioned systematic methods which they could justify geometrically in the
Euclidean manner. After the translation of Diophantus’ Arithmetica, late in
the ninth century, their work went beyond the quadratic, to solve certain
types of problems that we would see as leading to cubic equations and be-
yond. Although geometry remained the principal means of justifying their
increasingly complex techniques and results, by the time of Omar Khayyam
(1048-1131), Islamic mathematicians had studied and classified more than
a dozen types of problems that we would today describe by means of cubic
equations. In addition, in their studies of the salient features and differing
advantages of the Babylonian sexagesimal number system (used through-
out astronomy and astrology) and the new ‘Hindu’ decimal system, they
made advances in unifying techniques for the manipulation of whole num-
bers and fractions, leading, in practice, to greater freedom in handling them
both as ‘numbers’, even if they never fully articulated a consistent concep-
tual framework for these techniques.

Their ideas and techniques were to be taken up and ardently pursued
by Renaissance mathematicians in Europe.

2. Reception in mediaeval Europe

In Europe, the fall of the Roman Empire in the fifth century resulted in
its replacement by local feudal systems, led by often barely literate barons,
who carved out local fiefdoms and engaged enthusiastically in local mili-
tary campaigns. Latin survived primarily in Italy and what is now South-
ern France, where the Roman notion of the quadrivium—a term apparently
coined by the Roman scholar Boethius (ca. 480-524) to describe the study of
arithmetic, geometry, music and astronomy—was still regarded as neces-
sary for the educated man, if only in a residual form with much-attenuated
content.

During the reign of Charlemagne (742-814) in Central Europe the newly
established multi-ethnic Holy Roman Empire began to develop a new focus
on learning, based largely in the monasteries, under the leadership of Al-
cuin of York (735-804). He combined the quadrivium and the trivium (gram-
mar, rhetoric and logic) into a comprehensive curriculum. The mathemat-
ical manuscripts available to Alcuin were few: the principal mathematical
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text circulating widely in Europe at this time was Boethius’ De Institutione
Arithmetica, a less than perfect version of an introductory text by the first
century neo-Pythagorean Nichomachus.

The classical Greek works were to remain unknown in Western Europe
until the twelfth century. Moreover, by the end of the ninth century, the brief
revival of learningunderCharlemagne had itself becomeoverwhelmed amidst
internal strife and by various invasions, from the East by Magyars, from
the North by Vikings and from the South by Saracens. However, many of
the monastic schools established by Alcuin survived these onslaughts and
a more permanent revival began at the turn of the millennium, with Ger-
bert d’Aurillac (ca. 945-1003), who became Pope in 999. He introduced the
Hindu-Arabic numerals on a counting board whose columns represented
positive powers of 10,with zero marked by an empty column.

His grasp of this system may have been imperfect, but his efforts her-
alded the introduction, less than a century later, of new techniques, recently
rediscovered from many manuscripts distributed by Arab scribes through-
out the regions of the Islamic conquest. A motley group of translators was
especially active in the Spanish city of Toledo, which had been retaken by
Christian forces from its Moorish rulers in 1085. This military victory pro-
vided scholars with access to a multitude of Arabic manuscripts, including
translations of Greek scientific andmathematical classics. Many of the earli-
est Latin versions of these manuscripts were produced via translation from
Arabic intoHebrew by scribes from the city’s substantial Jewish community,
who were fluent in Arabic as well as Latin.

From these local beginnings, translations ofArabicmanuscripts obtained
from a variety of sources were soon to produce a substantial body of math-
ematical literature, available in Latin, and widely transmitted to scholars
throughout Europe.

2.1. Fibonacci. A key figure in this early period of transmission was
Leonardo of Pisa (ca.1170 to ca.1250), nowmore commonly known as Fibonacci
(‘son of Bonaccio’), although this nickname is probably a nineteenth century
invention. His Liber Abaci, published in 1202, was highly influential. In his
youth, Leonardo was taught mathematics in Bugia on the Barbary Coast
(now in Eastern Algeria), which was then part of the Western Muslim Em-
pire. He travelled widely throughout the Muslim world, becoming familiar
with Euclid’s Elements and the Greek methods of geometric proof, as well
as with the Hindu-Arabic numerals, the decimal place system, and the al-
gebraic approach to solving equations of al-Khwarizmi. Upon his return to
Pisa he joined the academic court of the Holy Roman Emperor, Frederick
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II, writing several influential texts – of which the practically orientedLiber
Abaci was by far the most successful and widely read.3

Despite its title, the first part of the book focuses on the way in which
theHindu-Arabic numerals provide an alternative tomechanical calculation.
SinceRoman times, practical calculations hadusually beenperformed inEu-
rope with an abacus (typically, a wooden frame strung with wires carrying
different coloured beads as counters) or similar mechanical device; the fi-
nal answer was then written down in Roman numerals. Leonardo showed
how these mechanical devices could be by-passed by recording on sheets of
paper, in Hindu-Arabic notation, the various steps and results of applying
simple algorithmsfor combining numerals when adding, subtracting, mul-
tiplying or dividing.4 These algorithms remain essentially unchanged in
modern primary school curricula. In other words, Liber Abaci became the
text for performing calculations without the abacus.

Leonardo begins with the numerals:
The nine Indian figures are 9, 8, 7, 6, 5, 4, 3, 2, 1. With these nine figures,

and with the sign 0, which the Arabs call zephir (cipher), any number whatsoever
is written, as is demonstrated below.

The bulk of the book is devoted to a wide range of practical problems
in mensuration, commerce and currency conversion, as well as developing
algebraic techniques to handle a wide range of linear and quadratic equa-
tions. In these, and in describing methods for series summation, he gives
meticulous geometric justifications of his methods, in the style of Euclid.
Notably, in the later chapters he readily uses negative numbers as solutions
to certain equations and calculates accurately with these. He justifies rules
for adding and multiplying positive and negative numbers, although this
is always done in the context of ‘practical’ calculation, as in the following
example, found in Chapter 13 of the Liber Abaci.

The problem states that four men find a purse, and that for each, the sum of his
original wealth plus the purse, is in a simple proportion in relation to the original
wealth of the next two, in a circular pattern: the first plus the purse will have wealth
double the sum of the second and third, the second plus the purse triple that of the third
and fourth, the third plus the purse quadruple that of the fourth and first, the fourth plus
the purse quintuple that of the first and second. He shows that this problem can only

3 Astonishingly, this highly influential Latin text was not translated into any modern lan-
guage for 800 years – an English edition [42] finally appeared in 2002!

4The process of producing paper from woodpulp dried into thin flexible sheets was in-
vented in China early in the second century. It was gradually transmitted via the Middle East
(especially Baghdad), reaching Western Europe by the thirteenth century, and was soon pro-
duced in local paper mills, displacing the earlier uses of papyrus and vellum. The original
name for paper in Europe, bagdadikos, indicates its tranmission to Europe via the Arabic world.
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be solved if the first man has a debit (that is, he owes money!) which means that the
solution requires negative numbers. The problem is indeterminate in general, but he
finds the smallest solution: the fourmen have original wealth−1, 4, 1, 4 respectively,
and the purse is 11. These numbers provide a solution, because

(−1 + 11) = 10 = 2(4 + 1)

(4 + 11) = 15 = 3(1 + 4)

(1 + 11) = 12 = 4(4 + (−1))
(4 + 11) = 15 = 5(−1 + 4).

Leonardo does not write−1 as a number, but expresses it as a ‘debt’ (what wemight
call ‘negative equity’!).

2.2. The Fibonacci sequence. The final chapter of Liber Abaci, and his
subsequent Liber quadratorum (1225) demonstrate clearly that Leonardo is
comfortablewith the full range of Islamic algebra, including the solution the
general quadratic and certain cubic equations. His handling of now well-
known number theory results like the Chinese Remainder theorem (finding
numbers that leave pre-assigned remainders when divided by a fixed set of
primes) foreshadows number theory thatwould be developed by Fermat some
350 years later. Yet he is most widely known for a seemingly much more
trivial result, which has fixed his name inmodern public consciousness: the
Fibonacci sequence. This appears innocently in Chapter 12 of the Liber Abaci:

A certain man had one pair of rabbits together in a certain enclosed place, and
one wishes to know how many are created from the pair in one year when it is in
the nature of them in a single month to bear another pair, and in the second month
those born bear also.

The (unspoken) assumption here is that the first pair are new-borns at
the start of the year in question and that rabbits begin to mate when one
month old. This assumption ensures that we treat all the pairs equally. At
the end of the first month the first pair is therefore still the only one, but by
the end of the second month they have borne their first pair of offspring.
The sequence therefore begins with

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ..

since, from the third term onward, each term is the sum of the preceding
two: by the end of the second month there are two pairs, in the third month
the adults produce another pair (so now there are 3 pairs), in the fourth
month both they and their firstborn produce pairs (making the total 5 for
the fifth month) and so on. By the end of the twelfth month (assuming all
the rabbits survive till then) we have 144 pairs.

While this is an old and rather trivial problem—the sequence appears in
various Indian mathematical writings as early as the sixth century—it gains
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mathematical interest when one considers the successive ratios:
1
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These ratios can be shown to come ever closer to the golden ratio 1
2 (1 +

√
5).

The term “golden ratio" seems to have been coined as late as the nineteenth
century. However, the number itself generated much excitement in artistic
circles, especially during the Romantic era.5

To see how this limiting ratio is found, we denote the nth Fibonacci number by fn.
Hence the Fibonacci sequence starts with f1 = f2 = 1, and fn+1 = fn + fn−1 for
n = 2, 3, ... . The ratios (rn)n≥1 of successive terms satisfy the identity

rn =
fn+1

fn
=
fn + fn−1

fn
= 1 +

fn−1

fn
= 1 +

1

rn−1
.

If we accept (for a proof see MM) that the (rn)n do indeed converge (‘get ever
closer to’) to some number x as n grows, then the limiting value x of the two se-
quences (rn)n≥1 and (rn−1)n>1 must clearly be the same. Therefore the relationship
rn = 1 + 1

rn−1
will, for large n, approximate the equation x = 1 + 1

x
, which we can

write as x2 − x− 1 = 0. The usual formula for the solution of a quadratic equation
provides the positive value

x =
1 +
√
5

2
= 1.6180339987...

Sincewe know from the Theodorus lesson that
√
5 is not a rational number, it follows

that neither is x, the golden ratio. This again raises the question how one should
define these quantities consistently.

In geometric terms, the ‘golden ratio’ (also called the ‘golden section’)
has a history that predates Leonardo by at least 1500 years. Greek geometers
(possibly even in Pythagorean times)were concerned to determine the point
C on a straight line segment AB such that ‘the whole is to the greater part
as the greater is to the smaller’. Euclid called this the division ofAB inmean
and extreme ratio. By this he meant that the lengths AC,BC should satisfy
the proportion

AB : AC = AC : BC,

(whichmakesAC themean proportional betweenAB andBC, as discussed in
Pythagorean music theory) and finding C requires the square root of their
product, as

AC2 = AB.BC.

5More recently, much has been published about the apparent ubiquity of the Fibonacci
sequence and the golden ratio in nature, be it in the shapes of snail shells, configurations of
flower petals, seed heads, pine cones, etc. A guide to the underlying mathematics of these
phenomena can be found in the classic text Introduction to Geometry by HMS Coxeter. A less
technically challenging reference is Fascinating Fibonaccis by Trudi Hammel Garland.
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Figure 13. Pentagon and pentagram

Geometrically, AC is the side of a square whose area is the same as that of
the rectangle with sides AB,BC.

To find C we put the ‘greater part’ AC = a, the ‘lesser part’ BC = b,
making ‘the whole’ AB = a+ b. The mean and extreme ratio is then

a+ b

a
=
a

b
,

so it satisfies a
b = 1 + b

a . Setting x = a
b , this produces the identity x = 1 + 1

x

satified by the limit of the Fibonacci ratios, so that ab = 1+
√

5
2 . Remember,

however, that ab is a ratio of lengths and that a, b cannot be taken as multiples
of a chosen unit, since this identity has no solution in whole numbers.

The golden section is easy to construct geometrically. It arises as the
ratio between the diagonal and side of a regular pentagon, i.e. a pentagon
whose sides and internal angles are all equal. This fact suggests that its
origins may well lie in Pythagorean times. The regular pentagon and the
pentagram – the five-pointed star comprising the diagonals, which some
claim may have been used by the Pythagoreans as a sign of recognition –
see [25]) are pictured in Figure 13.

In Figure 13(a) the regular pentagon ABCDE has diagonals AC,AD,BD,BE and
CE, and if X is the point of intersection of BD and CE, the triangles BDC and
CDX are similar, so that the corresponding sides are in proportion: for example,
the ratios of lengths BD

CD
and CD

XD
are equal. Hence CD2 = BD.XD. But clearly

CD = BC = BX, so BX2 = BD.XD so that X divides BD in mean and extreme
ratio. The pentagram is shown in Figure 13(b).

2.3. Maestri d’abbaco. Leonardowas clearly a highly accomplishedmath-
ematician, yet, apart from occasional glimpses of originality, his work is
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chiefly awell-rounded compilation of earlier discoveries by theGreeks, Hin-
dus andArabs. In bringing these different strands together, however, he and
the other translators of the twelfth and thirteenth century stimulated the re-
vival of mathematics in Europe, especially in Italy, France and (a little later)
in England and in themanyGermanic statelets of Central Europe. While the
tensions created by problems whose solutions included negative numbers
and roots of equations that could not be expressed as ratios of whole num-
bers became increasingly apparent, it would take several generations before
mathematicians were fully persuaded of the need to accept such solutions
as numbers.

Through the success of Leonardo’s Liber Abaci, the discipline (abbaco in
Italian) of replacing the abacus and Roman numerals with the algorithms
for calculating with Hindu-Arabic numerals, soon spread widely through-
out much of Western Europe, especially through the growing influence of
mercantile cities like Pisa, Genoa, Venice and Amalfi. In place of barter and
direct trade, the international trading companies of these cities employed
more sophisticated practices such as bills of exchange, promissary notes, let-
ters of credit and loans, all ofwhich required double-entry bookkeeping and
arithmetical skills that were not part of the quadrivium taught in the early
universities of Bologna, Paris or Oxford. The problem-solving techniques
displayed in the Liber Abaci led to a new cadre of mathematics teachers, who
became known as maestri d‘abbaco, meeting the needs of the merchant class.
Pen and paper calculation based on the decimal system began to replace
the traditional counting boards, and a large collection of problem-solving
manuals were produced to instruct budding merchants.

The innovations these maestri introduced were largely notational: the
Arabs and Leonardo had described their calculations using words rather
than symbols, but the pressure of teaching meant that, for the maestri, ab-
breviations (for square, cube, etc) soon became a common practice. The
symbols for unknowns we find so familiar were still some way off, how-
ever. Typically, an unknown (which we might denote by x) was known as
‘the thing’ (cosa), and what we would write as x +

√
y, a fourteenth cen-

tury instructor would typically describe as a thing plus a root of some quan-
tity. An ‘equation’ might be constructed verbally, involving the unknown
and its square and some numbers, and manipulated, according the rules al-
ready described by al-Khwarizmi, into one of his six standard forms. Grad-
ually, problems being considered would include some aspects that seemed
divorced from practical (commercial) use. The increase in complication in
the expressions being explored led to the use of abbreviations, such as c for
the ‘cosa’ or unknown, ce for its square, ‘censo’, and cu for its cube, ‘cubo’.
Higher powers, e.g. ce cu (‘censo di cubo’) also began to appear. At this
stage these abbreviations remained just that: no apparent meaning as num-
berswas attached to them.



2. RECEPTION IN MEDIAEVAL EUROPE 57

The introduction of further symbolic notation was prominent in the
work of the German Coss tradition, which had adapted the practices of the
Italian maestri by the early sixteenth century. The influential treatise Die
Coss, published in 1525 by Christoff Rudolph (1499-1545) contains a full list
(in Germanic script) of symbols for powers up to the ninth and makes full
use of signs such as + and − as well as a square root sign, to shorten the
complicated expressions he discusses. (See [6] for a more detailed discus-
sion.)

In practice, the consistent use of symbols helped to speed the accep-
tance of quantities that lacked geometric representation. However, Rudolph,
who clearly recognised the link between what we would call the arithmetic
progression 0, 1, 2, 3, 4, ... and its geometric counterpart 1, 21, 22, 23, 24...,did
not take the seemingly obvious next step of using the symbol 2k for the kth
member of the latter progression.

This advance had already beenmade in France byNicolas Chuquet,whose
precise dates are somewhat uncertain. He was possibly the first to use zero
and negative numbers as exponents. His unpublished 1484 manuscript, Tri-
party en la Science de Nombres (rediscovered only in the late nineteenth cen-
tury) was partly reproduced, without acknowledgement, in a 1520 textbook
by Etinenne de la Roche. Chuquet invented an essentially modern notation
to describe arbitrary integral powers and also (as we saw in the Prologue)
introduced names for ever higher powers of 10.He used positive exponents
for positive powers of the unknown, such as .8.3 (which we would read as
8x3) and denoted negative exponents by adding m after the exponent, as
in .7.1m, which is our 7x−1. He recognised that multiplication of these two
terms involves multiplication of the coefficients and addition of the expo-
nents, resulting in .56.2 (in our terms, 56x2). For addition and subtraction
he employed the abbreviations also used by Luca Pacioli (1445-1517): p,m for
‘plus’ and ‘minus’. Our ‘equals’ sign = first appeared in the 1557 Whetstone
of Witte by Robert Recorde (1512-1558), who also introduced +,− to Britain.

Throughout the sixteenth century, the boundaries between the arith-
metical techniques inspired by the maestri and the study of the Greek clas-
sics at universities gradually became blurred. Newer editions of Euclid’s
Elements began to utilise arithmetical descriptions of Euclidean results, es-
pecially in Book X, where Euclid classifies various types of incommensu-
rables (see Chapter 1, Section 4). His difficult geometric constructions be-
come more transparent if the outcomes are presented as surds. Thus calcu-
lation using rationals and irrationals together no longer appeared as foreign.
Calculations with surds such as (2−

√
3)× (2−

√
3) also drew attention to

the need for consistent rules when multiplying signs. Formal rules for sign
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multiplication featured prominently in Pacioli’s widely-read 1494 publica-
tion, Summa de arithmetica geometria proportioni et proportionalita. This con-
tained a systematic account of the techniques pioneered by the maestri and
cossists, pointing to their practical as well as theoretical utility.

Despite these advances, resistance to the acceptance of the reality of neg-
ative solutions to problems as numbers proved more difficult to overcome. I
pick up this story in the next chapter, but will turn first to further progress
in the solution of equations.

3. Solving equations: cubics and beyond

While progress with algebraic symbolism was steady rather than spec-
tacular, in the first half of the sixteenth century algebraic techniques for solv-
ing polynomial equations beyond the quadratic took a major step forward.
Publicly, the catalystwas the publication of theArsMagna (1545) byGirolamo
Cardano (1501-1576). The story behind this highly influential book is quite
convoluted. The breakthrough was probably made in the early 1520s, but
remained buried in secrecy for two decades. An unfortunate consequence
was that the mathematician primarily responsible for advancing the subject
at this time, Scipione del Ferro, died in 1526 and was largely forgotten by his
peers and in many subsequent historical accounts. This has also meant that
no direct evidence remains of the process by which he arrived at his results,
although the final version of the techniques is well-documented.

For some time after the work of Leonardo of Pisa, the analysis of cubic
equations had remained firmly within the Arabic tradition of addressing
the problem geometrically, rather than algebraically. This tradition boasted
a major work by Omar Khayyam, the polymath perhaps best known for a
selection of about 1000 poems given the title The Rubaiyat by its Victorian
translator, Edward FitzGerald.

Omar Khayyam’s best-known mathematical treatise, On the Proofs of the
Problems of Algebra and Muqabala, classifies fourteen different types of ‘cubic
equation’ (he actually lists 25 cases, but 11 of these reduce to become linear
or quadratic) with positive solutions. In each case he shows how to construct
the solution of the cubic equation geometrically. His solutions invariably re-
quire the construction of a conic section. Specifically, this is either a circle, an
ellipse, a parabola or a hyperbola, formed by the intersection of a planewith
a circular cone (see Figure 14 in Chapter 3). The last three cannot be con-
structed by straightedge and compass alone—we will discuss their Ancient
Greek origin in the next chapter.

OmarKhayyam insists that powers higher than cubes, such as the square-
square of Diophantus, do not exist ‘in reality’ although he states that they
constitute ‘theoretical facts’. He argues that algebraic methods can be used
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to solve cubic equations, but that proofs dealing with the third power re-
quire solid geometry.

Once again it is much more convenient to outline his methods in alge-
braic terms. Today we write the general cubic equation in the form

x3 + ax2 + bx+ c = 0,

since we can always divide by the (non-zero) coefficient of x3 if we need to.
However, Khayyam worked geometrically and insisted on writing the

coefficient of the linear term in x as a square and the constant term in the
equation as a cube: thiswould enable him tomaintain the ‘three-dimensional
nature’ of each of the terms on the left. The equation is therefore written as

x3 + ax2 + b2x+ c3 = 0.

We express his method in modern notation: the substitution x2 = 2py
(which defines a parabola centred at the origin) turns the equation into

2pxy + 2pay + b2x+ c3 = 0,

which Khayyam recognises as defining a hyperbola. He has to deal sepa-
rately with different cases for a, b, c, any of which can be positive, negative
or zero, and he restricts himself to cases where the solution (the point of
intersection of the parabola and hyperbola in question) has positive coordi-
nates. While he works entirely in a geometric setting, he treats his solutions,
whether rational or irrational, as providing numbers, rather than as geomet-
ric magnitudes.

3.1. Cardano’s formula. This, more or less, remained the state of af-
fairs for cubic equations as inherited by Scipione del Ferro around 1500. In
Italy, as familiarity with decimal notation and algebraic manipulation grew,
the problem of finding the solutions of various classes of cubics by means
of an algebraic formula, rather than through a geometric construction, had
begun to receive much attention. At this time also, the solution of particular
equations – still expressed rhetorically – lent itself to a kind of public math-
ematical jousting which gradually became a popular sport in some cities.
Scholars would challenge each other to solve problems in public, with by-
standers engaging in bets on the outcome. Skilled combatants saw these
challenges, and the associated betting, as a way of making a living from
their craft.

In one such contest in 1535, Niccolo Fontana (1499-1557), an able scholar
nicknamed Tartaglia (The Stammerer) roundly defeated the less talentedAn-
tonio Fior. It seems that the latter had learnt how to solve one class of cubic
equationswhen studying as a pupil of del Ferro. As became apparent some-
what later, del Ferro had probably managed to find solution methods for all
three classes into which cubics with positive solutions had been divided at
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the time. Tartaglia, possibly aware of del Ferro’s success, had managed, in-
dependently, to solve one class of cubic equations. In a short burst of intense
creative activity just before the contest, he was also able to master the solu-
tion method for the class of equations Fior had learnt from del Ferro. He
now set problems that Fior could not solve, while solving all thirty equa-
tions that Fior had set for him. The contest caused a minor sensation.

Hearing of this, Cardano approached Tartaglia, and, after much effort,
persuaded the reluctant ‘Stammerer’ to divulge his techniques. Although
Tartaglia, wishing to protect his livelihood, had sworn him to absolute se-
crecy, Cardano was already in the process of constructing his Ars Magna
as a definitive algebra text and decided to break his promise. He tried to
make amends by clearly citing del Ferro and Tartaglia as the authors of the
solution methods for cubics featured in the book.

However, when the Ars Magna appeared, a furious Tartaglia accused
Cardano of plagiarism and treachery. It was too late to repair the damage.
A bitter dispute ensued, in which Cardano’s principal defence was that the
late del Ferro, rather than Tartaglia, had been the first to solve all three types
of cubic equation. Cardano and his gifted student Lodovico Ferrari (1522-
1565) claimed that they had confirmed this when they consulted del Ferro’s
papers, kept by yet another of del Ferro’s students in Bologna, in 1543.6

Although Tartaglia published his book Quesiti et Inventione Diverse the
following year, setting out his methods in verse, in coded form, Cardano’s
clear exposition and comprehensive range, presented in his Ars Magna, had
already brought him fame that overshadowed Tartaglia’s.7 In the ensuing
controversy, Cardano was ably supported by Ferrari, who had by then dis-
covered a general solution method for quartic equations (see below), which
Cardano also included in his Ars Magna. In a much-delayed challenge con-
test with Tartaglia in 1548, Ferrari energed a clear victor. An embittered
Tartaglia died in obscurity and poverty nine years later.

One can appreciate the scale of the advances made by del Ferro and
Tartaglia by reading Cardano’s text. As usual, it is much easier for us to un-
derstand themethod usingmodern algebraic notation. The wording of Car-
dano’s verbal solution is reminiscent of solutions described on Babylonian
clay tablets or by al-Khwarizmi. Here is an extract for comparison before we
discuss his solution methods in modern terminology.

Cube the third part of the number of ‘things’ , to which you add the square of half
the number of the equation, and take the root of the whole, that is square root, which
you will use, in the one case adding the half of the number which you just multiplied
by itself, in the other case subtracting the same half, and you will have a ‘binomial’

6Extensive extracts from the correspondence between all these combatants are presented
in [12], including the extract from Cardano’s Ars Magna reproduced below.

7Tartaglia’s book is available at http://www.it.wikisource.org/wiki/Quesiti_et_inventione_diverse.
See also [6]
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and ‘apotome’ respectively; then, subtract the cube root of the apotome from the cube
root of the binomial, and the remainder of this is the value of the ‘thing’.

Note the use of the Euclidean terms ‘binomial’ and ‘apotome’ (seeChap-
ter 1, Section 3) to describe the sum and difference of the two terms under
the cube root. Cardano provides an example, using the cubic x3 + 6x = 20.
He states this equation verbally as: ‘the cube and 6 ‘things’ equals 20’, and
leaves his solution in the form

3

√
(
√

108 + 10)− 3

√
(
√

108− 10)

which he does not attempt to simplify further, although x = 2 clearly also
solves the equation.

Even inmodern notation, the algebraic manipulations we need to arrive
at Cardano’s solution are somewhat more technical than those used so far
– readers in a hurry may skip the two shaded sections below without much
loss of continuity.

The general cubic equation

x3 + ax2 + bx+ c = 0

can be reduced to an equation of the form y3+py = q for appropriate constants p, q,
so that the quadratic term is elimininated (following a pattern encountered already
in the work of Diophantus). Simply set y = x+ a

3
, so that x = y − a

3
. Expressed in

terms of y, the equation takes this form, with p = b− a2

3
and q = −(c+ 2a3

27
− ab

3
).

To solve y3 + py = q, first notice that for any A,B we have

(A−B)3 = A3 − 3A2B + 3AB2 −B3,

so
(A−B)3 + 3AB(A−B) = A3 −B3.

Thus, if we can find A,B to satisfy 3AB = p and A3 −B3 = q, then y = A−B
satisfies y3 + py = q, and x = y − a

3
solves the original equation.

To find such A,B for the given values of p, q, note that B = p
3A

will lead to
A3 − p3

(3A)3
= q,which reduces to a quadratic equation in A3, namely

(A3)2 − qA3 − (
p

3
)3 = 0.

The formula for the general quadratic now provides the solutions

A3 =
q

2
±
√

(
q

2
)2 + (

p

3
)3

(although Cardano only takes the positive square root) and therefore

B3 = − q
2
±
√

(
q

2
)2 + (

p

3
)3.

Finally, Cardano writes
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y = A−B =
3

√
q

2
+

√
(
q

2
)2 + (

p

3
)3 − 3

√
−q

2
+

√
(
q

2
)2 + (

p

3
)3,

which now allows him to solve the original cubic by substituting the above
values for p, q, and using x = y − a

3 .

Somewhat ironically, this has become known as Cardano’s formula (al-
though some authors remember to credit del Ferro and/or Tartaglia). From
Cardano’s perspective, moreover, the formula only deals with one of the
‘cases’ he considered, namely y3 +py = q, since he wishes to avoid negative
coefficients at any stage.

This means (for example) that, in order to deal with the case y3 = py+q
for positive p, q, he cannot simply write y3− py = q and use the above argu-
mentwith−p instead to arrive at the solution! Instead hemakes an elaborate
substitution, based on the identity (A+B)3 = A3 +B3 +3AB(A+B),which
he justifies geometrically. We will soon discover why in such cases his for-
mula would cause him major conceptual difficulties of a different kind.

As noted above, a general solutionmethod for the general quartic (fourth-
degree) equation of the form

x4 + ax3 + bx2 + cx+ d = 0,

found by Ferrari in 1540, was also included in Cardano’s Ars Magna.

In brief, this solution method proceeds via the substitution y = x − 1
4
to turn the

general quartic equation into the form y4 + py2 = −qy − r, for appropriate new
coefficients p, q, r which can again be expressed in terms of a, b, c, d. To attack the
reduced equation, Ferrari notes that in the perfect square (y2+ p

2
)2 = y4+py2+ p2

4
,

the first two terms are what we have on the left in the above, so that (y2 + p
2
)2 =

p2

4
− qy − r. He now adds a further unknown z to (y2 + p

2
) on the left, and again

computes the square, substituting (y2 + p
2
)2 as above:

((y2 +
p

2
) + z)2 = 2zy2 − qy + (z2 + pz +

p2

4
− r)

On the left we have expressed this quantity as a quadratic in y, and as it is a perfect
square, so we need to find the value of z such that the discriminant of this quadratic
is 0.

Recall that the discriminant of the general quadratic ax2 + bx+ c = 0 is b2− 4ac.

In the present case we have a = 2z, b = −q, c = (z2 + pz + p2

4
− r), so that

q2 = 4(2z)(z2 + pz +
p2

4
− r).
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This cubic equation in z can be solved by use of Cardano’s formula. Let z = z0
be such a solution. For this value of z, the above quadratic in y has a double root
y0 = q

4z0
(since the discriminant is zero, the root is −b

2a
in general). But now our

equation in y, z above has the form ((y2 + p
2
) + z)2 = 2zo(y − y0)2. So, for these

values, the reduced quartic splits into a pair of quadratics whose solutions form the
roots of the equationa.
aThis outline is based on: Ferrari method. Encyclopedia of Mathematics. URL:
http://www.encyclopediaofmath.org/index.php?title=Ferrari_method&oldid=35675

And there, despite continuing efforts, matters would rest for more than
250 years. No-one was able to produce a formula similar to the ones de-
scribed above in order to find the roots of polynomials of degree 5 (quin-
tics) or higher. Nonetheless there was significant, if gradual, progress in the
general understanding of the structure and theory of polynomial equations
throughout the 17th and 18th centuries.

In 1799 the youthful German mathematician Carl Friedrich Gauss (1777-
1855) asserted, without giving a proof, that the quintic has no general solution
formula by means of radicals (i.e. using roots as was done above). Between
1799 and 1813 the Italian medical doctor, philosopher and mathematician
Paolo Ruffini (1765-1822) published six versions of what he maintained was
a proof that polynomial equations in powers higher than 4 have no such
solution formulae, although his proofs were opaque and all contained sig-
nificant flaws.

The brilliant young Norwegian mathematician Niels Abel (1802-1829),
readRuffini’swork as a student and recognised that itwas incomplete. How-
ever, by 1824 he had found a rigorous proof of Gauss’ claim: there is no
single general formula which will yield the solution of every quintic. Abel
travelled to Paris, then very much the leading centre for algebra, hoping to
develop hismethods further by collaboratingwith the leading Frenchmath-
ematicians of the time. However, he found them unresponsive and soon la-
belled them as ‘monstrous egotists’, unwilling to collaborate with each other
and especially with foreigners!

The brilliance of Abel’s mathematical insights was not recognised dur-
ing his short life. He suffered poverty and ill health, unable to find a uni-
versity position. Just as others began to appreciate the outstanding merit of
his work, he died of tuberculosis, aged 26, having by then turned away from
polynomial equations. His work in other fields, especially in what are now
known as elliptic and ‘abelian’ functions, was far-sighted and led to major
advances in both number theory and algebra.

Three years later, modern algebra was revolutionised by the tragic, iras-
cible French prodigy Èvariste Galois (1811-1832), who, as a left-wing fire-
brand, was mortally wounded at the tender age of 21 in a duel. Galois’
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methods explained, as a by-product of a much broader algebraic theory
now named after him, why the general quintic and higher-order polyno-
mial equations can have no such solution formula. The technical details are
well beyond the scope of this book: a description of these events is given in
[35].

3.2. Imaginary roots. The renown of thework of Cardano and his com-
patriots led to much greater interest in algebraic techniques from the late
sixteenth century onwards. Cardano continued to describe negative num-
bers as ‘fictitious’ (numeri ficti) and ignored them when they occurred in
his formula. He also encountered difficulties when solving equations of the
form y3 = py+q, since in that case the quantity under the square root sign in
Cardano’s formula is ( q2 )2+(−p3 )3,which can become negative for particular
values of p and q.

Consider, for example, the cubic equation y3 = 15y + 4, which clearly
has the solution y = 4. Cardano’s formula for this equation yields

y =
3

√
2 +
√
−121 +

3

√
2−
√
−121.

Cardano could not deal with the term
√
−121, since square roots of neg-

ative numbers seemed tomake even less sense than negative numbers them-
selves! He could not understand why his formula would not yield the ob-
vious root y = 4. He had noticed that a similar problem arises with qua-
dratic equations: in examples of the form x2 + b = ax he realised that the
usual solution formula would involve the square root of a negative number
if a2 < 4b.An example of this kind, included in his laterworkArsmagnae sive
de regulis algebraicis liber unus, has a = 10, b = 40.He writes this equation as
x(10− x) = 40. He proposes 5 +

√
−15 and 5−

√
−15 as solutions, but still

regards these as ‘impossible’, while conceeding that they are ‘operationally’
correct. He regards

√
−15 as meaningless, calling it a ‘quantita sophistica’.

Two decades later, Rafael Bombelli (1526-ca.1572), aware that the cubic
equation y3 = 15y + 4, which had so troubled Cardano, has the solution
4, had what he called a ‘wild thought’. Perhaps, he argued, one could make
sense of ‘numbers’ of the form a + b

√
−1 (for 2 +

√
−121 take a = 2 and

b = 11) by setting out multiplication tables for
√
−1, similar to those already

in use for positive and negative numbers – although even these had not yet
been properly justified! By analogy with what he knew from working with
+ and − for integers, including, notably (−1)(1) = −1 and (−1)(−1) = 1,
he argued that the square root of a negative number ‘has different arithmetical
operations from the others’.
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These analogies led him to propose new multiplication rules that we
would today write as:

(
√
−1)(

√
−1) = −1 = (−

√
−1)(−

√
−1)

(−
√
−1)(

√
−1) = 1 = (

√
−1)(−

√
−1).

Bombelli articulated these relationships bymeans of verbal expressions, us-
ing piu di meno for

√
−1 and meno di meno for −

√
−1. For example, he ex-

pressed his key new rule ( which we write as (
√
−1)(

√
−1) = −1) as piu di

meno via piu di meno fa meno.
Having experimented with such ‘multiplication tables’ for the square

roots of numeri ficti, he proceeded to apply these in solving the troublesome
equation y3 = 15y+4. Taking the cube of each term in the Cardano formula
y =

3
√

2 +
√
−121 +

3
√

2−
√
−121, he obtained the (verbal) equivalent of

2 +
√
−121 = (a+ b

√
−1)3

2−
√
−121 = (a− b

√
−1)3

for some unknowns a, b. Multiplying out the perfect cubes on the right
and using his new multiplication tables for

√
−1, he found (see MM for

the calculation) that the choices a = 2, b = 1 provide a solution. Using
this in the Cardano formula, Bombelli obtained the positive integer solu-
tion y = (2 +

√
−1) + (2 −

√
−1) = 4 for the equation! Thus, Bombelli’s

multiplication tables, used in Cardano’s formula, produced the positive so-
lution that was apparent by direct inspection, even though the terms of the
formula appeared to include quantities that Cardano had considered to be
‘pure fictions’.

Although he did not claim that the square root of a negative number
should be accepted as a number, Bombelli had shown that using his rules
for the multiplication of such quantities gave the correct positive root of this
troublesome cubic equation. Bombelli was not able to make logical sense of
his discovery, but he had in fact derived the correct multiplication rules for
working with

√
−1, which we today call the imaginary unit i in the complex

plane, to be discussed in Chapter 4. His calculation, while remaining spec-
ulative, did not banish the suspicion that such quantities had aroused, but
perhaps it served to diminish it somewhat.





CHAPTER 3

Construction and Calculation

But the best demonstration by far is experience, if it go not beyond the actual exper-
iment.

Sir Francis Bacon, Novum Organum, 1620

Summary

This chapter takes a step back, to review approaches to geometric con-
struction in Classical Greece. This sets the scene for three influential prob-
lems (doubling the cube, trisecting the angle and squaring the circle), whose
solutions had proved elusive under the constraints of Euclidean geome-
try. We consider ingenious solutions from Ancient Greece that led to novel
curves and reformulate two of these problems in terms of cubic equations
(in one case by means of basic trigonometry), before moving on to Europe
around 1500, to pick up the further development of the decimal system
as well as the development of aids to calculation. These were needed for
lengthy calculations in astronomy,where trigonometric tables had long been
used, and increasingly also in navigation. The chapter closes with a brief ac-
count of John Napier’s invention of logarithms.

1. Constructions in Greek geometry

While Euclid’s Elements, and the work of many of his successors, re-
stricted geometric constructions to those that can be completed by means of
a straightedge (an unmarked ruler) and compass alone, it was soon discovered
that the construction of certain lengths and angles with these tools alone
posed seemingly insuperable difficulties. Consequently, Greek geometers
invented various ingenious devices for the purpose of drawing curves that
could provide the solutions they sought, however much such techniques
might offend purists by stepping outside the strict rules for geometric con-
struction set out definitively in Euclid’s Elements.

One of these new solution methods led directly to the invention of the
conic sections (ellipse, parabola and hyperbola), so named because they are
foundwhen cutting a (double) circular conewith planes at various angles to

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.03
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its axis. These curveswere to become indispensible tools in the development
of modern mathematics and its applications to physics and cosmology.

We may think of an upturned ice cream cone in order to imagine a cir-
cular cone. Its axis is the line connecting its vertex to the centre of the circle
at the base of the cone, and a generator is any surface line connecting a point
on the circumference of the base circle with the vertex – since rotating this
line through a full revolution about the axis will sweep out the cone. As
displayed in Figure 14(a), cutting the cone by a plane parallel to the base
produces a circle, while (as in Figure 14(b)), cutting it by a plane having an
angle to the base less than that of a generator produces an ellipse. Both are
closed curves (i.e. their endsmeet). But if the plane is parallel to a generator,
as in Figure 14(c), we obtain a parabola (an open curve). If the angle is even
steeper, then, as in Figure 14(d), we need a double cone with a common ver-
tex (e.g an ice-cream cone whose vertex rests on a mirror, together with its
mirror image), and the hyperbola we obtain has two (open) branches, one in
each cone.

The culmination of Greek geometers’ analysis of these curves has been
preserved for us in translations of the impressive Treatise on Conic Sections
by Apollonius of Perga (ca 240-190 BCE), known to his peers as ‘The Great
Geometer’.

After the Renaissance, European mathematicians, scientists and archi-
tects found both theoretical and practical uses for the different conic sections
in a wide variety of areas. Johannes Kepler (1571-1630), after a close study
of astronomical measurements made by Tycho Brahe (1546-1601), postulated
correctly that planetary orbits are not circular, as had been supposed, but el-
liptical, and the Astronomer Royal, Edmund Halley (1656-1742), applied this
in 1682 to other bodies in orbit around the sun, predicting correctly that the
famous comet named after him would return in 1758. Galileo Galilei (1564-
1642) argued that the path of a projectile fired from a cannon would follow
a parabola.

Today, parabolic mirrors creating parallel beams of light are used in car
headlamps. A striking example of a hyperbolic shape is given by the cool-
ing tower of any power station generating steam. On a similarly practical
level, some ‘whispering galleries’ exploit a property of the two focal points
of an ellipse: a person near one of the focal points can clearly hear sounds
generated near the other focal point.1

1An ellipse can also be defined as the shape traced in a plane by holding the sum of its
distances from two given points (its focal points) fixed. (Take a piece of string, longer than the
distance between these two points, on a sheet of paper, fix the endpoints of the string to these
points, hold the string taut inbetween with a pencil point and draw an arc all the way round -
this is your ellipse.)



1. CONSTRUCTIONS IN GREEK GEOMETRY 69

Figure 14. Conic Sections

Constructions using a marked ruler – known as neusis constructions,
after a Greek term meaning ‘inclined towards’– also proved effective in at-
tacking problems that were difficult or impossible to solve by other means.
Here certain lengths (e.g. one or more multiples of a chosen unit) can be
marked off on the ruler, which is then used to fit a line segment of specified
length between two given lines or circular arcs, while also going through
some given point (i.e. the specified segment should ‘point in a given direc-
tion’).

Some preference for straightedge-and-compass construction over these
other construction techniques is said to have been expressed by early geome-
ters in the fifth century BCE, and during the fourth century BCE this opin-
ion gained ground due to the influence of Plato’s philosophy. Plato taught
that physical appearance, as observed by our senses, is merely a ‘shadow’
mimicking the real ‘Form’ of the object in question. He proposed this view
as an answer to the problem of change posed by pre-Socratic philosophers of
the sixth and fifth century BCE. Parmenides insisted that what is, has always
been so, and that, logically, nothing can ever change, since it is impossible
for something to come out of nothing. On the other hand,Heraclitus insisted
that the basic essence of the universe is ever-present change (‘no man ever
steps in the same river twice’), and thus (as Plato later quoted Heraclitus)
‘all entities flow and nothing remains still’.

To resolve these conflicting viewsPlato argued that his ‘Theory of Forms’
could explain the ‘true nature’ of things. He maintained that our senses do
not allowus a clear viewof reality (an assertion perhaps influencing St Paul’s
famous phrase, four centuries later, that we see ‘through a glass darkly’) We
should therefore reject the essential reality of the physical world. Plato ex-
horted his followers to study the Forms through mental contemplation as
the perfect, unchanging essences of objects, not limited by space or time.
He distinguishes between knowledge, which is certain and unchanging, and
opinion, which is changable and derives from our illusory sense experience.
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The Forms are the source of our innate knowledge, and learning is the pro-
cess of bringing it to the surface. He frequently argues that mathematical
reasoning can facilitate this process and provide a bridge between the phys-
ical world and his ‘world of ideas’ where the Forms exist. Points, lines and
circles are therefore to be seen as ideal objects, whose physical representa-
tion is a crude approximation of their real nature, which alone should be the
object of their study. He criticised geometers whose constructions departed
from the aim of mirroring the ideal objects by using ‘physical’ devices.

Euclid’sElementswouldprobably have escapedPlato’s strictures, if Plato
had survived to read this work. The Elements featured rigorous construc-
tions and several conceptual innovations now attributed to Plato’s one-time
student Eudoxus. Euclid’s axiomatic approach placed emphasis on keeping
the initial collection of definitions and (unproven) postulates as small and
as ‘self-evident’ as possible. In keeping with this approach, physical instru-
ments for drawing figures should be as simple as possible. The straightedge
and compass are the only tools Euclid allows in his many constructions.

It seems therefore that Greek geometers recognised a hierarchy of ac-
ceptable techniques for geometric constructions: a given problem should
first be attacked solely by Platonic methods; if that failed, a construction
that also used conic sectionsmight be deemed acceptable. If neither of these
approaches produced a satisfactory solution, then attacks on the problem
using neusis constructions or other (often quite specific and complicated)
‘mechanical’ tools might be deemed acceptable.

However, every individual’s influencewanes over time. Nearly two cen-
turies after Plato, Apollonius wrote his definitive treatise on conics – which,
1800 years later, proved to be of critical importance in the study of motion
and calculations of planetary orbits. A few decades earlier, Archimedes had
freelymade use of neusis constructions in his geometry and its many practi-
cal applications, as well as devising an entirely novel ‘method of discovery’
(see Chapter 5), using physical principles and postulating the infinite divis-
ibility of figures, in order to determine the relationships between the areas
and volumes of different curvilinear figures, including conic sections and
spirals.

2. ‘Famous problems’ of antiquity

Three constructionproblems fromantiquity stand out as having inspired
major advances in mathematics, as well as helping to create conditions forc-
ing mathematicians to widen their concept of number in order to arrive at
satisfactory solutions. These became known as the three famous problems of
antiquity: duplication of the cube, trisection of the general angle, and squar-
ing the circle. We begin with a brief overview of the first two, deferring
discussion of the third, whose solution proved to be rather more involved.
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Figure 15. Construction of a mean proportional

2.1. Doubling the cube. Once the Pythagoreans had solved the prob-
lem of ‘doubling the square’ by using its diagonal as the side of a new square
with double its area, an obvious question was how to double the cube. The
doubling of the square of side a involved finding the mean proportional be-
tween a and 2a, since the relation

a

x
=

x

2a

becomes x2 = 2a2,which has solution x =
√

2a. This therefore involved the
construction of the irrational length

√
2, easily done bydrawing the diagonal

of the unit square.
Moreover, early Greek geometers were well aware that any square root

has an easy straightedge-and-compass construction, illustrated in Figure 15,
which became a staple of schoolbooks through two millennia.

So it was natural to ask how such methods might be extended to gen-
erate cube roots. It was observed very early on – reportedly by Hippocrates
of Chios (460-380 BCE) – that finding the side of the cube whose volume is
twice that of the cube with side a would require the construction of two
mean proportionals between a and 2a. In modern terminology this involves
the construction of points x, y such that

a

x
=
x

y
=

y

2a
.

Then the cube of the first ratio becomes, after cancellations,

a3

x3
=
(a
x

)3

= (
a

x
)(
x

y
)(
y

2a
) =

a

2a
=

1

2

so that x3 = 2a3. To construct the cube with volume 2a3 one needs to con-
struct its side x, and this involves multiplying the length a by the length
today described by the number 3

√
2, the cube root of 2. It was only in the
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nineteenth century that it became clear – using algebra rather than geome-
try – why this construction cannot be achieved by straightedge and compass
alone.

Note how the problem posed originally (finding the cube root) has been
subtly transposed into a different one, that of finding twomean proportion-
als. Rephrasing the original problem in quite different terms is a very com-
mon technique in mathematical problem-solving, and often leads to the de-
velopment of novel concepts that may appear, on the surface, to be quite
unconnected with the original problem. Hippocrates’ reformulation (if it is
his!) is one of the earliest examples of this approach.

Conic sections appear in the fourth century BCE, resulting from a search
for two mean proportionals. Menaechmus (380-320 BCE) considered curves
arising in this way. Using modern notation, observe that for any constant a,
the first equation in

a

x
=
x

y
=

y

2a

leads to the equation ay = x2, which is the equation of a ‘vertical’ parabola
centred at the origin, while the second becomes y2 = 2ax, which describes
a ‘horizontal’ parabola. Moreover, the identity of the two outer ratios means
that xy = 2a2,which describes a hyperbola.

Menaechmus gave two solutions, each of which displayed x, y as the
points of intersection of two of these curves. The first solution used the
hyperbola and the first parabola, while the second employed both parabo-
las. The problem is that conic sections cannot be produced in the plane by
straightedge and compass alone.

2.2. Trisecting the angle. The second ‘famous construction problem’
of geometry in antiquity is that of trisecting the general angle, that is, to split
it into three equal parts. Just as it is easy to double any square, it is easy to
bisect any angle by straightedge and compass. Draw lines PB,PC to meet
at P.Draw the circle with centre P throughB, to cut PC atB′. Let the circle
with centre B, passing through P, meet the circle with centre B′ passing
through P at D. Then PD bisects the angle BPC.

Ways to trisect particular angles (such as a right angle, for example) were
clearly known to ancient geometers. However, the task of finding a general
method for finding the trisector of any angle by straightedge and compass
alone proved to be beyond Greek mathematics, although a number of inge-
nious curves were invented in their efforts to solve it.

One such curve is attributed to the Sophist Hippias, who is said to have
been a contemporary of Hippocrates of Chios. His quadratrix cannot be con-
structed by straightedge and compass, but has to be plotted point by point
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Figure 16. The Quadratrix of Hippias

– hence it was seen as illegitimate by later commentators.2 It is described by
a double motion (see Figure 16(a)):

Describe a quartercircle by rotating the line segment AB clockwise, at
constant velocity, through a right angle to AD.At the same time, a lineMN
moves down from BC to AD at constant velocity, always remaining paral-
lel to both. These constant speeds are chosen so that both reach their final
position at the same time. A typical point F on the intersection of these two
moving lines (the rotating radius AB and the descending lineMN ) defines
a point on the quadratrix. Since the distance AM decreases, the quadra-
trix will meet AD in a point G between A and D. Extending AF to E, and
drawing in the perpendicular FH toAD,we can describe the quadratrix by
comparing the ratios (since the two motions finish at the same time):

∠BAD
∠EAD

=
AB

FH
=
arcBED

arcED
.

Trisecting the angle EAD (see Figure 16(b)) now amounts to trisecting the
line FH (which only needs straightedge and compass – try it!). For ifHP =
1
3FH and the position of the line MN at this point is shown by MPQN,
whereQ lies on the quadratrix, then the angleQAD is one-third of the angle
FAD. To see this, mark the extension of AQ to the circular quadrant by R.
Just as above, the ratio of angles is the same as the ratio of vertical lengths,
so

∠EAD
∠RAD

=
arcED

arcRD
=
FH

PH
=

3

1
.

So angle QAD trisects angle EAD.

2The quadratrix is so named because it can also be used to solve the third ‘famous prob-
lem’, that constructing the side of a squarewhose area equals that of a given circle. SeeChapter
8. Figure 16(b) is used in MM for Dinostratus’ construction.
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Figure 17. Archimedes’ trisection

A very different and rather more straightforward angle-trisector was
provided by Archimedes more than two centuries after Hippias. This uses
a very natural neusis construction, depicted in Figure 17. Suppose that we
want to divide angle x,made atO by the linesOD andOE, into three equal
parts. Having marked off a length r on our ruler, we can draw a circle of
that radius, with centre at O. Extend OE on the opposite side, beyond O,
and place the marked ruler at the point A on the circle where it meets the
line OD. Then join A with the extension of OE to meet the circle again at
C and the extension of OE at B, while ensuring that the distance BC is r.
The length requirement BC = r determines the direction of line ABC; how
it ‘inclines towards A’ (neusis.) To see that angle ABE trisects angle AOE,
note that in Figure z = 2y (external angle), while x+ y = 2z (on both sides,
adding angle AOE produces 180◦), so that x+ y = 4y, hence x = 3y.

We can rephrase the angle trisection problem using simple trigonome-
try. The Greek name for triangle is trigōnon – three angles – while metron
means ‘measure’, so this subject concerns the measurement of triangles: for
example, if we know the lengths of the sides (or, alternatively, sizes of the
angles) of a triangle, can we find the angles (or sides) and its area? The
key observation from geometry, which we have already used extensively, is
that similar triangles (that is, with the same shape, since that is determined
by their angles) must have their corresponding sides in proportion. In other
words, the ratio of two such sides does not depend on the size of the triangle,
but only on its shape.

The basic ratios of the three sides of a right-angled triangle can be de-
scribed if we make an angle x at the centre A of a circle with unit radius
(AC) and complete the right-angled triangle ABC with BC perpendicular
to AB (see Figure 18). The ratio CB

AC (the opposite side over the hypotenuse)
is then denoted by sinx, the ratio AB

AC (the adjacent side over the hypotenuse)
is cosx, and the ratio CB

AB = (CBAC )/(ABAC ) is tanx = sin x
cos x . Since we chose the
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Figure 18. Sine and cosine

length AC = 1, Pythagoras’ theorem then becomes the identity

(sinx)2 + (cosx)2 = 1.

We will follow the usual convention of writing (sinx)2 as sin2 x, etc., from
now on.

Among the first trigonometric results learned at school are the sum for-
mulae for sine and cosine. For any angles x, y these are:

sin(x+ y) = (sinx)(cos y) + (cosx)(sin y)

cos(x+ y) = (cosx)(cos y)− (sinx)(sin y).

These formulae can bededuced froma simple geometric proposition, known
today as Ptolemy’s Theorem.3 This is named after Claudius Ptolemaeus (ca.
100-170), author of a famous (geocentric) astronomical treatise, popularly
known as the Almagest, which held sway until the sixteenth century. The
sum formulae enabled Ptolemy to compute extensive tables of the values
of sine and cosine for different angles, as aids to the extensive calculations
needed in astronomical observations.

Beginning with cos 90◦ = 0, halving the angle provides sin 45◦ = 1√
2

from the above statement of Pythagoras’ theorem. More generally, for any
angle xwe may take x = y in the sum formula for cosine and obtain

cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x,

where the final identity again follows from Pythagoras’ theorem. Applying
this identity to x

2 and x = 2(x2 ) instead, we see that cosx = 1− 2 sin2(x2 ), so
that sin(x2 ) =

√
1
2 (1− cosx).

After halving the angle in this fashion several times one arrives at a
small angle (eight successive bisections will produce an angle of 90

256 ' 0.3
degrees), providing a suitably small gap between successive table entries.

3SeeMM for details of the statement and proof of this result.
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By approximating square roots, Ptolemy could therefore obtain an approx-
imate value for the sine of this small angle, and with this reference value
he built tables of sines and cosines for various multiples of the angle, us-
ing the above sum formulae. The process involves rather a lot of arithmetic,
including the extraction of square roots, but it all quickly becomes routine.

But let us return to angle trisection! Applying the cosine sum formlua
to angles x = 3y = 2y + y, we easily obtain4

cosx = 4 cos3 y − 3 cos y.

When x is given, we know the value of cosx (denoted by the constant c)
and the above becomes a cubic equation in the unknown z = cos y, namely
c = 4z3 − 3z,which we write in its standard form as

4z3 − 3z − c = 0.

If we could solve this cubic equation for z, we would know cos y and could
lookup the (approximate) angle y from trigonometric tables. In otherwords,
the problem of trisecting the general angle has been transformed into con-
structing the solution of a cubic equation, just as we did for the duplication
of the cube. In Chapter 8we will find out why this construction is impossi-
ble when using only a straightedge and compass.

3. Decimals and logarithms

At the end of the sixteenth century, the utility of trigonometric tables
was to lead to another crucial aid to calculation, logarithms, which quickly
became ubiquitous and played a role in the gradual acceptance of irrationals
as numbers. This had been made possible by the gradual adoption of the
Hindu-Arabic numerals, which greatly facilitated calculation as well as con-
tributing to the acceptance of a wider concept of number, if somewhat halt-
ingly at first. What became ourmodern decimal notation, including both in-
tegral and fractional parts, stems from the late sixteenth century, although,
as we have seen, there were earlier examples of similar systems in China,
India and especially in Islamic mathematics. However, even the latter was
not a fully positional system until the 1500s. Wewill first trace how our now
familiar notation was developed in sixteenth century Europe.

4

cosx = cos 3y = cos(2y + y) = (cos 2y)(cos y)− (sin 2y)(sin y)

= (cos2 y − sin2 y)(cos y)− 2(sin2 y)(cos y)

= (cos y)(cos2 y − 3(sin2 y))

= (cos y)(cos2 y − 3(1− cos2 y))

= 4 cos3 y − 3 cos y.
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3.1. Notation and equations. In France, significant progress was made
by Francois Viète (1540-1603) who, while trained as a lawyer and serving as
privy councillor (and code-breaker) toHenry III and his successor, Henry IV,
had a lifelong passion for mathematics and astronomy. He made highly in-
fluential contributions to the development of algebraic symbolism and deci-
mal notation. HisCanonmathematicus (1579) included a systematic approach
to the analysis of triangles. It contained new trigonometric identities, aswell
as trigonometric tables in which he was careful to separate the integral and
fractional parts of a number. To show the difference between these he tried
various notational devices: first, writing the fractional part in smaller type
above a line, then separating the two parts by a vertical line, and finally by
showing the integral part in bold type. Thus he wrote an approximation
of 100, 000π first as 314, 159, 265,36

100,00 , later as 314, 159|265, 36, and finally as
314,159, 265, 36.

He argued against the use of number systems other than the decimal,
such as the sexagesimal system inherited from the Babylonians, while recog-
nising that this hadproveduseful for large calculations needed in navigation
and astronomy. However, Viète stated categorically:

sexagesimals and sixties are to be used sparingly, or never in mathematics, and
thousandths and thousands, hundredths and hundreds, tenths and tens, and similar
propressions, ascending and descending, are to be used frequently or exclusively.

Viète explored approximations to π that he found in the much admired
works of Archimedes, by then translated into Latin from Arabic. He im-
proved Archimedes’ estimate using, like his predecessor, the perimeters of
regular polygons inscribed in a circle. He also derived what appears to be
the first ‘infinite product’ formula for π, namely

2

π
=

√
2

2
.

√
2 +
√

2

2
.

√
2 +

√
2 +
√

2

2
...

where the pattern of the ratios to be multiplied by each other continues in-
definitely. This is the first instance where an exact value for π was stated,
albeit one involving infinitely many factors in the product! A rigorous proof
of his formula was still some way off, however.

Viète’s willingness to produce a formula for the exact value of π sug-
gests a significant relaxation of the perception of irrationals that was still
prevalent in mid-sixteenth century. An example of this earlier attitude is
found in the works of the German monk Michael Stifel (1487-1567). Stifel’s
Arithmetica integra (1544) included important innovations such as introduc-
ing the term ‘exponent’, as well as notation and general rules for calculating
(integral) powers,

xmxn = xm+n,
xm

xn
= xm−n
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and he was among the first to accept negative numbers as having equal sta-
tus to positive numbers. Although Stifel’s books do not seem to have been
widely read, his position as a professor in Wittenberg helped him to bring
aspects of the practical Coss tradition (see Chapter 2, Section 2) into the for-
mal university curriculum, thus helping to bridge the gap between the two
traditions. He formulated rules for arithmetic with negative numbers as
well as with fractions, and explored calculating with fractional powers.

Stifel introduced the term irrational and accepted the existence of irra-
tionals as solutions of geometric problems on the same basis as rationals.
However, he did not regard irrationals as ‘true numbers’, describing them
instead as entities ‘concealed under a fog of infinity’. In practice, he nonetheless
continued to work with rational and irrational solutions to specific prob-
lems, even declaring that there would be infinitely many rationals and in-
finitely many irrationals between any two whole numbers.

Viète’s most famous work, In artem analyticam isagoge (1591), introduced
much of the symbolic notation for the expression of equations later adopted
and adapted by the philosopher and mathematician René Descartes (1596-
1650). One of Viète’s most significant innovations was the use of letters, not
only for the unknowns (as the maestri d’abbaco and cossists had done) but
also for the coefficients, the known quantities, in each problem. He distin-
guished between them by reserving vowels for the unknown, with conso-
nants denoting coefficients. This shifted the emphasis from the origins of a
particular problem to the equation itself, as a tool for handling magnitudes
of any kind, represented by means of abstract symbols and manipulated
according to set rules.

Thus a cubic equation that we now write (in the style of Descartes) as

x3 + cx = d

was described by Viète as: A cubus +C planum in A aequatus D solidum.
Note that he used words rather than Stifel’s much more convenient no-

tation for the exponents. He also continued to insist on dimensional ho-
mogeneity, i.e. that the dimensions of the terms in an equation must fit: in
our example all three terms represent ‘solids’ (in the second term, a plane
and a line are multiplied – as signalled by ‘in’ – to give a rectangular solid).
This reflects the geometric origin of his ideas. Nevertheless, he produced
symbolic algebraic rules for manipulating his various expressions, e.g. for the
addition of ‘fractional’ magnitudes in order to clarify his solutionmethods.5

5Viete writes ([6], p.157), using pl for planum and in for multiplication,

Zpl

G
+
Apl

B
aeq.

GinApl +BinZpl

BinG
.

In otherwords Z
G
+ A
B

= G·A+B·Z
B·G ,which is howwewould add these fractions today. Observe

how his insistence on dimensional homogeniety complicates the notation.
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Viète regarded his methods as analytic, in the classical Greek sense, i.e.
methods for finding solutions to specific problems, thus distinguishing them
from assertions made in the synthetic Euclidean approach, which were to be
legitimated (proved) on the basis of a clearly stated system of axioms. In
this, he was one of a growing number of Renaissance mathematicians who
suspected ‘the ancients’ of concealing their actual solution techniques behind
the austere facade of Euclidean geometry. The term analysis, introduced by
Pappus many centuries before, now came to denote a ‘secret method’ of
finding solutions. René Descartes later voiced this suspicion most clearly
(see [6], p.159ff) in his Rules for the Direction of the Mind:

I was confirmed in my suspicion that they had knowledge of a species of mathe-
matics very different from that which passes current in our time...I seem to recognise
certain traces of this true Mathematics in Pappus and Diophantus...

But my opinion is that these writers then with a sort of low cunning, deplorable
indeed, suppressed this knowledge...

... Finally, there have been certain men of talent who in the present age have
tried to revive this same art. For it seems to be precisely that science known by
the barbarous name of Algebra, if only we could extricate it from that vast array
of numbers and inexplicable figures by which it is overwhelmed, might display the
clearness and simplicity which we imagine ought to exist in a genuineMathematics.

It seems clear that Descartes has Viète in mind in this passage as one
of the ‘men of talent’ who had revived the science of Algebra (so named
by ‘barbarian’ Arabs!). This highlights the importance of the conceptual
steps taken in Viète’s work, giving priority to the algebraic formulation of
problems and describing new algebraic techniques for their solution, thus
preparing the ground for the analytic geometry of Descartes and Fermat we
describe in Chapter 4.

But, quite apart from theoretical efforts to rediscover the ‘lost analysis
of the ancients’, more practical concerns to expedite calculations needed in
navigation, astronomy, commerce and engineering, and to make themmore
widely accessible, were to dominate the search for a unified arithmetical no-
tation that would describe both discrete multiples and continuous magni-
tudes.

In 1585 the Flemish engineer Simon Stevin (1548-1620) published a pam-
phlet De Thiende (The Tenth), quickly translated into French and widely
distributed, which introduced a consistent notation to describe fractions
in terms of negative powers of 10 (tenths, hundredths, thousandths, etc.).
Much aswe think ofminutes and seconds as integers rather than as fractions
of an hour, he avoided Viète’s denominators altogether, writing the familiar
approximation of π to four decimal places as 3(0)1(1)4(2)1(3)6(4), where
the numbers in brackets show the power of 10 by which the previous digit
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should be divided. (Stevin actually used circles rather than brackets.) In cur-
rent notation this is 3.1416.Anticipating ideas developedmore fully byKarl-
Weierstrassand others in the late nineteenth century, he also considered irra-
tionals to be determined by a nested sequence of finite decimal fractions: he
starts with approximations that, respectively, under- and over-estimate the
irrational in question. The distance between such under- and over-estimates
decreases indefinitely as ever better estimates are found. Stevin argued that
in this fashion ‘one approaches the desired value infinitely closely’.

He was explicit in his view that the ancient distinction between multi-
ples and magnitudes was unhelpful and should be abandoned. In another
text published in 1585 (L’arithmétique) he followed through on his view, in-
sisting, among other things, that 1 should be seen as a number (although
he still did not accord the same status to 0, even though he used the symbol
freely and regarded it as ‘le vrai et naturel commencement’ of numbers, just as
a point may be seen as the beginning of a line). He also argued that there
are ‘no absurd, irrational, irregular, inexplicable or surd numbers’, thus placing
all numbers on the ‘number line’ on the same footing. While he accepts neg-
ative numbers, he does not follow Bombelli into the realm of the ‘imaginary’,
to what we now call complex numbers: ‘There are enough legitimate things to
work on without need to get busy on uncertain matter’, he argued.

Although Stevin’s decimal notation was still cumbersome for calcula-
tion, his clear explanation of the principles underlying decimal fractions
made De Thiende very popular. The Scottish landowner John Napier (1550-
1617), now chiefly celebrated for the tables of logarithms he published in
1614, suggested that Stevin’s notation could be improved by the use of a
decimal point or comma. This was quickly taken up. Although the decimal
point, as shown in our 3.1416, had first been used by two associates of Jo-
hannes Kepler in the 1590s, its use became standard in Britain only from 1619,
following the posthumous publication of Napier’s Construction of the Won-
derful Canon of Logarithms, which explained the theoretical underpinnings of
his tables. Inmuch of the rest of Europe, however, the comma becamewidely
used in the same role—perhaps in deference to Viète?—and largely remains
so today!

3.2. Napierian logarithms. The ideas that led to logarithmswere clearly
in the air by 1600. Tables relating powers of 2 to their exponents and show-
ing that multiplication led to addition of the powers had featured in ear-
lier work of Stifel and Chuquet. The Swiss clockmaker Jobst Bürgi (1552-
1632) had independently constructed tables of logarithms, perhaps as early
as 1588, but Napier’s were the first to be published, in his Mirifici logarith-
morum canonis descriptio (Description of the Wonderful Canon of Logarithms) in
1614.

Napier’s system of logarithms was developed principally as a computa-
tional aid, to remove the drudgery from long multiplication and division in
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navigation and astronomy. His basic ideawas to use geometric progressions of
successive powers of a fixed number; that is, 1, x, x2, x3, ..., xn, ... since then
the exponentm+n of the product xmxn = xm+n is the sum of the exponents
of the two numbers being multiplied. In order to produce workable tables,
the initial number should be close to 1; otherwise successive powers of that
number would grow apart too quickly.

Napier decided to use the number 1−10−7 = 0.9999999 as his reference
point. Rather than deal with decimal fractions, he then multiplied integral
powers of this number by 107. Thus the ‘logarithm’ (a term Napier coined
from the Greek words logos (logic) and arithmos (number) respectively) of
the number 107(1 − 10−7)L is given by the exponent L. Therefore L = 1 is
the logarithm of 107(1 − 10−7) = 9, 999, 999 and L = 0 is the logarithm of
107(1− 10−7)0 = 107.

Napier imagined the number 107 as the hypotenuse of a very large right-
angled triangle (‘whole sine’) that provided the starting point for his calcu-
lations.6

He describes the relation between the geometric progression of succes-
sive powers of (1 − 10−7) and the arithmetic progression of the associated
exponents by reference to motion: ‘The logarithme, therefore, of any sine is a
number very neerely expressing the line which increased equally in the meene time
whiles the line of the whole sine decreased proportionally into that sine, both motions
being equal timed and the beginning equally swift.’

We can interpret this by imagining a point moving along a fixed line
of length 107 units. Its velocity at each instance is inversely proportional
to the distance left to travel. Thus, at time 0, the distance remaining is 107

units, at time 1 it is 107(1−10−7), at time 2 the remaining distance is 107(1−
10−7)2, and so forth. The uniform ‘secondmotion’ is then represented by the
passage of time, i.e. 0, 1, 2, ... units, until we reach 107. The two sequences of
numbers are arranged in a two-row table, with the time points forming an
arithmetic progression (here, simply adding 1 at each time) in the first row,
and the corresponding positions of the ‘moving point’ forming the second
row, as a (decreasing) geometric progression.

In terms of modern logarithms we would regard 9, 999, 999 as the base
of the Napierian table, since for Napier the logarithm is 1; however, this con-
cept was not used by Napier. Dividing each term by 107, his geometric pro-
gression has x = 0.999999 < 1, so his arithmetic progression of logarithms
increases while geometric progression decreases. Moreover, his logarithms
do not satisfy the basic identity that ‘the logarithm of the product is the sum

6In Napier’s time the ‘sine’ was seen as a line segment, not as a ratio. For the unit circle in
Figure 18 the lineCB (representingwhat we called the sine) is a half-chord of the circle centred
atA. Similarly, what Napier calls the ’whole sine’ is the radiusAC of a circle whose half-chord
is the ‘sine’CB. Napier spoke of the logarithm of a sine; his principal objective was to simplify
trigonometric calculations.
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of the logarithms’:
log(xy) = log x+ log y.

This is the formula subsequent generations learnt in school over the next
400 years. To see how Napier’s construction differs from that used later, we
write the above logarithms of Napier with a capital L. Now L1 = Log(x)
means that x = 107(1 − 10−7)L1 and similarly for L2 = Log(y). Then xy =
1014(1− 10−7)L1+L2 and we must now divide by 107 to obtain xy

107 = 107(1−
10−7)L1+L2 as the number whose logarithm is L1 + L2. In other words,
Napier’s logarithms follow the rule that

Log(x) + Log(y) = Log(
xy

107
).

Thus using the tables to look up the ‘antilogarithm’ of the sum on the left
yields (for Napier) the antilogarithm of xy

107 instead of that of xy. Although
Napier’s logarithmswere a great improvement on earlier methods andwere
instantly recognised as such, it was clear that there remained room for sim-
plification.

3.3. Briggs’ logarithmic tables. As Napier was nearing the end of his
life, this task was undertaken by the first Savilian professor of geometry in
Oxford, Henry Briggs (1561-1630), who visited Napier in 1615. They agreed
that using powers of 10would be preferable, and decided that Briggs should
create a system where log10 1 = 0 and log10 10 = 1 (since 100 = 1 and
101 = 10).

These became the ‘logarithms to base 10’ tables that were routinely used
for calculation in schools until perhaps forty years ago. The once ubiqui-
tous ‘log books’, containing tables of logarithms of numbers and of trigono-
metric ratios, have now been superseded by electronic calculators, which
school pupils routinely treat as ‘black boxes’ thatmagically produce answers
to complicated calculations, without divulging the method by which they
were found! While the practical benefits of calculators are clear, it remains
to be seen if anything of conceptual or educational value has been lost in
this change.

Briggs’ first tables included logarithms of whole numbers up to 1, 000
as well as logarithms of sines, which were of particular use in astronomi-
cal calculation. Both tables were expanded significantly in his Arithmetica
Logarithmica (1624) which included logarithms of whole numbers from 1 to
20, 000 and from 90, 000 to 100, 000, all to 14 decimal places! The remaining
gaps were filled in by his Belgian publisher Adriaan Vlacq and Ezechiel de
Dekker for the second edition, published in 1629.

The burden of calculation involved in finding these logarithmswas con-
siderable, but the impact of the tables in assisting large calculations in many
practical contexts was immediate and the use of logarithmic tables became
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widespread very rapidly, saving much tedious effort for the next four cen-
turies.

In fact, most logarithms are themselves irrational numbers. To see that,
for example, the common (i.e. Briggsian) logarithm of 2 cannot be rational,
consider the following simple argument. Let us suppose that log10 2 = p

q for
some whole numbers p, q. This would entail that 10

p
q = 2, so that 10p = 2q.

But powers of 10 all have their final digit as 0,while powers of 2 end in 2, 4, 6
or 8. This contradiction shows that log102 cannot be of the form p

q , so it is
not a rational number.

In the sixteenth century irrationals could not really have been regarded
as well understood. However, this fact seems not to have deterred anyone
from recognising logarithms as a spectacularly successful aid to calculation.
Approximation to a fairly small number of decimal places was quite suf-
ficient for all practical applications, and the utility of the new calculation
techniques allowed practitioners to suppress any concerns about the pre-
cise nature of the numbers that were being approximated. Their success
further blurred the Ancient Greek distinction between the discrete and the
continuous, and thus contributed to a broader and more abstract approach
to the concept of number. These developments proved to be a vital precur-
sor to the conceptual revolution begun in the 1630s by René Descartes and
Pierre de Fermat, which is discussed next.





CHAPTER 4

Coordinates and Complex Numbers

If a man will begin with certainties, he shall end in doubts, but if he will be content
to begin with doubts, he shall end in certainties.

Sir Francis Bacon, The Advancement of Learning, 1605

Summary

The next crucial steps that took mathematicians towards a fuller under-
standing of the structure of polynomial equations—leading, almost inciden-
tally, to a more inclusive approach to the concept of number—were taken,
apparently independently, by two Frenchmen: the lawyer Pierre de Fermat
(1601-1665) and the philosopher René Descartes (1596 -1650). Both took ini-
tial steps toward the introduction of what we call a coordinate system, a term
coined somewhat later by the German philosopher Gottfried Wilhelm Leib-
niz (1646-1718). This enabled them systematically to reformulate, solve and
generalise many geometric problems inherited from Ancient Greece by us-
ing the algebraic formalismdeveloped byArabianmathematicians and their
Renaissance counterparts in Europe.

This chapter highlights the innovations in Descartes’ revolutionary con-
tribution and to widespread use of algebraic notation, paving the way for
acceptance of the system ofreal numbers (the ‘number line’) and 1 to what is
now known as analytic geometry. His work inspired his successors, includ-
ing Isaac Newton, to remove suspicions about negative numbers, and to a
significant extent, to accept irrationals as numbers. However, the nature of
square roots of negative numbers was clarified only in the nineteenth cen-
tury, principally through the influence of Gauss and by Hamilton’s abstract
definition of the complex number system. This led to what became known
as the Fundamental Theorem of Algebra.

1Our focus will be on Descartes because Fermat did not publish his short treatise Introduc-
tion to Plane and Solid Loci in his lifetime. After his death it was published by his son in 1679, by
which time Descartes’ methods had already been widely disseminated and developed further
by others.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.04
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1. Descartes’ analytic geometry

1.1. Discours de la Méthode. René Descartes is known today princi-
pally as a philosopher: his Discours begins with an account of his rigorous
search for indubitable truth, which led him to his dictum ‘I think, therefore
I am’ (‘Je pense, donc je suis’ – later more widely known in its Latin trans-
lation cogito ergo sum). His reasoning was essentially that doubt, as an act
of thought, cannot occur unless there is a thinker. He continued his search
for further propositions that he should accept as certain, arguing that ‘we
ought never to allow ourselves to be persuaded of the truth of anything unless on
the evidence of our reason.’

Descartes’ principal mathematical text appeared in 1637 as his (now fa-
mous) La géométrie, published as one of three annexes to his highly influen-
tialDiscours de la Méthode. I will focus on how Descartes’ new methodology
led to the coordinate geometry nowadays routinely taught at school level –
a development which the English philosopher John Stuart Mill (1806-1873)
later described as ‘the greatest single step ever made in the progess of the exact
sciences’.

Descartes’ methodology differs fundamentally from what we now re-
gard as scientific method, since he does not accept that our understanding of
natural phenomena should be based on empirical observation. Rather like
Plato, hewishes it to be based onmetaphysical principles and on ‘basic facts’
of physical reality which in turn should be derived from the ‘indubitable
truths’ supplied by ‘pure reason’. In a letter to his friend, the priest Marin
Mersenne, he chides Galileo, who ‘without having considered the first causes of
nature, has merely looked for the explanations of a few particular effects, and he has
thereby built without foundations’.

1.2. Coordinate systems. In Descartes’ mathematical researches, how-
ever, the foundations were already in place, due largely to the work of Viète
(see Chapter 3, Section 3.1). In La géométrie, his main concern was to bring
order to geometric constructions (‘the analysis of the Greeks’) by combining
them with modern algebraic notation (‘the algebra of the moderns’). The syn-
thesis he proposed would free geometry from its reliance on diagrams and,
at the same time, give concrete meaning to algebraic operations through
their geometric interpretation.

Descartes’ goal remains a geometric construction, but his method of
achieving this makes full use of algebraic operations. The crucial link be-
tween the two is created by choosing a point O in the plane, and a pair of
reference lines that meet inO. Today, the reference lines are called axes, typ-
ically labelled as X and Y respectively. The position of any point P in the
plane can then be described algebraically by means of a pair (x, y) of num-
bers that measure the distances needed to get from O to P by moving only
in the directions of the two axes: from O we first move a distance x along
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Figure 19. Rectangular and polar coordinates

the X-axis, and, from there, a distance y on a line parallel to the Y -axis, to
reach P (or, alternatively, move distances y along the Y -axis and x on a line
parallel to theX-axis). The path traced out by a curve or a geometric figure
can then be described via an equation that relates these x and y coordinates
by setting out in algebraic terms the geometric conditions that any point
P = (x, y) on the curve (or figure) must satisfy.

Today we regard Descartes and Fermat as the originators of analytic (or
coordinate) geometry, in which we choose two perpendicular axes X and Y
which, as shown in Figure 19, define the Cartesian plane (named in honour
of Descartes). Any point P in this plane is then described by the distances
(x, y) from O to the projections of P onto the (X,Y )-axes. This definition
has the advantage that the length

√
x2 + y2 of the line segment OP is given

immediately by Pythagoras’ theorem: for example, the collection of points
P = (x, y) at distance r fromO is (by definition) the circle with centreO and
radius r, and the points x, y are related by x2 + y2 = r2, as the triangle in
Figure 19 shows.

However, neither Descartes nor Fermat actually used such a rectangu-
lar coordinate system. In fact, as we will indicate below, Descartes’ system
involved positive coordinates: in our terms, when using rectangular coor-
dinates, we would call this the positive quadrant. The development of a full
coordinate system was undertaken by his successors. Nevertheless, the key
breakthrough – linking the apparently unrelated areas of geometry and al-
gebra – had been made, making simplifications such as rectangular coordi-
nates and extensions to more than two dimensions much easier to achieve.

Descartes further elaborated the algebraic symbolism he had inherited
from Viète, and his algebraic expressions are essentially those in use today.
Crucially, he also dispensed with the need to give all terms in a polyno-
mial (such as a cubic or quartic) equation the same ‘dimension’, as Omar
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Figure 20. Descartes’ product: BA = 1, BE = BC.BD

Khyayam had done. Unlikemodern usage, andmore in keepingwith Greek
tradition, he regarded the knownparameters and the unknowns in his equa-
tions as lengths of lines, rather than as numbers. Yet he broke with Greek
usage by considering x2, x3 as lines, not as areas or volumes. For example,
instead of treating the product of two line segments as a rectangle, he de-
fined their product by using similarity of figures and proportionals.

It is the systematic introduction of a unit length in any geometric prob-
lem that provides the key to Descartes’ approach. His geometric construc-
tion of the product ab of two line segments was extremely simple, as shown
in Figure 20: letting two given line segments BC and BD meet at B (at an
arbitrary angle), he chose an arbitrary distance BA along BD as the unit
(extending the segment if necessary) and drew the line segment AC. Then
he drew the line DE parallel to AC, to meet BC (extended) at E. The tri-
angles ABC and DBE are obviously similar, which ensures that the ratios
of corresponding sides are in proportion. Hence BC : BA :: BE : BD.
ChoosingBA as the unit length, whileBC = a andBD = b, this shows that
BE becomes the product BC.BD = ab. Using the same figure (and unit)
the other way round one obtains BC as the quotient of BE by BD. Both
product and quotient are therefore realised as line segments.

The construction of a mean proportional (Chapter 3, Figure 15) demon-
strates how Descartes could interpret the square root similarly as a line seg-
ment: to find the square root of a line segmentOA, extend it by a chosen unit
AB to OAB with AB = 1, and from its midpoint draw a circle through O.
The perpendicular AC from its circumference provides the desired square
root of OA .

Descartes’ notationwhendescribing geometric problemswas essentially
algebraic. He used and extended Viète’s new algebraic symbolism: ‘it is suf-
ficent to designate each [line segment] by a single letter. Thus, to add the linesBD
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and GH, I call one a and the other b, and write a+ b. Then a− b will indicate that
b is subtracted from a; ab that a is multiplied by b; a/b that a is divided by b; ...’.

As he points out, early in La géométrie, dimensional homogeneity in an
equation can always be restored by multiplying or dividing a term suffi-
ciently often by the chosen unit! For example: ‘if it be required to extract the
cube root of a2b2− b, we must consider the quantity a2b2 divided once by the unit,
and the quantity b multiplied twice by the unit.’ (See [6].)

Today this explanation may appear trivial and unnecessary, as the sym-
bols are regarded as abstract entities, with no need to think of them in terms of
geometric dimensions. Yet it is precisely this essential insight by Descartes
that eased the way for his successors to regard the constants, coefficients
and unknowns occurring in equations as symbols that can be represented
by numbers. As Fauvel and Gray observe in [12], the simple step of eliminat-
ing dimensional considerations ‘...turns out to have lifted a weight off everyone’s
shoulders...’

Descartes systematically used the initial letters of the alphabet for known
quantities, leaving final letters such as x, y, z to denote the unknowns. He
applied the exponential notation, by then commonly used, to the unknowns
(although,while happy towritex3, x4, etc., he persisted inwriting the square
as xx rather than x2), and he used the Germanic symbols +,− for for addi-
tion and subtraction. He did not use Robert Recorde’s symbol = for equal-
ity; the symbol he employed, possibly drawn from the abreviation ‘æ’ of the
Latin ‘aequalis’, remained popular on the Continent for some time.

1.3. La géométrie. The first two books of La géométrie focus on apply-
ing algebraic techniques to geometry. Giving the ‘unknown’ a name, despite
not knowing its value in advance, was an important step forward. It en-
abled him to treat known and unknown quantities on the same basis. His
approach was to attack a geometric problem by converting it into an alge-
braic equation, simplifying the equation as far as possible and then to solve
the equation geometrically. Given any geometric problem, his method for
its solution is the following (the quotations are from [12]):

‘...we first suppose the solution already effected, and give names to all the lines
that seem needful for its construction—to those that are unknown as well as those
that are known. Then, making no distinction between known and unknown lines,
we must unravel the difficulty in any way that shows most naturally the relations
between these lines, until we find it possible to express a single quantity in twoways.
This will constitute an equation, since the terms of one of these two expressions are
together equal to the terms of the other.’

Descartes gives a simple example to show how an equation obtained
in this way, once simplified as far as possible, can be solved geometrically.
Figure 21 illustrates his argument.
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Figure 21. Example from La Geometrie

‘...if I have z2 = az+ b2, I construct a right triangleNLM with one side LM,
equal to b, the square root of the quantity b2, and the other, LN , equal to 1

2a, that is,
to half the other known quantity which was multiplied by z, which I supposed to be
the unknown line. Then, prolongingMN, the hypotenuse of this triangle, to O, so
thatNO is equal toNL, the whole line OM is the required line z. This is expressed
in the following way:

z =
1

2
a+

√
1

4
a2 + b2.

He recognised that the degree of the algebraic equation expressing the
curve in terms of the (X,Y )-coordinates would determine the means by
which the geometric construction of its roots can be achieved:

‘If it can be solved by ordinary geometry, that is by the use of straight lines and
circles...there will remain at most only the square of an unknown quantity...’

In other words, straightedge-and-compass constructions lead to linear
or quadratic equations, and he showed how to solve these. Descartes knew
that Viète had shown the duplication of the cube and angle trisection to
lead to cubic equations, and he now asserted that these constructions could
not be effected by straightedge and compass alone – although his attempt
at a proof was defective. He argued, as had the Greek geometers, that all
constructions should be effected by the simplest means possible; for him,
this was determined by the degree of the equation. Quadratics could be
handled by straightedge-and-compass, cubics and quartics required conic
sections.

Descartes was encouraged by his success in dealing with a set of prob-
lems posed by the Alexandrian geometer Pappus (fourth century) which at-
tracted much attention at the time. The simplest, the so-called three-line lo-
cus problem, assumed that one was given three lines in the plane. Pappus
sought the locus of points such that the product of their distances from two
of these lines is proportional to the square of the distance from the third
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Figure 22. René Descartes by Frans Hals, 16493

line.2 Descartes chose one of the three lines as AB and fixed the position of
a typical point C of the locus he sought by marking AB as x and BC as y,
so that these two became the reference lines (what we would call the axes
today) for his system of coordinates. Expressing the other lines in terms of
these two quantities he arrived at an equation (involving the variables x and
y) that the point C must satisfy. He solved the problem by simplifying this
equation as far as possible and effecting a geometric construction for the
roots of the simplified equation.

In the second book he continued to extend this approach to a larger
set of lines than Pappus had done and suggested a general classification of
geometric problems: those leading to quadratic equations formed the first
class and could be solved by straightedge and compass constructions, those
leading to cubic or quartic equations he placed in the second class, since the
roots could be constructed using conic sections. Quite generally, a problem
of class n was associated with an equation of degree either 2n − 1 or 2n.
He conjectured – incorrectly, as it turned out – that, since the solution of the
quartic can be reduced to that of an associated cubic (as Ferrari had shown),
a similar argument could always be found to solve an equation of degree 2n
by reducing its solution to that of an equation of degree 2n−1. Although his
classification did not hold water, his work encouraged the much freer use
of higher plane curves in geometric constructions. A famous example is the

2A locus is the collection of points satisfying some given geometric condition(s). For ex-
ample, a circle is the locus of points lying at a fixed distance from a given point (its centre), while
an ellipse is the locus of points for which the sum of their distances from two given points (its
foci) remains constant. Thus a circle is an ellipse whose foci coincide.

3https://commons.wikimedia.org/wiki/File:Frans_Hals_-_Portret_van_René_Descartes.jpg

https://commons.wikimedia.org/wiki/File:Frans_Hals_-_Portret_van_Ren%C3%A9_Descartes.jpg
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folium ofDescartes, whichmakes a loop in the first (i.e. ‘north-east’) quadrant,
intersecting itself at the origin, while its two ends go off to infinity in the
second (‘north-west’) and fourth (‘south-east’) quadrant of our rectangular
(X,Y )-plane. Its equation has the form x3 + y3 − 3axy = 0.

Hewent on to classify as ‘geometric curves’ all those whose points can be
determined by the intersection of two lines, each moving parallel to one of
his axes (X or Y ) with commensurable velocities (whose ratio takes the form
m
n for some whole numbersm,n). His study of Pappus’ three- and four-line
problems led him to the general equation of a conic passing through the
origin in the form: y2 = ay − bxy + cx− dx2, where he identified the types
that can occur for different choices of the constants a, b, c, d.

Modern terminology, following amore general classification introduced
by Leibniz half a century later, defines an algebraic curve as the collection
of points (x, y) in the plane satisfying a given polynomial equation in the
variables x, y. In particular, the points (x, y) on a straight line satisfy the
first-degree equation

ax+ by + c = 0,

while the general quadratic equation in x, y,

ax2 + bxy + cy2 + dx+ ey + f = 0

will give rise to a conic section (see Figure 14 in Chapter 3). The simplest
examples of conic sections occur when we have rectangular axes and centre
the figure at the origin and symmetric to the axes. The circle of radius r is
then given by the points (x, y) satisfying x2 + y2 = r2, an ellipse will have
the form (xa )2 +(yb )2 = 1, a hyperbola is given by (xa )2−(yb )2 = 1, a parabola
typically by y2 = 4ax.

Similarly, equations involving higher powers of the variables x, y have
their degree specified by the highest power of these variables – so that the
folium of Descartes has degree 3, for example. Leibniz called curves that
cannot be specified by such a polynomial equation transcendental.

In his (earlier) classification Descartes in effect regarded as ‘geometric’
all curves we now describe as ‘algebraic’. His primary objective was to es-
tablish a criterion that could be expressed in geometric terms, rather than
our algebraic one, to describe such curves. His definitions implicitly as-
sume that all geometric curves can be traced by a continuous motion. Thus
the quadratrix, and other curves generally defined in terms of arc lengths,
were to be excluded from his classification of geometric curves, since they
arise from two simultaneous motions ‘whose relation does not admit of precise
determination’. For the quadratrix, one motion is a translation, the other a
rotation, and, as we saw in Figure 16(a), the ratio of the lengths of the arc
BED and the radius BA is π

2 , which is irrational; in other words, the two
lines are incommensurable. Descarted stated this claim without proof – in
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effect, he claimed that the circle cannot be squared! He argued that such
curves should be excluded from geometry:

Geometry should not include lines (or curves) that are like strings, in that they
are sometimes straight and sometimes curved, since the ratios between straight and
curved lines are not known...

Consequently, Descartes called such curves mechanical.
In Figure 19 we also depict an alternative description of coordinates,

first introduced by the Italian Bonaventura Cavalieri (1598-1647) in order to
discuss the ‘Archimedean spiral’, which will feature in Chapter 5. This sys-
tem of polar coordinates became widely used after Jacob Bernoulli (1654-1705)
employed it more systematically. One chooses an originO, or pole, as well as
a directed line segment OX, which serves as the polar axis. The length OP
then describes the radial distance r of a point P in the plane from the pole,
and the angleXOP (denoted byφ, and taken anti-clockwise) determines the
direction of OP relative to the chosen direction of the polar axis. Pythago-
ras’ theorem and simple trigonometry show that the polar and rectangular
coordinate systems are related by:

r =
√
x2 + y2, tanφ =

y

x
x = r cosφ, y = r sinφ.

Despite his dismissal of ‘mechanical’ curves from geometry, in 1638
Descartes was led (when considering the path of an object falling towards
a rotating Earth) to a ‘mechanical’ curve that contradicted his assumption
that no such curve could be rectified (this term means that we can construct
a straight line whose length equals that of the curve). The curve in question
is the logarithmic spiral, which is most simply defined in polar coordinates
by r = aebφ, where a, b are constants, and e is the base of ‘natural’ loga-
rithms (which we will meet in Chapter 5). The Italian mathematican Torri-
celli (1608-1647) was the first to rectify this curve in 1645, by methods that
foreshadowed Newton and Leibniz’ invention of the Calculus over 20 years
later.

2. Paving the way

The ‘marriage’ of geometry and algebra byDescartes and Fermat served
to accelerate the acceptance of irrationals as genuine numbers. Descartes’
classification of geometric curves includedmany different types of irrational
roots which could be defined as distances from the origin O along the X-
axis, in exactly the same way as rational roots. In handling these quanti-
ties algebraically there was no need to distinguish between different sorts of
lengths if one simply regarded them as points on a number line.
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2.1. The number line. The coordinate system provides a visual repre-
sentation, not only of the curve being analysed, but also of solutions of the
equation defining the curve. These appear as points on theX-axis, whether
positive or negative, and can be treated as numbers, whether rational or ir-
rational. As this provided a convenient visual (and practical) way of avoid-
ing the inevitable philosophical question of what irrationals actually are, the
more difficult problem of finding a viable arithmetical definition of irrationals
was essentially shelved until the nineteenth century, by which time the pre-
viously unchallenged centrality of Euclidean geometry had become a seri-
ous issue for debate.

Throughout the eighteenth century,mathematicianswere generallymuch
too busy exploiting the rich rewards of the new techniques offered byDescartes’
analytic geometry, and the competing formulations of the Calculus byNew-
ton and Leibniz a few decades later, to concern themselves in detail with
this philosophical issue. They seeemed content to regard as real numbers
any points on the number line (positive or negative, rational or irrational).

Today it has become a commonplace to conceive of this ‘number line’,
centred on some pointO and extending indefinitely to left and right, as rep-
resenting the real number systemR uponwhichmost commonmodernmath-
ematical structures rest. For practical measurements, of course, we must
always content ourselves with rational approximations (such as 3.14159 for
π, 2.71828 for e, or 1.4142 for

√
2) since our mechanical or electronic instru-

ments all have physical limitations. But today we nevertheless endow irra-
tional numbers with as much ‘reality’ as we do 5 or 94

73 . This applies equally
whether they are positive or negative, since negative numbers, represented
by points lying to the left of the origin O on the number line, are regarded
as just as ‘real’ as positive numbers.

This perspective, due in goodmeasure to the ubiquity of coordinate sys-
tems, lends weight to the argument that numbers may be seen as abstract
entities. My personal preference (not shared universally amongmathemati-
cians, as we shall see later) is to regard them as human inventions that assist
us collectively in making meaningful assertions about the world around us,
rather than being or representing actual objects that ‘exist’ independently
of us. This viewpoint differs markedly from the Platonic perception that
numbers (and lines), as idealised abstractions, exist in some unseen ‘World
of Ideas’.

Descartes’ analytic geometry may have had a significant impact on the
gradual acceptance of a wider, more abstract, concept of number. Histori-
cally, however, it took the resolution of the further puzzle of finding a sat-
isfactory visual representation of ‘imaginary roots’ (roots like

√
−1, which

occur in equations like x2 + 1 = 0, and were given this name by Descartes)
before our modern perspectives were fully accepted. These developments
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are outlined in the next section. Meanwhile, the nomenclature used even to-
day (using the term real numbers for elements of the number line, while

√
−1

is often called the imaginary unit), reflects this tortuous history and retains
its potential for misconceptions.

LikeNapier’s invention of logarithms, Descartes’ analytic geometry tech-
niques, combining algebra and geometry, found acclaim upon their publica-
tion in 1637, andwere developed and refined further by his contemporaries.
This process involved considerable effort. Despite Descartes’ insistence that
one should always begin with the simplest possible constructions before
moving on to more complex ones, his discussion of various geometric prob-
lems in La géométrie was hardly systematic, focussing instead on specific,
often rather difficult, problems.

He also had a habit of leaving many details of his verifications to the
reader. A frequent refrain in the text was ‘it already wearies me to write so
much about it’. He justified his often sketchy solutions by saying that he
had omitted details ‘in order to give others the pleasure’ of discovering things
for themselves! This exacerbated the difficulties that his initial audience
found in understanding his methods, and gave impetus to extensive com-
mentaries by other mathematicians. Prominent among these was a Latin
edition of La géométrie by the Dutchmathematician Frans van Schooten (1615-
1660), which appeared in 1649 and had seen four editions by 1700, firmly ce-
menting Descartes’ analytic geometry in the Continental mathematical tra-
dition.

2.2. Wallis andNewtononnumbers. In Britain, the algebraic approach
pioneered by Descartes was enthusiastically taken up by John Wallis (1616-
1703), who held the Savilian Chair of Geometry at Oxford University from
1649. Ordained as a priest, he had been active in decodingRoyalistmessages
for the Parliamentary side in the English Civil Wars, and had studied earlier
mathematical works by William Oughtred and Thomas Harriot which had
introduced him to the new methodologies developed on the Continent.

A highly original mathematician, he published Arithmetica Infinitorum
in 1656, tackling many then prevalent problems—area and volume calcula-
tions, and finding tangents to various curves—by pioneering mainly arith-
metical methods involving infinite sums and products. Prominent among
these was his infinite product formula for π.4 This allowed him to approxi-

mate π (the symbol
∞∏
n=1

means successive multiplication, n = 1, 2, 3, ...):

π

2
=

∞∏
n=1

(
2n

2n− 1
· 2n

2n+ 1
) = (

2

1
· 2

3
) · (4

3
· 4

5
) · (6

5
· 6

7
) · ...

4See MM for details.
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Wallis treated a proportion simply as asserting the equality of two frac-
tions, awarding ratios the same status as whole numbers. Although this
marked a departure from long-held views, it seemed entirely natural to him.
He remained less certain about the status of negative numbers, since in his
view it was impossible for a quantity to be ‘Less than Nothing, or any number
fewer than None’ [6]. But he recognised the usefulness of accepting negative
numbers in calculations. Using analogy with movement to the right or left
of a starting point, he argued that negative numbers could be represented
by points to the left of a chosen origin on a number line. He went further,
seeking to represent square roots of negative numbers geometrically, using
a construction similar to that of the mean proportional (Figure 15).5 He ar-
gued that, while their status as numbers was uncertain, using them in cal-
culations was ‘not altogether absurd’. Wallis also maintained doubts about
the status of irrationals as numbers, but nonetheless used them freely in his
calculations, arguing, as Stevin had done, that they can be approximated
arbitrarily closely by fractions.

Wallis’ viewswere not universally accepted by Englishmathematicians.
At Cambridge, Newton’s mentor Isaac Barrow (1630-1677) was prominent
in something of a backlash against algebraic methods for the solution of
geometric problems, although even he used symbolic representations and
numerical examples in his widely read 1655 edition of Euclid’s Elements.
He criticised Wallis’ assertion that arithmetical equalities had a meaning
independent of geometric interpretation, and argued that irrationals like√

2 were best understood in terms of geometric ratios, rather than in terms
of numbers and fractions. For him classical geometry, based upon axioms,
provided a clarity of meaning that algebra had not yet achieved.

Isaac Newton (1642-1727) succeeded Barrow to the Lucasian Chair of
Mathematics at Cambridge in 1669. An account of Newton’s views on num-
bers can be found in his Arithmetica Universalis, first published in 1707 (an
English translation,Universal Arithmetick, by JosephRaphson—towhichNew-
ton refused to add his name—followed in 1720). This work is not, however,
among his best-known today. The focus in the book is on the practice, rather
than foundations, of the new algebraic techniques, and features many illus-
trative examples. Perhaps reflecting Barrow’s influence, Newton stresses his
preference for classical geometry in many of his comments in the text.

The origins of the text lie in drafts and lecture notes dating from the pe-
riod between 1673 and 1683, whenhe had studiedCartesianmethods closely
and critically. The volume is not a carefully edited and polished publication
in the spirit of his 1687 Principia Mathematica. Newton was only persuaded
to agree, reluctantly, to the publication ofArithmetica Universalis (which was
not overseen by him, but by his successor to the Lucasian Chair, William
Whiston) when he needed to attract financial support from his academic

5See e.g. [6] for details of Wallis’ construction.
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colleagues for his campaign to enter Parliament as member for Cambridge
in 1705. However, due to his towering stature in English science, the text
was soon translated from its original Latin, was widely read and became
influential in Britain and on the Continent.

Despite Newton’s evident discontent with details of the publication, the
definition of number given in this work provides a concise synthesis of ear-
lier conceptions as follows:

‘By Number we understand, not so much a Multitude of Unities, as the ab-
stracted ratio of any Quantity, to another Quantity of the same Kind, which we take
for Unity. [Number] is threefold; integer, fracted, and surd, to which last Unity is
incommensurable.’ (Raphson’s 1720 English translation, page 2.)6

This is the clearest statement yet of an approach that defines numbers
as abstract entities. They are not taken as quantities, but may represent ei-
ther quantities or ratios of the same. The Greek distinction between multi-
ples and magnitudes is no longer an issue, and both rational and irrational
numbers appear on the same footing. The same applies to negative num-
bers, where Newton does not follow Wallis and others in worrying about
the philosophical implications of being ‘less thanNothing’, but draws analo-
gieswith debts and shortfalls, andworks directlywith positive and negative
outcomes of a calculation in the same vein. Moreover, by treating ‘surds’ as
numbers, Newton’s classification moves us closer to the modern concept of
‘real number’.

His attitude to square roots of negative numbers, on the other hand,
seems ambiguous. He recognised that where such ‘impossible’ numbers
appear as solutions of a polynomial equation, they should be accepted as
genuine solutions, although he may have treated their occurrence in partic-
ular problems as having no clear real-world applicablity. In any event, they
were not classed as numbers in the above definition, and their statuswas only
resolved more than a century later.

In their different ways, decimal expansions, logarithms and analytic ge-
ometry involved ideas that were ‘in the air’ at the time of their invention
– much the same is true of the Calculus. Those now credited with these
achievements were usually the first to publish comprehensive results (al-
though, as we saw in the cases of Jobst Bürgi and Pierre de Fermat respec-
tively, others had simultaneously, or even earlier, developed similar con-
cepts). The initial published results were developed and sometimes im-
proved by their peers. Newton’s famous comment (referring to the work
of Descartes) in a letter to Hooke in 1676: ‘If I have seen further it is by stand-
ing on the shoulders of giants’ (Newton wrote ‘sholders’) appears to be fully
justified in this context.

6In the 1769 edition of Raphson’s translation the following is added, presumably for em-
phasis: ’An Integer, is what is measured by Unity; a fraction, that which a submultiple Part of Unity
measures; and a Surd, to which Unity is incommensurable.’



98 4. COORDINATES AND COMPLEX NUMBERS

3. Imaginary roots and complex numbers

But let us step back a little and return to Descartes. In the final book of
La géométrie he turned to general principles for solving algebraic equations.
He recognised that a polynomial of degree n,

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0,

is divisible by (x−α) exactly when α is a root of the polynomial, that is, a so-
lution of the equation p(x) = 0.He proceeded to argue that this implies that
a polynomial of degree n has n roots (foreshadowing what we now call the
Fundamental Theorem of Algebra): ‘Every equation can have as many distinct
roots (values of the unknown quantity) as the number of dimensions of the unknown
quantity in the equation’. Exactly what sort of ‘numbers’ (or ‘values’) should
be allowed to represent these roots is not made explicit, although Descartes
was surely aware that equations such as x2 + 1 = 0 have no roots among
the rational or irrational numbers represented by points of the geometric
‘number line’.

3.1. The rule of signs. Descartes also expoundedhis rule of signs, which
provides information on the number of positive roots of a polynomial (with
multiply occurring roots counted by the number of times they appear—their
multiplicity).

A variation in sign occurs in a polynomial

anx
n + an−1x

n−1 + ...+ a1x+ a0

if two consecutive coefficients have opposite signs. For example, x2−3x+ 2
has two variations: reading from the left we go from +1 to −3 to +2.

In modern terminology, Descartes’ rule of signs can be stated as follows:
the number of positive roots of a polynomial, each counted as often as its
multiplicity, either equals the number of variations in the signs of its coeffi-
cients or is less than this number by an even number.

For example: the polynomials x3−4x2 +5x−2 and x3−3x2 +x−3 each
have three variations in sign (+ is followed by−, then+, then−). The rule of
signs states that the positive roots of these polynomials will number either
3 or 1. Factorising each polynomial by inspection (trying out x = 1, 2, 3, for
example) it is easy to see that the first can be written as (x − 1)2(x − 2), so
the positive roots are 1, 1, 2 (the repeated root is counted twice). The second,
however, becomes (x2 + 1)(x− 3), so 3 is the only positive root, since x2 + 1
has no real root.

Descartes himself formulated his rule of signs rather less clearly than
stated here, for which Wallis took him to task in his Algebra (published in
1685). Wallis stated that Descartes had claimed that the number of positive
rootswould always equal the variation in signs, and remarked pointedly that
the rule fails in general: ‘it must be taken with this caution, that is, that the roots
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are real, and not imaginary’. In Descartes’ defence, we might observe that his
claim was only that the number of positive roots can equal the variation in
signs, and that his text appears to suggest that he was aware that there are
fewer when imaginary roots occur.

3.2. Representation of imaginary numbers. These quotations suggest
that, a century after Bombelli’s struggle to make sense of them, imaginary
roots of polynomial equations were no longer simply disregarded, but had
become a possible object of study. In a further example of calculation, work-
ing implicitly with the ‘positive square root‘ of −1, Leibniz factorised the
expression x4 + a4 as

(x+ a

√√
−1)(x− a

√√
−1)(x+ a

√
−
√
−1)(x− a

√
−
√
−1),

although he did not attempt to simplify the even more mysterious quantity√√
−1 any further.
In another computation, Leibniz worked directly with the square root

of −3 to obtain(√
1 +
√
−3

)(√
1−
√
−3

)
=

√
[1 +

√
−3)][1−

√
−3] =

√
1− (−3) = 2,

where, under the outer square root sign, he employed the familiar identity
x2 − y2 = (x + y)(x − y) with x = 1, y =

√
−3.Multiplying out the square

(
√
x+ y +

√
x− y)

2 produces(√
1 +
√
−3 +

√
1−
√
−3

)2

= (1 +
√
−3) + (1−

√
−3) + 2(

√
1 +
√
−3)(

√
1−
√
−3)

= 2 + 2(2) = 6.

The identity
√

6 =
√

1 +
√
−3 +

√
1−
√
−3 followed by taking square

roots. This again showed that calculations with imaginary numbers could
generate real numbers. Precisely what an imaginary number should signify
remained obscure, although Leibniz and his successors encountered them
ever more frequently in their studies of the Calculus and differential equa-
tions. Leibniz summed up the prevailing attitude to imaginary numbers in
the 1680s as follows: ‘From the irrationals are born the impossible or imaginary
quantities whose nature is very strange but whose usefulness is not to be despised’.
[10].

Just over a century later, the concept of geometrical representation of
imaginary numbers was very much in the air, and a subject of some con-
troversy, as illustrated by the critical reception in England of a paper by
the French émigré clergyman, Adrien-Quentin Buée (1745-1825), who main-
tained that

√
−1 should be seen as ‘a purely geometric operation. It is a sign
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of perpendicularity’.7 In fact, within a period of less than fifteen years, geo-
metric representations intended to represent numbers of the form a+

√
−1b,

where a, b are real numbers, appeared independently in three different Eu-
ropean countries. In 1797 theNorwegian surveyorCasparWessel (1745-1818)
was exploring ways of representing directed line segments—segments of lines
pointing in a given direction, defined by their length and their direction—
that we call vectors today. Wessel was led by his considerations to represent√
−1 as a vertical line segment of unit length, starting at the origin, in the

Cartesian plane. He recognised that his geometric definition of the sum of
two directed line segments (see Figure 23(a)) applied if the axes of his co-
ordinate system are taken to represent real and imaginary numbers respec-
tively. Wessel’s paper, published in Danish, apparently remained unknown
to most mathematicians of his day and only came to wider attention once it
was translated into French a century later.

Another significant and more widely known advance was made by a
Paris accountant and amateur mathematician by the name of Argand. El-
ementary textbooks still interchangably use the names complex plane or Ar-
gand diagram for the plane described by means of two perpendicular coor-
dinates (as in Figure 23(b)), where the real numbers are on the horizontal
axis and the imaginaries on the vertical one, containing i at one unit above
the origin. However, very little is known reliably about the man himself—a
somewhat dubious 1874 biography names him as Jean-Robert Argand (1768-
1822) and places him as born in Geneva, but none of this has been verified
by original sources.

Argand considered the imaginary unit in an essay published in 1806,
regarding it as the result of a rotation in the plane through a right angle. He
argued that 1 is transformed into −1 by rotating the plane through 180◦,
and concluded that a rotation through half of this angle should lead to

√
−1

instead.
In the Argand diagram a+ ib is the point reached by moving a distance

a from the origin along the real axis and then a distance b parallel to the
imaginary axis. It was the third member of the trio (and its sole mathemati-
cian) Carl Friedrich Gauss, who, in notes and various publications dating
from 1811 to 1831, pointed out that this represents the complex number a+ ib
as a point (a, b) in the resulting plane. The resulting rectangular coordinate
system has therefore also become known as the Gaussian plane.

Gauss remarked that, by dividing the plane into a grid by parallel lines,
horizontal andvertical and oneunit apart, the vertices of the resulting squares
would become natural reference points for integral distances in both direc-
tions, with each point having four immediate neighbours.

7See the entry under his name in the MacTutor website (mathshistory.st-andrews.ac.uk),
for example.
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Figure 23. Representing complex numbers

Starting at the origin (0, 0), the four points on the axes a unit distance
away are

(1, 0), (0, 1), (−1, 0), (0,−1),

and he designated these as 1, i,−1,−i respectively. Gauss concluded:
‘If this subject has hitherto been considered from the wrong viewpoint and thus

was found to be enveloped in mysterious darkness, it is largely an unsuitable ter-
minology which should be blamed. If +1,−1,

√
−1 had been described, verbally,

not as ‘positive, negative, imaginary’ (or [the latter] even as ‘impossible’) but, for
example, as ‘direct, inverse, lateral’ instead, there would have been no cause to refer
to any such darkness’.

In a celebration commemorating the 50th anniversary of his Brunswick
doctorate in 1849 Gauss was introduced with the phrase ‘You have made the
impossible possible’[36].

3.3. Hamilton’s definition of complex numbers. In the 1830s it was
made explicit by the Irish mathematician William Rowan Hamilton (1805-
1865) that a complex number could be described quite precisely as a pair
(a, b) of real numbers, representing the Cartesian coordinates of a point in
the plane. He argued that this should be its definition as a number. The
geometric interpretation leads naturally to the definition of the sum of two
complex numbers, which is found by adding coordinates separately. This
allowed Hamilton to extend algebra to this set of numbers, although the
product of two such numbers still required definition.

Hamilton approached number systems in a novel way: he sought to de-
fine complex numbers purely in terms of real numbers, without recourse to
notions of ‘imaginary’ units or geometrical representations, but simply by
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setting down arithmetical rules for combining such numbers in a way that
would be consistent with previously established properties.

For this, he assumed that the arithmetic of real numbers was unprob-
lematic, and sought to recover known properties of complex numbers with-
out trying to establish their ‘true nature’. Instead, his arithmetical rules
should determine the properties of the system.

As mentioned above, addition of two pairs of reals (a, b) and (c, d) could
be defined simply as

(a, b) + (c, d) = (a+ c, b+ d),

since this would reflect the sum (a + ib) + (c + id) = (a + c) + i(b + d) of
two complex numbers. To define subtraction, one need only note that (0, 0)
acts as a neutral element for addition (i.e. (a, b) + (0, 0) = (a, b)), so that the
additive inverse of (a, b) is (−a,−b) since (a, b) + (−a,−b) = (0, 0)). More
generally, the difference between two pairs is

(a, b)− (c, d) = (a− c, b− d).

To introducemultiplicationHamilton needed to reflect the property i2 =
−1 of the ‘imaginary unit’ i. This yields

(a+ ib)× (c+ id) = (ac− bd) + i(ad+ bc).

The product of two pairs of real numbers was therefore defined by Hamilton
as

(a, b)× (c, d) = (ac− bd, ad+ bc).

To define division, he made use of the fact the quotient of two whole
numbers, mn , is the product of m with the multiplicative inverse 1

n of n. So
the important step was to find the inverse, the number x satisfying n× x =
1. The same idea can be applied to complex numbers, where the neutral
element for multiplication is shown by the above definition to be (1, 0). So
the inverse (x, y) of (c, d) should satisfy

(1, 0) = (c, d)× (x, y) = ((cx− dy), (cy + dx)).

Thus cy + dx = 0, hence y = −dcx, and 1 = cx− dy = (c+ d2

c )x, so that the
multiplicative inverse of (c, d) 6= (0, 0) becomes

(x, y) = (
c

c2 + d2
,− d

c2 + d2
).

Hamilton could therefore define the quotient of the pair (a, b) by the
pair (c, d) 6= (0, 0) as

(a, b)÷ (c, d) = (a, b)× (
c

c2 + d2
,
−d

c2 + d2
).
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There is no distinction between the status of ‘real’ numbers (a, 0) and
‘imaginary’ numbers (0, b) in this system. Moreover, the multiplication

(0, 1)× (0, 1) = (0× 0− 1× 1, 1× 0 + 0× 1) = (−1, 0)

vindicates Bombelli’s speculative ‘wild thought’ that led him to his multi-
plication tables for

√
−1.

Hamilton’s definition of the complex number system, which we today de-
note by C, states that it comprises the collection of all pairs (a, b) of real
numbers with the two operations of addition and multiplication as defined
above, noting that (0, 0) and (1, 0) would act as neutral elements for these
operations respectively, that each pair (a, b) has an inverse under addition,
and each pair (a, b) 6= (0, 0) will have an inverse under multiplication, so
that division of two pairs is defined as above.

Hamilton’s approach does not require any pre-conceived notion ofwhat
complex numbers are or should ‘represent’. His rules for combining com-
plex numbers determine the properties of this number system, obviating any
need to determine its ‘underlying nature’.

In Figure 23(a) the addition of two complex numbers was depicted pic-
torially, while Figure 23(b) introduced the conjugate of 2 + i as its mirror
image 2 − i in the horizontal axis. Both pictures are easily translated into
Hamilton’s definitions: z = (a, b) has conjugate z = (a,−b), while its mod-
ulus |z| =

√
a2 + b2 is the radius of the circle about the origin containing

z. It is immediate from the above definition that zz = (a, b) × (a,−b) =

(a2 + b2, 0) = |z|2 , confirming that |z| is the positive square root of a2 + b2.
(These elementary facts will be used in the next section.)

Hamilton famously tried to extend his ideas to higher dimensions, i.e.
triples and quadruples of reals, failing with the first and eventually suc-
ceeding with the latter in his invention of quaternions, which led to various
unexpected applications. (See [6], p.220, for example.)

Hamilton’s work initiated what became the modern approach to alge-
braic structures. This became a particular feature of nineteenth-century
British mathematics (and symbolic logic), involving such figures as George
Boole (1806-64), George Peacock (1791-1858) and Augustus De Morgan (1806-
1871).

4. The fundamental theorem of algebra

Recall that Wallis had clarified Descartes’ assertion about the number
of roots of a polynomial of degree n: one can only expect n roots if com-
plex numbers are allowed as roots. Neither of them proved this claim, and
throughout the eighteenth century a variety of prominent mathematicians
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Figure 24. Carl Friedrich Gauss by C. A. Jensen, 18408

set out to provide the proof. The first proof to gain wider acceptance ap-
peared in 1799 inGauss’ doctoral thesis, which immediately established him
as a major figure in his subject.

In his thesis, Gauss reviewed the attempted proofs of his predecessors,
pointing out that all had assumed that any polynomial must have roots, al-
though they did not specify which number system would contain these
roots! This overlooked the main issue, he maintained, which was to demon-
strate that any polynomial will have at least one root in some well-defined
number system. His claim was that this is true if the number system in
question is the complex plane. Thus the key result needed was the follow-
ing, which we will call

Gauss’ Theorem
Any polynomial zn + an−1z

n−1 + ...+ a1z+ a0 with complex coefficients ai
(i = 0, 1, 2, ..n− 1) will have at least one complex root.

Apolynomial with leading coefficient an = 1 is calledmonic. Restricting
attention to this case is no real restriction. If the degree of a polynomial
cnz

n+cn−1z
n−1+...+c1z+c0 is n, the coefficient cnmust be nonzero, so that

we can divide whole the polynomial by cn to obtain a monic polynomial.
With Gauss’ theorem we can can show that any monic polynomial of

degree n is a product of n linear factors:
Fundamental Theorem of Algebra

8https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg
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Any polynomial with unit leading coefficient,

p(z) = zn + an−1z
n−1 + ...+ a1z + a0

and complex coefficients ai (i = 0, 1, 2, ..n − 1) has n (not necessarily distinct)
complex roots α1, α2, ..., αn, and can therefore be factorised (uniquely, up to the
order of factors) into n linear factors, so that

p(z) = (z − α1)(z − α2)...(z − αn).

Proof
By Gauss’ theorem there is a complex number w such that p(w) = 0.

Assuming this result we can now write

p(z) = p(z)−p(w) = (zn−wn)+an−1(zn−1−wn−1)+...+a1(z−w)+a0(1−1).

In particular, the constant term a0− a0 = 0, and for any k = 1, 2, .., n− 1 we
can factorise (just as we did for zn − 1 earlier)

zk − wk = (z − w)(zk−1 + zk−2w + ...+ zwk−2 + wk−1).

This shows that (z−w) is a common factor of all the remaining terms in the
expansion of p(z) = p(z) − p(w), so that we can re-arrange terms to write
p(z) = (z −w)q(z) for some polynomial q of degree (n− 1).Write α1 = w,
and use Gauss’ theorem to find a root w′ of the polynomial q. As before,
(z − w′) is then a common factor of q(z) = q(z) − q(w′), so we can find a
polynomial r of degree (n− 2) such that q(z) = (z−w′)r(z).Write α2 = w′.
We have shown that p(z) = (z − α1)(z − α2)r(z).

Continuing the same process we can find roots α3, ..., αn of p, so that,
finally, p(z) = (z − α1)(z − α2)...(z − αn).

This completes the proof of the theorem.
This illustrates how what we have called Gauss’ theorem is the key re-

sult required for understanding the structure of polynomials. A different
proof of the Fundamental Theorem was published by Argand in 1814. His
proof was not deemed rigorous and it was not widely accepted at the time
– although it now thought that Argand’s ideas provide the most direct ap-
proach to the problem. In fact, all the attempted proofs published in the
early 1800s could only be made fully rigorous in the 1870s, when the crucial
role played in these arguments of completeness of the real number system –
which we discuss in Chapters 7 and 8 – was better understood.

Argand’s ideas are based on a result first announced by the French
mathematician Jean le Rond d’Alembert (1717-1783), who had also made two
attempts (1746 and 1754) to prove the Fundamental Theorem.

d’Alembert’s lemma:
If the complex polynomial p(z) is non-constant and p(z0) 6= 0, then any neigh-

bourhood of z0 contains a point w with |p(w)| < |p(z0)| .
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In his papers d’Alembert takes for granted that, as z varies across the
complex numbers, the curve traced out by |p(z)| will be continuous. In his
time, continuity was described in terms of ‘infinitesimal change’, so that a
continuous curve was regarded as one that could be drawn without lifting
the pencil, and the notion of ‘neighbourhood’ relied on geometric intuition.
In the nineteenth century it became clear that these ideas do not provide
adequate definitions.

There are many modern proofs of versions of Gauss’ theorem. Those
making direct use of d’Alembert’s result are perhaps the most accessible. A
relatively brief, but authoritative, summary of the history of this important
result and its many different proofs is given in Chapter 4 of [10]. A short
modern proof is given inMM.

Today the Fundamental Theorem of Algebra can arguably be regarded
as mis-named, since it deals exclusively with polynomial equations, which
are far removed from themyriad abstract algebraic structures that have been
invented in the two centuries sinceGauss’ heyday. Moreover, its early proofs
implicitly assumeddeeper properties of the number line than could bemade
visible by eighteenth century algebra. The fact that Gauss returned to the
theorem three times throughout his career testifies that he was aware that
his original argument in 1799 contained a significant gap. It was only in 1920
that the Russian mathematician Ostrowski fully completed Gauss’ original
proof, in line with modern standards of rigour.

Gauss’ theorem is a good example of the perspectives of modern math-
ematics which he did much to encourage. The focus is not on finding a con-
struction of the actual roots, but on showing that, in general, roots of polyno-
mials will always exist. It is proved that they are there to be found, without
actually specifying how to find them. By shifting perspectives in this way,
mathematicians found that much larger and previously intractable, even
unimagined, areas of enquiry became available. The focus now shifted to
analysing the structure of the objects (here, the collection of all polynomials)
being investigated. From this point of view Gauss’ theorem is fundamental,
since it shows that, as long as we are flexible about the kinds of numberswe
allow as roots, then the structure of any polynomial is fully understood once
we know all its roots.



CHAPTER 5

Struggles with the Infinite

Again there is another great and powerful cause why the sciences have made but
little progress; which is this. It is not possible to run a course aright when the goal
itself has not been rightly placed.

Sir Francis Bacon, Novum Organum, 1620

Summary

In this chapter we review howmathematicians (and sometimes philoso-
phers) of previous centuries dealt with the troublesome concept of infinity.
Our overview must necessarily be concise – this is not a full historical ac-
count by any means! We will focus, instead, on two key periods, nearly
2000 years apart.

For the first we return to Ancient Greece to consider Aristotle’s concep-
tion of the potential infinite and the difficulties that notions of infinite divis-
ibility of space and time presented. Next come the works of Archimedes,
also transmitted via the Arab world, with their remarkably sophisticated
comparisons of the areas and volumes of various curvilinear figures. One
might echo Descartes’ suspicions (mentioned in Chapter 3) ’that these writ-
ers then with a sort of low cunning, deplorable indeed, suppressed’ their meth-
ods for discovering these relationships. In fact, Archimedes’ recently redis-
covered letter, The Method of Mechanical Theorems, addressed to his friend
Erastosthenes, shows how he had used his law of the lever, together with ‘in-
finitesimal slices’ of solid bodies and areas, to arrive at his results. These
ingenious techniques, foreshadowing arguments used nearly two millennia
later in the Calculus, did not conform to the rigorous standards of proof of
Euclidean geometry. In his public tracts Archimedes stated his results and
proved them by contradiction, often generalising the ‘method of exhaustion’
established earlier by Eudoxus, with no explanation how he had discovered
the relationships his proofs verified.

Finally we consider the development of the Calculus from the late sev-
enteenth century onward, including the serious logical issues it posed. We
focus on the different conceptions of the two principal contributors, Isaac
Newton and Gottfried Wilhelm Leibniz. While they are rightly celebrated

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.05
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as inventors of the Calculus, both relied on versions of a controversial ‘prin-
ciple of continuity’, expressed by Leibniz as ‘whatever succeeds for the finite,
also succeeds for the infinite’. The logical difficulties this created are seen most
directly in the methods of proof employed in the eighteenth century in the
prolific writings of Leonhard Euler – his results were almost always correct,
but many could only be verified rigorously in the nineteenth century. His
treatment of the ‘natural logarithm’ function is a classic example.

1. Zeno and Aristotle

Differing perceptions of the nature and role of infinity in mathematics
have pervaded the subject since the era of Ancient Greece. Aristotle insisted
that mathematicians have no need of actual infinity, but can work with the
unlimited, the potentially infinite. For example, the natural numbers may be
regarded as a potentially infinite collection, since the process of counting
them can in theory be continued indefinitely, even though, in practice, we
cannot continue counting forever (as I found out and reported in the Pro-
logue). His perceptions, although highly influential, have not always held
sway.

Early in the fifth century BCE, the philosopher Parmenides of Elea rea-
soned that nothing can ever change, because ‘nothing comes from nothing’. In
support of this view,Zeno (490-430 BCE) presented a number of famous para-
doxes. He wished to show that motion is logically impossible, and is there-
fore a sensory illusion. To do this, he presented arguments that challenge
the notion of the ‘infinite divisibility’ of space and time. His paradoxes stim-
ulated much discussion among the Pre-Socratic Greek philosophers, and
were addressed at some length by Aristotle and other later commentators.

The most famous of his examples is popularly known as Achilles and
the Tortoise, although Zeno merely asserts that in a race the quickest runner
cannot overtake the slowest if the latter has a head start.1 In the popular
version, Achilles, the mythical fastest runner in antiquity, cannot overtake a
slow tortoise: to reach the tortoise he must first pass the tortoise’s starting
point A, by which time the tortoise has moved to some point B, further on.
When Achilles reaches B the tortoise is at some point C beyond B, and so
on indefinitely. Thus, while the tortoise’s lead becomes ever smaller, after
any finite number of these stages it is still ahead. To overtake the tortoise,
Achilles would have to cover an infinite number of intervals in a finite time,
which is impossible, Zeno argued.

Aristotle struggled to refute Zeno’s reasoning conclusively. He argued
that Achilles moves in a ‘continuous’ motion, thereby implicitly conceding

1Aristotle renders the claim as follows in his Physics: In a race, the quickest runner can
never overtake the slowest, since the pursuer must first reach the point whence the pursued
started, so that the slower must always hold a lead.
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that time and space can be regarded as potentially infinitely divisible. He
says that an infinite number of intervals can be covered in a finite time, since
‘while a thing in a finite time cannot come in contact with things quantitatively
infinite, it can come in contact with things infinite in respect to divisibility, for
in this sense time itself is also infinite’. This does not explain how we might
compute the instant at which Achilles will overtake the tortoise. Today, this
can be done with an apparently (!) simple calculation.

To fix ideas, assume that the tortoise has a head start of 10 units and
moves at 1 unit per minute, while Achilles is 10 times as quick, so that he
covers each unit in 1

10 thminute. Achilles reaches the tortoise’s starting point
in 1 minute, by which time the tortoise has moved on 1 unit. Achilles covers
that unit in the next 1

10 th minute, at the end of which the tortoise is now
only 1

10 th unit ahead, which Achilles then covers in 1
10 ×

1
10 = 1

102 minutes,
and so on.

Hence the time (inminutes) it takesAchilles to catch upwith the tortoise
is given by the sum of the infinite geometric series

1 +
1

10
+

1

102
+ ...+

1

10n
+ ...

However, this is a series with infinitely many terms, so we need to un-
derstand what we mean by its sum. For any finite n we can sum the first
n terms, and consider what happens when we let n ‘grow’. But we need to
decide what this last phrase should mean.

More generally, let −1 < x < 1 and set Sn = 1 + x+ x2 + ...+ xn−1.We
call Sn the nth partial sum of the series 1 + x+ x2 + ...+ xn + ..... If we now
multiply both sides by (1− x),we find that

(1− x)Sn = (1− x)(1 + x+ x2 + ....xn−1) = 1− xn,

as the inner terms in the product cancel in pairs. This is the archetypal ex-
ample of a ‘telescoping sum’. So we have

Sn =
1− xn

1− x
=

1

1− x
− xn

1− x
.

For fixed x < 1, 1
1−x > 0 is constant, and the final term will behave like xn.

We claim that xn can be made as close to 0 as we please by taking n large
enough – a formal proof of this will be given in Chapter 7. Assuming this
for now, we see that the sequence of these partial sums (Sn)n≥1 therefore
gets ever closer to 1

1−x . This ‘limiting value’ is now taken as the sum of the
infinite series.

When x = 1
10 ,we obtain 1

1− 1
10

= 10
9 , so that Achilles catches up with the

tortoise after 10
9 minutes.

This kind of quantitative analysis was not available to Aristotle. He re-
jected the Pythagorean claim that ‘All is Number’ and argued that there
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are two types of quantities, distinguishing between discretemultiples (of the
unit) which could be represented by whole numbers (where each number
has an immediate successor), and continuousmagnitudes (where there are no
immediate successors). Multitudes could be handledwith arithmetic, while
magnitudes belonged to the domain of geometry. For Aristotle, objects like
line segments with a common endpoint touch each other and, as he puts
it, ‘the touching limits of each become one and the same’. He argues that a con-
tinuous line, a continuum, should not be seen as an aggregate of individual
‘points’. Successive division of a line segment into two equal parts produces
not points, but ever shorter line segments, which eventually become smaller
than any pre-assigned magnitude.

Aristotle insists that continuous motion ‘flows’ along the line and can-
not be described as going frompoint to point in succession. Thus points only
have potential, not actual, existence and adding them together does not pro-
duce a line segment. In his Physics he argues that division of a continuous
line into two halves makes the original midpoint into an endpoint in each
half, which destroys continuity, both of the motion and of the line. The line
can be halved repeatedly to produce an unbounded number of such succes-
sively shorter halves, not in reality but only potentially. It is a process whose
end result is never fully actualised. For Aristotle, continuity ofmotion (as yet
undefined mathematically) is the key concept.

The emphasis on describing these ideas by means a static analysis of
shapes, as in plane and solid geometry, may explain why the Ancient Greek
mathematicians had difficulty in describing motion mathematically. Aris-
totle insisted that a given velocity achieved by a moving body must ‘persist
for a time’, and rejected notions of ‘instantaneous’ change. This, together
with the distinction between the discrete and continuous, meant that Greek
mathematicians were not able to deal effectively with variable motion.

The key stimulus that would provide a solution to these problems was
the gradual development of the Calculus in the sixteenth and seventeenth
centuries – although, as will be seen next, a good deal of this was foreshad-
owed in a work of Archimedes which remained lost for nearly a millennium
and was not analysed fully until quite recently. Between 1200 and 1600,
thinkers in various parts of Europe extensively debated Aristotle’s views
when discussing variable motion as well as the nature of space and time.
The notion of the infinite divisibility of space and time gradually gained
ground. Unknown to them, many of their ideas had been foreshadowed by
Archimedes.
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Figure 25. Paraboloid of revolution and cone

2. Archimedes’ ‘Method’

A century after Aristotle, Archimedes developed tools for the calcula-
tion of areas and volumes of various curvilinear bodies (sphere, cone, cylin-
der, parabolic segment, spirals, etc.), leading to startling new numerical re-
lationships between these objects.

Two typical examples, one comparing volumes and one comparing ar-
eas, illustrate the remarkable sophistication and scope of his results:

The first is from his treatise On Conoids and Spheroids:
Theorem
The volume of a segment of a paraboloid of revolution cut off by a plane at right

angles to the axis (we might think of this as a ‘bullet’) is in the ratio 3 : 2 to
that of the cone (think ice-cream cone!) which has the same base and axis. (See
Figure 25.)

In his surviving works, probably housed first in the library of Alexan-
dria, later translated or transcribed in Baghdad and Constantinople before
reaching theWest some 1500 years after his death, Archimedes stated many
results like the above, and invariably verified the formulae he discovered
by extending the method of exhaustion, due to Eudoxus more than a cen-
tury earlier and used extensively by Euclid. This method involves using in-
scribed and circumscribed figures, most often regular polygons or circular
segments, whose properties were well understood, fitting inside and out-
side the given shape. The inscribed and circumscribed figures are then suc-
cessively modified (typically by bisecting the sides of regular polygons) in
order to approximate the desired shape ever more closely. One then con-
firms the truth of the given formula with a proof by contradiction—assume
that one side of the equation to be verified is greater than the other, then
show that, in finitely many steps, we will arrive at a claim that contradicts a
known property of the approximating figures.
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In works such as On Conoids and Spheroids Archimedes gives no indi-
cation how he arived at his results in the first place—after all, a proof by
contradiction requires him to assume that the ratio to be verified (3 : 2 in
this case) is incorrect and then to show that this leads to a contradiction.

However, in a letter entitledTheMethod ofMechanical Theorems (nowusu-
ally simply called The Method) and addressed to Eratosthenes, Archimedes
described clearly how he used his well-known law of the lever to compare in-
finitesimal slices of solid bodies to arrive at the formulae he then proceeded
to verify painstakingly, using (and extending) Eudoxus’ method of exhaus-
tion.2 The argument in the shaded paragraph below shows how he relates
the volume of the circular cone to that of the cut-off paraboloid with the
same base, as stated above.

In Figure 25, consider the segment BAC of a parabola with vertex at A and cut off
by the line BC. We compare segment BAC with the rectangle CBEF and with
the triangle ABC. Draw AD parallel to FC and EB, so that, by the symmetry of
the parabola, D is the midpoint of BC. Rotating all three plane shapes—the trian-
gle ABC, the parabolic segment and the rectangle CBEF—through a full revolu-
tion about the line AD produces a circular cone, a paraboloid of revolution (which
we called a ‘bullet’ in the statement of the theorem) and a cylinder, respectively.
The cone will have volume equal to 1

3
that of the cylinder, as was well-known in

Archimedes’ time.
Now extend DA to H so that DA = AH, and, from now on, treat A as the

fulcrum of a lever. Archimedes imagines himself ‘weighing’ infinitesimal slices of
the ‘bullet’—represented by lines in our two-dimensional figures–against slices of
the cylinder, placed where they are on DA. Choosing any point P on the parabolic
segment, he draws the line GPSM parallel to CB to meet CF in G, the parabolic
segment in P, DA in S and BE inM.

By its definitiona the parabola satisfies the proportion DA : AS = (CD)2 :
(PS)2. The line segments PS, SM , rotated about S on DA, produce circles with
radii PS and GS = CD respectively. As circles are to one another as the square on
their radii, he concludes that DA : AS is the same ratio as the area of the circle in
the cylinder is to that of the circle in the paraboloid of revolution. ButHA = DA so
the ratioHA : AS has the same property.

So the circle of radius GS in the cylinder (thought of as an infinitesimal slice),
placed where it is, will balance the circle of radius PS if the latter is placed at H.
But we may regard the weight of the whole cylinder as being placed at its centre of
gravity, which is the midpoint K of AD. Archimedes imagines placing the centres
of all the circular slices of the cylinder atK, and ‘balances’ them against the totality
of slices of the parabolic segment, all placed atH.

2The law of the lever states that on a scale with a central fulcrum and two linear arms
(like a seesaw) the scale will balance precisely when the product of the weight placed on one
side and its distance from the fulcrum equals the same product on the other side.
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In Conoids and Spheroids he had shown that equality of ratios for all the individ-
ual pieces implies equality of the sums of n such ratios taken on each side, for every
finite n. Now he asserts (without proof) that this also holds for sums of infinitely
many ratios, and applies this to the sums of his ‘slices’.

Consequently, by the law of the lever, the ratioHA : AK represents the ratio of
the cylinder and the segment of the paraboloid of revolution! SinceAK = 1

2
HA, the

volume of the parabolic segment is half that of the cylinder, and, since the cylinder
has volume three times that of the cone, the volume of the segment is 3

2
times that

of the cone, as he had claimed.
aToday we would write this as y2 = 4ax, meaning in particular that the change in the y-
direction is proportional to the square of the change in the x-direction.

Archimedes’ use of his ‘law of the lever’ shows that he treated the vol-
ume of the curved bodies he compares as proportional to their weight. He
also assumes that the total volume of his infinitely many ‘infinitely thin’
slices will equal the volume of the whole body. These techniques, while en-
tirely plausible, do not conform to the rigorous demands of Euclidean geom-
etry. This explains why Archimedes then goes on to prove by the ‘method
of exhaustion’ that the ratios he has identified using this technique are the
correct ones.

On the other hand, as a means for discovering what these ratios must
be, his informal arguments are clearly very productive. His use of sum-
ming infinitely many infinitesimal slices was well ahead of its time. It was
eventually reinvented independently some 1800 years later to produce the
integral calculus for the computation of areas and volumes.

As a second example of the fruits of Archimedes’ novel techniques we
briefly mention a result from his later work On Spirals:

The area of the first full turn of the spiral is 1
3 of the area of the circle whose

radius is the distance between the origin O of the spiral and the point P reached at
the first full turn.

(In Figure 26, the shaded area is 1
3 of the area of the circle with centre O

and radius OP.)
The Archimedean spiral is defined as the locus of a point, starting from

O, which moves uniformly along a line OA, which is itself rotating uni-
formly about O. Archimedes puts it as follows:

‘If a straight line, one extremity of which remains fixed, be made to revolve at
a uniform rate in the plane until it returns to its starting position and, if at the
same time as the straight line is revolving, a point moves at a uniform rate along the
straight line, starting from the fixed extremity, the point will describe a spiral in the
plane.’
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Figure 26. Spiral and circle

We express this using polar coordinates (see Chapter 4): r = aφ for
some a > 0,where φ is the angle at O that OAmakes with its original posi-
tion. At P in Figure 26 we have φ = 360◦. The constant a is the ratio of the
constant velocity of the linear motion of the point and the constant angular
velocity of rotation of the line. Archimedes’ quite involved constructions
will be omitted here (see [19]).

Archimedes’ use of the concept of the locus of a point involves motion,
but the velocity of the moving points and lines used explain how to trace
out complex figures (which typically cannot be drawn by rules and compass
alone), is always assumed to be constant. Mathematical descriptions of the
motion of accelerated objects, one of the key features of applied Calculus, had
to wait for Isaac Newton.

One possible reason why it took so long may be that for fully a thou-
sand years, between the tenth and twentieth centuries, Archimedes’Method
disappeared fromview, so that its contentswere not available toRenaissance
and seventeenth-centurymathematicians, whohad to reconstruct them from
scratch, with much painful effort and over an extended period.

The Method seems to have had no influence on Islamic geometry, al-
thoughmanyGreekmanuscriptswere studiedminutely by scholars in Bagh-
dad and Constantinople from the eighth century to the eleventh century. It
could have been available to them, however. In the sixth century, Isidorus of
Miletus, the architect of theHagia Sophia church in Constantinople, collected,
into a single document, letters by Archimedes previously held in the Great
Library of Alexandria. This included what we now know as The Method.
Around the middle of the tenth century an unknown scribe copied it onto
a parchment that then found its way to Jerusalem by the thirteenth century,
where the text was partially erased and overwritten by monks with Chris-
tian liturgical text and lost to science. There is no evidence that any copies of
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TheMethodwere transmitted to Europe during the Renaissance. The heavily
overwritten palimpsest was discovered in a monastery and brought back to
Constantinople around 1840, where it was catalogued.3 Around the turn
of the century it was studied in situ by the eminent Danish historian Johan
Heiberg, who confirmed Archimedes’ authorship. Amid the tumult of the
Greco-Turkish war that followed World War I, the palimpsest then disap-
peared once more. It finally resurfaced at an auction in 1998, was bought
for $2.2 million, and is now held in Walter’s Art Museum, Baltimore, USA.4

3. Infinitesimals in the calculus

Mediaeval thinkers, meanwhile, had spent a good deal of effort on the
problem of infinite divisibility of lines. For example, Thomas Bradwardine
(1295-1349), Archbishop of Canterbury, argued that the line is made up of
infinitely many indivisible segments, but distinguished these ‘atoms’ from
‘points’. He argued that the atoms were magnitudes of the same kind as the
line they produced – in line with Aristotle’s thinking. This viewpoint allows
‘infinitesimals’ only a potential existence: the continued division of the line
in arbitrarily many steps only produces ever shorter lines, not points.

Such arguments did little to resolve some of the obvious paradoxes of the
infinite that gained more attention in Europe during the Middle Ages. For
example, two concentric circles share the same lines for their radii, so the
‘atoms’ of their respective circumferences can be ‘paired off’ exactly, each
pair consisting of the two points where a given radius meets the two cir-
cumferences. Yet the circumferences of the two circles are clearly not the
same!

A paradox along similar lines is contained in the famous Dialogue con-
cerning two New Sciences (1638) by Galileo Galilei (1564-1642): among (pos-
itive) whole numbers, some are perfect squares (the ‘square numbers’ of
Chapter 1) and some are not. Therefore there should bemore positivewhole
numbers than square numbers. Yet, for each n ≥ 1, the positive whole num-
ber n can be paired uniquely with the nth perfect square n2. So the collec-
tions of positive whole numbers and the perfect squares can be ‘paired off’
exactly. Despite evidence that this example had been known for some time

3A palimpsest is a document where earlier writing has been partially erased and
overwritten.

4The later history of the Archimedes palimpsest is bizarre. During the 1920s it was ac-
quired by a French traveller in the Middle East, having fairly recently been overpainted with
gold leaf by a forger. It then spentmore than 60 years (many of them in amouldy cellar)with his
family, who, initially unaware of its significance, had sought a private buyer for several years
before putting it up for auction. After 1998, the text was studied extensively, translated and
finally published by Cambridge University Press in 2011 as The Archimedes Palimpest, (2 vols.).
Reviel Netz, one of the authors, claims (perhapswith a degree of hyperbole) that the palimpsest
reveals that the work of the Western scientific revolution since the seventeenth century is, in
essence, simply ’a series of footnotes to Archimedes’.
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beforeGalileo, his fame ensured that this observation becamewidely known
as Galileo’s Paradox. It was variously discussed until the late nineteenth cen-
tury.

Examples like these led to an early realisation that there are difficulties
in handling infinite aggregates arithmetically. Nevertheless, notions about
the usefulness of the infinitely small and infinitely large in mathematics in-
creasingly found adherents, especially in connection with theological spec-
ulations and a renewed interest in Plato’s philosophy, which theologians
such as St. Augustine of Hippo (354-430) had earlier sought to reconcile with
biblical dogma.

3.1. The Principle of Continuity. Nicholas of Cusa (1401-1461), born as
Nikolaus Krebs in what is now Berncastel-Kues on the Moselle, became ar-
guably the most influential German theologian and philosopher of the fif-
teenth century, serving as papal legate to Germany for much of his later ca-
reer. He illustrated his notion of the ‘coincidence of opposites’, which he sees in
the relationship between betweenGod andMan, with variousmathematical
metaphors, arguing that:

(i) by continuously increasing the number of sides of a polygon, we will
eventually reach a circle,

(ii) by increasing the radius of a circle indefinitely, the tangent at a point
becomes identical with the circumference,

(iii) although the centre and circumference of a circle are opposites, by
shrinking the radius until it is infinitesimal, these opposites coincide.

In this way he sought to reconcile the apparent contradiction of the
finiteness of our world and the infinite being of God: the diversity andmul-
tiplicity of our finite existence become one in the realm of God, who both
transcends and resides in every part of the universe.

His cosmology, based on these precepts, was remarkably prescient, al-
though not based on any direct evidence. He believed that the universe has
no ‘centre’ (rejecting prevalent geocentric doctrineswell before Copernicus):
for him, the universe and its centre are the same.5 Nor is the Earth at rest: ‘It
is impossible for the world machine to have this sensible earth, air, fire, or anything
else for a fixed and immovable centre. For in motion there is simply no minimum,
such as a fixed centre.... And although the world is not Infinite, it cannot be con-
ceived of as finite, since it lacks boundaries within which it is enclosed. ... Therefore,

5In De Docta ignorantia he writes: Life, as it exists on Earth in the form of men, animals and
plants, is to be found, let us suppose in a high form, in the solar and stellar regions. Rather than think that
so many stars and parts of the heavens are uninhabited and that this earth of ours alone is peopled – and
that with beings perhaps of an inferior type – we will suppose that in every region there are inhabitants,
differing in nature by rank and all owing their origin to God, who is the centre and circumference of all
stellar regions
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just as the earth is not the centre of the world, so the sphere of fixed stars is not its
circumference’.

Nicholas’ thinking influenced the work of major mathematical figures
such as Kepler, Leibniz and Euler, over the next three centuries. Johannes
Kepler (1571-1630), for example, imagined the sphere of radius r as made up
of an infinite number of infinitely thin cones with their vertices at the centre
of the sphere, and bases on the surface of the sphere. He took their bases to
be small enough to allow him to assume that the flat base of the cone and
the surface area of the correponding part of the sphere are the same. He
then calculated the volume of the sphere to be 4

3πr
3. For this, he applied

two facts well-known since Ancient Greece: the volume of each cone is 1
3

of the product of its base and its height r, while the sum of the (infinitely
many!) bases is the surface area of the sphere, which the Greeks had shown
to be 4πr2.

Similarly, the Italian mathematician Bonaventura Cavalieri calculated
the areas of various curved bodies by imagining their areas asmade up of an
infinite number of line segments (regarded alternatively, as ‘infinitely thin’
slices, to ensure that each had the same dimension as the total figure, as
Aristotle had demanded) and summing this infinite collection to find the
desired area.

3.2. Leibniz. In the 1670s, Gottfried Wilhelm Leibniz (1646-1716) formu-
lated his version of the ideas initiated by Nicholas of Cusa as a formal Prin-
ciple of Continuity. One may regard it essentially as an operational maxim:
‘whatever succeeds for the finite, also succeeds for the infinite’ – although,
in terms of his mathematical ideas, he may well be referring to the infinitely
small rather than the infinitely large! Expressing his principlemore formally,
he writes in 1701:

‘In any supposed continuous transition, ending in any terminus, it is permis-
sible to institute a general reasoning, in which the final terminus may also be in-
cluded’.

Leibniz used this principle to justify his extensive use of infinitesimal
quantities, which he employed to compute curvilinear areas (see Figure 28).
This enabled him to turnCavalieri’s ‘method of indivisibles’ into a technique
for finding the areas under various types of (‘smooth’ enough) curves.

Crucially, he realised early on in his studies that finding the area under
a curve (integration) and determining the tangent to the curve (differentiation)
were opposites, or inverse operations. A series of manuscripts in which he
noted down his developing insights in late 1675 suggests how this came
about.6

6This very brief summary draws on the essay Newton, Leibniz and the Leibnizian Tradition
by Henk Bos, in [17].
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Figure 27. Gottfried Wilhelm Leibniz by C.B. Francke, (d. 1729).7

The origin of his discovery lay in the simple relationship between a se-
quence of numbers (ai)i≥1 and the sequence (bj)j≥1 of their successive dif-
ferences, bj = aj−aj+1. In Paris three years earlier, while being guided into
mathematical study by the Dutch mathematician, physicist and astronomer
Christiaan Huygens (1629-1695), Leibniz had already noted that a difference
sequence is easily summed, since it becomes what is now called a telescop-
ing sum. Since for each j adding pairs of successive terms produces cancel-
lations, i.e.

bj−1 + bj = (aj−1 − aj) + (aj − aj+1) = aj−1 − aj+1

it follows that for any n ≥ 1 we have b1 + b2 + ...+ bn = a1 − an+1.

He had applied this when Huygens asked him to sum the reciprocals
of triangular numbers 1, 3, 6, 10, 15, 21, ... Since a triangular number takes
the form 1

2k(k + 1), its reciprocal is 2
k(k+1) = 2

k −
2
k+1 . Taking ak = 1

k , he
obtained bk = 2

k(k+1) . The partial sum b1 + b2 + ... + bn of the first n terms
of the series

1

1
+

1

3
+

1

6
+

1

10
+

1

15
+ ...

became a1 − an+1 = 2 − 2
n+1 . As 2

n+1 becomes infinitesimal for infinite n,
Leibniz concluded that the sum of b1 + b2 + ...+ bn + ...was 2.

Leibniz studied this and other examples in detail, coming to the realisa-
tion that the operations of forming difference sequences and sum sequences
are in effectmutual inverses – each undoes the other. He applied this insight
to geometric curves in the plane. Leibniz perceived a curve in the (x, y)-
plane as depicting the values taken by a variable quantity ywhose changes in
value depend on changes in the value of the variable x. He considered the
slope of the tangent to the curve (a straight line touching, but not crossing,

7https://commons.wikimedia.org/wiki/File:Christoph_Bernhard_Francke.jpg

https://commons.wikimedia.org/wiki/File:Christoph_Bernhard_Francke.jpg
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Figure 28. Leibniz’ calculus

the curve) at various points in the (x, y)-plane. He treated this slope as the
ratio of infinitesimal increments dy and dx in y and x respectively. In Figure 28,
he then takes each increment in x as the infinitesimal ‘unit’, dxi = xi+1 − xi
(denoted here by 1), so that the tangent at the point (xi, yi) becomes the
difference dyi = (yi+1 − yi) of two successive ordinates.

The area under the curve, on the other hand, is taken as the sum of the
areas of infinitely thin rectangles, with base vertices xi and xi+1 on the x-
axis and height given by the ordinate yi. Since the base of each rectangle is
infinitesimal, he assumes that the heights along the top edge of each small
rectangle remain infinitely close to the corresponding part of the graph of
the curve. The base of each rectangle is one infinitesimal unit, so the area
under the curve becomes the sum of the ordinates: yi + y2 + ...+ yn,where
n is infinite.

Difference sequences and sum sequences are opposites. For Leibniz this
illustrates the inverse relationship, for a given curve (denoted here by a func-
tion f ), between differentiation, in which we find the values of its tangent
curve (denoted by f ′) at various points, and integration, where we seek to
express f in terms of the area under the graph of its tangent curve f ′. The
inverse relationship between these two basic operations became known as
the Fundamental Theorem of the Calculus.

Leibniz’ results represented a major step forward in the use of the new-
found algebraic symbolism to describe properties of curves and move be-
yond the confines of Greek geometry in the study of accelerated motion.
However, his methodology led to serious foundational questions about the
existence of the objects being studied, since it was by no means clear how
the infinitesimal quantities could serve as fundamental building blocks on
which a rigorous logical foundation of the Calculus, in the pattern of Eu-
clid’s Elements, could ultimately be based.
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Figure 29. Sir Isaac Newton by J. Faber junior, 1726.8

He was fully aware that the use of infinitesimal quantities needed to be
justified. He had no proof of the existence of such entities, but regarded
them as ‘ideal quantities’, to be used in a formal framework for calculation.
Using his Principle of Continuity, he asserted that these fictional ‘ideal’ num-
bers were governed by the same laws as ‘ordinary‘ numbers, by which he
meant rational or irrational numbers, the existence of the latter being justi-
fied by an appeal to the geometric number line.

At the same time, he and his followers made the infinitesimal increment
dx (called the differential) the basis of their calculations. They claimed that
two quantities could be treated as the same if their difference was infini-
tesimal (smaller than any given positive quantity). The instantaneous rate of
change in y at the point (x, y), which yields the slope of the tangent at the
point, was then assumed to be given by the ratio dy

dx of two infinitesimals.
The logical inconsistency of these claims was obvious – infinitesimals

could not simultaneously by treated as zero and as non-zero quantities.
Nevertheless, judicious and selective use of techniques for calculation based
on the above premises provided an operational foundation for a highly suc-
cessful Calculus with wide-ranging applications, which produced convinc-
ing answers to outstanding problems in mathematics and physics.

8https://commons.wikimedia.org/wiki/File:Sir_Isaac_Newton._Mezzotint_by_J._Faber,_junior,_1726,
_after_Wellcome_V0004265.jpg

https://commons.wikimedia.org/wiki/File:Sir_Isaac_Newton._Mezzotint_by_J._Faber,_junior,_1726,_after_Wellcome_V0004265.jpg
https://commons.wikimedia.org/wiki/File:Sir_Isaac_Newton._Mezzotint_by_J._Faber,_junior,_1726,_after_Wellcome_V0004265.jpg
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3.3. Newton. Isaac Newton (1642-1727), whose development of the Cal-
culus (but little of its publication) predates that of Leibniz by a decade or so,
was more cautious in his description of infinitesimals.

To justify calculations that included infinitesimals he therefore relied
primarily on his physical intuition and on ‘motion’. He discussed the dis-
tance covered by amoving ‘particle’ tracing out a curve over an infinitesimal
time period. He described the ’flow’, i.e. the change in position, of a variable
x (the fluent) over an infinitesimal ‘instant’ o by means of its velocity or flux-
ion, ẋ. The change in position is then provided by the product ẋo. Similarly,
for a variable y, whose values depend on those of x, the change in position
is ẏo. For example, if y = x2, this yields

ẏo = (x+ ẋo)2 − x2 = 2xẋo+ (ẋo)2.

The relative velocity is the ratio of the two changes in position,
ẏo

ẋo
= 2x+ ẋo.

Now Newton argues that o is infinitesimal, so the final term can be ne-
glected, and the ratio of the two fluxions is therefore given by 2x. For each x
in the abscissa (the x-axis), this ratio is then interpreted as the tangent to the
curve y = x2 at the point x, and measures the curve’s instantaneous rate of
change at this point. He uses this approach to analyse awide range of curves.
Clearly, unless the curve is a straight line, the slope of the tangent will vary
as x varies.

Similarly, Newton computed the fluxion of y = x3 by considering

ẏo = (x+ ẋo)3 − x3 = 3x2ẋo) + 3x(ẋo)2 + (ẋo)3,

so that the ratio in the changes of position becomes
ẏo

ẋo
= 3x2 + 3x(ẋo) + (ẋo)2,

which he equates with 3x2 as the last two terms again ‘vanish’.
To handle general integral powers y = xn, Newton used the binomial

theorem, which (as above for n = 2, 3) expresses (a + b)n as a finite sum of
terms in akbn−k for k = 0, 1, 2, ...n. The binomial coefficient of akbn−k takes the

form
(
n

k

)
= n(n−1)...(n−k+1)

k! ,where the denominator (k factorial) is given by

the product k! = 1 × 2× 3× ...× k. These coefficients can be read off from
the rows of the famous ‘triangle’ of Blaise Pascal (1623-1662) shown in Figure
30, where each term is the sum of the two diagonally above it.

Newton applied the binomial theorem to find the fluxions of y = xn just
as in the exampleswe computed above, neglecting all terms that still include
o after division by ẋo. This ensures that the ratio of the fluxions (the relative
rate of change in position) is ẏ

ẋ = nxn−1. This represents the instantaneous
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Figure 30. Pascal’s Triangle

rate of change in the variable y = xn as x varies. Newton assumed (without
proof) that the fluxion of the polynomial y = anx

n+an−1x
n−1+...+a1x+a0

can then be found term-by-term.
The method of fluxions was of critical importance in Newton’s physics,

where, for a moving body, velocity (the rate of change in position) and ac-
celeration (the rate of change in velocity) are calculated as fluxions, so that
acceleration is the second-order fluxion of position (or distance travelled).9
Newton’s second law F = ma (force equals mass times acceleration) makes
use of a as the second fluxion of position. Similarly one may repeat the pro-
cess to seek the kth fluxion for any whole number k. In modern terminology
this is called the kth derivative, written by Leibniz as dky

dxk
.

Finding the fluxion enabled Newton to compare the differences in po-
sition (the increments) of the x and y variables (hence differentiation). Going
in the opposite direction turned out to be the same as Leibniz’ summation,
i.e. integration. This required Newton to find the fluent y when its fluxion
is known. He was clearly aware of the inverse relationship between these
two processes. He explained this by example in his De Analysi (written in
1669 but not published until 1711).10 In his example he assumed the area un-
der a certain unknown curve, taken from the origin up to some unspecified
value x0, to be given as 2

3x
3
2
0 . He then reversed his perspective: consider-

ing z = 2
3x

3
2 as the fluent, he showed that its fluxion is y = x

1
2 , and that

this is the curve for which the area under the graph was given as 2
3x

3
2
0 . This

demonstrated by example now the two operations may be seen as inverses
of each other (see Figure 31).

9Velocity is the fluxion (rate of change) of distance, while acceleration is the fluxion of
velocity, so that acceleration is the second-order fluxion of distance.

10His method of fluxions was expounded in some detail in his Latin treatise Methodus
fluxionem et serium infiniorum, written in 1671. This important, but technically difficult, work
did not find a publisher in Newton’s lifetime, and first appeared in print in 1736 (in an English
translation) and then in 1744 (retranslated) in Latin.
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Figure 31. Newton’s calculus

Newton extended his rules for finding fluxions to curves given by frac-
tional powers of x, such as x 3

2 . He showed, more generally, that the area
under the graph of y = x

m
n is given by

z = (
m

m+ n
)x

m+n
n .

This was, in itself, a remarkable extension of the known results involving
fluxions at that time. To achieve this, Newton extended the binomial theo-
rem to fractional powers. This meant that (a + b)

m
n could be expanded as an

infinite series (a series with infinitely many terms), whose nth term took the
form anx

n, where Newton found each constant coefficient an by interpola-
tion and analogy, rather than by a formal proof.11

Examples like this led him to assert confidently in his 1669 treatise De
Analysi:

Andwhatever common analysis performs by equations made up of a finite num-
ber of terms (whenever it may be possible), this method may always perform by infi-
nite equations: in consequence, I have never hesitated to bestow on it also the name
of analysis.

Newton employed series expansions of functions to great effect, enabling
him to build extensive tables of fluxions (what we call derivatives) derived
from given fluents. Conversely, he obtained the fluents from given fluxions
(our integrals or antiderivatives), for a wide range of curves, always work-
ing term by term from the series expansion. His success encouraged others
to work with series containing infinitely many terms containing increasing
powers of x, in the same way as they had done with polynomials. They felt
that the ‘power series’ so obtained could now safely be regarded as obeying
the same algebraic laws as polynomials and provided an alternative repre-
sentation of a host of different curves. Wallis (whose interpolation methods
Newton had used extensively) expressed this conviction most clearly in his

11More details, including a proof of the binomial theorem, can be found in MM.
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Algebra, arguing that infinite series ‘intimate the designation of some particular
quantity by a regular Progression or rank of quantities, continually approaching to
it; and which, if infinitely continued, must be equal to it’.

Concerns over the validity of the methods employed in the Calculus
took some time to emerge, perhaps obscured by the evident success of New-
ton’s and Leibniz’ results in solving outstanding problems. A more imme-
diate question concerned the meaning of infinitesimals in the conceptual
frameworks that Cavalieri, Leibniz and Newton had employed. Some of
these concerns will be outlined in Section 4.

Insistence on motion remains present in many of Newton’s mathemati-
cal writings, and he uses it in his attempt to justify his fluxional calculus. He
argues that mathematical quantities are not to be seen as ‘composed of Parts
extreamly small, but as generated by a continual motion’.

In his famous Principia Mathematica (1687) he states: ‘Quantities, and the
ratios of quantities, which in any finite time converge continually to equality, and
before the end of time approach nearer to each other than by any given difference
D, become ultimately equal.’ (This is, in effect, his version of the Principle of
Continuity.)

Finally, in Tractatus de quadratura curvarum (1693) he argues that ‘fluxions
are very nearly the Augments of the Fluents, generated in equal, but infinitely small
parts of Time, and to speak exactly, are in the Prime Ratio of the nascent Aug-
ments.....‘Tis the same thing if the Fluxions be taken in the Ultimate Ratio of
the Evanescent Parts’.

However, recourse to infinitely divisible time, rather than space, does
not offer a way out of the dilemma. Newton’s calculations clearly violate
another key principle that he had stated as: ’...Errours, tho’ never so small,
are not to be neglected in Mathematicks’. His instant o cannot be used when
dividing the ‘instantaneous’ change in y by the corresponding change in x
and then be ‘neglected’ in the same breath!

3.4. Euler and the natural logarithm. Nevertheless, development of
themethods of the Calculus and itsmany applications led to an increasingly
sophisticated quantitative analysis of all forms of dynamics throughout the
eighteenth century, withmost practitioners paying scant attention to the un-
derlying inconsistencies in its mathematical foundations. The prolific and
highly influential Swiss mathematician Leonhard Euler (1707-1783), writing
in the 1740s, made clear that he regarded the use of infinitesimals as the ba-
sic tool in handling differentiation, describing it as ‘a method for determining
the ratios of the vanishing increments that any functions take on when the variable,
of which they are functions, is given a vanishing increment’.12

12Euler had severe problems with his eyesight from at least 1738, and became completely
blind in the 1760s. Despite this handicap, he produced over 800 books and articles, ranging over
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An important innovation in his writings was that the concept of func-
tion (usually given by a formula) replaced that of a curve as the basis of
his analysis – thereby moving it away from visual representations while
greatly widening its scope. In his ground-breaking 1748 treatise Introduc-
tio in analysin infinitorum (Introduction to analysis of the infinite) Euler says:
‘A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities.’ Although
this definitionwas latermodified, it marked a significant shift away from re-
liance on curves and geometric representation.13

In his Introductio he displayed great (and only occasionally unfounded)
confidence in dealing with equations with infinitely many terms, and with
power series in particular. He also used infinitesimals, as well as their re-
ciprocals, infinite ‘numbers’, freely. His genius lay in (usually) arriving at
correct results, even though the methods he used often could not be justi-
fied rigorously.

In particular, Euler set out to give definitions of key classes of func-
tion, such as polynomials, exponentials (which for him were ‘simply pow-
ers whose exponents are variable’) and logarithms (which were the ‘inverse of
these’). His derivation of the natural logarithm provides a good case study in
mid-eighteenth century Calculus.

John Napier, when developing his logarithmic tables (see Chapter 3),
had correctly appreciated the usefulness of using a geometric progression
with common ratio sn+1

sn
very close to 1, but unfortunately insisted on using

a decreasing sequence, as hewished to keep his ‘whole sine’ sufficiently large.
The proof that, as n grows ever larger, the numbers sn = (1 + 1

n )n will
in fact settle down to a definite value (lying between 2 and 3) is credited
to Jacob Bernoulli, who had been investigating growth rates of investments
accruing at compound interest rates, with compounding happening at ever
shorter time intervals. At that stage, however, no-one had yet associated the
limiting value with logarithms.

It was Euler who first considered the elusive ‘limit’ e of the increasing
sequence (sn)n≥1 with sn = (1+ 1

n )n as the base of a systemof logarithms. In
Chapter 6 of his Introductio, Euler discussed exponents and logarithms and
also applied his results to problems such as population growth rates and
the amortisation period of a loan attracting periodic compound interest.

In Chapter 7 he considered logarithms relative to a general base a > 1,
and noted that, if ω is an ‘infinitely small quantity’, he can write aω = 1 +ψ,
where ψ is also infinitely small. He assumed that his choices would allow

almost all the areas of mathematics of his time, and introducing several new areas of research.
In his later years, his writings were dictated to his sons.

13The development of the modern concept of function is outlined inMM.
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Figure 32. Leonhard Euler by J.F.A. Darbes, 1778.14

him to write ψ = kω for some finite k, so that aω = 1 + kω, hence

ω = loga(1 + kω).

Taking an ‘infinite number’ j, he then expressed aωj = (aω)j = (1 + kω)j as
a power series.

To do this, Euler applied the binomial theorem directly to the sum of 1 and the in-
finitely small number kω, as well as using the infinite power j, writing

(1 + kω)j = 1 +
j

1!
kω +

j(j − 1)

2!
k2ω2 +

j(j − 1)(j − 2)

3!
k3ω3 + ...

Next, he again supposed that j = z
ω
for some finite z, so that z = ωj and ω = z

j
.

Since az = (aw)j = (1 + kω)j , the series expansion now read

az = 1 +
1

1!
kz +

j(j − 1)

2!
k2(

z

j
)2 +

j(j − 1)(j − 2)

3!
k3(

z

j
)3 + ...

= 1 +
1

1!
kz + (

j − 1

j
)
1

2!
k2z2 + (

(j − 1)(j − 2)

j2
)
1

3!
k3z3 + ...

But since j is infinite, he argued that the ratios j−1
j
, (j−1)(j−2)

j2
, etc., would all cancel

(!!), leaving him with the expansion

az = 1 +
kz

1!
+
k2z2

2!
+
k3z3

3!
+ ...

with all three of a, z, k as finite numbers.

14https://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Darbes.jpg

https://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Darbes.jpg
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The simplest case was k = 1. Euler now reserved the symbol e for the
value of a in that case, deriving a formula that has become a staple of mod-
ern mathematics:

ez = 1 +
z

1!
+
z2

2!
+
z3

3!
+ ....

Having taken k = 1, the relation aωj = (1 + kω)j that he started with now
read ez = (1 + ω)j = (1 + z

j )j for this ‘infinite’ value of j. Taking z = 1, he
treated (1 + 1

j )j as the limiting value of the sequence sn = (1 + 1
n )n when n

grows indefinitely. He had therefore found the limiting value (as n grows)
of the sn to be the number

e = 1 +
1

1!
+

1

2!
+

1

3!
+ ....

Euler proved that e is irrational. He calculated its decimal expansion to
23 decimal places, and proceded to use e as the base for what we now call
natural logarithms.15 When x = ey,we write y = loge x.

In order to approximate the natural logarithm of a given positive num-
ber x, Euler used calculations similar to the above (again using infinites-
imal and infinite numbers freely) to derive infinite series expansions for
loge(1 + x) and loge(1 − x), arriving at the following series, from whose
partial sums such logarithmic tables could be established:

loge(
1 + x

1− x
) = 2(x+

x3

3
+
x5

5
+ ...+

x2n−1

2n− 1
+ ...)

He was not yet done. Leibniz and Johann Bernoulli had expressed con-
flicting views on the nature of loge(−x) and their discussion led Euler to con-
sider how to extend the logarithmic function to negative numbers. Bernoulli
had argued that loge(−x) should equal loge(x), since both yield the deriv-
ative 1

x ; while Leibniz argued that the rule d
dx (loge x) = 1

x assumed that
x > 0. Euler pointed out that two functions that differ by a constant have
equal derivatives, so that one cannot conclude that the functions themselves
will be equal if their derivatives are equal.

By definition of the logarithm, loge(−x) = loge((−1) × x) = loge(x) +
loge(−1), as Euler pointed out. To determine the value of the final term on
the right, he would use the familiar de Moivre formulae, which, in his hands,
became a fundamental tool in complex analysis.16 Writing i for the ‘imag-
inary unit’

√
−1 (this became the standard notation) he knew that, for any

15The reason for calling logarithms to this base natural relates to its definition, which can
be given (as above) as the inverse of the exponential function, or as the integral of the function
g(x) = 1

x
. The exponential function f(x) = ex has the unique property that it equals its

derivative: f ′(x) = ex, so that, at any point x, its instanteous rate of growth is equal to its value.
This concept (and its generalisations) has many applications to models of population growth,
continuous compounding, etc. See [6], and seeMM for a proof that the number e is irrational.

16SeeMM for the derivation of these formulae.
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n ≥ 1,
cos(nθ)+ i sin(nθ) = (cos θ+ i sin θ)n, cos(nθ)− i sin(nθ) = (cos θ− i sin θ)n.

Adding provides the identity cos(nθ) = (cos θ+i sin θ)n+(cos θ−i sin θ)n

2 , and, set-
ting x = nθ and taking n ‘infinite’ (so that θ = x

n is infinitesimal), Euler
deduced that cos( xn ) = 1 and sin( xn ) = x

n . Substituting this into the above he
obtained,

cosx =
(1 + i xn )n + (1− i xn )n

2
=
eix + e−ix

2
,

where the final identity follows because, when n is infinite and z finite, we
have ez = (1 + z

n )n as noted above, and can apply this to the finite (imagi-
nary) quantity z = ix. An exactly analogous argument with i sin(nθ) shows
that i sinx = eix−e−ix

2 , so that he derived what we now call Euler’s identity:

eix = cosx+ i sinx.

He had shown that complex exponentials could, as he put it, ‘be expressed by
real sines and cosines’.

A celebrated identity arises when we take x = π : we have eiπ = −1, i.e.

eiπ + 1 = 0.

This, it is somtimes argued, links the five ‘most important’ numbers inmath-
ematics: 0, 1, e, π and i. It may also have served to persuade many observers
that the ‘mysterious’ square root of−1 needed to be understood more fully.

Finally, taking the natural logarithm on both sides of the identity eiπ =
−1,Euler noted that loge(−1) = iπ.Thus the logarithmof a negative number
is purely imaginary. Euler went on to deduce (correctly), that the logarithm
of a complex number is not single-valued, but has infinitely many branches –
but we will leave the matter there.

4. Critique of the calculus

In Britain, serious questions about the foundations of the Calculus were
raised publicly soon after Newton’s death in 1727, in a way that could not
easily be ignored. The fundamental inconsistency of early Calculus tech-
niques was seized upon by the philosopher and cleric George Berkeley (1685-
1753), Bishop ofCloyne in Ireland. Berkeley’s explicit purposewas to defend
religious faith against assertions by the Astronomer Royal Edmund Halley
and others (although not Newton himself) that scientific and mathematical
progress had rendered faith in scriptural revelation redundant.17 In his 1734
tract The Analyst (whose subtitle begins: ADISCOURSE addressed to an infidel
MATHEMATICIAN...) Berkeley examines whether the new Calculus really
was as soundly based as had been claimed; or as he put it:

17Halley had mocked the earlier tract Alciphron by Berkeley; it is also claimed that Halley
had persuaded a friend of Berkeley’s to renounce religion on his deathbed.
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Whether such mathematicians as cry out against mysteries have ever examined
their own principles?

(The Analyst, Question 63)
Berkeley argued, correctly, that the Calculus of Newton and Leibniz

rested on the use of infinitely small quantitieswhose existencewas unproven
and logically dubious. He pointed out that such infinitesimals were treated
as actual (non-zero) quantities in calculations, yet were later declared to be
negligible. Fastening on Newton’s notion of ultimate ratios, he asked mem-
orably:

"And what are these Fluxions? The Velocities of evanescent Increments? And
what are these same evanescent Increments? They are neither finite Quantities nor
Quantities infinitely small, nor yet nothing. May we not call them the ghosts of
departed quantities?"

His critique, arguing that mathematicians are as reliant on faith as the-
ologians, and worked by ‘submitting to authority, taking things on trust’, hit
home in British mathematical circles, and provided motivation for various
attempts by prominent mathematicians to improve the foundations of the
Calculus.18 Of these responses perhaps the most complete was Treatise on
fluxions (1742) by the Scottish mathematician Colin Maclaurin (1698-1746), a
major two-volume work which set the Calculus in a geometric framework
and further developed the theory of power series, but did not really rebut
Berkeley’s critique.

Nonetheless, as we have seen, and just as proved to be the case with
the discovery of incommensurables like

√
2 more than two millennia ear-

lier, a lack of proper foundations for their new methods of analysis in no
way delayed most mathematicians (especially on the Continent) in their de-
velopment of the Calculus and its many applications in the natural sciences
throughout the seventeenth and eighteenth centuries.

It continued to cause concern to philosophers, however, and even trou-
bled the eminent empiricistDavidHume (1711-1776). On the one hand,Hume
famously ends his Enquiry into Human Understanding [22] with a clarion call
to his readers:

If we take in our hand any volume; of divinity or school metaphysics, for in-
stance; let us ask; Does it contain any abstract reasoning concerning quan-
tity or number? No. Does it contain any experimental reasoning concerning
matter of fact and existence? No. Commit it then to the flames; for it can contain
nothing but sophistry and illusion.

However, despite his high regard for mathematical reasoning, just a
few pages earlier in the same volume Hume expresses with great clarity

18Berkeley also questioned whether irrationals, such as the diagonal of the unit square,
should be treated as numbers. This aroused rather less concern at the time.
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his acute anxiety over the meaning of an apparent hierarchy of infinitely
divisible quantities:

The chief objection against all abstract reasonings is derived from the ideas of
space and time; ideas, which, in common life and to a careless view, are very clear
and intelligible, but when they pass through the scrutiny of the profound sciences
(and they are the chief object of these sciences) afford principles, which seem full
of absurdity and contradiction. No priestly dogmas, invented on purpose to tame
and subdue the rebellious reason of mankind, ever shocked common sense more than
the doctrine of the infinite divisibility of extension, with its consequences; as they
are pompously displayed by all geometricians and metaphysicians, with a kind of
triumph and exultation. A real quantity, infinitely less than any finite quantity,
containing quantities infinitely less than itself, and so on in infinitum; this is an
edifice so bold and prodigious, that it is too weighty for any pretended demonstra-
tion to support, because it shocks the clearest and most natural principles of human
reason.

Hume’s particular example, which, as he points out, relies only on ‘the
clearest and most natural’ chain of reasoning (properties of circles and trian-
gles), is the notion of the angle of contact, or horn angle, between a straight
line and a curve (such as that between the circumference of a circle and its
tangent). This angle is shown to be ‘infinitely less than any rectilineal angle’
and can be made ever smaller simply by increasing the diameter of the cir-
cle. While the proof of this claim seems ‘as unexceptionable as that which proves
the three angles of a triangle to be equal to two right angles’, it palpably offends
common sense, in his view. Hume could equally well have said the same
about perceptions that the number line can contain similarly incomparable
quantities.



CHAPTER 6

From Calculus to Analysis

The understanding must not therefore be supplied with wings, but rather hung with
weights, to keep it from leaping and flying. Now this has never yet been done; when
it is done, we may entertain better hopes of science.

Sir Francis Bacon Novum Organum, 1620

Summary

Early in the nineteenth century attention turned decisively to the urgent
need to underpin the highly successful techniques of the Calculus with a
logically consistent conceptual framework. Most historians agree that the
prolific French mathematician Augustin-Louis Cauchy (1789-1857) was a key
figure in this development. Cauchy used the limiting value of a variable
quantity as the cornerstone of his theory. This led him to a more rigorous
analysis of the operations of the Calculus, even though his celebrated text
Cours d’Analyse continued to employ infinitesimals as ‘indispensible’ tools.

Cauchy’s definitions set the scene for putting the theorems of Calculus
on a sounder footing. His formulations were eventually superseded: much
of what we now call real analysis stems from the pioneering work of the in-
fluential Karl Weierstrass (1815-1897), further elaborated by his pupils and
contemporaries in Prussia. This work was only completed definitively be-
tween 1850 and 1870.

In this chapter our focus is on the ideas introduced by Cauchy that, to-
gether with the work of his successors, would highlight the need for a new
definition of the underlying number system.

1. D’Alembert and Lagrange

Bishop Berkeley’s critique of the Calculus, while influential in drawing
responses from Newton’s followers, seems to have had less traction with
Continental mathematicians such as Euler and the Bernoullis, whose con-
ceptions and use of infinitesimals also attracted critical comment, notably

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.06
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from the Dutch philosopher Bernard Nieuwentijt (1654-1718). As the eigh-
teenth century drew to a close, however, the task of reconciling the un-
doubted success of infinitesimal techniques in the Calculus with their log-
ical ambiguity and lack of clear definition was increasingly recognised, al-
though a convincing resolution of the issues involved would take consider-
able time.

In contrast to Euler’s confident use of the infinitely small (and large),
his near contemporary Jean le Rond d’Alembert (1717-1783) argued, implicitly
following Newton, that defining the derivative dy

dx as the limit of the ratios
of two quantities was the ‘neatest and most precise’ definition of this concept.
D’Alembert’s definition appeared in the influential Encyclopédie ou Diction-
naire Raisonneé des Sciences, des Artes et des Métiers (9th edition, 1765) which
he co-edited with Diderot.

His definition of the concept of limit was close to Newton’s:
One magnitude is said to be the limit of another magnitude when the second

may approach the first within any given magnitude, however small, though the sec-
ond magnitude may never exceed the magnitude it approaches.1

Since he insisted on the limit being approached from below, this formu-
lation was less complete than the definition of limits used today. Although
D’Alembert does not make it clear, the implication is that the secondmagni-
tude is variable, taking on values thatwill eventually become arbitrarily close
to the fixed value of the first magnitude. There is then no need to insist, as
he does, that none of these values are larger than the limit.

He continued:
Strictly speaking, the limit never coincides [with], or never becomes equal to,

the quantity of which it is the limit; but the latter approaches it more and more and
can differ from it as little as one wishes.

Even though his formulation does not quantify clearly what ‘can differ
from it as little as one wishes’ means, his statement may be an attempt to
defuse criticisms such as Berkeley’s ‘ghosts’ comment, by arguing that no
division by zero actually takes place in the Calculus. In an article on the
differential he was even stronger in his rejection of infinitesimals:

the differential calculus does not necessarily assume the existence of these quan-
tities...We shall say that there are no infinitely small quantities in the differential
calculus.

D’Alembert’s comments were premature in one important respect: the
details of operating consistently with limits had yet to be worked out. This

1Note the use of magnitude throughout this comment, which suggests that d’Alembert
considers the quantities as varying continuously, in line with Aristotle’s distinction between
continuous (geometrical) ‘magnitudes’ (as used in Greek ‘method of exhaustion’ proofs) and
discrete (arithmetical) ‘multitudes’.
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meant that he did not provide a workable definition of limit on which to
build the edifice of the Calculus. It is in this sense that his comments may
be regarded as articulating a future research programme rather than a fully
worked out method of justifying the operations of the Calculus.

From 1787 until his death, Joseph-Louis Lagrange (1736-1813) was one of
themajor figures in the vibrantmathematical scene that had developed, cen-
tered on the Academie Francaise, in Paris during the eighteenth century. La-
grangewas born in Turin, but changed his Italian name (Giuseppe Lodovico
Lagrangia) after an early career in Turin, followed by 20 years in Berlin. He
became a member of the Academie, where his influential Mecanique Analy-
tique (written while in Berlin) was published the following year. Notable for
its treatment of differential equations, this summarised all the work done
on mechanics since Newton, transforming it into a treatise on mathematical
analysis, with the emphatic statement:

‘One will not find figures in this work. The methods that I expound require
neither constructions, nor geometrical or mechanical arguments, but only algebraic
operations, subject to a regular and uniform course’.

Appointed as the first professor in analysis at the new École Polytech-
nique in 1794, he published Theorie des fonctions analytiques in 1797, making
his objective an exposition of

‘... the principles of the differential calculus, freed from all consideration of the
infinitely small or vanishing quantities, of limits or fluxions, and reduced to the
algebraic analysis of finite quantities’,

since, in his view,
‘...the ordinary operations of algebra suffice to resolve problems in the theory of

curves’.
In contrast to d’Alembert’s comments, Lagrange’s formulations did not

include any concept of limit. Moreover, he was critical of earlier attempts
using infinitesimals and geometric intuition as the basis of the theory. He
sought, instead, to base the Calculus on purely algebraic concepts. In a pa-
per in 1772 he had attempted to define the derivative (Newton’s fluxion) in
terms of (infinite) Taylor series,whose first k+1 terms constitute the kth Tay-
lor polynomial.

This polynomial, named for Brook Taylor (1685-1741), a contemporary
of Newton, is expressed in powers of (x − a) and serves to approximate a
given function f at points x near a fixed point a. (Recall that in Taylor’s time
the function f was regarded as describing a curve y = f(x) in the Cartesian
plane.) For each k ≥ 0, the coefficient of (x− a)k is given as the value of the
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kth derivative (or derived function) f (k)at a, divided by k! = 1×2×3× ...×k:2

T fk (x) = f(a) +
1

1!
f ′(a)(x− a) +

1

2!
f ′′(a)(x− a)2 + ...+

1

k!
f (k)(a)(x− a)k.

Lagrange recognised that if, for all x in an interval around a, the remainder
term Rk+1(x) = f(x) − T fk (x) can be made arbitrarily small by choosing k
large enough, the resulting infinite series would represent the function f on
that interval.3

On the assumption that every function f to be considered in mathemat-
ical analysis has a power series representation of the form

f(x) = a0 + a1(x− a) + a2(x− a)2 + ...+ ak(x− a)k + ...

for some sequence of coefficients (ak)k≥0, Lagrange now argued that he
could define the kth derivative of f at a simply as the product k!ak, where
ak is given in the power series expansion. Hence derivatives would be de-
fined purely algebraically, and thus be redeemed from ‘all consideration of the
infinitely small, or vanishing quantities, of limits and from fluxions...’ .

Lagrange’s terminology and his emphasis (following Newton) on the
utility of power series representations were widely accepted. However, his
optimistic claim that the derivative could be defined purely algebraically did
not find quite the same resonance with other major figures at the time. Even
if his assumption had proved correct, the question would remain how the
coefficients of the power series were to be found—if not by means of Tay-
lor series, which would, in turn, have to be computed by first calculating
the derivative of each power of x. In any event, Cauchy was to show that
Lagrange’s assumption was unjustified. The essential problem is that even
relatively ‘well-behaved’ functions, with derivatives of all orders through-
out an interval, need not necessarily be represented there by their Taylor
series.

Despite his protestations, Lagrange himself may have been less than
wholly convinced that he had banished infinitesimals from the Calculus.
While he was still director of the mathematical section at the Berlin Acad-
emy, a prize problem was issued in 1784 for ‘a clear and precise theory of what
is called the infinite in mathematics’. In 1786 the prize was awarded to Si-
mon Lhuilier (1750-1840) for a rather turgid study of limits in the style of
d’Alembert, which did not really settle the issues it addressed and was be-
devilled by confusing terminology. Nonetheless, in a 1795 revision of his es-
say, Lhuilier made the important—if belated—observation that a limit may

2This terminology and notation for the kth derivative, widely used today, was introduced
by Lagrange.

3Here, and below, for any two real numbers c < d an interval with these two endpoints
contains all real numbers lying between c and d. The open interval (c, d) consists of the numbers
x satisfying c < x < d, while the closed interval also includes the endpoints. (For the present,
we still interpret ’real numbers’ as points on the ‘geometric number line’.)
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be approached by an oscillating sequence of values, not merely from above
or below, thus widening d’Alembert’s definition.

Concern about the confused state of ‘analysis’, as the elaboration and
application of the Calculus had become known, led to various Academies
offering prizes for work to clarify these matters. The ‘research programme’
implicit in d’Alembert’s Encyclopédie entry clearly still had some way to go.
An influential, but by nomeans conclusive, contributionwasmade by Lazare
Carnot (1753-1823), a mathematician and military engineer who was also
prominent as a politician in the French Revolution and under Napoleon. In
two editions of his widely read Reflections (1797, 1813), the latter of which
proved especially popular, he surveyed several different attempts to resolve
the conceptual questions that had been raised, althoughLagrange’s approach
did not feature in thiswork. Carnot favoured the use of infinitesimals, whose
definition he sought to clarify by means of limits. Yet, unlike Cauchy, less
than a decade later, he appeared unable to provide a workable definition of
the elusive concept of limit.

A refutation of Lagrange’s over-optimistic claim that, instead of using
infinitesimals, one can always define the derivative algebraically by means
of Taylor series, appeared nearly a decade after his death. In an 1822 paper,
Cauchy proved that the function f given by f(x) = e−

1
x2 when x 6= 0, and

f(0) = 0, has derivatives of all orders throughout (even at 0), yet cannot be
represented by its Taylor series (expanded at a = 0) at any point other than
at 0 itself!

In fact, Lagrange had earlier reconciled himself to infinitesimals, at least
after a fashion. Near the end of his life the second edition of hismasterpiece,
Mecanique analytique, published in 1811, contained the (perhaps rueful) re-
mark:

When we have grasped the spirit of the infinitesimal method, and have verified
the exactness of its results either by the geometrical method of prime and ultimate
ratios, or by the analytical method of derived functions, we may employ infinitely
small quantities as a sure and valuable means of shortening and simplifying our
proofs.

However, the spirit of the age was that such matters needed to be ad-
dressed afresh. The philosophers of the Enlightenment placed emphasis on
reason and the individual, rather than on tradition. Together with the im-
pact of the American and French Revolutions this galvanised intellectuals
all over Europe to question established authority and to examine the foun-
dations of knowledge anew. Meanwhile, the rapidly developing Industrial
Revolution provided scientists with new problems for solution, often lead-
ing mathematicians to extend and refine the tools of the Calculus. It was
increasingly clear that lack of precision in the foundations of the Calculus
could inhibit further progress.
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During this period the academies that had flourished at various aristo-
cratic courts were gradually being supplanted by universities as the prin-
cipal centres of learning. This change had been accelerated by the estab-
lishment of the advanced Écoles (Normale and Polytechnique) in Paris soon
after the French Revolution. This had further cemented the dominance of
Paris as the acknowledged international centre of excellence in mathemati-
cal research, while the increasing emphasis on the formal instruction of stu-
dents led to more systematic attempts finally to provide the Calculus with
the sound foundations that earlier critics had called for in vain.4

2. Cauchy’s ‘Cours d’Analyse’

Today, mathematicians accept the Calculus as grounded solidly and ap-
propriately in the real number system.5 This defines the continuum onwhich
functions studied in basic Calculus are defined, and provides the spring-
board for the complex numbers and generalisations to spaces of many (even
infinitelymany) dimensions. Popular science texts, while often applying the
methods of ‘school calculus’, seldom address the underlying concepts, pre-
ferring (as we have done so far) to rely on geometric intutition, representing
real numbers by ‘points’ on a ‘number line’.

Not surprisingly, mathematics undergraduates are initially taken aback
when meeting the definitions and proofs required to justify the basic oper-
ational techniques of Calculus in more detail—especially the need for a rig-
orous definition of the underlying number system—and frequently profess
themselves bewildered by the apparently needless complexity of the sub-
ject. This becomes less surprising if we reflect that it took the mathematical
world fully two centuries to arrive at a (more or less) universal consensus
on these matters.

Augustin-Louis Cauchy entered the École as a student aged 16, in 1805.
He studied analysis under Sylvestre Francois Lacroix (1765-1843), who em-
ployed a geometrically based limit concept in the style of d’Alembert’s pro-
gramme. After the fall ofNapoleon Bonaparte, and amidpolitical upheavals
during the restoration of the Bourbon monarchy in 1814, the eminent scien-
tist Pierre Simon Laplace (1749-1827) was put in charge of the reorganisation
and re-opening of the École in 1816. Cauchy, then aged 27, replaced Louis
Poinsot (1777-1859) as professor of analysis.

Cauchy’s immediate predecessors had seen little point in addressing
questions of logical rigour when teaching mathematics to engineers, which

4The dominance of Paris was a significant factor spurring the development of a rigorous
approach to university tuition in Prussia, spearheaded by Wilhelm and Alexander von Hum-
boldt; so that by 1830, Berlin and Göttingen (where Gauss spent the bulk of his career) were to
rival the reputation of Paris.

5Arithmetical representations of this number system, dating from1872, will be considered
in Chapter 7.
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they regarded as the École’s principal objective. In 1810 the analysis course,
until then based on limit concepts developed by Lacroix, was replaced by
one closer to the style of Lagrange and Euler, where algebraic formulaewere
applied to infinitesimal and infinite quantities in exactly the same way as to
finite quantities.

In his highly influential 1821 treatise Cours d’Analyse, based on his lec-
tures at the École Polytechnique from 1816, Cauchy makes clear that he had
decided to employ a very different approach. Today, many historians re-
gard this text as the origin ofmathematical analysis—bywhich they mean the
study of (real and complex) variables and functions, especially as used in
the Calculus.

Cauchy’s opponents at the École were fiercely critical of the youthful
professor’s emphasis on rigour in his teaching and of what they regarded
as his resulting neglect of the applications of the Calculus. It has been sug-
gested that Cauchymay at one point have been compelled by the authorities
to revert to ‘more traditional’ methods in his teaching.

In his writings, however, Cauchy is adamant. The introduction to the
Cours makes plain his objectives:

Regarding methods, I have sought to give them all the rigour one requires in
geometry, in such a way as never to resort to reasons drawn from the generality of
algebra.

This reference to ‘the generality of algebra’ is to the algebraic formalism
which, in the hands of Lagrange and his predecessors, seemed to Cauchy
to have become detached from its roots in Descartes’ geometry and had ac-
quired a life of its own, without clearly defining all the objects it described.
Cauchy’s ambitious aim was to make sense of the new tools that had been
invented for the Calculus, employing a degree of rigour similar to that of
Euclid’s Elements. The fact that one could write down an algebraic formula
and manipulate it would not suffice to give it meaning, he argued.

In modelling his approach on Euclid, Cauchy was advocating a radical
shift in perception that we will examine more closely in the next two chap-
ters. Rather than regarding the objects of mathematical research simply as
‘given’ – as, for example, in Plato’s World of Ideas – and to be manipulated
according to various inituitively obvious ‘rules’, he sought, instead, to pro-
vide clearly articulated principles that underlie these rules, as Euclid had
done in stating his five postulates.

In practice, Cauchy’s analysis did not really meet the standards of clar-
ity set by Euclid’s Elements, nor did he succeed fully in defining a logically
sound basis for the operations of the Calculus. The principal problem was
that he continued to rely on the geometric description of the ‘number line’,
on which he based his key concept of variable quantity. Thus, for example,
the distance between two values that the variable quantity might take was
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Figure 33. Augustin Cauchy by Gregoire et Deneux, 1840.6

defined by reference to geometry, rather than given an independent defi-
nition. In addition, as we shall see, he continued to rely on the notion of
‘infinitesimal’ quantities to describe his definitions.

Nonetheless, his Cours provides glimpses of a profound philosophical
shift that would dominate mathematical research in the nineteenth century
and continues today. We should therefore consider his conceptions more
closely and trace his influence on later developments.

While Cauchy did not provide an unambiguous definition of the under-
lying number system in his Cours, he clarified the key concepts of his anal-
ysis, such as ‘continuity’ and ‘limit’ of a function, more precisely than his
predecessors had done, and used them to underpin the twin operations of
the Calculus, ‘derivative’ and ‘integral’. Yet, despite d’Alembert’s optimistic
comments half a century earlier, Cauchy (perhaps echoing Lagrange’s chas-
tened comment) maintained in the Introduction to his Cours that he, too,
was ‘unable to dispense with’ the use of ‘infinitesimal quantities’ in the opera-
tional techniques he presented. On the face of it, Cauchy’s concept of the
continuum therefore appears to include infinitesimals and remains some-
what obscure.

He recognised that, if they were to be useful, infinitesimals had to be
defined more precisely. His solution was to subjugate their definition to

6https://commons.wikimedia.org/wiki/File:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-
03a.jpg

https://commons.wikimedia.org/wiki/File:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-03a.jpg
https://commons.wikimedia.org/wiki/File:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-03a.jpg
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that of his concept of variable quantity –which he defined as a quantitywhich
is assumed to ‘take on successively several different values, one after the other’ –
and thereby to define infinitesimals as variable quantities that eventually
‘become infinitely small’.

2.1. Limits of sequences. To achieve this, he gave precedence to the
concept of the limit of a variable quantity. Cauchy described this verbally:

When the successively assigned values of the same variable indefinitely ap-
proach a fixed value, so that they end up by differing from it by as little as one could
wish, the last is called the limit of all the others. So, for example, an irrational
number is the limit of the various fractions which provide values that approximate
it more and more closely...

He followed this with his definition of infinitesimal quantities:
...When the successive numerical values of the same variable decrease indefi-

nitely in such a way as to fall below any given number, this variable becomes what
one calls an infinitesimal or an infinitely small quantity. A variable of this kind
has zero for its limit.

Cauchy’s infinitesimals thus appear in the guise of variables whose as-
signed values have limit 0, without actually attaining that limit at any stage
in a finite number of steps. In that sense his infinitesimals are described
by a process rather than as actual quantities, which in turn makes their use
in arithmetic problematic. One drawback is that he never explicitly defines
how these values are assigned, although in seeking to reconcile rigour with
his quantitées infiniment petites he seeks to distinguish them from what we
would today regard as real numbers.

Although Cauchy’s definition remains silent about the precise nature
of the independent variable x, he states that it will take on ‘successively
assigned values’, and demands that these values should ‘finally’ differ from
the limit (which is the ‘fixed value’ in his definition) ‘by as little as one could
wish’.

It is perhaps easiest to characterise his definition of the limit of an infi-
nite sequence: in that case the sequence of numbers x1, x2, x3, ... represents
the ‘successively assigned values’ of a ‘variable quantity’, numbered by suc-
cessive natural numbers 1, 2, 3, .... If, for some fixed number a, the difference
between a and xn can be made smaller than any given number ε > 0 by the
simple expedient of taking n ‘far enough along the sequence’ then Cauchy
calls a the limit of this sequence. Thus: a is the limit of the (xn)n provided
that the distance between xn and awill eventually become less than any pre-
assigned number ε > 0, i.e. for some fixed natural number N, this distance
should be smaller than εwhenever n ≥ N .

We cast this statement in today’s terminology:
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The real number a is the limit of the sequence of real numbers (xn)n≥1 if, given
any real number ε > 0, one can find N ∈ N such that |xn − a| < ε for all n ≥ N.

When this requirement is satisfied, we write a = limn→∞ xn, and say
that the sequence (xn)n≥1 converges to a.

Cauchy’s definition assumes implicitly that the numbers xn and a repre-
sent points that lie on an underlying number line, rather than defining these
numbers arithmetically. But this begs the question howwe can compare the
distance between xn and a with the given positive number ε. Thus limits,
as defined by Cauchy, cannot be used for a logically coherent construction
of the continuum as a number system that contains irrationals. To justify
his statement (above) that an irrational number a is ’the limit of the various
fractions which provide values that approximate it more and more closely’ (here
represented by the sequence (xn)n), Cauchy would have to explain how the
approximations are to be computed, and this would presuppose that the ir-
rational had already been defined. This may be evident geometrically, but
that is not an arithmetical definition.

Cauchy’s attempt to define irrationals via limits may not make sense
arithmetically, but his definitions and techniques helped to identify the root
of the problem to be addressed, and prepared the ground for its solution, as
well as laying the groundwork for modern analysis more generally. One of
his most significant innovations was what is now called the Cauchy criterion
for convergence, and we examine this more closely.

In Chapter 6 of the Cours d’Analyse Cauchy defined the sum of an infinite
series u0 + u1 + u2 + ...+ un + ... (here denoted as

∑
n≥0 un) as follows:

Let sn = u0 +u1 +u2 + ...+un−1 be the sum of the first n terms, with n des-
ignating an arbitrary integer. If, for increasing values of n, the sum sn approaches
indefinitely a certain limit s, the series will be called convergent, and the limit in
question will be called the sum of the series.

In other words, convergence of the series
∑
n≥0 un simply means that

the sequence (sn)n≥1 of its partial sums converges to a finite limit, as defined
above. If this sequence does not have a limit, the series

∑
n≥0 un is said to

be divergent and its sum remains undefined.
Cauchy’s concern was to provide a clear definition as well as giving a

checkable criterion for the convergence of series. His criterion states that the
convergence of the series

∑
m≥0 um is guaranteed if, for n sufficiently large,

the sums un + ... + un+k−1 can simultaneously be made arbitrarily small for
every k ≥ 1.

As he puts it, the sums should, when ‘taken, from the first, in whatever
number one wishes, finish by constantly having an absolute value less than any
assignable limit’.
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Expressed in terms of the partial sums sn+k = u0 + ...+un+ ...+un+k−1

and sn = u0 + ... + un−1, this requirement is that the sequence of partial
sums (sn)n should satisfy the criterion given below, where N,n, k as whole
numbers.

Given ε > 0,we can findN such that for every n ≥ N , the following condition
holds for all k ≥ 1 :

|sn+k − sn| < ε.

Cauchy stated his criterion as an unproven assertion, an axiom. In other
words, he asserts that, as long as a series

∑
m≥0 um satisfies his criterion,

that series will have a finite sum.
We rephrase this criterion more generally in terms of an arbitrary se-

quence (xn)n≥1 of real numbers. The Cauchy criterion then demands that:
given any real number ε > 0, there exists N such that |xm − xn| < ε for all

m,n ≥ N .
Today, such a sequence (xn)n is known as a Cauchy sequence.
Intuitively, a sequence ‘ought to have’ a limit provided that ‘eventually’

any pair xm, xn of its members will be ‘as close as we wish’ to each other.
This is what the requirement ‘|xm − xn| < ε when m,n ≥ N ’ ensures. Al-
though Cauchy then asserts (without proof) that in these circumstances the
limit must exist, the criterion itself makes no mention of the limit.

This fact was central to the model for the real numbers presented by
GeorgCantor in 1872, whichwediscuss inChapter 7. Cantor’smodel avoids
the logical trap that Cauchy fell into. In fact, Cauchy’s criterion is one of
several versions of the key property (which we call its completeness) that dis-
tinguishes the real number system from the system of rational numbers.
Pictorially we describe this as ‘having no gaps’. Cauchy’s criterion can fail
if we deal exclusively with rational numbers—we had an example of this
in Chapter 1, featuring a sequence (rn)n of rational approximations to

√
2.

It can be checked that (rn)n is a Cauchy sequence, yet its ‘limit’
√

2 is not
a rational number. A larger number system, containing no such ‘gaps’, is
required to remedy this defect and ensure that Cauchy’s criterion always
holds.

Cauchy introduced much of the technical machinery used in modern
undergraduate texts on ‘Real Analysis’ (for example, [27], [40]) especially
in his consistent use of inequalities to compare various quantities. To illus-
trate his use of inequalities, we use the most basic example, the well-known
triangle inequality:

The inequality |a+ b| ≤ |a|+ |b| holds for any (real or complex) numbers a, b.
Geometrically, the triangle inequality is obvious from the Argand dia-

gram in Figure 23(a) (on page 101): in the triangle OQP, the length of the
side OP (which represents |z + w|) cannot be greater than the sum |z|+ |w|
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of the lengths of the other two sides, OQ and QP. But this argument relies
on Euclidean geometry.7

With this inequality it is easy to show that any convergent sequence is
also a Cauchy sequence, providing the converse to Cauchy’s criterion: if
limn→∞ xn = x then for any ε > 0 there exists N such that if m,n ≥ N,
both the inequalities |xm − x| < ε

2 and |x− xn| < ε
2 hold. This shows that

(xn)n is a Cauchy sequence: form,n ≥ N,
|xm − xn| = |(xm − x) + (x− xn)| ≤ |xm − x|+ |x− xn| < ε.

3. Continuous functions

In order to tackle, in a consistent manner, the variety of curves to which
his predecessors had applied the techniques of theCalculus, Cauchy adopted
a definition of the continuity of a function that, although given verbally in
terms of incremental change, would in practice entail comparing two nu-
merical inequalities.

In the eighteenth century a ‘continuous curve’ hadusually been regarded
as as a curve determined by a single ‘expression’ (or formula). The function
concept mostly remained tied to formulae and their visual representation as
curves. Continuous curves were seen as those that could be drawn in a sin-
gle unbroken motion. During a controversy over the initial conditions that
should be allowed in the study of a vibrating string, Euler had advocated the
idea that the definition of function should be ‘completely general’, but most
practitioners continued to study functions with contiguous graphs (drawn
in a single motion), or, at worst, ones that consisted of a finite number of
pieces.8

Cauchy’s definition of continuity dispenses with visual images:
The function f(x) will be, between two assigned values of the variable x, a

continuous function of this variable if for each value of x between these limits, the
value of the difference f(x+ α)− f(x) decreases indefinitely with α.

In Cauchy’s definition the use of the phrase ‘these limits’ simply means
that x lies between two ‘assigned values’; i.e. c < x < d for some fixed num-
bers c, d. In other words, Cauchy considers functions defined throughout an
open interval I = (c, d), which consists of all points lying strictly between the
points c and d.When an interval includes both endpoints, we say that it is
closed and denote this by [c, d].

The phrase decreases indefinitely with α can be understood in the same
way as his definition of limit: when successive values are assigned to the
variable α (which has limit 0, hence becomes infinitesimal, according to

7A simple algebraic proof and a summary of key facts about convergent real sequences
and series can be found in MM.

8A summary of the modern function concept can be found in MM.
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Cauchy’s definition) then the absolute values of f(x + α) − f(x) and α de-
crease to 0 together. In other words, if we change the independent variable x
by an infinitesimal amount, the change in f(x) is also infinitesimal. Cauchy
did not specify that ‘value’ means absolute value here—the notation for this
came later—but he clearly intended it to be seen as such.

In his proofs Cauchy often linked his definition of continuity to that
of limit, making f continuous at a precisely when the function value f(a)
equals the limit of the values f(x)when, though ‘successively assigned values’,
x approaches the point a,We can rephrase this statement as follows:

The function f is continuous at the point a if whenever a sequence (xn) has
limit a, the sequence of values (f(xn))n has limit f(a).

This statement defines what is called sequential continuity at a point to-
day. For real functions it is logically equivalent to the modern definition of
continuity at a point, given below.

In 1817, four years before Cauchy’s seminal text, the Bohemian mathe-
matician and Catholic priest Bernhard Bolzano (1771-1848) developed a for-
mulation of continuity which is essentially the same as that of Cauchy, but
without reference to values taken in sequential succession. He proposed to
make the somewhat nebulous ‘law of continuity’ more precise as follows:

If a function f(x) varies according to the law of continuity for all values of x
inside or outside certain limits, then, if x is some such value, the difference f(x +
ω)− f(x) can be made smaller than any given quantity provided ω can be taken as
small as we please.

This definition does not depend on intermediate concepts such as limit,
or limits of sequences. In effect, it relates two inequalities to each other. It
avoids any mention of infinitesimals and is very close to the modern defi-
nition of continuity at a point (usually attributed to Weierstrass, whose for-
mulation came more than two decades later):

The function f is continuous at the point x if, for given ε > 0 we can find
δ > 0 such that |f(y)− f(x)| < ε whenever |y − x| < δ.

It is thought unlikely that Cauchywas aware of Bolzano’s workwhen he
published the Cours d’Analyse in 1821, although it is possible that Lagrange
could have been a common source for the need to refine the concept of con-
tinuity. Also, while in Berlin in the early 1820s, Niels Abel had learnt of and
– according to his notebooks – admired fundamental papers Bolzano had
published in 1816/1817.

Bolzano held the chair in the philosophy of religion at the University of
Prague from 1805, but his liberal, anti-militarist views led to his suspension
from his post by the Habsburg authorities in 1819. He was placed under
house arrest, prohibited from publishing, and had little or no contact with
the principal centres of mathematical research.
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There is no real evidence that Bolzano’s far-sighted ideas on the foun-
dations of analysis were widely appreciated during his lifetime, although
a well-known contemporary review journal in 1821 contained a favourable
and fairly detailed review of his earlier papers (see [41]).

Cauchy’s definitions did not distinguish clearly between continuity at a
point and continuity at all points throughout some (closed) interval.9 The
relationship between these concepts, and what became the modern termi-
nology, was clarified only a couple of decades later, in papers by Peter Gustav
Lejeune Dirichlet (1805-1859) and, decisively, by Karl Weierstrass (1815-1897)
in his Berlin lectures. Eduard Heine (1821-1881), who had studied under
Dirichlet in Berlin, was a third significant contributor to the modern for-
mulations.

Between them, Cauchy and Bolzano contributed three results (whose
proofs can be found in MM and [27]) that were critically important for the
subsequent programme to justify Calculus techniques without resort to ‘in-
finitesimals’. Leibniz, who saw continuous functions as representing geo-
metric curves in the plane, would probably have dismissed all three as ‘in-
tuitively obvious’, but their rigorous deduction from the definition of conti-
nuity given above is a different matter.

Cauchy andBolzano sought to proveLeibniz’ intuitive assumptionswith-
out any recourse to geometric representations. This was an important step
towards freeing the Calculus from reliance on geometric intuition. But their
work also highlighted the sense in which the nature of the underlying con-
tinuum needed to be specified clearly.

We list the three key results, taking the real-valued function f to be con-
tinuous on a bounded interval I of real numbers:

The first says that if f takes distinct values α, β at points a and b in I
then it also takes all intermediate values.

The second states that for any infinite sequence of real numbers con-
tained in I , an infinite number of them (an infinite subsequence) must ‘bunch
up’ near some point and converge to it.

9The difference lies in the freedom of choice allowed when choosing δ > 0 for a given
ε > 0. Continuity of f at the point a allows us to choose δ which, for that specific a, ensures
that |f(x − f(a)| < ε when |x− a| < δ. Thus different δ can be chosen for different points
a; in other words, δ may depend on a. A stronger demand defines uniform continuity over an
interval I : here the same δ > 0 is expected to suffice for all a in I. The ambiguity of Cauchy’s
definition may be what led him to claim that, on a closed interval, the sum of a convergent
series of continuous functions will be continuous. In fact, this result requires either uniform
convergence of the series or uniform continuity of the functions. (These concepts were first
formulated in the 1840s.) However, Cauchy continued to insist on his claim, even though Abel
had constructed a counterexample in 1826. The reasons for what is traditionally regarded as
Cauchy’s ‘error’ have been widely discussed in the literature, for example in Appendix 1 of
[29]. A recent account of the history of this controversy can be found at arXiv:1704.07723.
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The third asserts that if f is continuous at all points of a closed bounded
interval [a, b] contained in I then the collection of values f takes is bounded
(above and below) and f attains those bounds at some points of [a, b].

More formally, these claims are expressed as follows:
(i) The Intermediate Value Theorem (IVT)
If the real-valued function f is continuous on an interval containing a, b and

f(a) < 0 < f(b) then f(c) = 0 at some point c between a and b.
(ii) The Bolzano-Weierstrass Theorem
Every bounded real sequence has at least one convergent subsequence.
(iii) Extreme Value Theorem
A continuous function defined on a closed bounded interval [a, b] of real num-

bers is bounded and attains its bounds on the interval [a, b].

To illustrate how the IVT relies on properties of the underlying number system, we
apply the modern definition of continuity at a point to functions defined only on the
rational numbers in the interval (0, 1). Then the function f(x) = x2 will be continu-
ous at each rational r in (0, 1). This follows because

|f(x)− f(r)| =
∣∣x2 − r2∣∣ = |x− r| (x+ r) < 2 |x− r| ,

since both x and r lie between 0 and 1. Hence, given (rational) ε > 0,we have
|f(x)− f(r)| < 2 |x− r| < ε

provided that |x− r| < δ,where δ = ε
2
.

On the other hand, f(x) takes the rational values f( 1
4
) = 1

16
and f 3

4
) = 9

16
, but

not the intermediate value 1
2
, as there is no rational number whose square is 2. So

the continuous function g(x) = f(x)− 1
2
is negative at 1

4
, positive at 3

4
, but is never

0 at any rational point. Hence the IVT will not hold if the rational numbers are the
underlying number system.

The Bolzano-Weierstrass theorem provides yet another way of expressing
the completeness of the continuum. It features in Bolzano’s 1817 paper, ef-
fectively as a lemma in his derivation of the IVT, but expressed somewhat
differently from the statement we have given. The theorem was reformu-
lated and proved by Weierstrass more than 20 years after Bolzano, and be-
came known as ‘Weierstrass’ Theorem’ until the 1870s, whenBolzano’s note-
books were rediscovered more than two decades after his death.

The Extreme Value Theorem states that if f is continuous on a closed
bounded interval I then the image of I under f is also a closed bounded
interval. For this, it is crucial that the interval I is closed: for example, the
function f(x) = 1

x is continuous on the interval (0, 1), but takes arbitrarily
large values when x approaches 0. The function g(x) = x is bounded on
(0, 1), but it does not have a maximum or minimum on the interval (0, 1)−
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it approaches 0 and 1 arbitrarily closely, but never reaches either, as its values
lie strictly between 0 and 1.

These simple examples illustrate that the three above theorems aremean-
ingful and depend on properties of the underlying number system. The Ex-
treme Value Theorem was also critical for Cauchy’s quest to provide firmer
foundations for the key results of the Calculus, as we outline below.

Bolzano was quite explicit in his critique of any proof in analysis which
depended ‘on a truth borrowed from geometry’. Before he proved the Interme-
diate Value Theorem as a direct consequence of his definition of continuity
he stated his views plainly:

It is an intolerable offence against correct method to derive truths of pure (or
general) mathematics (i.e. arithmetic, algebra, analysis) from considerations which
belong to a merely applied (or special) part, namely, geometry.... A strictly scien-
tific proof, or the objective reason, of a truth which holds equally for all quantities,
whether in space or not, cannot possibly lie in a truth which holds merely for quan-
tities which are in space.

He dismissed Newton’s approach to the Calculus in similar fashion:
No less objectionable is the proof which some have constructed from the concept

of the continuity of a function with the inclusion of the concepts of time and mo-
tion.... No one will deny that the concepts of time and motion are just as foreign to
general mathematics as the concept of space.

Nevertheless, and despite the greater precision of Cauchy andBolzano’s
approach, an arithmetical definition of the underlying continuum remained
absent. For example, Cauchy’s proof of the IVT simply assumed that any
bounded increasing sequence (an)n≥1 of points on the number line must
converge to a limit as n grows. This is another version of the completeness
property of the real number system that the above results served to bring
more clearly into focus.10 Various approaches to this question will be exam-
ined more closely in Chapter 7.

4. Derivative and integral

The above theorems lead quite painlessly to the principal results needed
for the Calculus, culminating in the proof of the Fundamental Theorem of
the Calculus, which clarifies how differentiation and integration are linked
as inverse operations, as Leibniz had claimed.

Cauchy’s definition of the derivative of a function f at a point a in some
open interval I makes essential use of his notion of limit:

10There are many equivalent versions of the completeness property of the real number
system. InMM we consider five of these in more detail.
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Figure 34. The Mean Value Theorem

If f is defined on I = (a, b), the derivative of f at a, denoted by f ′(a), is given
by limx→a

f(x)−f(a)
x−a .

When this limit exists, f is said to be differentiable at a.Also, f is differen-
tiable on I if it has a derivative at each point of I.

Note that the slope function for f, given by the ratio f(x)−f(a)
x−a (the differ-

ence of the ordinates divided by the difference of the abscissae) makes sense
only as long as x 6= a. This ratio is the slope of the chord to the graph of the
function between the points (a, f(a)) and (x, f(x)). The slope function is not
defined at a, but Cauchy defines the limit of these slopes as the slope of the
tangent to f at a. In Newton’s terminology it represents the ‘ultimate ratio’ as
x gets ever closer to a.

Cauchy’s definition enabled him to prove the basic properties of deriva-
tives – such as linearity and the product, quotient, inverse and chain rules –
as simple consequences of the properties of limits.

Someproperties of derivatives, however, have their roots in deeper prop-
erties of the number line. The first result reflecting this is again deceptively
simple – it was stated in 1691 the Frenchman Michel Rolle (1652-1719), who
was actually a vocal critic of both Newton and Leibniz’ formulations of the
Calculus. The second theorem (MTV) is an immediate consequence – again,
proofs of these results can be found in MM and [27]. Figure 34 illustrates
these theorems in turn.

Rolle’s Theorem
If f is continuous on [a, b] and differentiable on (a, b), and if f(a) = f(b),

then there is at least one point c in (a, b) such that f ′(c) = 0.

The Mean Value Theorem
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If f is continuous on [a, b] and differentiable on (a, b), then there exists
c in (a, b) with f ′c) = f(b)−f(a)

b−a .

The Mean Value Theorem provides the key to many of the familiar ap-
plications of derivatives: finding the maximum or minimum values of a
given differentiable function in some interval, finding its points of inflex-
ion, applying rules (for example, the well-known l’Hôpital’s rule for limits of
quotients such as sin x

x at 0), and the term-by-term differentiation of power
series that was used so extensively by Newton.

While Cauchy’s definition of the derivative mirrors that of some of his
predecessors, his definition of the integral was entirely novel. It brought
into focus the seventeenth century geometric perceptions of the integral as
the area under the graph of a curve, regarded as an infinite sum of infinites-
imal slices, but without recourse to geometry or infinitesimals. As the latter
had been criticised as imprecise and problematic, the preferred definition
of the integral used by eighteenth century exponents of the Calculus was
that integration simply constituted the ‘inverse’ of differentiation. This was
expressed most directly by Cauchy’s former teacher, Lacroix:

‘the integral calculus is the inverse of the differential calculus, its object being to
ascend from the differential coefficients to the function from which they are derived’.

This definition of the integral as an antiderivative – given a function f,
find a function F that has derivative F ′ = f (much as Newton had argued
for ‘finding the fluent from the fluxion’) – held sway until Cauchy took on
the task of defining ‘the area under a curve’ in a more rigorous arithmetical
fashion.11

Cauchy restricted his attention to continuous functions defined on a
closed interval [a, b]. He realised that not every ‘area under the graph’ of
a function could be expressed as the difference of the values of an antideriv-
ative at b and at a. So, instead of using the antiderivative as a definition for
the integral, he sought to make it a theorem that the area under the graph
of a curve could be found as this difference. This expression of the inverse
relationship between derivative and integral has become known as the Fun-
damental Theorem of Calculus.

For a continuous function f defined on the closed interval [a, b],Cauchy
considered a partition of the interval a = x0 < x1 < x2 < ... < xn = b and

11Note that antiderivatives are not uniquely defined: if two functions differ by a constant
their derivatives are equal. For a practical illustration, recall that velocity was defined as the
derivative of position (or ‘distance travelled’) byNewton. So two vehicles travelling in the same
direction for the same time period (and with the same velocity curve) will only arrive at the
same point if their starting positions are the same!
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formed the sum (of ‘areas of rectangles’)

Sn =

n−1∑
k=0

f(xk)(xk+1 − xk)

He showed that the sequence (Sn)n will converge to a limit if the mesh δ =
maxk<n(xk+1 − xk) of the partition converges to 0 when n → ∞, indepen-
dently of the partitions (xk)k. This proof required considerable effort, but
the payoff was immediate: Cauchy could now use the limit as his definition
of the integral, thus showing that the integral can be defined as the limit of
sums that approximate the ‘area under the curve’.

Cauchy’s decision to turn the existence of the limit into his definition of
the ‘area under the graph’, was a masterstroke. It meant that the existence
of the integral over the interval [a, b] was guaranteed for any function f con-
tinuous on [a, b], removing any reliance on first finding an antiderivative –
which, as he knew, could not be found via a closed formula in some cases,
such as f(x) = e−x

2 .
The Extreme Value Theorem now sufficed (seeMM) for Cauchy’s proof

of the main result of the Calculus, showing that integration and differentia-
tion are ‘inverses’ of each other:

The Fundamental Theorem of the Calculus:
Suppose that f is continuous of [a, b]. For any x in [a, b], the function F

defined on [a, b] by F (x) =
∫ x
a
f(t)dt is an antiderivative of f : for x in (a, b),

F ′(x) = f(x).

Throughout the nineteenth century, increasingly sophisticated versions
of the integralwere developed, particularly byBernhardRiemann (1826-1866)—
who had studied with Gauss and Dirichlet—but also later by Camille Jordan
(1838-1922). This led to the development of numerous functions that illus-
trated with increasingly clarity why the ‘number line’ was in need of a rig-
orous arithmetical description. See MM for a summary account of these
developments.





CHAPTER 7

Number Systems

If a man’s wit be wandering, let him study the mathematics; for in demonstrations,
if his wit be called away never so little, he must begin again.

Sir Francis Bacon, ’Of Studies’ in: Essays, 1597

Summary

Chapters 1-4 described key aspects of the historical evolution of the
number concept up to the early nineteenth century, largely driven by the
realisation that the solution of various problems (first posed verbally but in-
creasingly expressed via various types of equation) would lead far beyond
the Pythagorean concept of ‘multiples of the unit’ as the only entities re-
garded as ‘numbers’. By the early 1800s, these developments had led to the
Fundamental Theorem of Algebra, clarifying the basic structure of polynomials.
This had required the extension of the number concept to complex numbers.

Chapters 5 and 6 outlined two key episodes in the history ofmathemati-
cians’ struggle with the concept of infinity, arising in the analysis of ‘contin-
uousmagnitudes’ to understand the dynamics of instantaneous change and
the summation of infinitely many terms. The development of Calculus tech-
niques addressed both problems with a considerable measure of success,
but only by postulating infinitesimal quantities whose existence could not be
established convincingly. In the nineteenth century, these quantities were
finally ‘banished’ through conceptual advances made mainly in Paris and
Berlin, giving a central role to the notions of limit and continuity of func-
tions. This, in turn, brought into much sharper focus the question of the
nature of the underlying continuum, represented by the geometric ‘number
line’ inherited from geometry.

The present chapter deals with several aspects of number systems. We
review the familiar systems of numbers encountered on this journey. The
natural (or counting) numbers are taken for granted, but we explore their
structure a little further, highlighting, in particular, the Principle of Induction.
Our initial interest in induction is as a proof technique; in Chapter 8 it will
be seen as a fundamental property of the set of natural numbers. Next we
outline the scheme devised by Richard Dedekind (1831-1916) to produce rig-
orous definitions of integers and rationals and their arithmetic, using only
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the familiar properties of the natural numbers, while showing that these
properties are inherited and extended in the new number systems.

The next two sections contrast the differing approaches ofDedekind and
Georg Cantor (1845-1918) to the development of the real number system. Both
startedwith the rationals. Dedekind emphasised the analogywith the order
properties of the line, while Cantor employed (classes of) Cauchy sequences
to define each real number, simplifying the extension of arithmetical prop-
erties from the rationals to the reals.

Finally, we consider infinite decimal expansions, a concept that, while
familiar from ‘recurring’ decimal expansions encountered at school, has
hidden depths that repay closer study on several counts. Rationals and ir-
rationals give rise to two distinct (infinite) classes of expansions, and we
indicate why the irrationals seem to be ‘more numerous’. We also identify
constructible, algebraic and transcendental numbers, identifying how solutions
of the ‘three famous problems’ of antiquity fit into these classes.

1. Sets of numbers

We have so far attached names to six different types of number, devel-
oped and explored over two millennia—albeit with rather variable degrees
of precision. I will employ the language of sets to describe the collection of
numbers in each category. This practice is of relatively recent origin, but
is well-established in common parlance today—not least because of its (ini-
tially quite controversial) introduction into primary school teaching inmany
developed countries during the 1960s. I will use this ‘naive set theory’ infor-
mally, primarily to have a convenient notation and terminology, rather than
engage with the logical formalities of any abstract theory of sets.

The six collections of numbers highlighted below are examples of sets
whose members are various types of number. But we can imagine many
different collections of objects, concrete or abstract, and it is convenient to
have a simple terminology to identify them.1

Here is a brief review of this terminology and notation:
By a set S we will understand any collection of distinct objects (mental

or physical), together with a membership rule enabling us to decide whether
a given object x is a member of the collection or not. If it is, we write x ∈ S
(expressed variously as ‘x is an element (or member) of S’, or ‘x is in S’, or
‘x belongs to S’); if it is not, we write x /∈ S (‘x is not in S’). The set S is an
object in its own right —so S can itself be a member of some other set.

1In 1895, Georg Cantor defined the term set as follows: ’By a setM we understand every
gathering together into a whole of definite, distinct objectsm (which are called the ‘elements’
of the set) of our perception or of our thought.’
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For a finite set S one might simply list its elements—if these are a, b, c,
write S = {a, b, c}. We write {x} for the set containing just the element x.
Such a set is called a singleton.

We define the empty set ∅ as a set that has no elements—this can be
done by using a contradictory membership rule: for example, if P (x) is a
statement involving the variable x, then we may write {x : P (x)} to specify
the set of all possible elements x for which the statement P (x) is true. Then
∅ = {x : x 6= x}, specifies ‘the set of all x such that x does not equal x’.
Since there are no such x, the set ∅ has no elements. A set is non-empty if it
is not the empty set.

Comparison of sets introduces further basic notation and terminology:
Given two sets A,B, they are equal (written A = B) if they contain ex-

actly the same elements; that is, every element of A is an element of B and
vice versa.

CallA a subset ofB (andwriteA ⊆ B) if every element ofA is an element
ofB. This includes the possibility that the two sets are equal. The empty set
∅ is a subset of every set.

Call A a proper subset of B (written A ⊂ B) if every element of A is an
element of B, but not vice versa – so that B contains elements that are not
in A. In this case we write the set difference as B\A. For example, A = {1, 2}
is a proper subset of B = {1, 2, 3}, and B\A = {3}.

We write A ∪ B for the union of sets A and B. This is the set whose
elements belong to either A or B (or both). The set of all elements that A
and B have in common is called their intersection, written as A ∩ B. If two
sets A and B have no elements in common (so that A ∩ B = ∅) they are
disjoint.

We also extend these definitions to a sequence (An)n≥1 of sets, denoting
the union by ∪n≥1An and the intersection by ∩n≥1An.

The types of number encountered so far are:
Positive whole numbers—evolving from the ‘counting numbers’, or ‘the

unit and its multiples’, and now known more formally as the natural num-
bers. The set of all natural numbers is denoted by N.

Integers—extending the natural numbers to include zero and negative
numbers. The resulting set of all integers is written as Z.

Rational numbers—deriving from the Greek notion of ‘commensurable
lengths’, these are expressed as ratios of integers without common factors;
or more colloquially as ‘fractions in lowest form’. We write the set of all
rational numbers as Q.
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Irrational numbers—deriving from ‘incommensurable lengths’ to distin-
guish them from the rationals. We have yet to give them a satisfactory defi-
nition as numbers.

Real numbers—described, until now, only by reference to points that can
be marked on an unlimited geometric ‘number line’. We have claimed that
this comprises all rational or irrational numbers, taken together. The set of
all real numbers will be denoted by R.

Complex numbers—depicted, by analogy, as points in the plane, theymay
be regarded more formally as ordered pairs of real numbers, for which sums
and products are formed by Hamilton’s explicit rules. Their full definition
will therefore followwithout difficulty once the concept of ‘real number’ has
been defined consistently and independently of any geometric description.
The set of all complex numbers is denoted by C.

The sets N,Z,Q,R are today firmly embedded in our culture and daily
experience. While the set C may be less familiar, complex numbers have
been central to many areas of mathematics and to progress in several areas
of science and engineering, especially in applications of electromagnetism
and in electronics, for at least the past 150 years. We will now look at these
five sets more abstractly, as objects in their own right, and ask how they
relate to each other.

Various examples have illustrated how the basic arithmetical operations
(+,×) and their inverses (−,÷) are applied in computations and to obtain
the solutions of various types of equations. We also know how the order
relation (<) is applied to compare natural numbers, integers, and rational or
real numbers, and how this ordering interacts with addition and multipli-
cation. It will be shown (in the Appendix to Chapter 8) that the system of
complex numbers as a whole cannot be ordered in a way that is compatible
with addition and multiplication.

As far as the elements of the sets are concerned, we can ‘list’ the set of in-
tegers as a doubly infinite sequence Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}, while
the set Q of rationals can, in turn, be regarded as the collection of all frac-
tions m

n , where m is any integer and n a natural number having no factors
in common with |m| , so that the fraction is expressed in its ‘lowest form’.

Observe that sums and products of natural numbers are again natural
numbers (so that performing addition and multiplication in N cannot take
us beyond N). The same is true for Z and Q : for example, the sum of two
rational numbers, expressed as ratios (in lowest form) of integers, mn and p

q ,

is mq+np
nq , which is again a ratio of two integers, as is their product mpnq .We

say that both number systems are closed under addition and multiplication.
Unlike N, the set of integers Z is also closed under subtraction, but not un-
der division (these are the inverse operations to addition andmultiplication),
whileQ is closed under subtraction, andQ\{0} is closed under division. All
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this (though perhaps not the terminology) should be entirely familiar from
schooldays.

However, the product of two irrational numbers need not be irrational
– consider (

√
2)(
√

2) = 2, for example. Since it is not closed under mul-
tiplication, the set of all irrational numbers will not be treated as a number
system in the same fashion as N, Z, or Q. A major task in this Chapter will
be to incorporate this set, together with Q, in the single number system R,
whose elements are described arithmetically. Two solutions to this occupy
Sections 4 and 5, while in the final three short sections we briefly consider
other methods of distinguishing between rationals and irrationals as well as
between different types of irrational numbers.

2. Natural numbers

2.1. Theprinciple of induction. Wehave treated the set of natural num-
bers N = {1, 2, 3, ...} as given: in other words, it simply exists and we can
identify its elements successfully. This assumption is implicit in the process
of counting, and corresponds to a perception of N that was universal from
the time of the Pythagoreans until well into the nineteenth century. Until
then, mathematicians saw no need to devise a more formal framework in
which to derive elementary properties of the set N. This point of view was
perhaps expressed most bluntly in a famous phrase attributed to the influ-
ential Leopold Kronecker (1823-1891) in Berlin:

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
(God created the natural numbers, all else is the work of man).

However, N is an infinite set, as every natural number n has an imme-
diate successor n + 1, as was observed in the Prologue. Therefore specific
techniques are needed to analyse it (and its arithmetic) more fully to an-
swer certain types of question. The most important of these is the Principle
of Induction. Intuitively, this seeks to make the statement ‘and so on’ more
precise. It can be pictured as consecutive dominoes falling in a never-ending
row, or as climbing an infinite ladder step by step, from the bottom rung. Or
simply by seeking to count numbers one-by-one ‘forever’.

As a method of proof this principle has a long history, but it was typ-
ically used implicitly, and often inconsistently.2 Perhaps the most explicit
early example of its use can be found in the work of Levi ben Gershon (1288-
1344) – see [25] for details. In the seveteenth century Blaise Pascal used in-
duction explicitly when justifying the properties of his well-known Pascal

2Mathematical induction concerns a specificmethod of proof, and should not be confused
with inductive logic, which, in philosophy, is concernedwith measures of evidential support for
assertions (see the entry on Inductive Logic in the online Stanford Dictionary of Philosophy).
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triangle (see Figure 30, page 122). Fermat frequently used the closely re-
lated method of ‘infinite descent’, using the fact that for any n there are only
finitely many different natural numbers less than n.However, it was only at
the end of the nineteenth century that the Induction Principle was taken as
an axiom in the work of Giuseppe Peano (1858-1932). This will be discussed
in Chapter 8.

The basic idea is simple: suppose that we can verify that a given state-
ment P (n) about the natural number n holds when n = 1 (i.e. P (1) is true)
and that we can prove the following inductive step: for any n, the truth of
P (n) implies the truth of P (n+1). Then the Principle claims that P (n) must
hold for all natural numbers.

The following two simple examples illustrate the use of the Induction
Principle:

(i) 1 + 3 + 5 + ... + (2n − 1) = n2 for every n in N. (Recall the ‘pebble
proof’ of this claim in Chapter 1)

Proof: Let P (n) be the statement: 1+3+5+ ...+(2n− 1) = n2. Then P (1) becomes
the statement 1 = 1,which is true.
Next, take n in N and assume that P (n) holds. This implies P (n+ 1), because

1 + 3 + ...+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1) = (n+ 1)2 = P (n+ 1).

By the Induction Principle, P (n) holds for every natural number.

(ii)Bernoulli’s inequality: Fix a real number a > −1.Then (1+a)k ≥ 1+ka
for every natural number k.

Proof: For each k ≥ 1, let P (k) be the statement: if a > −1, then (1 + a)k ≥ 1 + ka.

Again, P (1) is true: (1 + a)1 = 1 + a.

Assume that P (k) holds. Note that a > −1 ensures that (1 + a) is positive. As
a2 ≥ 0,we obtain

(1 + a)k+1 = (1 + a)k(1 + a) ≥ (1 + ka)(1 + a)

= 1 + (k + 1)a+ ka2

≥ 1 + (k + 1)a,

so that P (k + 1) holds.
Again, by induction, P (n) holds for every natural number n.

Bernoulli’s inequality enables us to verify formally that limn→∞ xn = 0
when |x| < 1. (See Achilles and the Tortoise in Chapter 5.)
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Proof: As |x| < 1, we can write |x| = 1
1+b for some b > 0. Let ε > 0 be

given. By Bernoulli’s inequality,

|x|n =
1

(1 + b)n
≤ 1

1 + nb
.

Hence |xn| < 1
nb < ε for all n ≥ N, provided that we choose N > 1

bε .

So limn→∞ xn = 0.

The Induction Principle implies another property of N that may seem
blindingly obvious:

Well-Ordering Property (WO) of N
Every non-empty subset of N has a least element.

Proof: We prove this by contradiction, using the Induction Principle. Suppose that
(WO) is false for the set N. Then it would have a non-empty subset S with no least
element. LetP (n) be the statement “i /∈ S for all i ≤ n". In other words, P (n) holds
if S does not contain any of the natural numbers 1, 2, 3, ..., n. In particular, 1 /∈ S,
since if it were in S it would be its least element. Therefore P (1) is true. For the
inductive step, assume that P (n) is true, so that none of 1, 2, 3, ..., n belong to S. In
that case, n+1 cannot belong to S, since otherwise it would be its least element. But
this means that P (n + 1) is true, and by induction, P (n) holds for all n in N. This
means that S must be empty, contradicting our assumption that the (WO) is false.
Therefore (WO) must hold for N.

We have proved that the Induction Principle implies (WO). In fact the
two are logically equivalent—we omit the other half of the proof.

In some contexts another version of induction is useful. The Strong
Induction Principle uses the following induction step instead: assume that
P (m) is true for all m ≤ n and prove that P (m + 1) is true. If this can be
shown, then the Strong Induction Principle asserts that P (n) holds for all n
in N.

We will use this version of the Principle repeatedly below. The prefix
‘strong’ does not mean that we can prove more with this version than with
that stated earlier. It refers to the fact that we make a stronger assumption in
the induction step. The two versions of the Principle are logically equivalent
(this is proved in MM). Note, however, that we have made no attempt to
prove either version from earlier statements.

2.2. Prime numbers as building blocks. The set N = {1, 2, 3, ...} is fa-
miliar from primary school. We learn early on that amongst the natural
numbers there are some special ones: prime numbers. These are the natu-
ral numbers greater than 1 that have no proper divisors. In other words, a
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prime number p is divisible only by 1 and by itself. Dividing p by 1 changes
nothing, and dividing p by itself results in 1.

All other natural numbers n > 1 are called composite. So a composite
number n has a proper divisor a, that is, a natural number greater than 1 but
less than n (written 1 < a < n), such that n = a×b for some natural number
b > 1. The divisors a and b are called factors of n.

For a long time 1was treated as a prime number (since it certainly has no
factors!) and this practice fits well with the use of the term in ordinary lan-
guage. But this ended more than a century ago. A mathematical definition
should be judged by its usefulness in identifying the nature of the objects
being discussed. What we call the Fundamental Theorem of Arithmetic below
will highlight one rather important reason why it is better not to include 1
among the prime numbers. So we will insist that a prime number must be
greater than 1.

The first significant general result learnt at school about prime numbers
is that any natural number greater than 1 has a prime divisor. If n is prime,
it is its own prime divisor. If n is composite, then it must have at least one
prime factor.

To see why this must be true we will use strong induction: suppose
we have proved that every natural number less than some number n has a
prime divisor. If n is prime there is nothing to prove. If n is composite then
n = a× b, where both factors a and b are greater than 1. But this means that
a < n, so that a has a prime divisor by our inductive assumption. Call this
divisor p. But if p divides a, it also divides a × b = n. This means that n
has a prime factor. Hence by strong induction every natural number, has at
least one prime divisor.

This result illustrates how to decompose any natural number n into
prime factors. If n is prime, nothing needs to be done. If n is composite
it has at least one prime factor, as shown above. Suppose now that p1 is the
smallest of these, so that we can write n = p1 × n1 for some natural num-
ber n1 strictly between 1 and n. If n1 turns out to be prime, we are done.
Otherwise, it has a smallest prime factor p2 and n1 = p2×n2 for some natu-
ral number n2 strictly between 1 and n1. Continuing in this way, we obtain
a strictly decreasing sequence n1, n2, ... of numbers between 1 and n and,
since n is finite, this must be a finite sequence (Fermat’s method again): af-
ter finitely many steps (k say) we will have nk−1 = pk × nk with pk prime
and nk = 1. It follows that n = p1 × p2 × ..× pk.

This simple procedure provides a prime factorisation of n.
Prime numbers are the basic building blocks of N. The usefulness of this

statement turns on the important question whether the above decomposi-
tion of n into prime factors is unique. If we were to treat 1 as a prime, then
there are obviously many prime factorisations of each natural number n,
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since the factor 1 can be included as many times as we like. Thus, to have
any hope of obtaining uniqueness, 1 must be excluded from the primes.

The factors can be shuffled without changing the product. This follows
becausemultiplication inN is commutative: for anym,n inNwehaven×m =
m× n.

Also, some of the factors might ‘repeat’, i.e. occur several times. To
avoid such trivial variations in our representation we write the product of
the prime factors of n as follows from now on:

n = pk11 p
k2
2 ...p

kj
j .

Here the prime factors are given in increasing order p1 < p2 < ... < pj
with kl being the number of times that pl occurs in the product, for each
l = 1, 2, ..., j. For example, 584 = 23 × 73, while 2520 = 23 × 32 × 5× 7.

The claim, to be proved below, is that any natural number n has a unique
prime factorisation in this form.

First, however, we explore prime numbers a little further.
We might ask how many prime numbers there are. Here is the list of

prime numbers below 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79.83, 89, 97.

These 25 numbers ‘thin out’ somewhat as the numbers grow: there are four
primes below 10, but only two between 80 and 90, and one after that. Since it
becomes ‘more difficult’ for a number to be prime as the number of possible
divisors increases, it might be tempting to guess that the list of all primes
could stop somewhere. But Euclid showed that this guess would be wrong.

We may paraphrase the statement of Euclid’s Elements, Book IX, Propo-
sition 20) as follows:

The number of primes is not finite.
The proof is very simple. Take any finite collection of primes,

{p1, p2, p3, ..., pk}

and form the number n = (p1 × p2 × p3 × ... × pk) + 1. If n is prime, it is a
new prime greater than all the pi. If n is composite, it has a prime factor, p
say, as was shown above. This p cannot be one of the pi (i = 1, 2, .., , k): if it
were, it would divide both n and the product (p1 × p2 × p3 × ... × pk) and
so pwould divide their difference n− (p1 × p2 × p3 × ...× pk) = 1,which is
impossible. This shows that p is a prime not in the above list, and therefore
no finite collection of primes can exhaust the collection of all primes.

A remarkable, andmuch stronger, result was published in 1837 by Leje-
une Dirichlet:
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If a, d are natural numbers with no common factors, there are infinitely many
primes in the infinite arithmetic progression

a, a+ d, a+ 2d, a+ 3d, ..., a+ nd, ...

SeeMM for examples and some consequences of this theorem. It repre-
sents most of what we know about infinite collections of primes that follow
a given pattern—the search for a ‘formula’ that would provide the value of
the nth prime has long been abandoned as hopeless!

A less ambitious question is how the primes are distributed among the elements of
N. Since we cannot expect a formula for the number π(N) of primes p ≤ N , mathe-
maticians have sought, instead, to establish asymptotic estimates for π(N). These are
estimates for π(N) when N grows very large. They included a correct conjecture
made in the early 1790s by the teenage Gaussa, who had examined the list of primes
below 3 million!

It was not until 1896 that Gauss’ conjecture was verified (independently) by two
mathematicians: the French Jacques Hadamard (1865-1963) and the Belgian Charles de
la Vallee Poussinb (1866-1962). It remains one of the highlights of nineteenth century
mathematics:

The Prime Number Theorem
For large N, π(N) behaves asymptotically like N

logN
. More precisely,

lim
N→∞

π(N)

( N
logN

)
= 1.

Loosely speaking, this says that, for large enough N , the proportion π(N)
N

of
primes in {1, 2, 3, ..., N} is ‘close’ to 1

logN
. Here, as in Chapter 5, log denotes the

natural logarithm.
aNear the end of his life Gauss stated that he had reached his conjecture in 1792 or 1793 (aged 15
or 16). But he did not publish his findings during his lifetime. His motto was Pauca sed matura
(Few, but ripe) and he was unwilling to claim results for which he did not have a full proof.
The first (slightly different) published conjecture of an asymptotic estimate for π(N)was given
by the French mathematician Adrien-Marie Legendre in 1798.
bHe was ennobled by the King of Belgium for his feat, becoming Charles-Jean Étienne Gustave
Nicolas, baron de la Vallée Poussin.

2.3. Uniqueness of prime factorisation. Wehave shown that every nat-
ural number n can be represented as a product of its prime factors in the
form

n = pk11 p
k2
2 ...p

kj
j

We nowwant to show that this representation is unique (up to shuffling
of the factors). For this we prepare the ground a little, and show how a very
familiar concept plays a crucial role.The greatest common divisor (gcd) of two
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natural numbers a, b is the largest natural number d that divides both a and
b.

To show that the gcd d of two natural numbers a, b always exists we characterise it
slightly differently.

Define d′ as the smallest natural number such that there are integers s, t (positive
or negative) such that

d′ = sa+ tb.

For any pair of natural numbers a, b there is always at least one pair of integers s, t
making sa + tb a natural number. Let L be the set of all natural numbers sa + tb
found in this way. Therefore, d′ exists by the Well-Ordering Principle, since it is the
least member of the non-empty subset L of N.

Any common divisor of a and b clearly also divides d′.We now show that d′ is
itself a common divisor of a and b,which ensures that d′ coincides with the greatest
common divisor d of a and b.

Using ‘long division’, write a = qd′ + r for some integer q (the ‘quotient’) and
an integer r with 0 ≤ r < d′ (the ‘remainder’). Therefore

r = a− qd′ = a− q(sa+ tb) = (1− qs)a+ (−qt)b = ua+ vb,

where we have u = 1 − qs and v = −qt. Here u and v are integers, so r has been
written in the form ua + vb for some integers u, v. By definition, d′ is the smallest
natural number that can be written in this form. On the other hand, by our con-
struction, 0 ≤ r < d′. This means that r = 0. Hence a = qd′, so d′ divides a. A
similar argument holds if we reverse the roles of a and b. Thus d′ = d is the gcd of
a and b. This confirms that the gcd d of two natural numbers a and b always exists
and can be written as d = sa+ tb for some integers s, t.

It follows, in particular, that if a and b are relatively prime (a and b have
no common divisors other than 1), thenwe can always find integers s, t such
that

sa+ tb = 1.

These simple facts are used to prove a key result due to Euclid. First
observe that if a natural number n is a divisor of the product ab of two nat-
ural numbers, then n need not divide either a or b. For example: 12 divides
10 × 6 = 60, but it divides neither 10 nor 6. Euclid shows that this cannot
happen for a prime.

Euclid’s Lemma:
If p is prime and divides the product ab, then p divides at least one of a and b.
Proof: Suppose that p is a prime divisor of the product ab. If p does not

divide a, it has no factors in common with a (since p is prime). Therefore
the gcd of a and p is 1, which means that we can find integers s, t satisfying
sa+ tp = 1.
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Multiply this equation by b to obtain sab+ tpb = b. But p divides ab, so
ab = cp for some natural number c. Hence b = (sc + tb)p. We have shown
that p is a divisor of b and this proves Euclid’s lemma.

Using induction, Euclid’s lemma can be extended to products of many
factors:

Corollary:
If p divides the product a1a2...ak, then pmust divide at least one of the factors

ai for i = 1, 2, ..., k.

The simple proof is left to the reader. This completes the preliminaries.
Uniqueness of prime factorisation:
The prime decomposition n = pa11 pa22 ...pakk of the natural number n is unique.

Proof: Suppose that there are two such decompositions:

n = pa11 pa22 ...p
ak
k = qb11 q

b2
2 ...q

bl
l

where the pi, qj are primes, arranged in increasing order, for i = 1, 2, ...k and j =
1, 2, ...l respectively. Then each qj divides the product pa11 pa22 ...p

ak
k , hence it divides

one of the pi,where i ≤ k, and each pi divides the product qb11 q
b2
2 ...q

bl
l ,hence divides

one of the qj . Since all are prime, it follows that each p is one of the q and vice versa.
So l = k and pj = qj for each j ≤ k, since the two products are in the given form.

It remains to show that the powers also correspond: if for some j ≤ k we have
aj > bj , divide both expressions for n by pbjj and compare the resulting products

pa11 pa22 ...p
aj−1

j−1 p
aj−bj
j p

aj+1

j+1 ...p
ak
k

and
pb11 p

b2
2 ...p

bj−1

j−1 p
bj+1

j+1 ...p
bk
k .

The two products are equal by assumption, but the first is divisible by pj (since
aj > bj) while the second product is not divisible by pj . The contradiction shows
that aj > bj is impossible, and reversing the roles of the two expressions shows that
bj > aj is also impossible. So each aj = bj and the two prime factorisations of n are
identical, as claimed.

The uniqueness of prime factorisation is also known as the Fundamental
Theorem of Arithmetic, since it gives us a complete description of the struc-
ture of the set N of natural numbers: each natural number can be obtained
uniquely as a product of powers of primes, arranged in increasing order.

3. Integers and rationals

A trivial extension of set N of natural numbers results from adding the
number 0 to it. We denote the result byN0 = N∪{0}; alternatively, we list its
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Figure 35. Richard Dedekind, by an unknown photora-
pher, 1900s3

elements as the sequence {0, 1, 2, 3, ..., n, ...} where the difference between
successive entries is always 1. Historically, 0 appeared much later than the
‘counting numbers’; but it feels more logical to include it at the outset if we
wish to investigate the arithmetical structure of N: 0 is the neutral element
for addition, since n + 0 = n for any natural number n. In the same way, 1
is the neutral element for multiplication (n× 1 = n for all natural numbers
n). Wewill take for granted the number system (N0,+,×); that is, the setN0

together with the arithmetical operations of adddition and multiplication.
These are assumed to satisfy the following ‘laws of arithmetic’:

(i) commutative: n+m = m+ n, nm = mn),
(ii) associative: (m+ n) + p = m+ (n+ p),

(iii) distributive: m(n+ p) = mn+mp.

Moreover, the set N0 is ordered: write n < m if the equation n + k = m
has a solution for some k 6= 0 in N0. Also write n ≤ m if either n < m or
n = m.We could picture this on the ‘geometric’ number line by saying that
eitherm and n coincide orm ‘lies to the right’ of n.

In 1854 this represented the starting point for Richard Dedekind in his
quest to show rigorously how the familiar number systems we have de-
scribed can be constructed directly from (N0,+,×, <), in terms both of def-
inition of their elements and extension of the arithmetical operations and
the order relation. Dedekind viewedmathematical progress as arising from

3https://commons.wikimedia.org/wiki/File:Richard_Dedekind_1900s.jpg

https://commons.wikimedia.org/wiki/File:Richard_Dedekind_1900s.jpg
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‘free creations of the human spirit and the constraints imposed by logical necessity’,
which, for him, meant that new mathematical objects should ‘always arise
in a natural way from the current state of mathematical knowledge’ (the quota-
tions are taken from [6]). In particular, extending numbers systems from N0

would, in the first place, require the ‘unlimited completion’ of the arithmetical
operations (+,−,×,÷) plus powers and roots.

An exhaustive treatment of the extensions may be found in the classic
text [30], published in 1930 by Edmund Landau (1877-1935), where the re-
quired constructions are undertakenwith the utmost rigour. In fact, Landau
goes further: he shows how—as we will consider in the next chapter—the
natural numbers themselves can be defined abstractly, how each extension
to the next larger class (integers, rationals, real numbers and complex num-
bers) proceeds, how the arithmetical operations and order relations can be
extended consistently in each case and how everything fits together.

Landau’s Preface makes clear that he regards the contents of his book
as wholly elementary, and presents it as essential background training for
any mathematics student, to be read carefully at least once—after which the
details can be forgotten!

My book is written, as befits such easy material, in merciless telegram style
("Axiom," "Definition," "Theorem," "Proof," occasionally "PreliminaryRemark")...
I hope I have written this book in such a way that a normal student can read it in
two days. And then (since he already knows the formal rules from school) he may
forget its contents.

Owing to Landau’s highly ‘telegraphic’ and rigorous style, the bookwas
received by his intended readership with rather less enthusiasm than he
might have expected—perhaps for the reasons he mentions! Rather than
repeat the exercise, I will largely omit detailed proofs in what follows below.

3.1. Dedekind on integers. To arrive at a number system that allows
unlimited application of the four arithmetical operations (+,−,×,÷) the
system (N0,+,×) must be extended twice: first, to allow us to subtract num-
bers without restriction, and then, from this extension, to allow division by
any non-zero number. Dedekind’s approach to both extensions was essen-
tially the same: the process of finding the difference or the quotient of two
natural numbers can be represented by considering pairs of numbers, i.e.
elements of the Cartesian product,much as Hamilton had done in extending
addition and multiplication from R to C.4

4The Cartesian product of any two setsA andB is defined as the set of all ordered pairs (a, b)
of elements a ∈ A and b ∈ B.We write this as A×B = {(a, b) : a ∈ A, b ∈ B}. A non-empty
subset of the Cartesian productA×B is called a relation, since it describes ways of associating
elements of the two sets with each other.
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In each case a novel aspect of Dedekind’s definitions was the explicit
use of what is now called an equivalence relation.5 This enabled him to pro-
vide unambiguous definitions of the ‘new’ number concepts he wished to
display, using only the familiar properties of natural numbers. While the
idea underlying equivalence relations can be found in specific contexts well
before Dedekind, the definitions given below— never published by him—
probably constitute the first consistent use of themethod in general (see [13],
p. 371), helping to usher inwhat Bertrand Russell (1872-1970)would later call
‘definition by abstraction’.

To define the elements of the first extension of N0 (to be denoted by Z,
whose elements he called integers) Dedekind used ordered pairs of elements
of N0. He defined the operations of addition and multiplication for members
of the set S of ordered pairs as follows:

(m,n) + (p, q) = (m+ p, n+ q), (m,n)× (p, q) = (mp+ nq,mq + np).

We use the same symbols +,× on both sides, but the pairs on the right define
the sum and product on the left.

The choice of definitions may be puzzling at first glance. But remember
thatN0 is being extended because it is not closed under subtraction. The pair
(m,n) is intended to help define the differencem−n. For example, the above
sum reflects the ‘sum of differences’ (m+ p)− (n+ q) = (m− n) + (p− q).

Since we are working with elements of N0 we can use its arithmetic and
order properties. If n ≤ m (so m ‘lies to the right of’ or equals n) the dif-
ference (m − n) of the pair (m,n) will be in N0, so the pair will represent a
familiar object. But ifm < n the pair will represent a new object. We might
wish to define (e.g.) the pair (2, 5) as representing −3, but this symbol will
only be meaningful if we can extend the arithmetic of N0 to deal with such
pairs.

Now note that the sum of the pairs (5, 2) and (2, 5) is the pair (7, 7),
whose ‘difference’ is 0. This is so for any pairs (m,n) and (n,m). The ‘differ-
ence’ is not uniquely defined in this way: takingm = 5, n = 2 produces this
result, but so does m = 4, n = 1, since (4, 1) + (1, 4) = (5, 5), for example.
There is ambiguity in these definitions.

Dedekind resolved this by defining an equivalence relation on the set S =
N0×N0. This would treat pairs with the same ‘difference’ as interchangable:

5Formally: an equivalence relation R on any set S is a subset R of the Cartesian product
S × S. If (a, b) ∈ R we write a ∼ b (‘a is related to b’). An equivalence relation must be:

(i) reflexive: a ∼ a,
(ii) symmetric: if a ∼ b then b ∼ a,
(iii) transitive: if a ∼ b and b ∼ c then a ∼ c.
Clearly the equality relation = has these properties. So an equivalence relation ‘gener-

alises’ the concept of equality by partitioning the set S into equivalence classes. Members of the
same class (representatives of the class) are treated interchangeably, and no two classes have any
members in common (they are disjoint).
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pairs (m,n) and (p, q) are related if m + q = n + p. We write this as
(m,n) ∼ (p, q).

To check that this defines an equivalence relation onS, consider any pairs r = (m,n),
s = (p, q), t = (u, v) in S. Using the commutative and associative laws for addition,
and cancellation in N0,we have:

(i) r ∼ r sincem+ n = n+m,
(ii) r ∼ s implies that s ∼ r, sincem+ q = n+ p implies p+ n = q +m, and
(iii) if for pairs r, s, t we have r ∼ s and s ∼ t then also r ∼ t ; for this note that

m+ q = n+ p and p+ v = q+u. But then also (m+ q)+ (p+ v) = (n+ p)+ (q+u).
Som+ v = n+ u, hence r ∼ t.

Dedekind now defined the set Z of integers as the collection of all equiva-
lence classes of pairs (where related pairs belong to the same class) under the
relation ∼ . Fortunately, it turns out that each class has exactly one repre-
sentative which is either of the form (n, 0) or of the form (0, n). The positive
integer n is then the class containing (n, 0). If the pairs (n, 0) and (p, q) are
equivalent, then n + q = 0 + p, so that the pair (q, p) is equivalent to (0, n),
since q + n = p + 0, and by the commutative law in N0 these two identi-
ties are the same. So we can define −n as the class containing (0, n). In this
fashionwe justify writingZ as the sequence {...,−2,−1, 0, 1, 2, ...} from now
on.

Having defined the elements of Z and the operations of addition and
multiplication, Dedekind proceeded to check that these operations inherit
the properties stated above for (N0,+,×).Using the simplified notation, we
can performany addition (for a, b inZ, a+b is again inZ). The neutral element
0 satisfies a+0 = a for every a in Z (adding 0 changes nothing). Every a has
an inverse for addition: for any a ∈ Z there is a unique element, which we
denote by −a, in Z, satisfying the identity a + (−a) = 0. This enables us to
define subtraction in Z in terms of addition, since a − b is simply shorthand
for the addition of a and −b, that is: a− b = a+ (−b).

In Z we can multiply two numbers and stay within the set. The neutral
element is 1 : a× 1 = a for each a in Z.

We extend the ordering a < b, where the notation means that a is less
than b if a occurs before b in the ordering. This is again defined to mean
that b = a+k for some k 6= 0 inN. The ‘non-strict’ order relation a ≤ b again
means that either a < b or a = b. Both definitions extend those used in N.
As usual, we also write a > b if b < a (and a ≥ b if b ≤ a).

As N is closed under addition, the ordering is transitive: if a < b and
b < c then a < c.
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Wenote (without proof) thatwe can compare any two integers (formally,
the ordering is total), and that in Zwe have the

(iv) trichotomy: Given integers a, b, exactly one of the following three
possibilities occurs:

a < b, a = b, b < a.

We also omit proofs, for Z, of the familiar ‘laws of arithmetic’, listed as
(i)-(iii) for N0 at the outset, as well as (iv) and the following simple conse-
quences of the above:

The ordering of integers is compatible with addition and multiplication.
In other words:

(v) if a < b then a+ c < b+ c for any integer c;
(vi) if a < b then ac < bc if 0 < c, and bc < ac if c < 0

(the final inequality follows as multiplication by−1 reverses the order).
Moreover, the familiar cancellation laws hold:
(vii) if a+ b = a+ c then b = c;

(viii) if a 6= 0 and ab = ac then b = c.

The first cancellation law confirms that subtraction (the opposite of ad-
dition) gives a unique answer:

if b+ x = a and b+ y = a then x = y.

The use of all these properties will be familar from school mathematics.
Given two pairs from N0, (m,n) and (p, q), representing negative inte-

gers, so that m < n and p < q, their product (mp + nq,mq + np) will have
its first term larger than its second. To see this, we use laws (i)-(iii) and (vi),
and compute

(mp+ nq)− (mq + np) = m(p− q) + n(q − p) = (n−m)(q − p) > 0.

In particular, this proves the claim (already used byDiophantus, seeChapter
1) that (−1)× (−1) = 1.

In the Appendix to Chapter 8 the above laws will be used to verify our
earlier claim that the system of complex numbers (C,+,×) cannot be given
an ordering that is similarly compatible with addition and multiplication.

3.2. Dedekind on rational numbers. Fitting fractions into an extended
number system in which the laws of arithmetic remain valid also requires
care. However, Dedekind’s solution of this issue may feel somewhat more
familiar than the steps he needed to accommodate negative numbers. Dur-
ing the Renaissance, as we saw, the arithmetic of fractions became accepted
earlier and with less hesitancy than did negative numbers. The practice of
expressing a fraction m

n ‘in lowest form’ is familiar from school. We now
express this by saying that we require m and n to be relatively prime. The
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approach taken by Dedekind below simply expresses this practice more for-
mally.

To define the number system (Q,+,×, <) formally, Dedekind was able
to start with pairs (a, b) of integers, using the arithmetic and order structure
of (Z,+,×, <), just as he had used N0 when defining the integers. To ar-
rive at the integers as a system closed under subtraction, whose elements
were defined uniquely, he had needed the equivalence relation discussed
above. His task now would be to accommodate another arithmetical oper-
ation, division, that was missing from Z, and to define the elements of the
new set Q uniquely. These constraints are again met by defining a suitable
choice of equivalence relation, one that is based on what is familiar to us as
cross-multiplication.

Dedekind beganwith the Cartesian productZ×Z.He then discarded all
pairs whose second coordinate is zero, and imposed an equivalence relation
on the remaining pairs:

If integers b and d are not 0, then (a, b) is related to (c, d) whenever ad = bc.
This relation is written as (a, b) ∼ (c, d).

As we did for addition above, it is easy to check that ∼ is reflexive,
symmetric and transitive (see Footnote 4). For this we use the fact that
multiplication in Z is commutative and associative, and apply the second
cancellation law. Moreover, for any a, b we have a(−b) = b(−a). Thus
(a, b) ∼ (−a,−b). So in any equivalence class we can find a representative
pair whose second element is in N.

In this way, Dedekind defined the setQ of rational numbers as the collec-
tion of all equivalence classes of pairs of integers (a, b)with b 6= 0.AsHamilton
had done for the complex numbers, he needed to define the operations of
addition and multiplication in Q, ensuring that these reflected the familiar
arithmetic of fractions: for given fractions m

n ,
p
q ,

m

n
+
p

q
=
mq + np

nq
,
m

n
× p

q
=
mp

nq
.

Writing [a, b] for the equivalence class of the pair (a, b),Dedekind there-
fore defined the sum of the two classes [a, b] and [c, d] as the equivalence class
of the pair (ad+ bc, bd) :

[a, b] + [c, d] = [ad+ bc, bd],

and their product as:
[a, b]× [c, d] = [ac, bd].

Recall that the representatives can be chosen with b, d as natural numbers
(i.e. positive integers). As we saw for the integers, the classes on the right-
hand side define the symbols +,× on the left, as addition andmultiplication
for rationals.
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The resulting rules for the arithmetic of fractions can be derived from
these definitions, and we will now revert to denoting the class [a, b] (a ratio-
nal number) by a

b ,where b > 0 and a and b are relatively prime, to represent
this equivalence class of fractions.

The algebraic operations in Q are compatible with addition and multi-
plication in Z, which we identify with the subset of Q where the denom-
inators (second members of the pairs) are 1. Thus Z may be regarded as
a subset of Q, with the same algebraic operations, exactly as N and N0 are
treated as subsets of Z.

For the ordering of members ofQ simply write: [a, b] < [c, d] if and only
if ad < bc, where the latter inequality uses the ordering in Z. Here it is
important that b and d are taken to be positive. In terms of fractions, this
reads: mn < p

q if and only if mq < np, extending the ordering from Z to Q.
The trichotomy and the transitivity of the ordering also extend to Q.

Having defined (Q,+,×, <), Dedekind had now arrived at a system of
numbers in which addition and multiplication can be performed without
restriction or moving outside Q (in formal terms, the set Q is closed under
these operations). The laws of arithmetic remain true in the number system
(Q,+,×).We can reverse the arithmetical operations: rational numbers can
be subtracted at will, and a rational number can be divided by any ratio-
nal number other than 0, with the unique answer remaining an element of
Q. Finally, the inherited ordering on Q is compatible with the arithmetical
operations on Q, exactly as described above (in (v) and (vi)) for Z.

However, unlike N0, the larger sets Z, Q do not have the Well-Ordering
property (although it holds for subsets ofZ that are boundedbelow). Clearly,
neither Z nor Q has a smallest element.

Moreover, in N we identify n+ 1 as the successor of the natural number
n. This concept extends to members of Z, but it no longer makes sense in
Q: given a rational number r, there is no such thing as the ‘next greatest’
rational number. If such a number (say s) were to exist, it would obviously
satisfy s > r, so that s − r > 0. But then their average r+s

2 would also be
rational, and greater than r, but less than s. So the assumption that such an
s exists leads to a contradiction: hence there is no such s. Similarly, Q+, the
set of all positive rationals, can have no least member.

In fact, given any two rational numbers r < s one can always find ra-
tionals (such as r+s

2 ) that lie strictly between them. Repeating this with r
and r+s

2 (or, alternatively, r+s2 and s) and continuing in this vein it becomes
possible to insert an infinite number of distinct rationals between r and s,
however close together r and s may be. This shows that Q is very different
from the set of natural numbers N—one can ‘pack in’ rational numbers on
the ‘number line’ as closely as one pleases.
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The set N of natural numbers provides the ‘spine’ on which the other
numbers systems are built.

The well-known Archimedean property holds in Q :

Given any p in Q there is a natural number n > p.

Archimedes uses an equivalent statement in his treatise On Sphere and
Cylinder. However, calling it the ‘Archimedean property’ is really a mis-
nomer; for line segments, such a statement already appears and plays a key
role in the comprehensive study of incommensurable geometrical magni-
tudes that dominates Book X of Euclid’s Elements. This book was written
before Archimedes was born.

For Q the proof of the claim is trivial: since p ∈ Q has (a representative
of) the form a

b , where a is an integer and b a natural number, the claim is
equivalent to saying that we can find a natural number n such that nb > a.
This is obvious if a ≤ 0, while if a ≥ 1, we can take n = a+1. Then, as b ≥ 1,
we have nb = (a+ 1)b = ab+ b ≥ a+ b > a.

Although all the above properties ofQ had been tacitly assumed to hold
for centuries, Dedekind had shown that one can derive this number system
by logical reasoning alone, purely on the basis of properties of his start-
ing point, the natural numbers. Just as Hamilton had done for ‘imaginary’
numbers, he was able to confirm the validity of the inherited arithmetical
relationships of his number system, without needing to concern himself
with explaining the nature of either negative numbers or fractions in terms
of analogies with geometry or anything else. This approach differs sharply
from earlier concerns about whether negative or imaginary numbers exist—
or, indeed, whether ratios should be regarded as numbers. More important
than the nature of the objects were the relationships between them that gov-
erned their interaction. In time, this abstract approach came to govern much
thinking about mathematics. In the next section, we will see how it also led
Dedekind to a rigorous arithmetical description of the ‘number line’.

4. Dedekind cuts

In 1858, when preparing an introductory lecture course on Calculus,
Dedekind realised that he could not prove results such as the IVT without
an arithmetical definition of the underlying continuum. As he points out
in [8], one could not give a rigorous proof of much simpler results, such as√

2×
√

3 =
√

6, unless square roots were described by arithmetical means.6

In keepingwith his general programme of creating each extended num-
ber system from the previous one, Dedekind set out to define a new number

6In the next chapter we discuss more fully why specific concerns about the geometric
description of irrationals were becoming more widespread by the middle of the nineteenth
century.
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system, starting fromQ, by means analogous to the extensions described in
the previous section. While those extensions included abstract notions such
a equivalence relations, neither had been technically difficult, and in each
case the relationship between a number in the extended class and its an-
tecedents in the former one was clear.

However, his current extension, beginningwith the rationals, presented
a more fundamental obstacle, as he discusses in detail in [8]. He realised
in particular that, instead of using pairs of rationals, he would require an
infinite number of rationals when filling a ‘gap’ in Q with an arithmetically
defined irrational number, in order that the newnumber systemwould have
a newproperty, that hewould call continuity. His project led him to consider
sets of rational numbers more abstractly, and his final definition of elements
of the real number system may seem some way removed from the general
reader’s intuition of what numbers are. The brief summary we give below
may therefore be somewhat more challenging conceptually than what has
gone before. (More details are given in MM.)

Dedekind’s definition of real numbers as produced by what he called
cuts of the set Q is today one of the standard ways of introducing the real
numbers. Although completed in 1858, he did not publish hiswork formore
than a decade. He only did so in 1872 when he became aware that a paper
by Georg Cantor, defining real numbers in terms of Cauchy sequences of
rationals, was soon to appear. Their papers were by no means universally
appreciated at the time. As an example, we have the verdict of the outspoken
Hermann Hankel (1839-1873):

Every attempt to treat the irrational numbers formally and without the concept
of [geometric] magnitude must lead to the most abstruse and troublesome artifi-
cialities, which, even if they can be carried through with complete rigour, as we have
every right to doubt, do not have a higher scientific value.

But in due course the constructions by Dedekind and Cantor were to
become staples of undergraduate mathematics in the twentieth century –
even if not always welcomed by that audience, either!

Dedekind’s elegant paper ([8]) is entitled Stetigkeit und Irrationale Zahlen
(Continuity and irrational numbers). He lays great emphasis on continuity,
which he regards as the key concept through which he links his reasoning
explicitly to the properties of the geometric number line.

He compares the order properties of Q with the positioning of points
on a line L:

1. For rational numbers, if b < a < c, we say that a lies between b and c;
just as a point p on L lies between points q and r if r is to its right and q to
its left.
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2. Between any two distinct rational numbers a, b there are infinitely
many other rational numbers; similarly, L contains infinitely many points
between distinct points p, q.

3. (a) Fix a rational number a. Split Q\{a} into two classes, A1 and A2,
where A1 contains all rational numbers b < a,while A2 contains all rational
numbers c > a. This leaves us with choosing where to place a. Placing a in
A1 would make a the largest number of A1; placing a in A2 would make a
the smallest number of A2. Either choice will ensure that each number in
A1 is less than every number in A2. (Dedekind’s choice will become clear
below.)

(b) Fix a point p on the line L. Cut L into two pieces and place every
point to the left of p into the line segment P1 and every point to the right of
p into the line segment P2. We can either include p in P1 as its right-most
point, or in P2 as its left-most point. Either choice ensures that every point
of P1 lies to the left of every point of P2.

Thus, to ensure that rational numbers corresponduniquely to the ‘splits’
of Q described in 3(a) requires a decision whether A1 should have a largest
element orA2 a smallest. The possibility thatA1 has greatest element bwhile
A2 also has a least element c can be ruled out: in that case b < c and 1

2 (b+ c)
would belong to neither A1 nor A2 since it is larger than b and smaller than
c.

As Dedekind points out, to each number in Q there corresponds one
and only one point of L. However, there is a crucial difference between Q
and L, since L contains points describing ‘incommensurable lengths’ such
as
√

2 :

‘Of the greatest importance, however, is the fact that in the straight line L there
are infinitely many points which correspond to no rational number...The straight
lineL is infinitely richer in point-individuals than the domainQ of rational number-
individuals.

If now, as we desire, we try to follow up arithmetically all phenomena in the
straight line, the domain of rational numbers is insufficient...and it becomes abso-
lutely necessary that...[Q]...be essentially improved by the creation of new numbers
such that the domain of numbers shall gain the same completeness, or as we may
say at once, the same continuity, as the straight line.’

His goal in providing a newdescription of the real numbers is that ‘arith-
metic shall be developed out of itself’, mirroring the way that ‘negative and frac-
tional numbers are formed by a new creation’. His method of creating this richer
number system rests on understanding what the continuity of the line L
means. His answer is that this lies in the converse of the ‘splitting’ of L:

‘If the points of the straight line fall into two classes such that every point of
the first class lies to the left of every point of the second class, then there exists one
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and only one point which produces this division of all points into two classes, this
severing of the straight line into two portions.’

He does not claim that he can prove this (seemingly obvious) assertion,
but instead takes it as an assertion about the nature of the line L that will be
taken as an unproven property. The task he now faces is to create a number
system that ‘completes’ Q by satisfying this continuity property.

4.1. Cuts and order properties. The above comparison of Q and the
line L shows that ‘splitting’ Q at a rational number (such as 2) will provide
a pair of (A1, A2) of disjoint sets that together make up all of Q, such as
A1 = {r ∈ Q : r < 2}, A2 = {r ∈ Q : r ≥ 2}, where the number 2
provides the least element of A2. But there are also quite different splittings
of Q: for example, we might place all negative rationals as well as all other
rationals whose square is less than 2 in A1, while A2 consists of the rest,
i.e. the positive rationals whose square is greater than 2 (there is no rational
whose square equals 2). In symbols:
A1 = {r ∈ Q : r < 0}∪{r ∈ Q : r ≥ 0, r2 < 2}, A2 = {r ∈ Q : r ≥ 0, r2 > 2}.
HereA1 has no largest element andA2 no smallest.7 This differs fundamen-
tally from splitting the line L into two pieces, and occurs precisely because
Q cannot fill the ‘gap’ at this point. Dedekind’s solution is to turn this fact
into a definition – for him:

a (Dedekind) cut of Q is a disjoint pair of non-empty sets (A1, A2) mak-
ing up all ofQ (that is, A1∪A2 = Q andA1∩A2 = ∅), and such thatA1 has
no largest element.

Following Landau, we will call A1 the set of lower numbers, and A2 the
set of upper numbers for this cut.

When cutting Q at a rational number r, Dedekind’s choice ensures that
the lower numbers have no largest element, while r becomes the smallest
upper number for this cut. For any given cut, every lower number is less
than every upper number.

To simplify the notation and terminology, we can focus on the set A1 of
lower numbers, since this determines A2 completely as its complement Ac1 =
Q\A1. Writing α instead of (A1, A2) to denote the cut means that α = A1

and αc = A2. We use Greek letters to denote cuts; the elements of any cut
are rational numbers, denoted by letters such as p, q, r, etc. We re-state the
definition in these terms:

Definition:
Call a subset α of Q a cut if
(i) α and αc = Q\α are both non-empty sets of rationals,

7The elementary calculations to prove this are left to the reader – they can be found (e.g.)
on p.3 of [40], and in MM.
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(ii) for rationals p, q, if p ∈ α and q < p then q ∈ α,
(iii) α has no largest element: given q ∈ α, we can find p ∈ αwith q < p.

Thus α consists of the lower numbers for the cut, and αc of its upper
numbers.8 Two cuts α, β are said to be equal if they contain the same rational
numbers. We write α = β. The set R of all cuts comprises the real numbers;
each real number is determined uniquely by a subset ofQ, the set of its lower
numbers.

The ordering of cuts R is defined by set inclusion.
Definition:
Given two cuts α, β write α < β if α is a proper subset of β i.e. α ⊂ β.
Hence β contains a lower number that is an upper number for α.
(i) This definition shows that the ordering is transitive: given cutsα, β, γ,

if α < β and β < γ, then α < γ.

This follows as β has a lower number r that is an upper number for α,
while γ has a lower number s that is an upper number for β. But r < s (for
β, any upper number s is greater than any lower number). So α < γ, since
s is a lower number for γ but an upper number for α.

(ii) The trichotomy holds for the ordering < .

For any cuts α, β, exactly one of α < β, α = β, β < α holds.
This is immediate from set inclusion, which defines < .

We write α ≤ β if either α = β or α < β. Thus α ≤ β means that α ⊆ β.
As for any (linearly) ordered set, we can define the following useful ob-

jects related to the order ≤ on R:
given a set B of cuts, the cut α is an upper bound for B if β ≤ α for all β

in B.We say B is bounded above by α.
The least upper bound (or supremum) of B is defined as an upper bound

α of B such that α ≤ γ for every upper bound γ of B.
Similarly, a cut δ is a lower bound for B if δ ≤ β for all β in B, and then

B is bounded below by δ.
The greatest lower bound (or infimum) of B is defined as a lower bound δ

of B such that γ ≤ δ for every lower bound of B.
The crucial property of completeness (or ‘lack of gaps’) of the set of cuts

is then given by the following result.
Theorem:

8Dedekind’s choice, expressed as requirement (iii), imposes an equivalence relation on
the set of all pairs (A 1, A2) of disjoint subsets of Q that satisfy A1 ∪ A2 = Q. A cut is an
equivalence class of such pairs, represented by its set of lower numbers.
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Let B be a non-empty subset of R for which there exists an upper bound θ ∈ R
under the ordering < . Then B has a least upper bound in R.

Proof: Each α ∈ B is a non-empty subset of Q. Let L(B) be the union of all the sets
of lower numbers for cuts in B. Thus r ∈ Q belongs to L(B) if and only if there is at
least one cut α ∈ B such that r is a lower number for α. A rational number r may
be a lower number for many cuts in B, but we list it only once in forming L(B). It is
a straightforward exercise to show L(B) satisfies the definition of a cut (seeMM for
details).

Next,L(B) is an upper bound forB since, by definition ofL(B), the set of lower
numbers for any α in B is a subset of L(B). So α ≤ L(B) holds for every α ∈ B by
definition of the ordering (since ≤means ⊆).

Finally, L(B) is the least upper bound for B: if a cut η is an upper bound for
B we must show that L(B) ≤ η. So we need to show that every lower number for
L(B) is also a lower number for η. But the lower numbers for every α inB are lower
numbers for η (as η is an upper bound for B). It follows that L(B) is a subset of the
set of lower numbers for η, i.e. L(B) ≤ η. Hence L(B) is the least upper bound for
B. This completes the proof.

Rational cuts are easily identified:
Theorem
Given a rational p, define αp = {r ∈ Q : r < p}. Then αp is a cut, and its

smallest upper number is p.

Proof: Clearly αp satisfies (i), (ii) of the definition of a cut. To see that αp has no
greatest lower number, let q ∈ αp be arbitrary, so that q < p. But then q < 1

2
(q+p) <

p and (by definition of αp) we have 1
2
(q + p) ∈ αp, so (iii) is satisfied and αp is a cut.

Equally, we cannot have p < p, so p is not in αp, hence it is an upper number for
αp. But q < p implies q ∈ αp, so any upper number q must satisfy q ≥ p, hence p is
the smallest upper number for αp.

We call αp the rational cut associated with p. We have a one-one corre-
spondence p ↔ αp = {r ∈ Q : r < p} between elements of Q and elements
of R. The correspondence preserves the ordering of Q: p < q if and only if

{r ∈ Q : r < p} ⊂ {r ∈ Q : r < q}.

This indicates how the setQ can be embedded in the set R in a way that
preserves the ordering. Moreover, it is not hard to show that between any
two given cuts there is a rational cut.

Defining the sum and product of two cuts and checking that the arith-
metical properties correspond takes somewhat more work, but clearly the
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rational cut {r ∈ Q : r < 0} is the neutral element for addition. This enables
Dedekind to define positive and negative cuts, and check that the laws of
arithmetic extend from Q to R. Proofs of these claims can be found in MM
and in (e.g.) [8], [10], [40]. (Also see [6] ).

The steps outlined here enabled Dedekind to characterise real numbers
directly in terms of rationals, showing that (as suspected) the real number α
can be regarded as the set of all rationals less than α. Although he avoided
the logical trap that Cauchy fell intowhen defining irrationals as limits of ra-
tional sequences, Dedekind himself was somewhat hesitant about explicitly
calling cuts numbers: for him, the set of lower numbers of a cut ‘produces’ a
real number. Today, mathematicians generally do not share these qualms. A
football analogymay be helpful here: whenManchester United play against
Liverpool, the pitch will usually feature eleven players in the set compris-
ing the Liverpool team, yet when the result of the match is recorded in the
League Table, the team is regarded as a single unit (Liverpool). The set of
players is treated as a single element of another set, namely the set of Premier
League teams. Similarly, a cut is a set of rationals, but this set is equally re-
garded as an element of the set of real numbers.

The real number system that Dedekind defined fills in all the gaps ofQ.
The question now arose whether repeating the process would again generate
new elements if one took cuts of the reals, as was done for the rationals.
Dedekind’s key result shows that this would not happen—the analogy with
the line had been ‘completed’ by defining the cuts.

Dedekind’s Theorem:
Given non-empty subsets A,B of R such that A ∪ B = R, A ∩ B = φ and

a ∈ A, b ∈ B implies a < b, there is a unique x ∈ R such that for all a ∈ A, b ∈ B
we have a ≤ x ≤ b.

Consequently, either A has a largest element or B a smallest.
The proof can be found in MM.

5. Cantor’s construction of the reals

Georg Cantor expressed his admiration for the elegance and clear logic
of Dedekind’s construction, but he was adamant that ‘numbers in analysis
never present themselves as "cuts," and therefore have first of all to be brought
into this form by elaborate artifices’. His own construction, which he felt was
the ‘most natural of all’, presenting the approach best suited to the analysis
of functions, started from the Cauchy criterion (see Chapter 6) for conver-
gence of sequences. In 1872 Cantor outlined his ideas in a paper dealing
with trigonometric series, which he had sent to Dedekind prior to publi-
cation, thus prompting Dedekind to publish his long-held views. His was
not the first publication using Cauchy sequences to define the irrationals—
in 1869, the French mathematician Charles Meray (1835-1911) had published
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an account in different terminology harking back to Cauchy. Eduard Heine
(1821-1881), Cantor’s colleague at the University of Halle, who was moti-
vatedmore directly by the need for clear foundations for Real Analysis, also
published a version of Cantor’s arguments in a paper in 1872.

Cantor’s initial motivation differed substantially from that of otherwrit-
ers on the subject. His main interest, first encouraged by Heine, was to ex-
plore the way Fourier serieswere able to represent a wide class of functions.9
Cantor addressed the problem of deciding for which functions the repre-
senting series is uniquely defined. He showed initially that this will be true
if the series converges to f at all points. By 1872, he had succeeded in prov-
ing uniqueness even if the convergence failed at infinitely many points, pro-
vided that these points are distributed on the line in a specific fashion. It was
this result that led him to consider how rational and irrational ‘points on the
line’ are distributed, and thus drew his attention to the need for irrationals
to be defined unambiguously as numbers.

Cantorwaswell aware that he could not define a real number as the limit
of a sequence of rationals, since the definition of limit involves identifying
the limit as a number. Cauchy sequences of rationals, however, only require us
to know what rationals are and how to do arithmetic with them. Moreover,
any rational number r has an obvious associated Cauchy sequence, namely
the infinite constant sequence {r, r, r, r, ..., r...}. On the other hand, Cauchy
sequences such as our old friend, the successive decimal approximations
{1, 1.4, 1.41, 1.414, ...} to

√
2, clearly lead to irrationals.

Cantor’s definition of irrationals was discursive, leaving many details
to the reader. He considered Cauchy sequences of rationals, or, as he put
it, ‘fundamental sequences of the first order’. To each such sequence, con-
sisting of rationals (aν) such that ‘after the choice of an arbitrarily small rational
number ε a finite number of members can be separated off, so that those remaining
have pairwise a difference which in absolute terms is smaller than ε’, he attached
a symbol b. The real numberswould constitute the collection of all such first-
order sequences. Cantor was aware that different Cauchy sequences can
have the same limit, but it was his colleague Heine, who, in a paper also

9This had been a hot topic in analysis for some decades, ever since Joseph Fourier’s famous
1807 investigation on representing a general function f on the interval [−π, π] by a trigono-

metric series of the form 1
2
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)]. Fourier had calculated the co-

efficients in the series expansion as an = 1
π

∫ π
−π f(t) cos(nt)dt, bn = 1

π

∫ π
−π f(t) sin(nt)dt,

and claimed that, with these coefficients, the series would converge at each point x to the value
f(x). The counter-example given by Niels Abel to Cauchy’s assertion that an infinite sum of
continuous functions is always continuous used such a sequence. Abel also realised that his
result illustrated deficiencies in various proofs given by Fourier. Over the next several decades
a number of prominent mathematicians, including Dirichlet and Heine, had gradually suc-
ceeded in widening the range of situations for which uniqueness of the representation of f
could be proved.
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Figure 36. Georg Cantor, by an unknown photographer, ca. 190010

published around the same time, clarified explicitly that two such sequences
should be considered equal if the sequence of their differences converges to
0. This requirement again introduces an equivalence relation on the set of ra-
tional Cauchy sequences. The fundamental sequences (an), (bn) belong to
the same equivalence class if |an − bn| → 0 when n→∞.

Cantor was at pains to stress that b was in no sense assumed to be a
‘limit’, but served simply as a symbol representing the sequence. It was
only after carefully defining the algebraic and order relations for fundamen-
tal sequences that he could make sense of the statement b = limν→∞ aν .He
argued that irrationals, as a result of their definition, should have ‘as definite
a reality in our mind’ as do rationals, and that this was what should con-
vince one of the ‘evident admissibility of the limiting processes’. He then used
the same construction, taking fundamental sequences of the second order,
where each element was a fundamental sequence of the first order, to cre-
ate the next level of abstraction. He continued this process indefinitely, but
showed that nothing new would be created in any such repetition: they all
‘accomplish exactly the same thing for the determination of a real number b as the
fundamental sequences of the first order’. This became his version of Dedekind’s
‘continuity’ property.

We summarise Cantor’s approach in current terminology:
Definition

10https://commons.wikimedia.org/wiki/File:Georg_Cantor_(Porträt).jpg

https://commons.wikimedia.org/wiki/File:Georg_Cantor_(Portr%C3%A4t).jpg
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(i) A Cauchy (or fundamental) sequence of rational numbers (an)n≥1 is
such that, for any given rational r > 0, there is a natural number N, de-
pending on r, such that |am − an| < r whenever m,n ≥ N. Denote the set
of all rational Cauchy sequences by C.

(ii) A null sequence (an)n of rational numbers is such that, for any ratio-
nal r > 0, there is a natural number N, depending on r, such that |an| < r
for all n ≥ N. Denote the set of all rational null sequences by N .

(iii) Two Cauchy sequences (an), (bn) of rational numbers are equivalent
if the sequence (an − bn)n of their differences is a null sequence. Write this
as (an) ∼ (bn), or (bn) ∈ (an) +N . This defines an equivalence relation on
C.

Definition: The set R of real numbers is the set of all equivalence classes of
Cauchy sequences of rationals under the relation∼. In other words, for any
sequence s = (sn) in C, the equivalence class of s is the subset of C given by

[s] = {s′ ∈ C : s′ ∼ s}.

Any constant sequence r with rn = r for all n is in C. For two constant
sequences the equivalence r ∼ s means that r = s. Thus [r] is the only
constant sequence in its class. We identify the rationals with the equivalence
classes of constant sequences, i.e. embed Q in R by the correspondence r ↔
[r]. So the rational number r is represented in R by the class of the constant
sequence r = {r, r, r, r, ..., r, ...}.

To define the algebraic operations for the set of all equivalence classes,
addition andmultiplication of the representing sequences is done coordinate-
wise – that is, individually for corresponding terms in the sequence. For
given rational Cauchy sequences x = (xn)n and y = (yn)n, the sum [x] + [y]
becomes the class of the sequence x + y = (xn+yn)n and similarly for their
product. The class [0] of the constant sequence with r = 0 is the neutral
element for addition: it consists of all null sequences (cn)n in C. Hence
[a] + [0] = [a] for all classes a. Similarly, the class [1] is the neutral element
for multiplication. Inverses are also simple to determine – note that to have
a multiplicative inverse, the class [a] must not contain null sequences.

This defines the algebraic system (R,+,×), in which the rationalsQ are
embedded by the correspondence r ↔ [r].We may now treat Q as a subset
of R, with + and × extended from Q to R.

This embedding allows Cantor to extend the modulus |·| to R by taking
the modulus |[x]| of x = (xn) as the class of (|xn|)n, and to define the set of
(strictly) positive real numbers as

R+ = {[x] ∈R : [x] 6= [0], |[x]| =[x]}.

A real number [y] is negative if its additive inverse −[y] is positive. Setting
[0] < [x] if [x] belongs to R+ defines the ordering < for R.
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The proof of completeness of R uses the Cauchy Criterion for conver-
gence – in Cantor’s approach this is the more technically challenging argu-
ment and will be omitted here. (Proofs can be found in MM and [10].)

Unlike Dedekind, Cantor emphasises the algebraic operations rather
than the ordering. This makes his approach suitable for extensions of the
completeness property to domains which have no linear ordering, such as
the Cartesian plane R2 and its extensions to higher dimensions.

6. Decimal expansions

Having defined real numbers arithmetically, we can use the familiar
concept of decimal expansions to highlight the difference between irrationals
and rationals in another way that may feel more ‘concrete’ than Dedekind
cuts or classes of Cauchy sequences of rationals. Wewill concentrate on pos-
itive numbers here. In our base-10positional systemofwriting numbers, the
decimal expansion of a real number is obtained by making successive choices
from the set of single-digit (base 10) numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and
combining them with the decimal point in order to separate the ‘integral’
and ‘fractional’ parts. The decimal point indicates where we leave the realm
of natural numbers, so that what comes after the decimal point is intended
to represent a number ‘lying between’ 0 and 1.

6.1. Expanding rationals. Write an infinite decimal expansion of a posi-
tive real number as

a0.a1a2...am...

where a0 is an element of N0, while, for j ≥ 1, each aj is one of the digits
0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. Here a0 represents a finite sum of multiples (using
these digits) of positive powers of 10. After the decimal point we add the
infinite sum

∞∑
n=1

an
10n

=
a1

10
+

a2

102
+ ...+

ak
10k

+ ...

Finite, or ‘terminating’, decimal expansions are familiar, of course: we
write 1

8 as 0.125, for example. Nothing really changes if we write this as the
infinite decimal expansion 0.12500000... instead, adding zeroes in all the dec-
imal places after the third. Doing so brings the terminating expansion into
line with ‘recurring’ expansions like 1

3 = 0.3333.... = 0.3 or 1
7 = 0.142857,

where in both cases the upper bar denotes the indefinite repetition of the
number or group of numbers concerned. (The recurrence need not start im-
mediately after the decimal point: consider 8

15 = 0.53333..., for example.)
Any positive rational number, represented by r = m

n (where the natural
numbersm,n have no common factors) will have decimal expansion of one
of these two forms: if n has no prime factors other than 2 and 5, its decimal
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expansion terminates, because the fraction m
n is equivalent to one of the form

q
10k

, for some natural number q and k ≥ 1.

Any other rational will have a non-terminating expansion. If, for exam-
ple, 1

3 had a terminating decimal expansion, we would have 1
3 = q

10k
for

some natural numbers q and k > 1. Hence 10k = 3q. But the uniqueness of
prime factorisation shows that these numbers cannot be equal: on the left
the prime factors are 2 and 5, while on the right 3 is a prime factor. A sim-
ilar argument clearly applies to any rational mn where n contains any prime
factor other than 2 or 5.

Wecharacterise recurring expansions of fractions m
n
byusing the pigeonhole principlea:

Suppose there are k pigeonholes and n > k pigeons. Then at least one pigeonhole
contains more than one pigeon.

For, if no pigeonhole contains more than one pigeon, and l ≥ 0 pigeonholes
are unoccupied, then k − l pigeonholes contain exactly one pigeon. The two finite
sets, respectively of occupied pigeonholes and of pigeons, have the same number of
elements, i.e. k − l = n. This contradicts the fact that n > k. So our assumption is
false, and hence at least one pigeonhole contains more than one pigeon.

Now apply this to long division. If the decimal expansion of the rational num-
ber m

n
is infinite, then dividingm by nmust leave a non-zero remainder at infinitely

many decimal places, as the expansion does not terminate. These remainders must
be natural numbers less than n,which means that there are at most (n− 1) different
choices. Hence within n successive decimal places some remainder r will occur a
second time. As we are dividingm.000.... by n, the immediate successor of rwill re-
peat exactly as before. In other words, the decimal expansion of any rational number
either terminates or recurs with a finite period.
aAlso known asDirichlet’s ‘drawer principle’ [Schubfachprinzip]. He used it in 1834, but its first
known appearance is in a 1624 text by the French Jesuit priest Jean Leurechon.

We combine terminating and recurring expansions in the single phrase
eventually periodic (with periodicity starting after a finite number k ≥ 0 of
places after the decimal point). We have shown that every rational number
has an eventually periodic decimal expansion.

The converse is also true: if the decimal expansion of a real number x is
eventually periodic, then x is rational.

To see this, we may assume that the periodicity begins at the first decimal place
(if the expansion begins with m zeroes after the decimal point, we consider 10mx
instead). Thus x = a0.a1a2...ak. This is the sum S of an infinite series with first

term a0. Let
∞∑
n=0

denote summation of all its terms, starting at n = 0, and set q =
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a1
10

+ a2
102

+ ...+ ak
10k

, then S is the rational number

S = a0 + q

∞∑
n=1

1

(10k)n
= a0 + q

[
1

10k

1− ( 1
10k

)

]
.

Therefore the rational numbers are characterised as real numbers whose
decimal expansions are eventually periodic. To know the infinite decimal
expansion of a rational number r exactly, it suffices to know finitely many of
its initial entries after the decimal point.

As we will see shortly, it is often helpful to express any terminating dec-
imal expansion as an infinite expansion, in order to obtain a consistent set
of entities. However, when doing this, the need to describe such a rational
number uniquely as an infinite decimal expansion will require us to make a
choice between using recurring nines or recurring zeroes. Like Dedekind
did for his cuts, we will opt for the former, as will be shown shortly.

6.2. Expanding irrationals. Call an infinite decimal expansion aperiodic
if it is not eventually periodic. Thus the irrational numbers can be charac-
terised as real numbers whose decimal expansions are aperiodic. For these
expansions we cannot determine the full expansion after only seeing finitely
many decimal entries, since at each stage we have no a priorimeans of deter-
mining the next digit with certainty. An infinite sequence of digits chosen
at random is highly likely to be aperiodic.

Imagine dipping a fishing net into a pond containing all infinite dec-
imal expansions, and pulling out one of them, x, at random. For x to be
eventually periodic, it must have the property that there exists some finite
M such that, having read the firstM digits of x = a0.a1a2a3..., we will, from
that point onward, know for certain what all its remaining digits are. A ran-
domly selected infinite sequence of decimal digits is highly unlikely to have
this property. At each point there are 10 choices for the next digit, which –
in the absence of additional information – might reasonably be considered
to be equally likely. They are chosen independently of each other. Under
these assumptions the occurrence of any particular sequence of k digits in
the infinite decimal expansion would have probability 1

10k
, unless we have

extraneous information. This makes it highly implausible, if k is large, that
our ‘randomly chosen’ expansion could be eventually periodic.

This suggests that the infinite decimal expansion of a real number is a
more subtle concept thanmay at first appear to be the case. Wewill consider
this (possibly disturbing) issue further in Chapter 10.

6.3. The Weierstrass-Stolz model. Representing a positive real num-
ber x by an infinite decimal expansion a0.a1a2a3...makes perfect sense once
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the set R has been defined: for anym ≥ 1, we call the finite decimal expan-
sion of orderm, x(m) = a0.a1a2a3...am themth truncation of this expansion
(with the proviso, as indicated below, that a terminating expansion is shown
in its ‘recurring nines’ form).

Then x(m) represents the rational number

x(m) =
10ma0 + 10m−1a1 + ...+ am

10m
.

The sequence of truncations (x(m))m≥1 is non-decreasing (at each decimal
place we add a non-negative term) and it is certainly bounded above by a0 +
1. By the completeness ofR thismeans that the sequence (x(m))m converges
to a real number, namely the supremum of the sequence. Each x(m) is a
partial sum of the infinite series defining this supremum and writing x =
a0.a1a2...an... is a short-hand notation for the sum of the series. In this sense
we can now exhibit any irrational as the limit of a sequence of rationals, as
Cauchy wished to do.

This argument can be turned on its head, providing a more ‘concrete’
model of real numbers—although the above characterisation of irrationals
as aperiodic expansions suggests that infinite decimal expansions are rather
less familiar than they seem! The truncations of an arbitrary infinite decimal
expansion define lower numbers for a Dedekind cut that yields a real number
x. Moreover, theywill approachx arbitrarily closely, as the series they define
converges to it.

As we have observed, for certain rational cuts there is ambiguity: for
r = q

10m we can choose the infinite decimal expansion either in the form

a0.a1a2...am0000

or, alternatively, as

a0.a1a2...(am − 1)999...

since these two series have the same (rational) sum. For example, 1
2 =

0.50000... or 0.49999.... Dedekind’s choice that the lower numbers of a cut
should not have a greatestmember is reflected by taking the ‘recurring nines’
expansion whenever this occurs—this choice constitutes an equivalence re-
lation on the set of decimal expansions, just as Dedekind’s choice led to
equivalence classes of cuts.

Thus, instead of using Dedekind cuts, we could begin with the set of
positive infinite decimal expansions as defined above, impose the equiva-
lence relation just described, and mimic the logic of Dedekind’s arguments.

First, define the order relation < for infinite decimal expansions as fol-
lows: if a = a0.a1a2...an... and b = b0.b1b2...bn..., define a < b if there is a
k ≥ 0 such that ai = bi for all i < k and ak < bk.
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It is easy to see that the trichotomy holds for<, andwe can define upper
bounds as before. The key result is (again) that any set of infinite decimal
expansions that is bounded above will have a least upper bound.

In other words, the set of positive infinite decimal expansions has the
completeness property. Extending this to all expansions and, in particular,
defining the arithmetical operations (+,×) for negative numbers, is some-
what more intricate.11 Checking the arithmetical axioms can become te-
dious, so we will not pursue the matter here—an outline, including an el-
ementary proof of completeness and the definition of arithmetical opera-
tions, can be found in MM. This approach is sometimes referred to as the
Weierstrass-Stolzmodel of the reals—after Vorlesungen ũber Allgemeine Arith-
metik, published in 1885 by Weierstrass’ former student Otto Stolz (1842-
1905).

7. Algebraic and constructible numbers

Motivated by the solution of the ‘three famous problems’ of antiquity
(seeChapter 3), we can identify various classes of real numbers in a different
way. Recall that Plato reports the discovery by Thaeatetus that (in our termi-
nology) positive square or cube roots of natural numbers are either natural
or irrational numbers.

7.1. Roots. We place this in a more general setting: given any m in N,
the positivemth root of a natural number N is the unique positive solution
of the equation xm = N, and is written as x =

m
√
N.

If x =
m
√
N is rational, then we can find relatively prime natural num-

bers a, b such that x = a
b . Now solve the equation (ab )m = N, so that am =

Nbm.Write the unique prime factorisation of b as b = pa11 ...pakk . Then every
prime pi on the right divides b, so it must also divide am. Since pi is prime,
it now divides a, using the extension of Euclid’s lemma we proved in Sec-
tion 2. So a and b are relatively prime, yet have every pi as a common factor,
which is impossible unless b = 1, so that N = am. Hence the Fundamental
Theorem of Arithmetic immediately generalises Theaetetus’ result, proving
that:

m
√
N is irrational unless N = am for some natural number a.

This result provides us with an unlimited collection of different irra-
tional numbers. In particular, this collection includes 3

√
2, which, if it could

11For consistency this requires us to write the expansion of a negative number in an un-
usual form: what is normally written as −1.75 is now written as −2.25, which will mean
−2 + 0.25, so that we can read the part after the decimal point as positive. So, for exam-
ple,−1.76 becomes−2.24, which is less than−2.25 in the ordering as defined here: the initial
digits and the first decimal digits are equal, and in the second decimal place 4 is less than 5.

(We would also replace these terminating expansions by their ‘recurring nines’ version.)
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be constructed by straightedge and compass, would solve the ancient prob-
lem of the duplication of the cube, considered in Chapter 3.

7.2. Algebraic numbers. The positive mth root of N arises as the root
of the polynomial xm −N = 0. In Chapter 4, the Fundamental Theorem of
Algebra showed that any polynomial of degree m will have exactly m (not
necessarily distinct) roots belonging to the complex number system C. This
leads to a definition:

Definition:
An algebraic number is a solution of a polynomial equation of the form

cmx
m + cm−1x

m−1 + ...+ c1x+ c0 = 0,

where the ci are integers (or, equivalently, are rational numbers).
By the Fundamental Theorem of Algebra, this equation hasm solutions

in C.
In particular, the rational r = a

b is an algebraic number, since it is the
root of the equation bx+ (−a) = 0.

Wedenote the set of all real algebraic numbers byA. This includesQ, but
is considerably larger, as it includes all positive mth roots of natural num-
bers, for example. Sums and differences of square roots are similarly in-
cluded. For example, if a, b are natural numbers, then x =

√
a+
√
b satisfies

x2 = (
√
a+
√
b)2 = a+ b+ 2

√
ab and, collecting terms and squaring again,

we obtain (x2 − (a+ b))2 = 4abwhich becomes the polynomial

x4 − 2(a+ b)x2 + (a− b)2 = 0.

In fact, the set of real algebraic numbers includes all 23 classes of incom-
mensurables identified (with considerably greater effort) by Euclid in Book
X of the Elements: the surds he considered all lead to polynomial equations
whose degree is a power of 2. So all Euclid’s classes of incommensurables
belong to the set of real algebraic numbers.

7.3. Constructible numbers. The set of real algebraic numbers includes
the solutions of the first two ‘famous problems’ of antiquity. First, the du-
plication of the cube involves constructing a length of 3

√
2, which is a real

algebraic number. Second, we saw in Chapter 3 that the trisection of the
general angle, leads to the cubic equation 4z3 − 3z − c = 0,where c = cosφ
for the given angle φ. If c is rational, the three complex roots of the cubic are
algebraic numbers. But the Intermediate Value Theorem ensures that any
cubic has at least one real root, since the polynomial is negative for large
negative z and positive for large positive z. In our example, when φ = 60◦

we know that c = 1
2 , so the cubic equation becomes 8z3− 6z− 1 = 0,whose

roots include the real algebraic number z = cos 20◦.
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But, although they are algebraic numbers, neither cos 20◦ nor 3
√

2 repre-
sent lengths that can be constructed by straightedge and compass alone. In
1837 the French mathematician Pierre Wantzel (1818-1848) defined the class
of constructible numbers as numbers that correspond to lengths of such line
segments. Using a method now known as field extensions, Wantzel proved
that these are precisely the numbers that can be obtained by repeated use
of the four arithmetical operations (+,−,×,÷) and square root extraction.12
Obtaining a constructible length from a rational length by straightedge and
compass therefore implies that this length represents the root of a polyno-
mial equation with rational coefficients whose degree is a power of 2.

We know that 3
√

2 and cos 20◦ are roots of cubic equations, and one can
prove that they cannot satisfy an equation whose degree is a power of 2.
Thus neither is a constructible number.

Therefore, the set A of real algebraic numbers includes all constructible
numbers as a proper subset, and the set of constructible numbers includes
the rationals as a proper subset. All three are of course infinite subsets of the
real number system R.Wemight reasonably ask if there are any irrationals,
representable by aperiodic decimal expansions, that are not algebraic num-
bers?

8. Transcendental numbers

The third ‘famous problem’ of antiquity asked for the side of the square
with area equal to that of a given circle—this is often called the quadrature
of the circle. In the simplest case the circle has unit radius, so that its area is
π, and the side of the square we seek is

√
π. It turns out that this number,

and π itself, are not algebraic numbers—and neither is the irrational number
Euler had named e, the base of natural logarithms (see Chapter 5).

Real numbers that are not algebraic are called transcendental – the term
was first used in this context by Euler, following Leibniz’ choice of this name
for curves that Descartes had called ‘mechanical’. But at that stage no one
had a proof that such numbers exist.

The earliest candidate to be examined closely was the familiar number
π. In 1768 the Swiss polymath Johann Heinrich Lambert (1728-1777) proved
that π is irrational and conjectured (with a sketch plan for a possible proof)
that it must be transcendental. Similarly, in 1806, Legendre, who had shown
that π2 is irrational, concluded about π:

12In the classic text [7] Courant and Robbins provide a fairly detailed description of
Wantzel’s methods. Wantzel’s paper aroused little interest and was largely forgotten for nearly
a century (see a recent account by Jesper Lützen in Historia Mathematica 36 (2009) pp. 374-394).
Also seeMM for a remarkable result concerning the construction of regular polygons inscribed
in a circle, largely proved by Gauss and later completed by Wantzel.
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Figure 37. Circle-squaring with the spiral

‘It is probable that it is not even contained among the algebraic irrationals; in
other words it cannot be the root of an algebraic equation with a finite number of
terms, and rational coefficients. However, it seems difficult to prove this theorem
rigorously.’

In antiquity, various attempts, some of them ingenious, were made to
square the circle.

The quadratrix of Hippias, described in Chapter 3 as an angle trisector,
provided an early ‘solution’ (based on Figure 16(b)) but this curve cannot be
constructed by ruler and compass, as Euclid demands. Although no direct
written account confirms it, most historians accept the report by the fourth
century commentator Pappus that it was Menaechmus’ brother Dinostratus
(about whom not much else is known) who made this discovery around
350 BCE. Pappus was well aware that this does not provide a straightedge-
and-compass construction, as the quadratrix cannot be constructed by these
means. But his report reflects the name that has survived for this curve,
relating it to squaring the circle rather than trisecting the angle.

A different approach, unsuccessful but illustrating the level of sophis-
tication achieved at that time, is preserved in an even earlier fragment by
Hippocrates of Chios. He was able to square various types of lunes (crescent-
shaped figures bounded by two circular arcs of unequal radii). He then
noted that he would be able to square the circle if he could square the lunes
created by a semicirclewith half a regular inscribed hexagon and three semi-
circles with diameters equal to the sides of the hexagon. However, squaring
these particular lunes proved elusive. (SeeMM for details of the above con-
structions.)

The spiral of Archimedes (seeChapter 5) provides a further quadrature
of the circle. In Figure 37 the spiral starts at the point O, while P is the
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point reached at the first full turn of the circle. The tangent to P meets the
line perpendicular to OP at T. In Proposition 19 of his treatise On Spirals,
Archimedes shows that the line segment OT equals the circumference of
the circle OP . If OP = r this means that OT = 2πr, so that the area of
the right-angled triangle TOP equals that of the circle OP. Constructing a
square with this area is then a simple matter.

These geometric constructions bring us no closer to a criterion for decid-
ingwhen a given numbermust be transcendental, or to define an example of
such a number arithmetically. This required a radically different approach,
developed in the mid-nineteenth century.

8.1. Rapid approximation by rationals. The breakthrough, showing
that transcendental numbers exist, was made in 1844 by the French mathe-
matician Joseph Liouville (1809-1882), who was the first to identify a specific
number that he could prove to be transcendental. His approach was to con-
sider ways in which one might distinguish between the two classes of alge-
braic and transcendental numbers by considering the speedwith which such
numbers can be approximated by rationals.

It may seem counter-intuitive at first, but what separates the two classes
is that transcendental numbers allow rational approximations of greater ra-
pidity than algebraic numbers do! Tomake this statementmore precise, con-
sider the approximation of an arbitrary real number by a rational number.13

Wecanfind infinitelymany rationals between any twodistinct real num-
bers. On the other hand, consider the distance between two distinct rational
numbers r = a

b and s = c
d (taking b and d as positive). We obtain

|r − s| = |a
b
− c

d
| = |ad− bc|

bd
≥ 1

bd
.

The final inequality follows fromDedekind’s definition of rational numbers:
if we have ad = bc, then r = s. Thus, for distinct r, s, the distance |ad− bc| is
at least 1, as a, b, c, d are integers. In other words, if we try to approximate
s = c

d by the rational r, we cannot get closer than the reciprocal of the product
of the denominators of the two fractions (in lowest form) representing these
rationals. We can approximate a fixed rational s = c

d as closely as we please
by another rational, but to get very close to s with r = a

b , we must expect
the denominator b of r to become very large.

Next, suppose that we wish to approximate a given real number x by a
rational number r = a

b in such a way that the distance between them is less
than the square of the denominator of r, that is

|x− r| < 1

b2
.

13We follow [18] pp.159-163, in the arguments given here. The approximation of real num-
bers by rationals is a much wider topic, discussed in more detail there.
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If x = s = c
d is also rational, we have just seen that the distance is at least 1

bd ,

which is less than 1
b2 only if b < d.Hence, if x = s is rational, there can only

be (d−1) choices for the denominator b of the approximating rational r = a
b

if the desired inequality is to hold. In other words, there are only finitely
many (in fact, fewer than d) different rationals which lie closer to s = c

d than
the square of their denominator.

This suggests the following definition.
Definition:
The real number x is approximable by rationals to order n if there is a num-

ber K, depending only on x, such that we can find infinitely many rationals
a
b that satisfy the condition

∣∣x− a
b

∣∣ < K
bn .

With this definition, any rational number is approximable by (other) ra-
tionals to order 1, since the identity |r − s| = |ad−bc|

bd shows that the rational
s = c

d is approximated towithin ( |ad−bc|d ) 1
b by a rational r = a

b , and for given
c, dwe can find infinitely many a, b to satisfy the equation ad−bc = 1 (since,
with c, d known, this is a single linear equation in the two unknowns a, b).
Since d is a natural number, 1

d ≤ 1, and it follows that, if we choose any
K > 1, there are infinitely many rationals c

d such that
∣∣s− a

b

∣∣ < K
b .

However, the condition
∣∣s− a

b

∣∣ < 1
b2 is possible only if b < d, so it fol-

lows that s is not approximable by rationals to order 2 (and hence to any
order higher than 1). Whatever the choice of the constant K (which de-
pends only on s) we have fewer thanKd different choices of r = a

b ,with a, b
relatively prime, such that

∣∣ c
d −

a
b

∣∣ < K
b2 .

Recall that a real algebraic number a is the root of a polynomial with
rational coefficients. We say that the degree of a is the smallest degree of a
polynomial which has a as a real root. From the above, orders of approxi-
mation appear to be be connected to the degree of the polynomial that de-
fines a given algebraic number—after all, among algebraic numbers it is the
rationals that are defined by polynomials of degree 1.

Liouville proved the following remarkable theorem:
A real algebraic number of degree n is not approximable by rationals to any

order greater than n.
(The proofmakesmore significant demands on the reader’s background

and technical facility than we have done hitherto, and is omitted here. The
interested reader can find a version of the proof in MM.)

He now had a criterion for determining that certain numbers must be
transcendental:

Corollary: Any real number approximable by rationals to all orders must be
transcendental.
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Liouville proceded to define a number that he could prove to be tran-
scendental, based on the above theorem. He considered the sum of an infi-
nite series of negative powers of 10, using only 0 or 1 in the numerator, with
the kth use of the digit 1 occurring after k! steps, that is, as 1

10k!
. Thus the first

1 appears in the first decimal place, the second in the second place (2! = 2),
the third in the sixth place (3! = 6), the fourth in the 24th place, and so on.
This leads to

Liouville’s constant: L = 1
101! +

1
102! + ...+ 1

10n! + ...

Thedecimal expansion ofL startswith 0.110001000000000000000001000...
Note that the next 1 will occur at the 120th place after the decimal point, the
one after that at the 720th place, the next at the 5040th place, and so on.

The series definingL can easily comparedwith a geometric one in order
to prove that L is a real number. Using the theorem Liouville proved, it is
then easy to see that Lmust be transcendental.

The kth partial sum of the series defining L can be written as rk = p

10k!
,where

p = 10k!−1 + 10k!−2 + 10k!−6 + 10k!−24 + ...+ 10k!−l! + ...+ 1

becomes the numeratorwhen the first k! terms are combined, since all other negative
powers of 10up to k!have numerator 0. All terms of the series are positive, so rk < L.

The distance between L and its kth truncation is

L− rk =
1

10(k+1)!
+

1

10(k+2)!
+ ....

How should we compute this infinite sum?
We can estimate the terms on the right by taking out the first term as a common

factor and comparing the remaining terms with those of a geometric series:

L− rk =
1

10(k+1)!
{1 + 1

10(k+2)
+

1

10(k+2)(k+3)
+ ...}

<
1

10(k+1)!
{1 + 1

10
+

1

102
+ ...}

=
1

10(k+1)!
(
10

9
)

In each casewe have replaced each of the exponents in the terms in the final brackets,
replacing each of (k + 2), (k + 2)(k + 3), ..., by 1, to obtain the second line, since
101 < 10k+2, 102 < 10(k+2)(k+3), etc. Since limk→∞( 1

10(k+1)! ) = 0,we conclude that
limk→∞ rk = L is in R.

To show that L is approximable by rationals to all orders, fix a natural number
n. For any k ≥ n we have found a rational rk = pk

qk
where qk = 1

10k!
and pk is the

corresponding integer p, as above, such that, withK = 10
9
,∣∣∣∣L− pk

qk

∣∣∣∣ < K
1

10(k+1)!
= K

1

qk+1
k

<
K

qnk
.
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For arbitrary choices of n, we always find infinitely many such rationals, namely
the sequence rn+1, rn+2, ..., rn+m, .... By the above theorem L is approximable by
rationals to all orders, and therefore transcendental.

This proof is straightforward because the number Lwas chosen to make
the application of the theorem as simple as possible. Liouville’s achieve-
ment was to find a workable criterion against which certain numbers could
be tested for rapid approximation by rationals.

Proofs that the ‘well-understood’ numbers π (defined by a geometric
relationship, or as the sum of Leibniz’ series 4(1− 1

2 + 1
5 −

1
7 + 1

9 −
1
11 + ...))

or e (defined as the sum of 1 + 1
1! + 1

2! + 1
3! + ..., or as limn→∞(1 + 1

n )n),
are transcendental, require muchmore advanced techniques that we cannot
pursue here. The transcendence of e was proved by Charles Hermite (1822-
1901) in 1873, and this was followed in 1882 by a proof of the transcendence
of π by Ferdinand von Lindemann (1852-1939). He used Hermite’s approach
to show that eb is transcendental for any non-zero algebraic number (real or
complex). By Euler’s identity eiπ = −1, this showed that iπ, and hence π,
must be transcendental.

The influential German mathematician David Hilbert famously posed
a list of 23 problems at the meeting in Paris in 1900 of the International Con-
gress of Mathematicians. The seventh problem asked whether, given alge-
braic numbers a, b, with b irrational, the number ab is always transcenden-
tal. In 1934, two mathematicians, Alexander Gelfond and Theodor Schneider,
proved independently that this is true, providing a unified way of solving
many problems that had been posed in number theory. Their result shows,
for example, that 2

√
2 is transcendental.





CHAPTER 8

Axioms for number systems

There are and can be but two ways of investigating and discovering Truth. The one
leaps from the senses and particulars to the most general axioms and from these as
first principles and their unshaken truth, judges on and discovers medial axioms:
and this way is in vogue. The other raises axioms from the senses and particulars,
by ascending steadily, step by step, so that at last the most general may be reached;
and this way is the true one, but untried.

Sir Francis Bacon, Novum Organum, Aphorisms I, 1620

Summary

Having shown how the number systems Z, Q, R and C can be con-
structed by taking the natural numbers as ‘given’ (as Kronecker insisted), we
now consider how, in the late 19th century, the axiomatic approach, famously
pioneered for geometry in Euclid’s Elements, was applied to the system N of
natural numbers to derive its properties. To explore the reasons behind this
shift in perceptions we discuss how the pre-eminence of Euclidean geome-
try was challenged in the early nineteenth century, in time leading to a re-
evaluation of methodology in many areas of mathematics, and setting the
scene for current perceptions of the axiomatic method throughout the subject.

We then consider the Peano axioms for the natural number system, in-
dicating how the setN,which (with the addition of 0) was the starting point
for Dedekind’s integers, provides a model for these axioms, while also out-
lining some differences in the approaches taken by Peano and Dedekind
to the same question. This leads on to an axiomatic description of the real
number system as a complete ordered field containing Q. In the Appendix we
show thatC cannot be ordered in away that is compatible with the algebraic
operations.

1. The axiomatic method

In the 1920 edition of his Introduction to Mathematical Philosophy (Allen
and Unwin, London), the eminent philosopher Bertrand Russell (1872-1970)
provides a succinct statement of his philosophy of mathematics.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.08
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Mathematics is a study which, when we start from its most familiar portions,
may be pursued in either of two opposite directions. The more familiar direction is
constructive, towards gradually increasing complexity: from integers to fractions,
real numbers, complex numbers; from addition and multiplication to differentiation
and integration, and on to higher mathematics. The other direction, which is less
familiar, proceeds, by analysing, to greater and greater abstractness and logical sim-
plicity; instead of asking what can be defined and deduced from what is assumed to
begin with, we ask instead what more general ideas and principles can be found, in
terms of which what was our starting-point can be defined or deduced.1

In Chapter 7we employed, for ease of recognition, modern mathemati-
cal terminology in our description of number systems and when discussing
howDedekind and others addressed the extension of number systems in the
latter half of the nineteenth century. In doing this, we took the basic num-
ber system, the natural numbers, simply as given, without exploring how it
might be derived from yet more basic concepts. Our interest now turns to
what Bertrand Russell, in the above passage, calls the ‘opposite direction’,
i.e. looking for ‘general ideas and principles’ from which our earlier start-
ing point (i.e. counting!) might be derived. This search began in earnest
only in the late nineteenth century, notably with Dedekind, whose formula-
tion was adapted successfully by Giuseppe Peano to yield axioms for N that
eventually gained universal acceptance.

In geometry, what is now called the axiomatic method dates back at least
to Euclid. His Elements begin with a small number of unproven statements,
called postulates by Euclid, from which all 465 propositions in his thirteen
books are then derived by logical deduction and illustrated in geometric
constructions.

We might ask how Euclid arrived at his postulates, and whether his
concept of the axiomatic method is the same as the modern one. The current
Encyclopedia Britannica has the following definition:

Axiomatic method, in logic, a procedure by which an entire system (e.g. a
science) is generated in accordance with specified rules by logical deduction from
certain basic propositions (axioms or postulates), which in turn are constructed from
a few terms taken as primitive. These terms and axioms may either be arbitrarily
defined and constructed or else be conceived according to a model in which some
intuitive warrant for their truth is felt to exist.

1.1. Axioms in Euclid. The above statement of the axiomatic method
in some measure follows the example of Euclid’s Elements, identifying the
‘primitive terms’ as well as the ‘basic propositions’ that will be taken for
granted. However, Euclid and his successors, right up to the nineteenth
century, would have taken issue with the bold claim in Encyclopedia Britan-
nica that the axioms can be arbitrarily defined and constructed! For the Greeks,

1Had Bacon and Russell been contemporaries, they might had much to say to each other!
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and for many centuries after them, the notion of an intuitive warrant for their
truthwas deemed to be an absolutely central requirement for any system of
axioms. In geometry this relied on a notion of geometrical truth: properties
of lines, angles, polygons and circles in the geometry described by Euclid,
as well as their three-dimensional counterparts in solid geometry, were un-
derstood as representations of observed spatial reality, albeit in an idealised
form. The truth of the underlying axioms was expected to reflect self-evident
aspects of this observed reality.

The most significant philosophical shift leading to the modern under-
standing of axioms as described in the above definition is that it is the axioms
themselves that should determine the structure of the collection of objects
under discussion. In this approach the ‘primitive terms’ stated at the out-
set have no intrinsic meaning independently of the axioms. This viewpoint
emerged gradually during the nineteenth century, notably in alternatives to
Euclidean geometry produced by Gauss, Bolyai and Lobachevsky, but also
in Hamilton’s work on complex numbers that we outlined in Chapter 4.

Following a distinction first made by Aristotle, Euclid states five ‘com-
mon notions’ and five ‘postulates’. The former are assumptions that would
apply to any quantitative science, such as: ‘When equals are added to equals,
the results will be equal’, and Euclid’s now famous dictum: ‘The whole is
greater than the part’. The postulates are more specific: they are the un-
proven assumptions he accepts for his geometry.

Skipping lightly over the common notions, we focus on Euclid’s five
postulates. In order to state these, his text introduces basic notions such
as ‘point, ‘line’ and ‘circle’ (what the Britannica definition calls ‘primitive’
terms). The first four basic notions famously read:

1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
In all, Euclid lists 23 such definitions, that of the circle being the fifteenth:

A circle is a plane figure contained by one line such that all the straight lines
falling upon it from one point among those lying within the figure are equal
to one another. (The point in question is the centre of the circle.)

Historians have debated these rather odddefinitions.2 Note that ’points’
are defined both in 1. and 3. In 2., the terms ‘length’ and ‘breadth’ are
assumed (implicitly) as known, and 3. suggests that the ‘line’ is finite, that
is, a ‘line segment’ or an ‘arc’. Definition 4. seeks to identify ‘straight’ lines,
but its meaning is at best opaque.

2A gentle introduction to this debate can be found at mathshistory.st-andrews.ac.uk/Hist
Topics/Euclid_definitions.html, for example. For a detailed account see [21].
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It has been argued that the list of definitions may be a later addition
to Euclid’s work, and not by himself, since he never refers back to them in
the Elements, and later introduces terms (such as magnitude) that he has not
defined at all. If that is the case, then Euclid’s approach was truly modern!

In his five postulates, Euclid identified specific assumptions taken as
self-evident (not requiring proof) that he needed to provide the basis of his
geometry. Everything else he asserted in the Elements would be deduced
logically from these five postulates. Euclid’s deductive approach has served
as the paradigm for the textbook transmission of mathematical knowledge
for more than two millennia.

The first four of Euclid’s five postulates for geometry may indeed seem
self-evident: the first three simply assert that it is possible to

(i) draw a straight line from any point to any point,
(ii) produce a finite straight line continuously in a straight line,
(iii) describe a circle with any centre and diameter.
These postulates really describe Euclid’s perception of space: it is con-

tinuous (there are no gaps) and not limited.
The fourth postulate states that
(iv) all right angles are equal to one another.
Euclid’s definition of right angle is given in terms of two lines cutting

each other:
When a straight line standing on a straight line makes the adjacent angles equal

to one another, each of the equal angles is right. Postulate (iv) says that angles
produced in this manner must have the samemagnitude, wherever they are
in space. Thus he assumes that space is homogeneous, i.e. figures retain their
shape wherever they are placed.

The fifth postulate—generally known as the parallel postulate—is key to
much of the Elements. In formulating the postulate, Euclid is careful not to
talk about what we call parallel lines although he had earlier defined these.
Instead:

(v) ‘If a line segment intersects two straight lines forming two interior angles
on the same side that sum to less than two right angles, then the two lines, if extended
indefinitely, meet on that side onwhich the angles sum to less than two right angles.’

Many elementary texts are less careful than Euclid: they may ‘define’
parallel lines as ‘lines that nevermeet’, or that ‘meet at infinity’. Both phrases
beg obvious questions. In the better school textbooks Euclid’s formulation
of the parallel postulate is often replaced by a logically equivalent version.
In this form it is usually credited to the eighteenth-century Scottish math-
ematician John Playfair, but it was stated in similar terms by Proclus in the
fifth century:
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Given a line l and a point P not on l, in the plane containing both P and l there
is exactly one line through P that does not intersect l.

This unique line is then called the line parallel to l through P.

1.2. The impact of non-Euclidean geometry. Euclid needed all five pos-
tulates to prove the 465 propositions he formulated in the Elements. How-
ever, he avoided using the fifth postulate for as long as possible (Proposi-
tions 1-28 do not use it), whichmay suggest that he could also have regarded
it as less obviously ‘self-evident’ than the other four. For over 2000 years,
natural philosophers and mathematicians alike accepted Euclidean geome-
try as the propermathematical description of the spacewe live in. This belief
required the self-evident nature of the postulates to remain firmly grounded
in visual perception. The fifth postulate, however, makes implicit assump-
tions about the nature of space: howwouldwe know that two ‘parallel’ lines
might not meet in some far-off region of space?

Some of Euclid’s successors in antiquity (such as Ptolemy) and early
commentators (e.g. Proclus) thought that the parallel postulate did not ap-
pear to be fully self-evident. They therefore tried to deduce it from the other
four postulates, which they did regard as indisputably true.

The search for a proof of the fifth postulate resurfaced repeatedly over
two millennia, throughout the transmission of the Elements to Arab lands
and Europe. Prominent European mathematicians, JohnWallis and Adrien-
Marie Legendre (1752-1833) among them, set out to prove the postulate, but it
was the Italian Jesuit priestGiovanni Saccheri (1667-1733)who took a decisive
step, seeking to prove the postulate by showing that alternative hypotheses
would lead to contradictions. He showed that the postulate was logically
equivalent to the claim that the angle-sum of a triangle equals two right
angles, and tried to prove, using only the other four postulates, that this
angle-sum could be neither more nor less than this. But, try as he might, he
was unable to find arguments that would contradict the ‘hypothesis of the
acute angle’: that the angle-sum was less than two right angles.3

Although Saccheri’s work suggested a new approach to the problem, it
took a further century for it to be resolved. In the 1820s, the Russian Nikolai
Lobachevsky (1793-1856) and theHungarian Janos Bolyai (1802-1860) indepen-
dently demonstrated the possibility of non-Euclidean geometry, in which the
first four postulates remain valid, but Euclid’s fifth postulate is replaced by
the hypothesis of the acute angle. In terms of Playfair’s formulation, in their
hyperbolic geometry Euclid’s fifth postulate was replaced by the statement:

3In spherical geometry great circles (geodesics) play the role that ‘straight lines’ play in
Euclidean geometry. The angle-sum of a triangle on the surface of a sphere is greater than
two right angles. But geodesics are finite, so cannot be extended indefinitely (without meeting
themselves). This led Saccheri to reject the hypothesis that the angle-sum in a triangle can
exceed two right angles.
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Given a line l and point P not on l, in the plane containing both P and l there
are at least two distinct lines through P that do not intersect l.

While they were the first to publish their results (Lobachevsky in 1829
and Bolyai in 1832-3, although he had completed a full draft of his work
by 1823), they were not the only discoverers of the new geometry. The
notebooks and correspondence of Carl Friedrich Gauss, preserved after his
death, show conclusively that he had studied the fifth postulate extensively
for decades, was convinced by 1816 that it could not be proved, and had
developed the bulk of the theory of hyperbolic geometry by the following
year.4

Gauss never published his own results. In a letter to his friend, the
prominent mathematician, physicist and geodesist Friedrich Wilhelm Bessel
(1784-1846), he states the main reason for his reluctance: ‘da ich has Geschrei
der Boeoter scheue’ (‘since I dread the shouts of the Boethians’). This is a
reference to the—arguably malign—influence on European mathematics of
the mediocre textDe Institutione Arithmetica by the Roman scholar Boethius,
which (as we saw in Chapter 2) had been the main source of Greek mathe-
matics available in Western Europe until the late Middle Ages.

Gauss’ assessment of his contemporaries’ readiness for such a radically
new theory may well have been accurate. One important reason is that the
possibility of any geometry other than that of Euclid flatly contradicts the
claim by the influential philosopher Immanuel Kant (1724-1804) that our con-
cept of space is given a priori as that of Euclidean space. This Latin phrase
means ‘from the earlier’. Thus, a priori reasoning reaches conclusions that
arise necessarily from first principles (premisses), rather than relying on ob-
servation or experiment. The termwasmade popular by Kant in hisCritique
of Pure Reason, published in 1781.

In his extensive correspondence with Bessel, Gauss is very clear that his
perception of Euclidean space differs radically from that of Kant. Bessel, in
turn, confirms that he shares Gauss’ viewpoint. In a letter to Gauss on 10
February 1829, he agrees that ‘our geometry is incomplete’, and pleads with
Gauss to ignore the ‘Boethians’. Gauss responding on 9 April 1830, ignores
this plea, but expresses his ‘innermost conviction’ that

‘geometry stands in a quite different position from pure arithmetic with regard
to our a priori knowledge: this [knowledge] rests on our complete conviction of its
necessity (thus also of its absolute truth), which the latter possesses. We must admit
in all humility that, [even] if number is a pure product of our mind, space has an
external reality, for which we cannot prescribe its laws a priori.’

4The near-simultaneous discovery of non-Euclidean geometry by several practitioners
adds weight to an oft-repeated saying attributed to Gauss – here taken from E.T. Bell’s The
Development of Mathematics (1945): Mathematical discoveries, like springtime violets in the woods,
have their season which no human can hasten or retard.
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In stark contrast to Gauss’ then unpublished comments, many mathe-
maticians regarded Bolyai and Lobachevsky’s publications as controversial
in the 1830s, and they were by no means universally accepted as ground-
breaking achievements. Significant changes in these perceptions had towait
for the decade after Gauss’ death (in 1855), when publication of his private
papers revealed the great man’s interest in and strong views on this sub-
ject. At the same time, substantial new work by his former student Bernhard
Riemann (1826-1866) in 1854 and in 1868 by the Italian geometer Eugenio Bel-
trami (1835-1900)—the first to provide a model of hyperbolic geometry—
finally led to general acceptance that non-Euclidean geometries were just as
consistent as Euclid’s geometry, and should be accorded equal status.

These developments ushered in the modern perspective on the role of
axioms in different areas of mathematics. For example, it was now clear that
different ‘geometries’ with quite different characteristics can be explored,
depending on which axioms one chooses to adopt. Nor was all this of im-
portance only in ‘pure’ mathematics, and devoid of physical meaning, as
even Riemann had supposed. By the early twentieth century, Albert Ein-
stein (1879-1953) andHermannMinkowski (1864-1909) had shown that hyper-
bolic geometry provided an appropriatemathematical model for relativistic
space-time. In the same period, David Hilbert (1862-1943) updated Euclid’s
postulates, requiring 20 axioms for Euclidean geometry, most of whichwere
needed to fill logical gaps that Euclid had left by relying on visual perception
– for example, the intuitive notion of an object ‘lying between’ two others
had to be given axiomatic form.

Beyond geometry, the renewed focus on axiomatics meant that mathe-
maticans sought to formulate axiom systems to make explicit the assump-
tions on which their particular areas of interest, as well as the foundations
of the subject, can be based. In shifting the emphasis from discussion of
the ‘nature’ of specific objects to ‘more general ideas and principles’ (as Russell
puts it), it is the rules for interaction between mathematical objects that be-
come paramount. The axioms that specify these rules often find application
in a variety of different situations: although theymay have originated in the
analysis of a particular set of problems, similar techniques can find appli-
cation in an apparently unrelated field. Complex numbers, for example, al-
low us to calculate freelywith the ‘imaginary unit’ i according toHamilton’s
rules, even though we can envisage no concrete physical representation for
it (as we might do for

√
2 as the length of the diagonal of a unit square). Yet

i is central to the analysis of sinusoidal waves by electrical engineers (who
insist on calling it j) where it measures the ‘imaginary’ flow of electricity
through various bodies.

The axiomatic method, based on set theory as the keystone of modern
mathematics, has opened up a vast range of new areas for exploration since
the nineteenth century, most of them far beyond the scope of this book. For
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the most part, the question of what the objects being considered ‘are’ has
been replaced by asking what they do, that is, how they interact according
to the underlying axioms of their particular field. But this does not im-
ply that every new theorem is painstakingly traced back to these axioms
– mathematics is a cumulative undertaking, and what has previously been
confirmed as correct can be used to justify new assertions.

In practice, most mathematicians choose to work on the implicit as-
sumption that the currently accepted system of axioms for set theory (devel-
oped in the first decades of the twentieth century) can be shown to under-
pin their researches.5 Very few, however, would undertake the arduous task
of checking complex deductions by direct reference to theseaxioms! There
are well-known examples of proofs that—written out in full—would run
to hundreds, sometimes thousands, of pages of logical deduction and com-
putation. In most branches of modern mathematics there are a good many
results that have only been checked in full detail by a small group of quali-
fied experts. In the end, the ‘truth’ of amathematical statement comes down
to its (preferably unanimous) acceptance, after a suitably exhaustive analy-
sis and confirmation, by the mathematical community of the time. AsDavis
andHersh put it forcefully in their book TheMathematical Experience: in prac-
tice, the validity of a proof in mathematics is established by a ‘consensus of
the qualified’. (Of course, even the ‘qualified’ are not infallible.)

2. The Peano axioms

Let us be modest and remain with our naive concept of a set, as in Can-
tor’s formulation quoted in Chapter 7, Footnote 1. The axioms described
below for arithmetic with the natural numbers are essentially those devised
by the Italian mathematician Giuseppe Peano, whose work was deeply in-
fluenced by an analysis of number systems published by Dedekind in 1888
asWas sind und was sollen die Zahlen?[9]. This translates literally as ‘What are
numbers and what should they be?’6 In his pamphlet Dedekind spells out
his philosophy, beginning his Preface with the sentence: ‘In Science, what is
provable should not be believed without proof.’ He argues that, although obvi-
ous, this demand has by no means been reached in the foundation of the
simplest science, namely ‘the part of logic dealing with the study of numbers’.
Designating arithmetic (and hence algebra and analysis) as a part of logic
implies that he regards the number concept as entirely independent of con-
ceptions of space or time, but rather as an immediate consequence of ‘pure
laws of thought’. His answer to the question raised in the title of his work is

5These are known as theZermelo-Fraenkel axioms, (ZF), after their originators Ernst Zermelo
(1871-1953) and Abraham Fraenkel (1891-1965). See Chapter 10 and MM for a brief discussion.

6An English translation in 1901 byWooster Woodruff Beman (1850-1922) renders the title
as ‘The Meaning of Numbers’.
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that ‘numbers are free creations of the human mind, they serve as a means of un-
derstanding the diversity of objects [‘Dinge’] more easily and sharply’. Only by
having developed the science of numbers by purely logical means, arriving
at the ‘continuous number-domain’ (the real numbers), can we examine our
perceptions of space and time more precisely, he claims.

Rather than focus on the details of Dedekind’s pamphlet here, we turn
to the version of these ideas as presented by Peano, before giving a brief
comparison of the two approaches.

Peano acknowledged the profound impact of Dedekind’s work on his
own formulation. He published this in 1889 in a pamphlet entitled Arith-
metices principia, nova methodo exposita (‘Principles of arithmetic, expounded
by a new method’). The axioms are sometimes called the Dedekind-Peano
axioms.

Peano used the concept of successor as his starting point. Roughly speak-
ing, the systemof five axioms he postulated enables us to show that all famil-
iar arithmetical properties of the natural numbers can be deduced provided
we can startwith an element we call 1 (as the Greeks did with the unit), and
that we can apply induction.

Following Peano, the three ‘primitive terms’ we begin with are there-
fore: an abstractly given set we will call N, together with a ‘distinguished
element’ that we denote by 1 and a successor operation S between members
of N.

The five Peano axioms are:7

1. 1 is a member of N
2. every n in N has a successor S(n) in N
3. if S(m) = S(n) thenm = n

4. 1 is not the successor of any element of N
5. (Induction) ifA is a subset ofNwith 1 ∈ A and such that n ∈ A implies

S(n) ∈ A, then A = N.
Axiom 2 tells us that taking successors keeps us within the set, axiom 3

that an element cannot be the successor of two different elements and axiom
4 means that ‘nothing comes before’ the distinguished element we call 1.

Note also that any element of N other than 1 must be the successor of
some element of N. To deduce this from Axiom 5, let S be the set consisting
of 1 and all successors; that is, S contains 1 together with every n inNwhich
is the successor of some element of N. Then 1 belongs to S by definition,

7Some authors prefer to state our axioms 1. and 4. below as the single statement: ‘there is
exactly one member of Nwhich is not the successor of any other member of N’. Peano himself
also included four further axioms to clarify the use of equality (=), stipulating that the set he is
describing should be closed under this relation and that equality is an equivalence relation – see
Footnote 4 in Chapter 7 for this terminology.
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while, ifm ∈ S ⊆ N, then its successor S(m) must lie in S, since S contains
all the successors of members of N. By Axiom 5 this means that S = N.

Consider the sequence

1, S(1), S(S(1)), S(S(S(1))), ...

where repeated use of S just means that we take the ‘successor of the succes-
sor’ and so on. We can give these successive elements ‘abbreviated names’.
For example, we could decide to denote them by 2 = S(1), 3 = S(2) =
S(S(1)), and so on. Then, after (long-scale!) octillion repetitions we would
arrive at what we can denote by 1048 + 1. The process does not stop after
any finite number of repetitions.

We will now represent the set N by the sequence {1, 2, 3, ..., n, ...}. But it
must be stressed that, in giving ‘names’ to the ‘distinguished element’ 1 and
to its various successors we do not attach a particular meaning to the symbols
we use. The ‘meaning’ we attach to a symbol is determined by the position it
occupies. As in Dedekind’s derivation of the structure of the sets of integers
and rationals (and inHamilton’s definition of the complex numbers) it is the
structure that gives meaning to the various members of the set. For N this
structure is determined by the Peano axioms alone.

We can outline the differences between the approaches of Peano and
Dedekind more easily by following [6] in using Peano’s axioms as our point
of reference. Dedekind’s starting point is the concept of order. To do this,
he first considers mappings between abstract sets, then specialises to one-to-
one mappings from a set to itself—that is, φ maps S to itself—and distinct
elements have distinct images.

If a set N has such a mapping φ and there is an element t in N such
that φ does not map any element of N to t then Dedekind calls N a chain
[Kette]. We can see how these requirementsmirror Peano’s first four axioms.
The fifth axiom (induction) now becomes the statement that N is the chain
generated by the (consecutive) images of this distinguished element t. He
shows that such a set is a particular kind of infinite set, which he calls simply
infinite (in Chapter 9 we will consider such sets, nowadays called countably
infinite). Dedekind also showed that any infinite set has a simply infinite
subset. However, his ‘proof’ that infinite sets exist was fiercely criticised at
the time, especially by the logician Gottlob Frege (1848-1925).

Nonetheless, it should be reassuring to know thatDedekind proved that
any two models of the above axioms – that is, well-defined sets that give
meaning to the primitive terms and satisfy the stated axioms – will have
the same mathematical structure (the formal term is that they are isomor-
phic). We could have listed the elements of the set N in a variety of ways.
For example, we might take 1 followed in succession by all positive inte-
gral powers of 10,with S(10k) defining 10k+1, yielding {1, 10, 100, 1000, ...}.
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As long as the axioms are satisfied, this structure will be isomorphic to our
{1, 2, 3, ..., n, ...}.

Peano defined the operations of arithmetic, namely addition andmultipli-
cation, as follows:

Addition is defined recursively for elementsm,n inN, first by adding one,
i.e. n+ 1 = S(n), and then, for anym,n, setting

n+ S(m) = S(n+m).

The first of these definitions just gives the successor of n the name n+1.
To continue, we proceed in steps, using the ‘names’ of successors 2 =

S(1), 3 = S(2), 4 = S(3) etc.: takem = 1, n = 2, in the general definition, so
2 + S(1) = S(2 + 1) = S(3) = 4. We have shown that 2 + 2 = 4, and can
continue in this fashion (see also [6] , p.255).

Multiplication can be defined similarly:
(i) n× 1 = n for all n in N,
(ii) for n,m in N, n× S(m) = n×m+ n.

(It is again instructive – if lengthy – to test this definition with various
examples.)

The (strict) order relation< onN is then defined as before: m < n if there
exists k in N such thatm+k = n.Again,m ≤ nwill mean that eitherm < n
orm = n.

From these definitions one can derive the laws of arithmetic and order
properties of the set N. These steps will be omitted here – as in Chapter 7,
detailed proofs can be found in [30].

As we observed in Chapter 7, starting induction with 0 instead of 1 cre-
ates no new difficulties, and we found it useful to treat 0 as a ‘natural num-
ber’, i.e. to begin with the set N0 = {0, 1, 2, ..., n, ...} in our discussion of
Dedekind’s representations of Z and Q. Similarly, we could have used 0 to
replace 1 in the Peano axioms. This version of Peano arithmetic (starting with
a set we call N0, a distinguished element 0, and a successor operation S as
before) is essentially the same as what we outlined above.

Another argument for including 0 is based on the desire to ‘start from
scratch’; that is, to build up a number system using only basic operations
on sets. The Hungarian-American mathematician John von Neumann (1903-
1957) showed how, startingwith the empty set∅, the setN0 has a simple rep-
resentation as an infinite collection of sets, each of which has finitely many
elements.

Here is von Neumann’s construction of N0 by starting with the empty
set:

∅—a set with no elements—is represented by the symbol 0,
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Figure 38. John von Neumann, from a period while at Los
Alamos National Laboratory, from Los Alamos: Beginning of
an era, 1943-1945, Los Alamos Scientific Laboratory, 19868

{∅}—a singleton set—is represented by the symbol 1,
{ ∅, {∅}}—a set with two elements—is represented by the symbol 2,
{∅, {∅}, {∅, {∅}}} is represented by 3, and so forth.
Together, these symbols are a representation of the set of natural num-

bers. Having started with the ‘distinguished’ element 0, (as given by∅), the
successor operation is given by

S(n) = n ∪ {n}.

This makes sense, since each ‘number’ n is a set (as listed above for 0, 1, 2, 3)
and to obtain the successor of n we simply take the set A that represents n
and its union with the set {A} whose only element is A. It can be checked
that von Neumann’s construction satisfies the amended version of Peano’s
axioms 1-5, with 0 playing the role of 1. The definitions of addition and
multiplication stay the same as stated above.

The number system (N0,+,×, <) then provides a model of the natural
numbers (including 0 this time), which in turn form the basis of arithmetic.
This is whymathematics is sometimes jokingly described as ‘the theory of the
empty set’!

8https://commons.wikimedia.org/wiki/File:JohnvonNeumann-LosAlamos.jpg

https://commons.wikimedia.org/wiki/File:JohnvonNeumann-LosAlamos.jpg
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3. Axioms for the real number system

Having seen how the properties of the number systemN can be derived
from the Peano axioms, and how each of the systems Z,Q and R, and their
arithmetical and order properties, can in turn be derived from its predeces-
sor, we now list the fundamental properties that the systemR should satisfy.

The axioms we need to check for any model of the real number system
R are divided into three groups:

1. Algebraic axioms
2. Order axioms
3. Completeness axiom
The first two groups were essentially given in Chapter 7, but we repeat

themmore fully here. To do so effectively, without presupposing thatwe can
call the object we are defining a ‘number system’, we need to give abstract
definitions of the algebraic operations on and order relations between the
elements of an (initially) unspecified set.

We introduce terminology to describe addition and multiplication ab-
stractly: addition and multiplication of two numbers associate a pair of el-
ements of a set S with an element of S (formally, they are functions from
S × S to S); we write (a, b) → a + b and (a, b) → a × b. We call these binary
operations and, for our number systems, the laws of arithmetic are described
by the axioms these operations should obey.

The essential point remains that we are less concernedwith defining the
objects of our number system, but focus our attention instead on the relations
between them – in other words, we describe how they interact. Provided
we spell out the requirements for the binary operations +,×, we can apply
them to any (unspecified) non-empty set S.

Similarly, for any set S we can identify a relation, i.e. a collection O of
pairs (a, b) with a, b in S, for which we write a ≤ b if and only if (a, b) ∈ O.
As indicated earlier, this defines a linear order (also called a weak total order)
if it satisfies the following three requirements:

1. Antisymmetry: if a ≤ b and b ≤ a then a = b ,
2. Transitivity: if a ≤ b and b ≤ c then a ≤ c,
3. Totality: For any a, b in S, either a ≤ b or b ≤ a (or both).
The third property says that any two elements a, b of S can be compared:

at least one of the pairs (a, b) and (b, a) belongs toO.Note that this includes
the possibility that both belong to O, but, in that case, the first property
shows that we equate a and b, and write a = b.
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The concepts of upper bound and least upper bound, which we encoun-
tered in Chapter 7, clearly make sense for non-empty subsets of any linearly
ordered set.

3.1. Axioms for a complete ordered field. The definitions below will
therefore make no direct reference to the set of R real numbers, but will
instead list three groups of axioms. A system consisting of a set together
with two binary operations which satisfy the first group of axioms listed
below as Definition 1(a) - the ‘algebraic’ axioms – is called a field. If these
operations are compatible with an ordering as described in Definition 1(b)
– the ‘order’ axioms – then it becomes an ordered field. Finally, if the axiom
stated as Definition 1(c)—completeness—is satisfied in addition, we have a
complete ordered field. We have a choice of several equivalent statements to
describe completeness. We will take the existence of a supremum for each
set that is bounded above as our axiom.

Definition 1(a): A field is a set S, together with two binary operations, i.e.
functions from S × S to S. They are: addition, denoted by +, and multiplication,
denoted by×, so that, applied to (a, b), addition gives a+b and multiplication gives
a× b as members of S. These operations have the following properties:

Algebraic axioms
(i) for all a, b ∈ S, b+ a = a+ b and b× a = a× b (commutative laws),
(ii) for all a, b, c ∈ S, a+ (b+ c) = (a+ b) + c and a× (b× c) = (a× b)× c

(associative laws),
(iii) for all a, b, c ∈ S, a× (b+ c) = a× b+ a× c (distributive law),
(iv) there are elements of S denoted by 0, 1 respectively, such that 0 6= 1 and

a+ 0 = a, a× 1 = a for all a ∈ S (existence of neutral elements),
(v) for each a ∈ S there exists an element of S denoted by −a, such that a +

(−a) = 0; for each a 6= 0 in S there exists an element of S, denoted by a−1, such
that a× a−1 = 1 (existence of inverses).

With the algebraic axioms in Definition 1(a) we define the difference a−b
as a+(−b), and the quotient (usually written as ab ) as a×b

−1 whenever b 6= 0.
Both of these definitions make sense because of axiom (v) in Definition 1(a).

Definition 1(b):
A relation < on a set S is a strict total order if the following axioms hold:
Order axioms:
(i) (Anti-reflexivity) a < a is not true for any a in S,
(ii) (Trichotomy) For all a, b in S, exactly one of a < b, a = b, b < a, is true,
(iii) (Transitivity) For a, b, c ∈ S, if a < b and b < c, then a < c.
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The field (S,+,×) – defined in 1(a) – is an ordered field if it has a strict total
order < satisfying the conditions:

(iv) if a < b and c ∈ S then a+ c < b+ c,

(v) if a < b and 0 < c then a× c < b× c.
Axioms (iv) and (v) of Definition 1(b) ensure that the ordering< is com-

patiblewith the algebraic operations +,×. Together, (a) and (b) in Definition
1 suffice to describe the axioms for the number system Q as an example of
an ordered field.

To reconcile the order axioms in Definition 1(b) with the concept of a
linear ordering, we need only define a ≤ b to mean that either a < b or a = b.
Then≤ is a linear ordering, as described above: the required properties (1),
(2), (3) we listed earlier follow immediately. We define a > b to mean that
b < a, similarly a ≥ b means b ≤ a. Finally, a ∈ S is called positive if a > 0
and negative if a < 0.

Moreover, b in S is an upper bound for the subset E of S if a ≤ b for all
a in E, and we say that E is bounded above by b. Finally, c is the least upper
bound of E,written as c = supE, if c ≤ b for every upper bound of E.

This terminology allows us to state our final axiom, describing complete-
ness as follows:9

Definition 1(c): An ordered field (S,+,×, <) is complete if the following ax-
iom holds: every non-empty subset of S that is bounded above in S has a least upper
bound in S.

It is proved in MM that any complete ordered field S containing Q will
inherit the Archimedean property from Q: given positive elements a, b of S,
there is a natural number n such that na > b.

3.2. EmbeddingQ in R. In particular, if a set S satisfying (a)-(c) in Def-
inition 1 is to be a number system that extends the ordered fieldQ, the alge-
braic operations and order relation for Q should be compatible with those
for S. If we can embed Q as a subset of Swe will wish, finally, to call this set

9Proofs of the equivalence of the following five versions of this axiom forR can be found
in MM:

(a) Bounded non-decreasing sequences property: any non-decreasing sequence of real num-
bers, bounded above in R,will always have a limit in R.

(b) Nested sequences property: any nested sequence of closed intervals in R whose lengths
decrease to 0 defines a unique element of R.

(c) Least upper bound property: any non-empty subsetB of R that has an upper bound in R
has a least upper bound in R.

(d) Cauchy Criterion: every Cauchy sequence in R converges to a real number.
(e) Bolzano-Weierstrass property: every bounded sequence of real numbers has at least one

subsequence that converges in R.
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the real numbers and denote it by R. From the perspective of constructing a
model for R, Definition 1(a)-(c) sets out requirements the model must satisfy.

Hence, when we start with Q and construct a model for R, we require
two additional steps to ensure that everything is consistent:

(i) When we use the operations (r, s) → r + s and (r, s) → r × s with
rational r, s, the outcome should be the same as we had for addition and
multiplication inQ.Moreover, 0 < r for rational r should mean the same as
in Definition 1(b). In other words, the operations should remain the same,
regardless of whether we treat r, s as rationals or as real numbers. Formally,
thismeans that we have to construct a function φ fromQ toR such that r 6= s
implies φ(r) 6= φ(s) and the image φ(r + s) of their sum equals φ(r) + φ(s),
where the second + is interpreted as addition in R. Similarly, φ(r × s) =
φ(r) × φ(s), where × denotes on the left denotes multiplication in Q while
on the right it denotes multiplication in R. Moreover, the image under φ
each positive rational rmust satisfy 0 < φ(r). This ensures that we can treat
Q as a subset of R.

(ii) The set R satisfying all the above conditions should be unique (else
we could not talk about the real numbers).

Thus all the different constructions ofmodels forR should ‘have the same
form’, i.e. be isomorphic. In other words, it should be possible to put any two
of them in a one-one correspondence in such a way that the operations of
addition and multiplication, as well as the ordering, correspond correctly.
This is the case for Dedekind’s and Cantor’s models (see [10]).

4. Appendix: arithmetic and order in C

Finally, let us justify a claim made in Section 1 of Chapter 7: that the
complex number system C cannot be (totally) ordered in a way that is com-
patible with addition and multiplication. As the laws of arithmetic listed
above hold in R, Hamilton’s definitions for addition and multiplication will
carry them over to C. In C, the pair (0, 0) serves as the neutral element 0 for
addition (0 + z = z for any z in C) and any z in C has an additive inverse−z
that satisfies z + (−z) = 0. The pair (1, 0) defines the neutral element 1 for
multiplication in C.

Ifwe could define a strict total order≺ onC that is compatiblewith addi-
tion and multiplication, statements (i)-(iv) below would hold for (+,×,≺):

(i) totality: any two complex numbers can be compared using ≺,
(ii) trichotomy: given any z inC, exactly one of 0 ≺ z, z = 0, z ≺ 0 is true,
(iii) Compatibility with + : given any three complex numbers z1, z2, z3, if

z1 ≺ z2 then z1 + z3 ≺ z2 + z3,

(iv) Compatibility with × : given any three complex numbers z1, z2, z3, if
0 ≺ z3, then z1z3 ≺ z2z3.
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Apply (i)-(iv) with z = i, the ‘imaginary unit’ (0, 1). Since i 6= 0, (ii)
ensures that either 0 ≺ i or i ≺ 0 (not both).

If 0 ≺ i we have 0 ≺ i× i = −1 by (iv). Using (iv) again, 0 ≺ −1 shows
that 0 ≺ (−1)× (−1) = 1. But (iii) yields 1 = 0 + 1 ≺ (−1) + 1 = 0.We have
arrived at 1 ≺ 0 ≺ 1,which is a contradiction for a strict order.

If i ≺ 0, (iii) implies 0 = i + (−i) ≺ 0 + (−i) = (−i), and by (iv) again,
0 ≺ (−i) × (−i) = −1. As in the first case this implies the contradiction
1 ≺ 0 ≺ 1. Since both possibilities lead to a contradiction, the order≺ cannot
be compatible with addition and multiplication.





CHAPTER 9

Counting beyond the finite

Let every student of nature take this as his rule, that whatever the mind seizes upon
with particular satisfaction is to be held in suspicion.

Sir Francis Bacon, Novum Organum, 1620

Summary

In this chapter we begin with Georg Cantor’s work on the continuum,
which reflects the abstract approach he and Richard Dedekind had shared
in their models for the real number system. From the 1870s onward, their
work was to have a profound influence on the development of mathemat-
ics. Within a decade, further investigation into the nature of the contin-
uumwould lead Cantor to focus on the nature of infinite sets,which sparked
deep philosophical disagreements between leading groups of mathemati-
cians about the nature of their subject. This would culminate in a profound
conceptual revolution in prevailing views of the nature of mathematical
truth.

Cantor’s perception of the continuumwas to lead him to explore a gen-
eral notion of ‘size’ for sets, prompted by ‘different kinds of infinity’ appar-
ently represented by Q and R. His investigation of trigonometric series, on
the other hand, stimulated his development of the far-reaching concepts of
transfinite ordinal and cardinal numbers as an abstract method of continu-
ing the process of ‘counting’ beyond finite sets. His groundbreaking papers
in both these areas laid the groundwork for an entirely new theory of sets,
providing a basis for the whole of mathematics, while at the same time fore-
shadowing troubling paradoxes that would come to plague this new theory.

1. Cantor’s continuum

Georg Cantor’s initial motivation for investigating the continuum had
nothing to do with concerns about the teaching of Calculus to students. In-
stead, it was his analysis of Fourier series that led him to his model for the
real number system.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.09
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Given an infinite ‘point set’ P on the line (i.e. a subset of R), he defined
its derived set P ′ as the set of all its ‘limit points’.1 The point x belongs to P ′
preciselywhen infinitelymany points of P ‘lie within any neighbourhood, how-
ever small’ of x. This procedure can be iterated indefinitely, which led Cantor
to his key result on Fourier series representations by defining two mutually
exclusive ‘species’ of point sets. If, after n repetitions, the nth derived set
P (n) is finite, then clearly its derived set P (n+1) is empty – he would then
call P a set of the nth kind. A set P is of the ‘first species’ if it is a set of the nth
kind for some n ≥ 1. Subsets of R whose derived sets P (n) were all infinite
were placed in the second species.

This gave him the uniqueness criterion he was looking for: he showed
that a real function f is represented uniquely by its Fourier series whenever,
within any interval of length 2π, the set of exceptional points (where the
series fails to converge or the representation fails) is a set of the first species.

But his investigations had now led him into quite different territory: Al-
though the set of exceptional points is typically infinite, one might expect it
to be ‘small’ compared to the set of points within the interval where the
Fourier representation of f is unique. Therefore, in what sense could one
distinguish between different ‘sizes’ of infinite sets? Howmight one extend
the notion of counting to such sets? These questions about the nature of the
continuum lay at the root of Cantor’s extensive exploration of infinite sets.

1.1. Countably infinite subsets of R. To pin down ‘how many’ ele-
ments a given set has, the natural first question concerns counting:

How should we count the ‘number of elements’ of a set?
Intuitively, a setA is finite precisely whenwe can ‘count off its members

one by one’ in a list with a beginning and an end. In other words, there
should be some natural number n such that we can ‘pair off’ all the elements
of A one by one with the numbers 1, 2, 3, ..., n. We would then say, quite
naturally, that A has n elements, and write the list of its members as a finite
sequence: a1, a2, a3...., an.

Such a pairing is a one-one correspondence between the sets {1, 2, 3, ..., n}
and A.

In this way, n serves to tell us ‘howmany’ elements the setA has. Cantor
expressed this as the power (‘Mächtigkeit’) of the set A. Today we say that
A has cardinality n, and write this as |A| = n. It is clear that no such finite
pairing can exist for N, which is therefore not a finite set.

Bolzano had made similar observations some 40 years before Cantor,
and gave examples of infinite sets which he could put into one-one corre-
spondence with proper subsets of themselves. But his notes came to light

1Now known as accumulation points. This notion was not new: it is implicit in Bolzano’s
version of the Bolzano-Weierstrass theorem, discussed in Chapter 6.
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only much later. As Dedekind, independently, had also realised, the con-
cept of one-one correspondences between sets leads naturally to a definition
of infinite sets:

An infinite set is one that can be put into a one-one correspondence with
a proper subset of itself.

Obvious examples are the set N of all natural numbers and the set E of
all even numbers (where n ∈ N corresponds uniquely to 2n ∈ E); or the set
of all perfect squares (where n corresponds to n2); or the set of all prime
numbers (although, in this example we can’t locate the nth prime number
precisely when n is large – as we saw in Chapter 7.)

Cantor observed that with one-one correspondences he could extend
the notion of ‘counting’ to any set B that can be written as an infinite se-
quence b1, b2, b3, ..., bn, ... . Listing its elements as a sequence establishes a
one-one correspondence (or bijection) between the set B and the set N of all
natural numbers: for each n = 1, 2, 3, ..., associating the element bn of B
with the natural number n. Thus: we will call a set B countably infinite if it
can be put in one-one correspondence with all of N.

The term denumerable is often used instead, while a set is usually called
countable if it is either finite or countably infinite. Cantor introduced the
term ‘countable’ in 1883. Dedekind had called such sets simply infinite.

Cantor’s initial interest was to examine familiar subsets of the contin-
uum to decide whether they are countably infinite. A striking example is
the use of his first diagonal method to show that Q is countably infinite.

Restricting to positive rationals (Q+), we illustrate how Q+ can be writ-
ten as a sequence in the following diagram, where we imagine an infinite
square array containing all positive fractions:

1
1 → 2

1
3
1 → 4

1
5
1 ... n

1 ...
↙ ↗ ↙ ↗

1
2

2
2

3
2

4
2

5
2 ... n

2 ...
↓ ↗ ↙ ↗
1
3

2
3

3
3

4
3

5
3 ... n

3 ...
↙ ↗

1
4

2
4

3
4

4
4

5
4 ... n

4 ...
↓ ↗
1
5

2
5

3
5

4
5

5
5 ... n

5 ...
... ... ... ... ... ...
1
n

2
n

3
n

4
n

5
n ... n

n ...
... ... ... ... ... ...

The arrows show how the distinct rational numbers in this array can
be written as a sequence. From 1 = 1

1 move right to 2 = 2
1 , then diago-

nally down left to 1
2 , down to 1

3 , then diagonally up right, (skipping 2
2 = 1)
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to 3 = 3
1 , then to 4 = 4

1 , diagonally down left to 3
2 ,

2
3 ,

1
4 , down to 1

5 , then
diagonally up right (skipping 2

4 ,
3
3 and 4

2 ) to 5 = 5
1 , then right to 6 = 6

1 , di-
agonally left again, and so on, zig-zagging through the whole array. Every
ratio whose numerator and denominator have common factors is skipped
(recall that a rational number is an equivalence class of fractions). For ex-
ample, 1

5 becomes the tenth term in our sequence (as we skipped 2
2 ), while

5
1 is the eleventh, since 2

4 ,
3
3 ,

4
2 are skipped. This ensures that only distinct

positive rational numbers are counted. We map this sequence of distinct
members of Q+ one-to-one to the even numbers 2, 4, 6, ..., 2n, ... . Similarly,
the set Q− = {−r : r ∈ Q+} of negative rationals is mapped one–to-one to
the odd numbers 3, 5, ..., 2n + 1, .. , and 0 is mapped to 1. Taken together,
these provide a one-one correspondence between Q and N.

A slight extension of the above argument shows that any countable union
of countably infinite sets is countably infinite. Write this union as a sequence
of sets, then write each set in the union as a sequence, list them below each
other as in our array, and move through the array in the zig-zig manner
indicated, skipping all elements encountered at an earlier stage. This pro-
cess rearranges the elements and displays the countable union of sequences
as a single sequence, in one-one correspondence with N. Thus: an infinite
sequence of infinite sequences can be re-arranged into a single infinite se-
quence.

Cantor continued his explorations of subsets of R by showing that the
set A of all real algebraic numbers (see Chapter 8) also countably infinite.

Recall that we may takeA as the set of all real roots of polynomials with
integer coefficients, that is, solutions of equations of the form

cmx
m + cm−1x

m−1 + ...+ c1x+ c0 = 0,

where ci ∈ Z (i ≤ m) and m ∈ N. Recalling that |ci| denotes the modulus of
the integer ci, define the height of x as h = m+ |cm|+ |cm−1|+ ...+ |c0|.

For any given h there are only finitely many polynomials with height
h, since clearly this would require m and each |ck| to be at most h. Any
polynomial of degree m with integer coefficients has at most m distinct
real roots, so it contributes at most m distinct algebraic numbers, since its
factorisation includes the product of k ≤ m linear factors.2 The factors
(x − α1)(x − α2)...(x − αk) yield real roots α1, , , αk. So any polynomial
of height h will contribute only finitely many algebraic numbers. Since all
the real algebraic numbers are found as roots of such a polynomial for some
height h,we can nowwrite themdown as a sequence, beginningwith height

2As noted in Chapter 4, in some cases we obtain quadratic factors that cannot be fac-
torised further if we allow only real roots, such as x2 +1 = 0. These quadratic factors produce
conjugate pairs of complex roots instead. In such cases k = m− 2n for some n ≥ 1.
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2 (there are none of height 1).3 Since each height contributes only finitely
many new numbers, and all real algebraic numbers appear in the sequence,
the set A of all real algebraic numbers is countably infinite.

1.2. Uncountable subsets of R. Despite his success in defining the real
number system, a natural question worried Cantor: since the rationals are
dense in the reals, so that between any two real numbers at least one rational
number (indeed, infinitely many) can be found, howmight one characterise
the apparent difference in ‘size’ (or plurality) between these two sets? Since
Q has gaps while R does not, intuitively there appear to be manymore reals
than rationals. On the other hand, the sets Q and N are in one-one corre-
spondence, yet there are also many more rationals than natural numbers.

In November 1873 Cantor wrote to Dedekind, asking whether, in his
view, one-one correspondences could be found betweenR andN. Dedekind
replied that he could offer no evidence that such a correspondence would
be impossible. But Cantor soon solved the problem in dramatic fashion in a
paper that appeared in Crelle’s Journal in 1874—this paper in effect launched
set theory as a new subject. In this paper he proved that there can be no one-
one correspondence between N and R. (An infinite set would later be called
uncountable if it could not be put into one-one correspondence with N.)

Cantor’s proof (which we summarise below) was criticised as less than
convincing by some of his peers. Undaunted, he boldly emphasised the sig-
nificance of his result as follows: ‘Thus I have found the clear difference between a
so-called continuum and a set of the nature of the entirety of the algebraic numbers.’

Rather than reproduce Cantor’s original proof, we consider a slight re-
formulation of his argument.4

Given an arbitrary sequence (xn)n≥1 of real numbers, construct nested
closed intervals ([an, bn]n≥1)—that is, for each i, [ai+1, bi+1] is a closed subin-
terval of [ai, bi]—each chosen to ensure that, for each n ≥ 1, xn is not in
[an, bn]. Thus x1 /∈ [a1, b1], x2 /∈ [a2, b2],..., xn /∈ [an, bn], ... . For each n, the
interval [an, bn] has been constructed to avoid the first n points of our given
sequence. By one version of the completeness property of R (see Footnote
9 in Chapter 8) the sequence of nested closed intervals has non-empty in-
tersection I = ∩n≥1[an, bn]. No xn in our original sequence can belong to
I, hence any member of I is a real number not in our sequence, so that R
cannot be countable.

A different proof, outlined by Cantor in 1891, is more common in text-
books today. It rests on his second diagonal argument: for simplicity, restrict
attention to the infinite decimal expansions whose integral part is 0. The

3For h = 2 we have x = 0 or 2 = 0; the latter equation is false, so 0 is the only alge-
braic number for height 2. You may check that height 3 yields just 1 and −1; height 4 yields
−2,− 1

2
, 1
2
, 2; and that height 5 provides

√
2 as one of the first irrationals in this sequence.

4See Tim Gowers’ blog (https://www.dpmms.math.cam.ac.uk/~wtg10).
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proof is by contradiction: if these expansions could all be written down in a
sequence, they would produce a doubly infinite array of the form

α1 = 0.a11a12a13a14a15...

α2 = 0.a21a22a23a24a25...

α3 = 0.a31a32a33a34a35...

α4 = 0.a41a42a43a44a45...

α5 = 0.a51a52a53a54a55...

......................

where all the aij are chosen from {0, 1, 2, ..., 9}, and the sequence (αn)n≥1

would contain all infinite decimal expansions whose integral part is 0. To
avoid duplication in the list we will write all terminating decimals in their
‘recurring nines’ form. Now construct another infinite decimal expansion
β = 0.b1b2b3..., where, for each i ≥ 1, the digit bi is chosen to be different
from aii, and the digits 0 and 9 are not used. For each i this leaves seven
alternative choices. This new expansion is different from each of the expan-
sions in the sequence (αn)n≥1, since it differs from a1 in the first digit, from
a2 in the second, and so on. None of the bi are 0, so β cannot be a terminating
expansion that coincides with a ‘recurring nines’ entry αn in the above list.
But that means that the list does not contain all infinite decimal expansions,
so our assumption that the set is countably infinite has led to a contradiction.

Hence the interval [0, 1], and thus also the set R of all (non-terminating)
infinite decimal expansions, cannot be placed in one-one correspondence
with N.

On the other hand,R = Q ∪ (R\Q) consists of all rationals togetherwith
all irrationals. The union of two countably infinite sets is countably infinite,
and Q is countably infinite. Therefore, the set of all irrationals is uncountable.

As described above, Cantor’s paper also verified that the setA of all real
algebraic numbers is countably infinite. Together with all transcendental
numbers it again makes up the (unccountable) set R, so the set of transcen-
dental numbers must be uncountable. In fact, as Cantor observes, his argu-
ment proves Liouville’s claim that every interval contains infinitely many
transcendental numbers.

The fact that there are ‘many more’ real numbers that behave like π, e
or Liouville’s constant L, may be somewhat disconcerting. We have to ac-
cept that we have no way of ‘knowing’ (individually) most of the numbers
that we represent by infinite decimal expansions. In fact, we cannot even de-
fine most of these decimal expansions in a meaningful way in finitely many
words. Using a finite alphabet, there are only countably many possible sen-
tences that we can form to articulate the definition of any particular number
in words (or symbols) .
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These facts about the ‘familiar’ continuum help to explain why Cantor’s
paper met with a hostile reception in some quarters, most notably from his
former mentor Kronecker, who was to become a bitter enemy. Kronecker
seems to have used his pre-eminent position in Berlin to block Cantor’s am-
bition for a post in Berlin or Gőttingen. Cantor also believed that Kronecker
successfully dissuaded journal editors from accepting his papers for publi-
cation – this does indeed appear to be have been the case, for example, with
the prestigious Crelle’s Journal, where Kronecker was an editor.

2. Cantor’s transfinite numbers

By 1880 Cantor had become deeply involved in his formulation of the
general theory of sets, and in particular in his extension of the number con-
cept to include transfinite numbers, i.e. numbers ‘beyond the finite’. With
this, Kronecker’s hostility intensified: his motivation was his adamant re-
fusal to accept any notions of the actual infinite having a place in mathe-
matics. In his ‘arithmeticisation programme’ Kronecker had insisted that
allmathematics should be capable of being based on a finite number of op-
erations with integers. In his 1886 article ’Über den Zahlbegriff’ (On the
number concept) he objected strenuously to many widely accepted mathe-
matical developments of his time, such as the Bolzano-Weierstrass theorem,
claims for the existence of suprema and infima, and even the irrational num-
bers. For example, having read Lindemann’s proof that π is transcendental,
he commented:

Of what use is your beautiful investigation of π. Why study such problems
when irrational numbers do not exist.

From this extreme perspective it is no surprise that he saw Cantor’s
work as anathema. Sadly, the ensuing controversies and professional dis-
appointments this created probably contributed to Cantor suffering a series
of mental breakdowns that greatly hampered his mathematical research for
significant periods. Ironically, the origin of the controversy is found in the
notion of counting, with which I began this book, and which forms the basis
of Pythagorean mathematics as well as of Kronecker’s own position.

Cantor first perceived a need to extend the process of counting ‘be-
yond the finite’ while dealingwith the structural analysis of linear point sets
through his concept of derived set. His conclusions were published as a se-
ries of six papers entitled "Uber unendliche lineare Punktmannigfaltigkeiten (On
infinite linear point sets) that appeared between 1879 and 1884.5 One start-
ing point was his classification of point sets of the first and second species,

5For Cantor’s original papers see his annotated collected works, edited in 1932 by Ernst
Zermelo [46]. Zermelo comments that the ‘germ’ of Cantor’s theory of transfinite cardinals can
be found in the transfinite sequence of derived sets.
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where, as shown above, the first species could be divided into sets of the nth
kind for n ≥ 1.

As yet, he had defined no such subdivisions for the second species. In
the second paper of his series he observed that, in the sequence of derived
sets P ′, P ′′, P ′′′, ... of a set P, each member is a subset of the previous one.
When P is a set of the second species, its derived set, again denoted by P ′,
can therefore be written as a disjoint union P ′ = Q∪R, whereQ consists of
all points ‘lost’ when we construct a sequence of successive derived sets of
P (i.e. given x ∈ Q, there is a smallest n ≥ 1 such that x does not belong to
P (n)), whileR = ∩n≥1P

(n) consists of all points that belong to every derived
setP (n) for n ∈ N. SinceP is not a set of the first species, he knew thatR 6= ∅
and he denoted R by P (∞), as the ‘derived set of order∞’.

The derived set of P (∞) would then be denoted by P (∞+1). He defined
the next derived set as P (∞+2), and continued in this fashion, denoting the
nth-order derived set of P (∞) by P (∞+n). In this way, P (∞) will also have
a ‘derived set of order∞’ consisting of points belonging to every P (∞+n).

This set would be denoted by P (2∞).Continuing in this fashion, Cantor con-
structed the derived set of order ‘n0∞+n1’ for any natural numbers n0, n1.

This led to the next ‘limit set’ as the set P (∞2) = ∩n≥1P
(n∞), and then to

‘polynomial combinations’ of the symbol∞ in the form n0∞ν + n1∞ν−1 +
... + nν . (Note that this was simply his notation to identify the ‘positions’
of sets in the list, without implying ‘arithmetical’ operations!) Treating the
power ν as a variable, this leads, as before, to P (∞∞) = ∩ν≥1P

(∞ν) . This, in
turn, generated new derived sets and the process could be continued indef-
initely.

Although at this stage the infinite symbols served primarily as labels
by which he could distinguish between various levels of derived sets, Can-
tor stated boldly that his successive definitions amounted to a ‘dialectical
generation of concepts, which continues ever further and, free of any arbitrariness
[Willkür], remains consistent and necessary in itself’.

2.1. Cardinal numbers. Thus the roots of Cantor’s investigations of dif-
ferent types of infinite sets are illustrated by two distinct aspects of his early
work described above:

(i) his discovery that some familiar infinite sets are of different ‘sizes’;
(ii) his classification of sets of the first and second species (via their se-

quences of derived sets).
We now consider where these led him in turn.
Cantor’s definition of the cardinal number (or power) of a set was to be of

crucial importance, extending the idea of one-one correspondences from N
to sets in general. Readers familiar with modern set theory will be aware



2. CANTOR’S TRANSFINITE NUMBERS 219

that the definition of this concept has become considerably more sophis-
ticated since Cantor’s time, depending on the particular axiom system em-
ployed to define the notion of set. Wewill avoid such issues here and restrict
our attention essentially to Cantor’s perceptions. What remains basic to our
(naive) setting is the following:

Definition
Two setsM,N are equipotent (also called equipollent) if there is a one-one

correspondence (also called a bijection) between them. In that caseM and
N are said to have the same cardinal number (or power) and we denote this
byM ∼ N.

Cantor argued that this concept is not restricted to sets of whole num-
bers, but ‘ought to be considered as the most general genuine foundation [he used
the German word ‘Moment’] of sets’. Here we see him already claiming set
theory as the basis of all ‘pure’ (or, as he would have it, ‘free’) mathematics.
In his later papers (1895/1897) he used the notationM to denote the power
of the set M, arguing that it was ‘that general concept which, with the help of
our active thought-processes, arises from the setM, abstracting from the character
of its various elements m and from the order in which they occur’. Statements
such as these reveal a philosophical stance that asserts the reality of mental
constructs and the primacy of consciousness.

I will not use Cantor’s notation, but simply write |M | to denote the car-
dinal number ofM . For the purposes of discussing its cardinalityM can be
replaced by any set equipotent toM. The cardinality of a set has nothing to
do with any ‘ordering’ of its elements.

At this stageCantor only had twodistinct infinite examples (sets equipo-
tent with either N or R), but he asserted confidently that the concept of
power ‘is by no means restricted to linear point sets, but can be regarded as an at-
tribute of any well-defined collection, whatever may be the character of its elements’.
He was soon to provide a more detailed justification of this claim.

In 1883 he published the fifth article in his series on point sets in the
journal Mathematische Annalen. This was also published separately and is
now known as his Grundlagen [Basics] paper. Here he developed his ideas
about infinite sets in an abstract setting, using his previous results about de-
rived sets as a guiding example. He prefaced the presentation of his theory
with an extensive discussion of philosophical and historical objections to
the concept of actual infinity, a concept which he saw as central to his whole
project.

His research in set theory had reached a point where further progress
would depend upon a systematic ‘extension of the concept of real whole number
beyond its previous boundaries’, and this extension had taken a direction that,
to his knowledge, no-one had taken before him. Although he expressed the
hope, indeed firm conviction, that the idea of the actual infinite would ‘in
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time, have to be regarded as a thoroughly simple, appropriate and natural one’, he
was well aware that he was placing himself ‘in a certain opposition to wide-
spread views about the mathematical infinite and to frequently advanced opinions
on the nature of number’.

He pointed out that Aristotle’s notion of the potential infinite had habit-
ually been used to justify the Calculus. This relied crucially on the idea of
variable finite quantities that could grow or shrink beyond any assignable
bounds, while remaining finite at any particular stage. Cantor would now
refer to such notions as describing improper infinities. By way of contrast, the
widely accepted practice of postulating the existence of a ‘point at infinity’,
which was prominent in both projective and hyperbolic geometry and via
the Riemann sphere in complex function theory, had a quite different char-
acter.6 These were fixed ideal points, justifying their description as actual, or
as he wished to call them, proper infinities.

2.2. Ordinal numbers. The transfinite numbers he would now define
had the latter character. He had worked with them for some years without
fully realising that they constituted ‘concrete numbers of real meaning’. In con-
trast to a single ideal ‘point at infinity’, he would introduce, successively, an
infinite collection of infinite numbers, all differing from one another. Their
construction would be based on two distinct principles of generation together
with a limitation principle that would serve to distinguish between different
classes of numbers within this collection.

Thus Cantor was ready for the second fundamental innovation sug-
gested by his earlier work on sets of limit points: he would extend the fi-
nite ordinals (or ordinal numbers), indicated by their position in the sequence
1, 2, 3, ..., n, ..., indefinitely beyond the finite. These ideas constitute his sec-
ond major breakthrough, initiating an entirely new subject of study.

In this area also, mathematics has evolved substantially since Cantor’s
time, but his basic ideas largely remain intact. We will see below how—as
Cantor himself described in his later papers—the concept of well-ordering
(which, for N, follows from the induction principle—see Chapter 7) was to
become fundamental to his theory.

Today, one common procedure is to identify an ordinal as the set of all
ordinals that precede it in the given ordering – as is done for finite ordinals
in vonNeumann’s model forN0 in Chapter 7. Thus ordinals ‘label’ the posi-
tions of elements of a set, whose order type is then given by the least ordinal
that is not a member of that set. By way of contrast, cardinals only express

6For the last of these, imagine ‘bending’ the Gaussian plane into a sphere, so that the
origin 0 forms the South Pole, while the boundaries of the four quadrants meet at the North
Pole, which we then treat as the ‘point at infinity’, denoted by∞. Points in the plane with very
small coordinates map to points near 0while points with very large coordinates map to points
‘near’∞.
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the ‘size’ of the set. As Cantor pointed out in the construction we describe
below, many different infinite ordinals will have the same cardinal number,
since the latter takes no account of the ordering of the elements of two sets
being compared, only the existence of a one-one correspondence between
them.

Cantor’s starting point was to consider how counting, i.e. starting at the
unit 1 and successively adding a unit each time, enables one to create the set
of all natural numbers, which he denoted by (I) (the ‘first number class’)
for this purpose. Its elements were the finite ordinal numbers. Although it
would be contradictory to speak of a ‘largest number’ in this set, nothing
prevented him from defining a new number ω that expressed the natural,
regular order of the set (I) as a whole.7 The symbol ω would represent the
first transfinite ordinal number, the first number to follow the entire sequence
of natural numbers ν. He argued that it was legitimate to think of ω as a
‘limit’ to which the natural numbers ν ‘tend’, provided that we meant by
this that ω should be the first number that follows all the natural numbers.

But, having definedω, he could now continue adding units successively,
creating new transfinite ordinal numbers

ω + 1, ω + 2, ..., ω + ν, ...

again producing a new sequence without a largest element. Nonetheless,
the ordinals ω+ν (ν ∈ N) are all equipotent to ω (as sets!) so they all have the
same cardinal number. Applying the same logic as when discussing derived
sets, he defined a new transfinite ordinal number 2ω as denoting the set
consisting of all numbers of the form ν or ω + ν, with ν taken from (I).8
As he had done for his derived sets, Cantor now repeated the use of his
two generating principles—in describing this we use his original notation.
The first principle is the successive addition of units, while the second only
comes into play for a ‘definite succession of defined whole numbers...for which
there is no largest’. In such situations the new number created is the ‘next
number larger than all of them’, the first two examples being ω and 2ω. Using
these two principles repeatedly, he could first reach transfinite numbers of
the form 2ω + ν for all ν in (I), to be followed immediately by 3ω, then all
3ω+ ν, ..., µω+ ν, etc., so that the ordinal immediately following all these is

7He commented in a footnote that he would now use ω rather than∞, precisely because
the latter symbol was frequently used to signify the potential infinite (as in x = limn→∞ xn)
rather than denoting an actual infinite number, as was required here.

8In the 1890s Cantor use the notation ω2 instead of 2ω, and this is the notation used today.
Oneway of envisagingω2 (orω+ω) is as two copies ofω, (e.g.) representing the infinite sequence

1, 3, 5, 7, 9, ...; 2, 4, 6, 8, 10, ...,

since, just like the set used to define ω2, it has two numbers (1 and 2) which are not immediate
successors of any number, and each of the sequences 1, 3, 5, ... and 2, 4, 6, ... can be put in one-
one correspondence with N. What matters here is the order structure rather than any specific
‘labels’ (including any ‘arithmetical’ notation) used to identify individual elements.
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denoted by ω2.Using the symbol + to indicate how the successions proceed
in each case, he could describe all transfinite numbers of ‘polynomial’ form
as ν0ω

µ + ν1ω
µ−1 + ... + νµ, where µ, νk are natural numbers, while the

collection of all of these would be followed by ωω, and so on!
Today, ordinal numbers such as ω, ω2 or ωω, which are neither 0 nor

successor ordinals (i.e. produced by adding 1 to an earlier ordinal) are called
limit ordinals.

His formulation ledCantor to a limitation principle [‘Hemmungsprinzip’],
whereby hewould identify breaks in the seemingly endless process of num-
ber creation: repeating the essence of the proof that the setA of all real alge-
braic numbers is countable, the above collection of numbers of ‘polynomial’
form is shown to be countable, as µ, νk are natural numbers.

In his hierarchy of number classes, class (I) comprises the natural num-
bers. He now defined the second number class, denoted by (II), as:

‘the collection of all numbers, increasing in definite succession, which can be
formed by means of the two principles of generation:

ω, ω + 1, ..., ν0ω
µ + ν1ω

µ−1 + ...+ νµ, ..., ω
ω, ..., α, ...

subject to the condition that all numbers preceding α (from 1 on) constitute a set of
the power of the first number-class (I).’

In other words, ‘initial segments’ of the second number class (II) were
to remain countable sets, just as initial segments of class (I) were finite. Can-
tor went on to prove that number class (II) has a higher power than number
class (I), and also that this power immediately follows that of the first.9 For
the last of these claims he needs to make use of the smallest ordinal number
in class (III). This is the only occasion (in the Grundlagen) where he men-
tions the third number class (III): it consists of all numbers ‘generated’ by
repeating the above process, starting with number class (II) instead of with
class (I). Nonetheless, he asserts without further ado that the process of gen-
erating new transfinite numbers can be continued indefinitely, creating an
unlimited collection of number classes, each subject to his limitation prin-
ciple, which in its general form states that new transfinite numbers can be
created by use of the two generating principles ‘only if the totality of all pre-
ceding numbers has the power, in its whole extent, of an already defined number
class’.

9Cantor’s proofs of these claims are quite unwieldy, but already contain the seeds of the
notion of well-ordering, which became the centrepiece of his later reformulation of the theory
of transfinite numbers. He published his new approach only in 1897. In the Grundlagen Cantor
simply states without proof that any non-empty sub-collection of the collection of all ordinals
has a first element. In [46] his editor Zermelo provides a straightforward proof of this fact.
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Basing his treatment on the order concepts he had introduced, he ended the paper
by developing the arithmetic of transfinite ordinals in considerable detail, showing
that their algebraic properties are quite different from those elaborated earlier for N,
Z and Q. In particular, the commutative laws for addition and multiplication break
down even in simple cases. For example, 2 + ω 6= ω + 2. To see why this is so, note
that we can write these two sets as follows:

2 + ω = (1, 2, a1, a2, ..., aν , ...},
ω + 2 = {a1, a2, ..., aν , ...; 1, 2}.

These two sets are equipotent, but are not equal as ordinal numbers, as the orderings
do not correspond: in the first, only one element, 1, has no immediate predecessor;
in the second there are two such elements, a1 and 1. Similar arguments show that
multiplication is not commutative in general: for transfinite ordinals α, β we find
that βα 6= αβ, since α copies of β need not have the same order structure as β copies
of α. But we will not delve further into the arithmetic of transfinite ordinals here.

3. Comparison of cardinals

Awidely used notation for the cardinality of the various number classes,
introduced by Cantor in the 1890s, uses the Hebrew letter ℵ (aleph). It lists
the cardinality of the first number class as ℵ0 and that of the second number
class as ℵ1. The precise relationship between ℵ1 and the cardinal number
of the continuum was to occupy much of his subsequent work. Recall that
in the Grundlagen he had shown that the cardinalities of his number classes
(I) and (II) were distinct. He had also claimed correctly that the cardinal-
ity of number class (II) was the next greatest after that of class (I) in this
sequence. Here his arguments, based on what Ernst Zermelo (1871-1953) de-
scribes as a ‘purely constructive’ definition of the two ‘generating principles’,
lacked much of the clarity of the treatment provided when Cantor revisited
the matter in his Beiträge papers in 1895 and 1897. The claim that the alephs
constitute an infinite number of distinct cardinal numbers would need fur-
ther clarification.

A fundamental question concerned the comparability of transfinite car-
dinal numbers. For any two distinct finite numbersm,nwe know that either
m < n or n < m will hold; this is what we called the trichotomy for the (to-
tal) ordering of N. To extend this to transfinite cardinals (and thus to justify
their designation as ‘numbers’), Cantor suggested in 1887 that, given two
setsM,N , the inequality |M | < |N | should mean that there is a proper sub-
set N ′ of N that is equipotent to M, while no subset of M is equipotent to
N. This ordering of cardinal numbers is easily shown to be transitive (see
MM).

Cantor proved that at most one of |M | < |N | , |M | = |N | , |N | < |M | can
hold. This is straightforward: by definition equality cannot hold at the same
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time as either of the other relations. But if |M | < |N | then some N1 ⊂ N is
equipotent toM,which means that we cannot have |N | < |M | .

However, the same could not be said for the claim that at least one of the
above relations must hold for arbitrary setsM,N. For givenM,N there are
two further possible outcomes in addition to the relations |M | < |N | and
|N | < |M |:

(i)M is equipotent to a subset of N and N is equipotent to a subset of
M ,

(ii)M is equipotent to no subset of N and N is equipotent to no subset
ofM.

Cantor claimed that case (i) would ensure thatM andN are equivalent,
but he never proved this. It was proved, independently in 1897, by Ernst
Schröder (1841-1902) and by his student Felix Bernstein (1878-1956), who had
corrected an error in Schröder’s original claim of this result, published in
1896.

The Schröder-Bernstein theorem:
If each of M,N is equipotent to a subset of the other, thenM is equipotent to

N.

Although the proof of this theorem does not require advanced tools, it
is by no means obvious (see MM). It eluded Cantor until after his principal
papers on set theory had been published.

Case (ii) above implies thatM andN are not comparable by the relation
<, which would mean that it is not a total order. Initially, Cantor was un-
able to exclude this possibility for the cardinals of infinite sets. However, in
his Beiträge papers of 1895/97 he provided a complete reformulation of his
number classes, based on the concept of a well-ordered set, instead of the
more nebulous ‘generating principles’ presented in the Grundlagen.

The modern definition echoes and generalises the Well-Ordering prop-
erty (WO) proved in Chapter 7 for N:

A setM is well-ordered in a given ordering if every non-empty subset of
M has a first element in that ordering.

Cantor’s definition was more elaborate. He first defined a set as simply ordered if for
any two of its members one can always be shown to precede the other. Two simply
ordered setsM,N are similar if there is a one-one correspondence φ between them
that respects order, i.e. (denoting their orderings by <M , <N ) if m1 <M m2 then
φ(m1) <N φ(m2). The two sets are said to have the same order type – Cantor wrote
this asM = N – if and only if they are similara.

He distinguished between number [Zahl] and numbering [Anzahl]. The former
relates only to the size (i.e. cardinality) of the set, the latter takes the ordering of the
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elements into account, insisting that the one-one correspondence between the sets
should preserve the ordering. For finite sets, of course, the two notions coincide,
so this distinction would suffice to characterise actual infinite sets. He argued that
the centuries-old confusion about potential and actual infinities might have had its
origin in the fact that finite numbers function in this dual sense.

The upshot of his reasoning was that the first transfinite number ℵ0 could be
taken as that of the first number class (I), in other words, the ordinal ω. The second
number class (II) was defined as ‘the entirety of all order types α of well-ordered sets of
cardinality ℵ0’, By showing that this is a well-ordered set, he could define the second
transfinite number ℵ1 as its least element, and prove the inequality ℵ0 < ℵ1.
aIn much the same way as for cardinal numbers, we would today define an order type µ as
any representative of a class of mutually similar sets. Clearly two sets with the same order type
define the same cardinal number, but the converse is false in general.

It is clear that well-ordering is an intrinsic part of any counting proce-
dure, as we saw when discussing N. By 1883, Cantor had become aware of
the centrality of well-ordered sets for his entire set theory, but he did not
prove that his set of transfinite cardinals could be well-ordered. Instead, in
the third section of the Grundlagen he made the claim that ‘any well-defined
set can be brought into the form of a well-ordered set’. He regarded this as ‘a basic
law of thought with far-reaching consequences especially remarkable for its general
validity’ to which he promised to return in a later paper. However, by the
1890s he had realised that his bold claimwas by nomeans self-evident. This
led him to a thorough reformulation of his transfinite ordinals, published in
Part II of the Beiträge (1897), and at last enabled him to resolve the awkward
question of the comparability of his alephs.

3.1. Cantor’s second diagonal argument. The publication of Cantor’s
Beiträge in 1895 and 1897 met a more receptive audience than had his ear-
lier work in the Grundlagen. His primary critic, Kronecker, had died in
1891, and the younger generation of mathematicians throughout Europe
showed greaterwillingness to grapplewith the fundamental questions Can-
tor’s work had raised. The Beiträge were soon translated widely. They also
proved to bemore accessible, providing firmer foundations for some of Can-
tor’s claims that had been the case in earlier work.

Opposition to Cantor’s ideas had not gone away, however. For example,
the great Frenchmathematician,Henri Poincaré (1854-1912) remained a stern
and influential critic of transfinite numbers, calling the theory a ‘disease’
from which mathematics would eventually recover!

In the late 1880s, disappointed at his failure to obtain the recognition
and prestigious position he had hoped for, Cantor was active in campaign-
ing for a new professional body for German mathematicians. The estab-
lished professional organisation, representing mathematics and medicine,
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seemed to him moribund, personifying the academic establishment that
had blocked his publications and career aspirations. His advocacy of an al-
ternative resulted in the formation of the Deutsche Mathematiker-Vereinigung
(DMV) [German Mathematicians’ Union] which elected Cantor as its first
President at its inaugural meeting, held in Halle in 1891.10

Cantor used this occasion to present what has become one of his most
distinctive and important contributions. We have already seen an applica-
tion of his ‘second diagonal argument’ in the proof of the uncountability of
the reals. His own description of his simple, yet groundbreaking technique,
published under the unassuming title: ‘Über eine elementare Frage der Man-
nigfaltigkeitslehre (On an elementary question in set theory) and taking up
just three pages of the first volume of the DMV’s annual reports, makes in-
teresting reading. As he pointed out, this proof was the first to be entirely
independent of the definition of irrational numbers, and lent itself to a vast
range of generalisations.

He began with just two distinct elements,m and w, and considered the
setM of all possible sequencesE = (xi)i≥1 such that each xi is eitherm orw.
(In these binary days of computer science, we would immediately translate
these into sequences using only 0 and 1.) If the set M of these sequences
were countable, we could write it as a sequence, so its elements could be
listed as

E1 = (a11, a12, ..., a1n, ...)

E2 = (a21, a22, ..., a2n, ...)

....

En = (an1, an2, ..., ann, ...)

....

The sequence (b1, b2, ..., bn, ...), where, for each n ≥ 1, bn is either m or
w, but where we insist that bn 6= ann, is obviously a member ofM but does
not equal any of the Ei. ThusM cannot be countable.11

Cantor showed that the diagonal argument can be applied to any set M
to show that the cardinality of a set is always less than that of its so-called
power set, P(M), defined as the set of all subsets of M (including ∅ and
M itself). To see why, let us begin by counting the subsets of small sets:

10The DMV remains the premier professional organisation for German mathematicians
today.

11Cantor added that the same technique can be used to prove the uncountability of R.
As Zermelo remarked in a footnote when editing Cantor’s Collected Works in 1932, this claim
needs a minor amendment: binary expansions do not represent rational numbers uniquely,
since expansions of the form 0.a1a2...an01111... and 0.a1a2...an10000... represent the same
rational in [0, 1], for example. But we can always decide in advance which representation to
use throughout – exactly as we did for decimal expansions in Chapter 7, Section 6.3.
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Figure 39. Henri Poincaré sitting (Henri Manuel)12

∅ has only one subset, namely itself,
the singleton set {m} has two subsets, ∅ and {m},
the set {a, b} has four, namely ∅, {a}, {b}, {a, b},
the set {a, b, c} has eight: ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.
In general, a set with n elements has 2n subsets. This follows from the

binomial theorem: (a+ b)n =

n∑
k=0

(
n
k

)
akbn−k (see Chapter 5), taking a = b =

1; a set with n elements has
(
n
k

)
= n!

k!(n−k)! distinct subsets with k elements.

Sowhat about infinite cardinals? Write the power set ofM asP(M).The
above suggests the notation |P(M)| = 2|M |. Cantor’s argument showed that
|M | < |P(M)|, and this immediately provides an infinite, strictly increasing
sequence of infinite cardinal numbers. (The proof is given in MM.)

In terms of Cantor’s aleph notation for infinite cardinals, thismeans that
the power set P(N) has a higher cardinal number greater than ℵ0. By anal-
ogy with a set with n elements, whose power set has 2n elements, we may
adopt the notation 2ℵ0 for the cardinality of the power set P(N).

3.2. Unsolved problems and paradoxes. Despite wrestling with it for
many years, Cantor remained unable to resolve a fundamental question that

12https://commons.wikimedia.org/wiki/File:Henri_Poincaré_sitting.jpg

https://commons.wikimedia.org/wiki/File:Henri_Poincar%C3%A9_sitting.jpg
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had occupied him since the late 1870s: given that the real number system
R is uncountable, is its cardinal number the next greatest after that of N?
Although he could not prove this, Cantor remained convinced that it is, and
this claim became known as his Continuum Hypothesis (CH).

With the notation developed above, Cantor’s Continuum Hypothesis
(CH) can now be framed succinctly. He knew that the real numbers can be
placed in a one-one correspondence with the power set P(N) of the natural
numbers.13 Denoting the cardinality of the real number system R by c, this
means that c = 2ℵ0 .

Cantor’s claim is that there is no set with cardinal number strictly be-
tween ℵ0 and c. In other words, his ContinuumHypothesis asserts that any
subsetX of R is either countable or has |X| = c. In the well-ordered sequence
of transfinite cardinals ℵ1 is the next greatest cardinal after ℵ0. Thus the
Continuum Hypothesis takes the form: ℵ1 = 2ℵ0 .

In this form, Cantor’s hypothesis can be generalised in terms of an arbi-
trary infinite cardinal λ. The Generalised Continuum Hypothesis (GCH) states
that there can be no infinite cardinal lying between λ and 2λ. In terms of
ordinals and alephs it then reads: for any ordinal α, ℵα+1 = 2ℵα .

In two critical aspects, therefore, Cantor’s hopes to provide a secure ba-
sis for all of set theory were not realised:

(a) He hadmade no real progress on the question whether every set can
be well-ordered, although this claim remained fundamental to his theory.

(b) He had not been able to prove his Continuum Hypothesis.
Moreover, he had become aware that the concept of the set all cardinals,

or that of all ordinals, appeared self-contradictory if these were also to be
considered as ‘sets’—in other words, his set theory contained paradoxes.

The earliest paradoxes arose when basic questions were asked about the
nature of the collection of ‘all’ objects of a particular kind.

(i) The simplest paradox, named after Cantor, questions whether the set
of all sets, S, can be a set. If so, it must equal its power set P(S): if S is a set,
then P(S) is also a set, and by definition it is both contained in (the set of all
sets) S and contains {S} as an element. This, however, yields the contradic-
tion |P(S)| = |S| < |P(S)| by the above diagonal argument, and therefore
shows that S cannot be a set. In other words, the process of set formation

13Essentially, map S ⊂ N to an infinite binary sequence 0.a1a2...an..., using an = 1 if
n ∈ S and 0 otherwise. This maps subsets of N injectively into binary representations of real
numbers in [0, 1]. This will imply that c ≥ 2ℵ0 . On the other hand, treating real numbers as
Dedekind cuts (i.e. subsets of Q) means that c is no greater than |P(Q)| = |P(N)| = 2ℵ0 . So
by the Schroeder-Bernstein theorem, c = 2ℵ0 .
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without any limitations appears to be highly problematic. Cantor was prob-
ably aware of this paradox in 1895, and certainly before he published Part II
of his Beiträge in 1897.

(ii) Cantor was aware of a similar result announced in 1897 by Peano’s
former student Cesare Burali-Forti (1861-1931). This was the first paradox of
set theory to be published. It arises when we consider the set Ω of all or-
dinals (recall that ordinals are themselves sets). Now, if Ω is a set, then we
can, according to Cantor’s prescription, form its successor ordinal, which
we would denote by Ω + 1. But, as before, we would obtain the nonsensical
inequalities Ω < Ω + 1 ≤ Ω. So, the ‘set of all ordinals’ is also a meaningless
concept. Burali-Forti’s paper did not arouse much interest at first, nor was
much concern expressed when similar arguments showed that the set of all
cardinal numbers, or indeed, the set of all alephs, led to similar contradic-
tions.

Todealwith these questions, Cantor sought to distinguish betweenwhat
he called ‘consistent’ and ‘inconsistent’ concepts. He wished to treat the for-
mer as sets, but exclude the latter as ‘absolutely infinite’, which, he argued,
‘can never be conceived complete and actually existing’. To describe this distinc-
tion he began to formulate axioms that the process of set-formation would
need to satisfy.

There was by now a wider recognition that it was Cantor’s very general
definition of what constitutes a set (as given in the Beiträge) that would lead
to paradoxes (logicians prefer to call them antinomies, i.e. real contradictions
that can be deduced by applying specified logical rules to an apparently true
claim). Dedekind’s notion of infinite systems,which he espoused inWas sind
und was sollen die Zahlen? as an alternative way of describing sets in general,
would lead to similar conclusions.

The task of avoiding antinomies was later taken up by Bertrand Russell
who argued that, instead of Cantor’s ‘inconsistent’ entities, one should con-
sider properties which do not determine a set (that is, there is no set consisting
exactly of the objects that have the property). This conceptual shift, towards
describing mathematical entities by means of logical concepts, as well as
the search for an axiomatic basis of set theory, was to become a key element
of research for several decades, and led to much of the modern subject of
mathematical logic.

One particular intervention by Russell was soon to complicate matters
further. The catalyst was a letter (dated 16 June 1902) from Bertrand Rus-
sell to the German logician and mathematician Gottlob Frege, who had just
completed the second volume of his major work Grundgesetze der Arithmetik
[Basic Laws of Arithmetic]. Russell’s letter led Frege to the conviction that
the edifice he had built over a lifetime contained a fundamental flaw. Later
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he said that the paradox that Russell had discovered had destroyed set the-
ory! To understand why, we need to outline the background and nature of
Frege’s own investigations.

The purpose of Frege’s research hadbeen to base arithmetic uponpurely
logical concepts. This programme to derive allmathematical principles from
the laws of logic alone, became known as logicism. It had attracted math-
ematical philosophers, including Russell, as well as other mathematicians
such as Dedekind and Peano.

In philosophical terms the logicist programme opposed the material-
ism of David Hume and John Stuart Mill, who argued that our mathematical
ideas ultimately arise from our senses through observation. At the same
time the logicist viewpoint opposed Kant’s notions of our a priori intuitions
of space and time. For example, in the Preface to hisWas sind und was sollen
die Zahlen?, published in 1888, Dedekind had located his concept of num-
ber firmly within ‘the laws of thought’; unlike Hamilton, who had earlier at-
tempted to describe number (and algebra) as reflecting our a priori intuition
of ‘pure time’.

In his Foundations of Arithmetic [Grundlagen der Arithmetik], published
in 1884, Frege had addressed many of the same issues as Dedekind, but as
seen from the viewpoint of a logician rather than as a mathematician. He
had developed a meticulous language to express logical concepts, rules of
inference and logical axioms. This served to clarify the nature of mathe-
matical reasoning and set the stage for what is known as predicate calculus
in mathematical logic today. In his setting, a mathematical proof is a finite
sequence of statements, each of which is either an axiom or follows from
previous statements in the sequence verified by valid rules of inference.

Frege’s notation andmode of argumentwould take us beyond the scope
of this book, but we can indicate why Russell’s letter had such a destructive
impact upon Frege’s system. His two-volume Grundgesetze der Arithmetik
(1893/1903) sought, as the title suggests, to identify a small number of ‘basic
laws’ of arithmetic upon which the whole structure could be erected solely
through the use of logical terms and rules of inference. A key logical axiom
Frege needed to complete his programmewas his Basic Law V.14 Rather than
use Frege’s abstruse terminology and notation, we explain the difficulty in
terms of the (implicit) assumptions about set-formation used by both Cantor
and Dedekind, which allowed the formation of sets through self-referential
concepts.

14In his logical universe, containing only objects and functions (the latter taking an object
to a value), Frege wished to express the notion of the extension (he used the German word
Umfang) of an (unspecified) object. The extension of a concept F records the objects for which
F holds. However, Russell realised that, under Basic Law V one can form a self-contradictory
concept, by defining x as the extension of some concept which does not apply to x.
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Cantor had argued that the term set should apply to ‘every gathering to-
gether into a whole of definite, distinct objectsm of our perception or of our thought’,
while Dedekind said that ‘different things...can be considered from some common
point of view, can be associated in the mind, and we say that they form a system S’.
Frege criticised these statements, which essentially contend that ‘any pre-
cisely specified property’ will suffice to define a set by stipulating the con-
ditions for membership of the set.15 But despite Frege’s careful construction
of his logical system, his Basic Law V in effect amounts to making a sim-
ilar claim, as Russell pointed out. We can see how Russell created a self-
contradictory set under these assumptions:

If we denote the collection of all sets that are not members of themselves by
R, then, according to Frege’s Basic Law V (reformulated in terms of sets), R
is admissible as a set. But now we cannot answer the question whether R is
a member of itself! For, if we have R ∈ R then, by definition of R, we must
have R /∈ R. On the other hand, if R /∈ R then, again by definition of R, it
follows that R ∈ R. This then was Russell’s Paradox, which sent the whole
logicist programme into considerable turmoil.16

It seemed that, in order to maintain the freedom obtained by working
with sets in general, contradictions could only be avoided if careful limits
were placed on the process of set formation. Set theory urgently required
a consistent system of axioms – an axiom system free from contradiction – in
which such paradoxes would be avoided.

Russell’s paradox resulted in Frege’s eventual abandonment of his am-
bitious programme. Bertrand Russell himself, however, devoted much ef-
fort over several years to dealing with the paradox he had uncovered. He
hoped to avoid antinomies by developing a complex ‘theory of types’, cre-
ating an elaborate hierarchy of different types of sets where at each level a
set could only contain sets of lower types. Collaborating with Alfred North
Whitehead (1861-1947), he produced the massive Principia Mathematica, pub-
lished in several volumes from 1910 onward, in which they famously arrive
at a proof of 1 + 1 = 2 only after 379 pages.

In many ways the Principia represents the culmination of the logicist
project to produce a complete set of axioms and rules of inference within

15In what is today called ‘naive’ set theory, this statement is the Comprehension Axiom,
which asserts that for any (well-formed) formulaφ(x) that contains x as a ‘free’ variable, we can
obtain the set {x : φ(x)}whosemembers are precisely those objects that satisfy the proposition
represented by φ. Examples (beloved of logicians) are ‘x is a teacup’ or ‘x is a man’. But we can
also include the empty set as defined by {x : x 6= x}, or, more precisely, we can define φ(x)
via the statement x = x and denote its negation by ¬φ, so that ∅ = {x : ¬φ(x)}.

16In the notation of the previous footnote, Russell’s set R is given by {x : ¬φ(x)}, where
φ represents the proposition x ∈ x.

The following popularised version of Russell’s Paradox iswell-known: In a certain village,
there is a single barber. Every man in the village either shaves himself or he is shaved by the
barber. Who shaves the barber? (Note the assumption that the barber is a man.)
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symbolic logic from which, in principle, all mathematical truths would fol-
low. It harks back to Leibniz’ search for a characteristica universalis, a uni-
versal symbolic language in which concepts and ideas could be communi-
cated effectively. But Russell never declared himself fully satisfied with his
own efforts, and the focus of the debates about themeaning ofmathematical
statements shifted to debates about the specific system of axioms that would
deliver a consistent theory of sets.



CHAPTER 10

Solid Foundations?

Democritus said: ’That truth did lie in profound pits, and when it was got it need
much refining.’

Sir Francis Bacon, in A Collection of Apophthegms, New and Old, 1625

Summary

In this final chapter we observe how various paradoxes led to the effec-
tive abandonment of the logicist programme in favour of the establishment
of an axiom system for set theory—initiated by Ernst Zermelo in 1908—that
avoids these paradoxes and that has (to date) not been shown to be inconsis-
tent. We then focus on debates about the Axiom of Choice, which was not
included in Zermelo’s system, but first made explicit in his proof of Cantor’s
Well-Ordering Principle. It created lively debates about permissible proof
methods in mathematics, particularly in France.

Differences in perception between the twogiants ofmathematics around
the turn of the twentieth century, Poincaré in France andHilbert inGermany,
later developed—via the injection of the intuitionist philosophy of the Dutch
mathematician L.E.J. Brouwer into this debate—into open conflict and a cri-
sis of confidence in the foundations of the subject. A technical discussion
of these arguments is beyond the scope of this book and we present only a
brief outline.

Hilbert’s hopes of foundingmathematics on a formalist viewpoint, avoid-
ing all discussion of the ‘nature’ of mathematical objects, was dealt a lethal
blow in 1930 by the incompleteness theorems of Kurt Gödel. Thus, advances in
mathematical logic, a subject that owes its early development to the ques-
tions raised by the work of Cantor and Dedekind, ultimately forced math-
ematicians to adopt a more cautious attitude to the nature of mathematical
truth.

I cannot hope to improve on the succinct, non-technical, description
given to these events by John vonNeumann,written in 1947 and quoted here
at some length. The final section of this chapter, however, is devoted to a

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.10



234 10. SOLID FOUNDATIONS?

brief description of how infinitesimals, having been banished in the late nine-
teenth century, have made a modest comeback since 1960, notably through
the efforts of the logician Abraham Robinson.

1. Avoiding paradoxes: the ZF axioms

Although held in high regard by specialists, Russell and Whitehead’s
Principia did not have a decisive influence on the directions of mathematical
research in the early decades of the twentieth century. In part, this was due
to the formulation, by Ernst Zermelo in 1908, of an apparently consistent
system of axioms for set theory within mathematics, using the notion of set as
an undefined term (much as Euclid does with point and line, despite appear-
ances). Zermelo’s axiom systemwas later added to and completed byAbra-
ham Fraenkel (1891-1965) and Thoralf Skolem (1881-1963) and is today known
simply as ZF. The relationship of the ZF axiom system to key questions that
Cantor’s groundbreaking work had left unresolved, such as whether every
set can be well-ordered and the Continuum Hypothesis, became a signifi-
cant topic of research over the next half-century.

Any precise specification of the axioms of ZF requires a background
in formal mathematical logic—which was not flagged as a pre-requisite for
reading his book! We must therefore be content with a brief informal de-
scription of the restrictions on set formation that Zermelo and his successors
considered necessary to avoid antinomies such as the ones indicated at the
end of the previous chapter.

Cantor had already expressed the hope that avoiding the use of notions
such as ‘the set of all sets’ of a specific kind might suffice to banish contra-
dictions, but he never specified how this might be done without also inval-
idating proofs that appeared to produce useful correct results. Russell also
suggested early on that avoiding notions such as the ‘class of all entities’ of
a particular type would lead ‘naturally’ to the view that the set of objects
satisfying a functional proposition should be required to be equipotent to
some initial segment of the ordinal numbers. These ideas, however, did not
distinguish successfully between all types of antinomies.

In particular, a ‘semantic’ paradox first described by the French math-
ematics teacher Jules Richard (1862-1956) in 1905, applied Cantor’s second
diagonal argument to the set E of all decimal expansions between 0 and 1
that can be defined (in English, say) in a finite number of words. This set must
be countable, and thus can be presented as a sequence (rn)n of real num-
bers: start with all two-letter combinations in alphabetical order, then all
three-letter combinations similarly, and so on. Delete all those that do not
define a real number between 0 and 1 (represented here by an infinite dec-
imal expansion). Thus the set E of all real numbers that can be defined in
a finite number of words can be written as a sequence, that is, as a well-
ordered denumerable set {r1, r2, ..., rn, ...}.Now, by using this sequence (in
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other words, by making reference to E), Richard describes how to define
a decimal expansion (hence a real number) that is not equal to any of the
rn. Call this decimal expansion x. If the decimal expansion defining rn has
digit p in the nth place and p is neither 8 nor 9, then the nth digit of xwill be
defined as p+ 1. If the nth digit of rn is 8 or 9 we take the nth digit of x as 1.
But now we have used a finite number of (English) words to define x and x
is not in E,which contradicts the definition of E.

Richard’s paradoxwas picked up byHenri Poincaré (1854-1912), then the
undisputed doyen of Frenchmathematics, who had remained critical of var-
ious aspects of research into the foundations of mathematics. Poincaré ar-
gued that the paradox arose precisely because the collection E itself is used
in defining x; in other words, we end up in a ‘vicious circle’. According to
Poincaré this could be avoided by definingE simply as ‘the aggregate of all the
numbers definable by a finite number of words without introducing the notion of the
aggregate E itself ’. Peano and Zermelo disagreed, since a ‘circular definition’
is normally one that uses the term to be defined in the expression defining
the term itself, and this was not the case here. But the paradox remained.

The use of terms such as definable itself leads to difficulties, such as in the
Berry paradox, which Bertrand Russell ascribed to GG Berry (1867-1928), an
Oxford librarian. Berry observed that the phrase ’the smallest positive integer
not definable in under sixty letters’ (in the English language) is problematic.
Only finitely many positive integers (i.e. natural numbers) can be described
in under sixty letters: the alphabet has 26 letters, so for each letter we cannot
have more than 26 choices. This means that the number of possible phrases
(whether they make sense is irrelevant here) containing fewer than sixty
letters is certainly finite. As there are infinitely many natural numbers, the
set U ⊂ N whose members cannot be described in a phrase of under sixty
letters is non-empty, hence by the well-ordering property of N it has a least
member. On the other hand, if Berry’s phrase describes a positive integer, it
has done so with fewer than sixty letters! So the phrase is self-contradictory.

Zermelo’s axiom system in 1908 sought to avoid both the antinomies
described by Cantor and those involving ‘definability’, such as Richard’s or
Berry’s. A restriction had to be placed on the ways in which we can gener-
ate subsets of a set by insisting that only certain kinds of logical sentences
(sentential forms) could be used to identify the subset. Zermelo called such
assertions definite; his description of this restriction was made fully precise
byHilbert’s former studentHermannWeyl (1885-1955) in 1910, who specified
the logical symbols that could be allowed.

Unlike Euclid’s five axioms for geometry (with all their shortcomings
and omissions, which were only rectified by Hilbert in 1899), any summary
statement of the ZF axioms will not produce much enlightenment in the
reader who encounters them for the first time. (Nevertheless, a summary is
attempted inMM.) Suffice it to say for our purposes that theywere designed
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explicitly to avoid the pitfalls that were described earlier. They provide a
procedure for set formation which, to date, has not been shown to lead to
inconsistencies.

It was also gradually becoming clear that mathematics, if based upon
axioms in this fashion, could not be subsumed under logic, as Frege, Russell
and others had hoped.1 For their programme to succeed, the logicists, led
by Frege’s meticulous work, had extended classical (Aristotelian) logic to in-
clude logical symbols and quantifiers which enabled them to identify more
precisely what constitutes a logical sentence or proposition P . Such a sentence
should be expressible in terms of the symbols comprising the given logical
language, and be derived from logical axioms, independently of any mean-
ing that one might attach to the symbols that make up the proposition. The
ZF axiom system, on the other hand, includes theory-specific assumptions,
such as the Axiom of Infinity, that do not adhere fully to these constraints.2
Its success in avoiding the antinomies discussed earlier and its subsequent
acceptance by themathematical community hasmeant that logicist attempts
to subsume all of mathematics under logic were gradually abandoned.

2. The axiom of choice

Instead of discussing theZermelo-Fraenkel axioms individually, we con-
sider an axiom not included in his list by Zermelo, but used explicitly by
him in an earlier important paper in 1904. In this paper he considered Can-
tor’s contention that every set can be well-ordered. Zermelo wished to justify
Cantor’s claim, which would serve to complete the foundations of Cantor’s
theory of transfinite numbers. Recall that Cantor had managed to prove
that the trichotomy holds for well-ordered sets (such as any two alephs),
but that a proof of this had eluded him if the sets were not well-ordered.
Proving that any power is an aleph would require him to show that any set
can be well-ordered, and this was an open problem until Zermelo’s paper.
However, in presenting a proof of Cantor’s contention, Zermelo stated and
used an unproven assumption (he called it an ‘unobjectionable logical princi-
ple’) that soon became known as the Axiom of Choice. This assumption was
to play a fundamental role in much of modern mathematics.

2.1. Initial reception. Zermelo’s statement of the assumption in his orig-
inal 1904 paper can be formulated more succinctly in the following form:

1Readers looking for a more detailed account of the issues we touch upon in this chapter
may consult the excellent article [43].

2The axiom allowing us to go beyond the finite, Infinity, postulates the existence of an
infinite set. More specifically, the axiom states that there is a set Z containing the empty set
∅, and for any A in Z, the union ∪{A, {A}} is also in Z. The infinite set then arises from
the indefinite repetition of this operation in a manner similar to von Neumann’s model of N,
discussed in Chapter 8.
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Given any family T of non-empty sets, there is a function f which assigns to each
member A in T an element f(A) of A.

The function f is called a choice function. So the Axiom of Choice says
that a choice function always exists for any family of non-empty sets.

In 1908 he reformulated his axiom slightly, to assert the existence of a
choice set, or transversal, for any collection of sets: For every collection A of
mutually exclusive non-empty sets there exists at least one set containing exactly
one element from each member of A.

In this formulation it is easier to appreciate the analogy used by Russell
(slightly tongue-in-cheek, as was typical of him) to explain why this axiom
has any content. The claim is clearly true for any finite collection of sets.
Russell points out that the axiom demands that the formation of a set con-
sisting of one element from each set in the given collection should always
be possible, whether or not we can specify a ‘selection rule’ for doing so. To
illustrate this, he imagines two infinite collections: the first consists of pairs
of shoes, the second of pairs of socks. A obvious selection rule for the shoes
would be to choose the left shoe of each pair, but for socks it is quite unclear
how one might define a selection rule, since in any given pair the left and
right socks look identical!

Note also that, while the Axiom asserts the existence of a choice func-
tion for any family T of sets, the 1908 formulation can easily be amended
in various ways to an apparently weaker claim. For example, one might re-
strict the assertion to cases where T is a set whose cardinality is at most α
for some specified α. The weakest of these is denumerable choice, where one
would only claim the existence of a transversal for every countably infinite
set T.Aswewill see below,many nineteenth century researchers inAnalysis
had implicitly made this assumption. By contrast, Zermelo needed the full
power of the Axiom, applied to an arbitrary family T of sets, in his efforts to
prove Cantor’s Well-Ordering Principle.

Despite its innocuous appearance, the Axiom of Choice has aroused
more controversy than any axiom in the history of mathematics, with the
possible exception of Euclid’s Parallel Postulate. David Hilbert called it the
axiom ‘most attacked up to the present in the mathematical literature’. Although
Kronecker, who might have been its most vehement critic, had died more
than a decade earlier, other figures took up the cudgels on his behalf.

In particular, several prominent younger French mathematicians of the
time, including Emile Borel (1871-1956),Henri Lebesgue (1875-1941) andRené-
Louis Baire (1874-1932), expressed grave doubts about the validity of the
assumption in a now famous correspondence with Jaques Hadamard (1865-
1963), who argued strongly for the acceptance of the axiom.
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Borel had begun the debate with a short article in 1904, in which he ar-
gued that Zermelo’s proof had simply shown the equivalence of two prob-
lems:

(A) whether an arbitrary setM can be well-ordered,
(B) whether it is possible to choose a distinguished element from each

non-empty subset ofM.

This equivalence, he maintained, did not amount to a solution of prob-
lem (A), since the problem of determining a distinguished element from an
arbitrary subset ofM seemed to him ‘one of the most difficult, if one supposes,
for the sake of definiteness, that M coincides with the continuum’. The accep-
tance of uncountably many arbitrary choices took one ‘outside mathematics’,
Borel claimed. He was strongly supported by Baire, who took matters even
further, since he rejected the actual infinite (such as Cantor’s transfinite or-
dinals) and argued that it is false, when considering an infinite set, ‘to regard
the subsets of this set to be given’.

On joining the debate at Borel’s request, Lebesgue initially took a more
cautious approach. For him the key question was whether one could prove
the existence of a mathematical object without defining it. He concluded that
defining the object uniquely was essential – even though, in his own work,
he had at times used existence proofs that did not conform to this require-
ment. For him, Zermelo’s use of an infinite number of arbitrary choices
could not have meaning as an existence proof. Lebesgue went further than
Borel in rejecting the possibility of Denumerable Choice, and the proposi-
tion that any infinite set has a denumerable subset.

Hadamard, in reply, argued that the central problemwas that he and his
colleagues had different conceptions of mathematics, and that their argu-
ments resembled earlier debates aroundRiemann’s views onwhat functions
should be allowed into analysis. In his view, ‘essential progress in mathematics
has resulted from successively annexing notions’ which, for earlier generations,
‘were “outside mathematics" because it was impossible to define them’.

This correspondence (here taken from [32]) was published in a major
French mathematical journal in 1905, and represents an early instance of
formation of a French constructivist school of mathematics. In time, Baire,
Borel, and especially Lebesgue – all of whom (like the majority of late nine-
teenth century analysts) had implicitly used instances of the Axiom in their
own work – became strong protagonists for the conception of mathematics
they had spelled out in their initial responses to Zermelo’s Axiom. Lebesgue
even called their approach ‘Kroneckerian’.

2.2. Earlier uses of the Axiom. The various ways in which late nine-
teenth century mathematicians had used the Axiom of Choice prior to Zer-
melo’s formal statement of the assumption are analysed comprehensively in
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[32]. The example we consider concerns the crucial concept of continuity of
a function f : R→ R at a point a (cf. Chapter 6).

Recall that Bolzano’s definition of continuity was rephrased there to
read

(i) The function f is continuous at the point a if, for given ε > 0 we can find
δ > 0 such that |f(x)− f(a)| < ε whenever |x− a| < δ;

wheras Cauchy’s definition lent itself to the reformulation
(ii) The function f is continuous at the point a if whenever a sequence (xn)

has limit a, the sequence of values (f(xn))n has limit f(a).

As noted in Chapter 6, (i) states the modern definition of continuity,
while the formulation (ii) is now called sequential continuity. For real func-
tions (though not in more general settings) (i) and (ii) are logically equiva-
lent.

However, the proof that sequential continuity implies continuity im-
plicitly uses Denumerable Choice. The following argument mirrors a proof
given in an 1871 paper by Heine, who credited it to Cantor.

The argument goes as follows: if (i) fails for f at a, there must exist an
ε > 0 such that for any δ > 0 there is an x satisfying x − δ < a < x + δ,
for which |f(x)− f(a)| ≥ ε. Choose δ successively as the numbers δn =
1

2n to produce points xn with 0 < |xn − a| < 1
2n , but |f(xn)− f(a)| ≥ ε.

So: limn→∞ xn = a, but f(a) 6= limn→∞ f(xn). This means that f does not
satisfy (ii) at a. Therefore: if (ii) is true for f at a then (i) must also be true
for f at a.

But how exactly do we describe a rule for choosing each of the points
xn? What has been shown is that the definition of continuity implies that
if the function f is not continuous at a, then, for each n ≥ 1, there must be
a point xn satisfying 0 < |xn − a| < 1

2n , but whose images under f are at
least ε apart. However, we have no explicit way of calculating the value of
the number xn. Even a rule such as taking xn as the ‘smallest’ such point
does not provide a way of identifying the point xn explicitly.

This is an example where the Axiom of Choice (at least in its Denumer-
able guise) cannot be avoided. This fact was only noticed in 1913 in Italy
byMichele Cipolla (1880-1947), and picked up in Poland in 1916 by the influ-
ential Wacław Sierpiński (1882-1969). The latter founded a group of mathe-
maticians inWarsawwho embarked upon an exhaustive study of theAxiom
of Choice, beginning with an extensive survey by Sierpiński of uses of the
Axiom in Real Analysis. In addition to the example given by Cipolla, he de-
scribed numerous key results by Borel and Lebesgue that hadmade implicit
use of the Axiom. One striking example was that the proof of the principal
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characteristic of Lebesgue measure (see [3]), countable additivity, in fact de-
pended on Denumerable Choice, whose validity Lebesgue later explicitly
rejected in the correspondence summarised above!

Over the following years the Axiom of Choice became a touchstone for
researchers on the foundations of mathematics. The Axiom perhaps repre-
sents the main element of what remains of Cantor’s bold claim of the ‘free-
dom’ inherent in pure mathematics as a creation of the human spirit that
does not need to be kept within artifical boundaries—such as those insisted
upon by Kronecker.

Such restrictions, Cantor had argued, represent a far greater danger to
mathematics than did his own firm belief, that ‘mathematics is completely free
in its development’, and bound only by the requirement that its concepts are
‘free from contradictions in themselves’ as well as ‘standing in fixed relationships,
ordered through definitions, to earlier concepts that are already present and have
been verified’. Even Poincaré, who argued consistently for the primacy of
intuition, declared himself disposed to accept the Axiom. Ever the Kantian,
he declared the Axiom of Choice to be ‘a synthetic a priori judgment without
which the “theory of cardinals” would be impossible, for finite as well as infinite
numbers’.

Mostmathematical practitioners today accept theZF axioms as the foun-
dation onwhichmathematical concepts can be built, beginningwith set the-
ory and specialising to whatever their field of interest may be. Most also use
the Axiom of Choice as a valuable tool—and we will see below that, if one
accepts the ZF axioms, adding the Axiom of Choice as an additional axiom
creates no new logical difficulties. When this is done, the resulting axiom
system is simply called ZFC.

3. Tribal conflict

In the early years of the twentieth century, foundational disputes arose
between various schools of mathematicians, in part over the use of Axiom
of Choice and partly overmore profound philosophical andmethodological
differences. While these are issues of fundamental importance to the subject
as a whole, they have, in large measure, tended to become the province of
specialists in the foundations of the subject.

3.1. Hilbert and Poincaré. The contrasting philosophical perceptions
of Henri Poincaré in Paris and David Hilbert in Göttingen were already ap-
parent in their reactions to Kronecker’s attacks on Cantor’s work. Hilbert
had admired Cantor’s transfinite mathematics from the beginning, without
allowing himself (at least initially) to become too disturbed by the antino-
mies of set theory. In 1925, more than three decades after Kronecker’s death,
Hilbert delivered an address entitled On the Infinite in Münster at an event
honouring Weierstrass’ work in creating more solid foundations for Real
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Figure 40. David Hilbert, by an unknown photographer, 19073

Analysis, He again hailed Cantor’s set theory as ‘the finest product of mathe-
matical genius and one of the supreme achievements of purely intellectual human
activity’ (see [37]).

However, Hilbert was fully aware of the damage the antinomies would
do unless ways were found to avoid them. In contrast to Kronecker’s ‘arith-
meticisation programme’, his proposal was to ‘supplement the finitary state-
ments’ of ordinary arithmetic with ‘ideal statements’, just as ideal elements
had been used in parts of function theory and geometry in the past. Mathe-
matics would then consist of two kinds of statements: those to which mean-
ing could be attached by some external communication, and others which
had no meaning in themselves, but were the ideal elements of the theory.
The sole criterion for their validity would be a ‘proof of consistency’, arrived
at via a (formal) logical calculus. In this way, Hilbert declared triumphantly,
‘No one will drive us from this paradise that Cantor has created for us!’

Today, Hilbert’s approach to foundational questions is described as for-
malism,which is summarised in Encyclopaedia Britannica as the belief that ‘all
mathematics can be reduced to rules for manipulating formulas without any refer-
ence to the meanings of the formulas. Formalists contend that it is the mathematical
symbols themselves, and not any meaning that might be ascribed to them, that are
the basic objects of mathematical thought’.

3https://commons.wikimedia.org/wiki/File:David_Hilbert,_1907.jpg

https://commons.wikimedia.org/wiki/File:David_Hilbert,_1907.jpg


242 10. SOLID FOUNDATIONS?

The position of most mathematicians is somewhat different. Recalling
Plato’s insistence on the reality of his World of Ideas, one might argue that
a typical mathematician today will act as an unreconstructed Platonist on
weekdays, pausing only to recite Formalist liturgy when required to do so
on particular feast days.

Hilbert’s purpose, following on from his successful axiomatisation of
Euclidean geometry, was to find a general methodology (which he called
proof theory) for constructing a formal language in which the consistency of
the axiom system in question could be verified. He had shown in 1899 that
Euclidean geometry is free from contradictions provided one could assume
that arithmetic and the real number system (the basis of Analysis) had this
property. But this result, rather than solving the problem of consistency,
had shifted it to another area of mathematics. The real goal was to obtain a
proof of absolute consistency of certain kinds of formal systems.

This had brought the focus onto the question of the consistency of arith-
metic (the system codified by the Peano axioms); in other words, formulat-
ing this system in the corresponding formal language, and using only the
axioms of ZF and those of classical logic to provide a formal proof (within
the formal language) that it does not contain a contradiction. The essence of
theHilbert programmewas to construct mathematical proofs that the various
branches of the subject are free from contradiction.

Poincaré, by contrast, would always emphasise the importance of what
he called intuition in mathematical research. While praising Hilbert’s Foun-
dations of Geometry as a ‘classic’, he remarked that ‘the logical point of view
alone appears to interest Professor Hilbert... ...The axioms are postulated; we do
not know from whence they come...’ Defending Kant’s philosophical concept
of a priori knowledge, Poincaré argued that it was not inherent notions of
space or time, but rather the concept of iteration, or indefinite repetition (as
evidenced in counting), which required our innate sense of time. This con-
stituted the a priori source of extra-logical content in elementary number
theory. Moreover, he argued that an intuitive grasp of ‘continuity’ is basic
to our understanding of the continuum. It was such a priori precepts, rather
than logical reasoning, that enabled us to understand the underlying basis
of mathematical knowledge.

He rejected Cantor’s views on the actual infinite, which he saw as lead-
ing to a vicious circle of self-referential statements, as illustrated by the vari-
ous antinomies. His philosophy alsomoved him strongly to oppose the logi-
cist programme: he did not accept that mathematics could be a mere part of
logic, leaving no room for intuition as an innate characteristic of the intel-
lect. In his view, Hilbert’s relegation of truth inmathematics tomean simply
the absence of contradiction, and his proposed proof theory in particular
(which existed only in merest outline until after Poincaré’s early death in
1912), were in danger of straying too close to the logicist perspective.
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3.2. Enter Brouwer. Amore substantive challenge to ‘classical’ mathe-
matics and logic was developed between 1908 and 1918 by theDutchmathe-
matician L.E.J. Brouwer (1881-1966), whose incisive contributions to the bur-
geoning subject of topology had marked him out as a brilliant researcher.
The publication of his ideas on the nature and foundations of mathematics
began with a paper published in 1918, entitled Founding Set Theory Indepen-
dently of the Principle of the Excluded Middle. Part One, General Set Theory.

Brouwer’s stated objective was to remove the use of proof by contradic-
tion from mathematical arguments dealing with infinite sets. He objected
to the unrestricted use of the Excluded Middle as a logical tool to claim the
existence of a mathematical object, reflecting the concerns of the French con-
structivists (Borel, Baire, Lebesgue, as well as Poincaré), that proof by con-
tradiction would not identify the object in question uniquely.

Brouwer produced a number of simple, but compelling, examples to
draw attention to his claim that the construction of the classical models of
the continuum cannot always determine particular real numbers. For exam-
ple, suppose that the expansion of the real number x starts with 0.33333...
and then either continues in this fashion forever, or is terminated as soon as
a string of seven consecutive sevens (....7777777...) appears in the decimal
expansion of π.

In Brouwer’s time no such string had been found in the decimal expan-
sion of π, so it was not known if one existed. (If one were to be found, he
could always demand a longer string, of course.) But a string of sevensmust
either appear at some point, or else it never appears. This means that the
number x cannot be irrational: it equals 1

3 if the string never appears, while
its decimal expansion terminates at the end of the string if it does appear.
But we cannot identify the rational number in question, since we don’t know
whether or at which decimal place the expansion terminates. Similar exam-
ples, usually based on an unsolved number theory problem (seeMM for an
example) were constructed to exhibit a real number x for which the ques-
tion whether x = 0 or x 6= 0 required the solution of the unsolved problem.
Brouwer regarded the very existence of unsolved problems in mathematics
as a weak counterexample to the Law of the Excluded Middle.

Thus, for Brouwer, the key requirement was that only sets that could
be constructed were to be accorded meaning in his intuitionistmathematics.
Everything should spring, ultimately, from our fundamental intuition of the
sequential construction of the natural numbers. He was uncompromising:
rather than claim that the results of classical mathematics were wrong, he
argued that very many of them should be regarded as meaningless!

Moreover, it was clear that even those results that could be retained as
meaningful in intuitionist terms would usually require much longer and
less elegant proofs if the available mathematical tools were stripped down
to those deemed acceptable by Brouwer. Hilbert memorably described the
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requirements of intuitionist methods as akin to ‘denying the boxer the use of
his fists’ when attacking a particular problem.

Throughout the 1920s, Brouwer’s trenchant critique of ‘classical’ mathe-
matics and logic attracted adedicated following of talentedmathematicians—
mainly inHolland andGermany—whowere persuaded by his arguments of
the need for change. Notably, he increasingly influenced Hilbert’s favourite
former student, Hermann Weyl (1885-1955), whose enthusiastic conversion
to intuitionism would cause Hilbert much personal consternation. In 1918
Weyl, a highly skilled communicator, published his own version of semi-
intuitionist analysis, The Continuum. This became influential in Germany,
as did his 1921 paper on the ‘new foundational crisis’ in mathematics.

Thedebates betweenWeyl, Brouwer andHilbertwere courteous enough
at the outset, but later the dispute between Brouwer and the normally gener-
ous and fair-minded Hilbert took on a personal tone. In 1928, in an episode
reminiscent of the battle between Kronecker and Cantor, Hilbert (who was
seriously ill at the time and did not expect to survive) used his pre-eminence
among German mathematicians to engineer the removal of Brouwer from
the editorial board of the prestigious journal Mathematische Annalen. This
led to considerable ill-feeling and Albert Einstein resigned from the board
in protest. Ironically, this time the senior participant in the battle was the
adherent of Cantor’s ‘free’ mathematical style, while the outcast and princi-
pal sufferer was the man who had sought to ‘purify’ mathematics from the
effects of that style and return it to safer foundations.

Today there are various strands of intuitionism within the somewhat
wider (but still quite limited) group of constructivistmathematicians, among
whose notable achievements thework begun by the founder ofmodern con-
structive analysis, the American Errett Bishop (1928-1983), perhaps stands
out as having attractedmost interest. The great majority of mathematicians,
however, continues to work within ‘classical’ mathematics.

4. Gödel’s incompleteness theorems

The final act in the ‘foundational crisis’ occurred only three years later.
In 1931 the Austrian logician Kurt Gödel (1906-1978) dealt a fatal blow to the
Hilbert programme by publishing his two (now famous) incompleteness theo-
rems. Anunderstanding ofwhat these theorems said andwhy they had such
a devastating impact upon the formalist ideal necessitates a more detailed
description of that ideal.

4.1. Hilbert’s programme. In Hilbert’s view, the provision of an ax-
iomatic basis for a branch of mathematics—as he had done for Euclidean
geometry in 1899—ensured that one could ignore the traditional ‘meaning’
of the concepts encountered in the theory: as he often emphasised, notions
such as point, line or plane should be capable of being replaced by tables,
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chairs, or beer mugs! They would become undefined terms, whose proper-
ties as well as the relations between them would be determined by using
only the stated axioms. In the formalisation of a mathematical theory its ob-
jects appear as ‘meaningless signs’ expressed in a very precise, formal logi-
cal language whose syntax (or grammar) expresses the rules for combining
individual signs into longer strings, or ‘sentences’ of the language.

In such a formalisation the proof of amathematical theorem comprises a
series of valid steps—derived from the axioms specific to that area of math-
ematics and expressed in terms of the symbolic language, while obeying the
logical axioms and rules of of inference—that transform one such sentence
into another. In this way one can ensure that no hidden assumptions or un-
stated logical principles have crept into the deductive process. The relation-
ships between the different sentences representingmathematical statements
are demonstrated explicitly and completely

It then becomes possible to ask specific questions about the nature of
and relationships between different strings of symbols. Among these is to
ask whether it is possible, within the system, to construct a sentence, say φ,
such that φ and its negation ¬φ are both consequences of the underlying set
of axioms. The sentence φmight, for example, be expressed within the for-
mal language through the formula ‘0 = 0’. Its negation would be expressed
as the formula ‘0 6= 0’. The question is whether both can be deduced from
the underlying axiom system.

A proof that such a situation cannot occur within the systemwould ver-
ify that the formalised system is absolutely consistent, that is, free from inher-
ent contradiction. The objective of Hilbert’s program was to achieve this
aim for each area of mathematics by what he called finitary reasoning, and so
rebut a key element of Brouwer’s critique of classical methods.

To illustrate Hilbert’s approach we consider the case of arithmetic, as
codified by the Peano axioms. To express these precisely requires a suit-
able and well-defined logical language. In mathematical logic, a first-order
language L for an axiom system S would satisfy five requirements, only one
of which is specific to S. The general requirements for L are a (denumer-
able) list of variables (x, y, z, ...) and three types of logical symbols: connec-
tives (symbols for ‘not’ ( ¬), ‘and ’(∨), ‘or’ (∧) and ‘implies’ (→)), equality
(=) and the quantifiers ‘for all’ (∀) and ‘there exist’ (∃). The symbols specific
to S are its undefined terms: For Peano arithmetic these are the notions of
‘distinguished’ element (0), ‘immediate successor’ (s), and the operations
of addition (+) and multiplication (×).

The Peano axioms (expressed in this formal language), together with
logical axioms and rules of inference, are used to derive the theorems of S,
i.e. the statements that can be proved using just the axioms and rules of
inference. No meaning is attached to these statements—as noted in [33], a
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page ’of "meaningless marks" of such a formalised mathematics does not assert
anything’.

Hilbert’s programme, as well as his conception of what constituted fini-
tary reasoning, were to evolve substantially throughout the 1920s.4 His goal,
however, remained to find, for any mathematical theory, a way of proving,
entirely within the formal language, that it is impossible to arrive at a con-
tradiction when using only the (finitely many) given axioms specific to the
theory as well as the logical axioms.

If this could be achieved, Hilbert argued, he would finally have laid
the ghost of Kronecker to rest. He would also have demonstrated that, by
accepting consistency as the standard of truth for a mathematical system,
its theorems could be seen to have solid foundations and thus could safely
be used and explored further, without subjecting their proofs to Brouwer’s
more demanding criteria.

In its grand ambition, aswell as in its careful attention to detail, Hilbert’s
programme is perhaps reminiscent of Frege’s andRussell’s attempts–in their
different ways—to subsume mathematics under formal logic. And while
Principia provided most of the new tools needed for Hilbert’s formalisation
of arithmetic and the rules of inference in logic, it was the methodology
of this process which laid the groundwork for Gödel’s investigations. The
question whether there is a proof of consistency for a given axiom system
is a statement that is not phrased within the logical language constructed
to that system – it is a statement about the system itself, a meta-mathematical
question.

4.2. Decidability and consistency. This is reminiscent of the difficulty
that underlies Richard’s paradox, which we discussed at the beginning of
this chapter. In fact, Gödel confirmed that his arguments were to some ex-
tent modelled on reasoning suggested by this paradox, namely that its state-
ment appeared to be about decimal expansions, but was actually concerned
with the properties of the set E of real numbers definable in a finite num-
ber of words. By listing the various combinations of letters one can attach a
number to each such combination, representing its position in the sequence.

4A detailed description of the philosophical implications of Hilbert’s evolving use of the
term finitary is given in the Stanford were to evolve throughout the 1920s, were to evolve
throughout the 1920s, of Philosophy under the heading ‘Hilbert’s Program’ – the details are
too technical to include here. In [43] a definition of ‘finitary’, given by the French formalist
Jacques Herbrandt, is reproduced as follows: ‘By a finitary argument we understand an argu-
ment satisfying the following conditions: In it we never consider anything but a given finite
number of objects and of functions; these functions are well defined, their definition allowing
the computation of their values in a univocal way; we never state that an object exists without
giving the means of constructing it; we never consider the totality of all the objects x of an in-
finite collection; and when we say that an argument (or a theorem) is true for all these x, we
mean that, for each x taken by itself, it is possible to repeat the general argument in question,
which should be considered to be merely the prototype of these particular arguments.’
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We apply the same idea to all definitions that define a property of num-
bers (e.g ‘k is prime’). The list of these definitions (expressible in English,
say) is countable, so they may be written as (φk)k≥1, for example. We can
check whether any given number has the property expressed by φk (e.g if
φk(n) expresses ‘n is prime’, then φk(71) holds, and so does ¬φk(65), since
71 is prime, while 65 is not). The formal equivalent of the statement ‘k does
not have the property designated by the defining expression with which k is corre-
lated in the serially ordered list of definitions’ then becomes ¬φk(k). Following
[33], let us call such a number Richardian. But now ‘n is Richardian’ is also a
definition in the list, hence it is allocated a number, say m. Then the ques-
tion: is m Richardian? is self-contradictory: we now have a natural number
m such that for all k, φm(k) holds if and only if ¬φk(k) holds, and therefore
φm(m) holds if and only if ¬φm(m) holds.

Working in the formal system S representing Peano arithmetic, Gödel
(using an adapted version of the system developed in Principia) was sim-
ilarly able to ‘mirror’ certain meta-mathematical statements by statements
within the language of S. By assigning a unique Gödel number to each el-
ementary sign in the formal language, to each formula and to each proof
(which is a finite sequence of formulas), he was able to analyse the structure
of the formal language with great precision and formulate ‘mirror images’
within the language of S of various statements about the language—a fairly
non-technical acount can be found in [33].

In his First Incompleteness Theorem, Gödel showed that, if S is consistent,
there is a statement G (a Gödel statement) in this language such that neither G nor
its negation ¬G (not-G) can be proved within S.

In other words, the theorem shows that S is an incomplete system.
Gödel’s encoding of all statements and proofs in S by natural numbers

(expressed as products of powers of their prime factors in ascending order)
enabled him to assign aGödel number g to the statementG, expressed in the
language of S, that mirrors the (meta-mathematical) statement ‘This state-
ment is not provable’.5 The statement G is codified by its Gödel number g, so
we can read this claim as ‘The statement with Gödel number g is not provable’.
Gödel next showed that if G were provable in S, then the same would hold
for its negation ¬G, which would mean that S is inconsistent, contradicting
the hypothesis of the theorem.

The first theorem therefore says that the statementG is (formally) unde-
cidable in S.6

5Note the close similarity to the ‘who shaves the barber?’ version of Russell’s paradox (see
Footnote 17 in Chapter 9) or the so-called Liar paradox, stating ‘This statement is false’.

6However, the statement G is true. It makes the (meta-mathematical) assertion: ‘there is
no proof of G within S’, which is a true statement, since we have just seen that G is undecidable
in S. Thus: provability of a statement within a formal system and truth are not the same thing!
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Adding either G or its negation as a new axiom to S will not improve
matters. Gödel’s numbering technique works for any axiom system that
(like S) is rich enough for arithmetic while remaining computable—so that
its axioms can be recognised by a computer. Adding ‘Gödel statements’ to
the axioms one by one does not destroy this property. In other words, S is
essentially incomplete.

Gödel’s Second Incompleteness Theorem followed from the first. Infor-
mally, it states:

If S is consistent, then that fact cannot be proved within S.
To justify this claim, Gödel first codes the statement ‘S is consistent’ by

Consis(S),while the statement ‘G is not provable’ is coded by G itself. The
First Incompleteness Theorem states that ifS is consistent thenG is not prov-
able in S.Coding this statement in S asConsis(S)→ G, the proof of the first
theorem can be mirrored in S to show that Consis(S) → G is provable in
S, contradicting the first theorem. Therefore the consistency of S cannot be
proved within S.

This conclusion was a hammer blow to Hilbert, showing that the origi-
nal objective of his proof theory programme is unachievable. If there were
a finitary demonstration of the consistency of S, it should be possible to for-
mulate it as a theorem of S,whichwouldmean, in turn, thatConsis(S), and
therefore G, would be provable in S, contradicting the first incompleteness
theorem!

While this does not exclude the possibility of finding a ‘finitary’ proof
(in Hilbert’s sense) that cannot be mirrored in the formal language of Prin-
cipia (which is essentially the system we called S) but which shows the con-
sistency of arithmetic, no such proof has yet been found. Work by various
of Hilbert’s former co-workers and others has produced partial results, but
his original goal has effectively been abandoned as hopeless.7

Thus the optimistic claim that ‘every mathematical problem can be solved’
and Hilbert’s stirring epitaph: ‘Wir müssen wissen. Wir werden wissen.’ (‘We
must know. We will know.’) have, for the present at least, had to be re-
placed by somewhat more modest objectives. Gödel’s results are a salutary
reminder that the axiomatic method itself – at least as understood today –
has severe limitations.

In 1938/9 Gödel lectured in the USA, but, showing little interest in pol-
itics, he returned to Vienna despite Nazi Germany’s takeover of Austria in
1938. He did not succeed in obtaining a paid position—possibly because he
had many Jewish friends. He was even mistaken as Jewish and attacked on

7In 1936,Gerhard Gentzen proved the consistency of S, imposing a linear ordering on state-
ments in S. However, this went far beyond finitary statements: he needed not only the ordinals
of Cantor’s class (I), but ordinals up to a certain infinite ordinal (ε0).
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the street. He obtained a US visa in 1940, having to travel to the US via Rus-
sia and Japan, and settled at the Institute for Advanced Study in Princeton,
where he remained until his death in 1978—and where he formed a close
friendship with Albert Einstein.

Soon after arriving in Princeton he published Consistency of the axiom of
choice and of the generalized continuum-hypothesis with the axioms of set theory,
now regarded as a classic. He defined, within ZF, a smaller collection of
sets (which he called constructible) in which the axioms of ZF, as well as the
Axiom of Choice (AC) and the Generalised Continuum Hypothesis (GCH),
are true. Hence, if the negation of AC could be proved in ZF, that would
probably also hold within the constructible universe, and would make ZF
inconsistent.8 The samewould apply with GCH. So: if ZF is consistent, then
so is the axiom system ZF+AC+GCH—no new inconsistencies can arise by
adding AC and/or GCH to ZF.

In 1963, Paul Cohen (1934-2007), used a revolutionary technique (forcing)
to show that, provided ZF is consistent, it also remains so if we add the
negations of AC and/or GCH to it instead. Hence, if ZF is consistent, then
neither AC nor GCH can be proved within ZF. Combining this with Gödel’s
result, therefore, AC and GCH are independent of ZF, i.e. neither provable
nor disprovable.

In thismoremodest sense, anddespite effectively endingHilbert’s hopes
of proving absolute consistency, Gödel was instrumental in rescuing aspects
of ‘Cantor’s paradise’ that Hilbert had sought to preserve, as quoted at the
beginning of this section.

4.3. von Neumann’s verdict. John von Neumann summarised the im-
pact of intuitionism andGödel’s theorems as follows in his essay ‘TheMathe-
matician’, published in ‘The Works of the Mind’ (vol.1, pp. 180-196, University
of Chicago Press, 1947):

It is difficult to overestimate the significance of these events. In the third decade
of the twentieth century two mathematicians—both of them of the first magnitude,
and as deeply and fully conscious of what mathematics is, or is for, or is about,
as anybody could be—actually proposed that the concept of mathematical rigour,
of what constitutes an exact proof, should be changed! The developments which
followed are equally worth noting.

1. Only very few mathematicians were willing to accept the new, exigent stan-
dards for their own daily use. Very many, however, admitted thatWeyl and Brouwer
were prima facie right, but they themselves continued to trespass, that is, to do their
own mathematics in the old, "easy" fashion—probably in the hope that somebody
else, at some other time, might find the answer to the intuitionistic critique and
thereby justify them a posteriori.

8For a discussion of what is meant by true in this context, see article on ’The Axiom of
Choice’ in the Stanford Encyclopedia of Philosophy, http://www.plato.stanford.edu.
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2. Hilbert came forward with the following ingenious idea to justify “classical"’
(i.e. pre-intuitionistic) mathematics: Even in the intuitionistic system it is possible
to give a rigorous account of how classical mathematics operates, that is, one can
describe how the classical system works, although one cannot justify its workings.
It might therefore be possible to demonstrate intuitionistically that classical proce-
dures can never lead into contradictions—into conflicts with each other. It was clear
that such a proof would be very difficult, but there were certain indications how it
might be attempted. Had this scheme worked, it would have provided a most remark-
able justification of classical mathematics on the basis of the opposing intuitionistic
system itself! At least, this interpretation would have been legitimate in a system of
the philosophy of mathematics which most mathematicians were willing to accept.

3. After about a decade of attempts to carry out this program, Gödel produced
a most remarkable result. This result cannot be stated absolutely precisely without
several clauses and caveats which are too technical to be formulated here. Its es-
sential import, however, was this: If a system of mathematics does not lead into
contradiction, then this fact cannot be demonstrated with the procedures of that
system. Gödel’s proof satisfied the strictest criterion of mathematical rigour—the
intuitionistic one. Its influence on Hilbert’s program is somewhat controversial,
for reasons which again are too technical for this occasion. My personal opinion,
which is shared by many others, is, that Gödel has shown that Hilbert’s program is
essentially hopeless.

4. The main hope of a justification of classical mathematics—in the sense of
Hilbert or of Brouwer and Weyl—being gone, most mathematicians decided to use
that system anyway. After all, classical mathematics was producing results which
were both elegant and useful, and, even though one could never again be absolutely
certain of its reliability, it stood on at least as sound a foundation as, for example,
the existence of the electron. Hence, if one was willing to accept the sciences, one
might as well accept the classical system of mathematics. Such views turned out to
be acceptable even to some of the original protagonists of the intuitionistic system.
At present the controversy about the "foundations" is certainly not closed, but it
seems most unlikely that the classical system should be abandoned by any but a
small minority.

I have told the story of this controversy in such detail, because I think that it
constitutes the best caution against taking the immovable rigour of mathematics too
much for granted. This happened in our own lifetime, and I know myself how hu-
miliatingly easily my own views regarding the absolute mathematical truth changed
during this episode, and how they changed three times in succession!

Evenwhile the foundational debateswere raging in the 1910s and 1920s,
the great majority of mathematicians paid only occasional attention to these
matters, and got onwith their particular research projects, while paying due
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respect to the efforts of those grappling with difficult foundational ques-
tions. Following the shock of Gödel’s ‘negative’ results, this tendency be-
came more marked, while the pace of progress in many areas of mathemat-
ics increased dramatically, with new areas developing so quickly that no sin-
gle researcher after Poincaré and Hilbert could truly be regarded as a ‘uni-
versalist’ with contributions and interest stretching across the entire spec-
trum of the subject. The emergence of computing has shifted some attention
back towards the discrete and to the rapid development of recursive tech-
niques aswell as of rules of inference, including probabilistic techniques and
multi-valued logics, but their impact on the fundamental questions around
the nature of ‘mathematical truth’ is by no means clear at present.

5. A logician’s revenge?

While the controversy over Cantor’s transfinite cardinals raged in the
period 1880-1900, therewas nevertheless near-unanimity amongmathemati-
cians that, following the construction of arithmetical models of the contin-
uum R, the ‘infinitely small’ could no longer lay any claim to legitimacy in
the foundations of the Calculus. Among the few notable dissenting views,
those expressed by Paul du Bois-Reymond (1831-1889), especially in his Die
Allgemeine Funktionentheorie (General FunctionTheory), weremore strikingly
and elaborately articulated than most (see [2]).

This work mixes a certain amount of mysticism and metaphysics with
mathematical analysis in building contrasting pictures of the continuum
that foreshadow later debates. In a dialogue between an ‘idealist’ and an
‘empiricist’, various conceptions of the continuum are analysed, but no fi-
nal conclusions are reached. However, in an earlier paper du Bois-Reymond
had developed a theory of infinitesimals, arguing that if infinite numbers
were to be regarded as legitimate, so should their inverses, the infinitesi-
mals.

Although du Bois-Reymond was not regarded as a mathematician of
the first rank, he later made claims of priority in the use of the second di-
agonal method, which is universally attributed to Cantor. His more famous
brother Emil, a physiologist who later became a philosopher, was somewhat
more influential in late nineteenth-century society. Emil’s writings focused
on limits to our knowledge of nature, arguing that there were ‘transcenden-
tal’ questions that were unsolvable in principle. His statement ‘Ignoramus et
ignorabimus’ (‘we are ignorant andwe shall remain ignorant’) became some-
thing of a rallying cry among groups of university students at the time. In
1900, in his Paris address, Hilbert responded regally: ‘We hear within us the
perpetual call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus’.

Cantor was also dismissive of infinitesimals in analysis. In the long,
discursive, introduction to his Grundlagen paper in 1883 he addressed the
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question whether his sequence of transfinite cardinal numbers might help
in the search for a consistent grounding of a theory of infinitesimals. Could
these be regarded as ‘finite’ numbers whichwere distinct from rational or ir-
rational numbers, but would lie between such numbers, or which, similarly,
could be inserted between algebraic and transcendental numbers?

His answer was unequivocal: the theory of well-ordered sets would
show such attempts, by various authors at the time, to be fallacious, rest-
ing on the one hand on confusion between the actual and potential infinite,
and on dubious reasoning on the other. The description (by some philoso-
phers) of the potential infinite as ‘bad’ infinity was unjustified, since it had
frequently proved itself useful in mathematics and the natural sciences. To
his knowledge, all uses of the infinite in real analysis could relate only to the
potential infinite. He argued that any attempt to ‘force’ the infinitely small
into the guise of an actual infinite would be purposeless. Even if such ob-
jects existed, or could be defined successfully, they could not stand in any
immediate relation to normal quantities that were becoming infinitely small.

Yet the use of infinitesimals, if only as façon de parler used in textbooks,
did not die out as Cantor may have wished. There continued to be serious
attempts to construct number systems that included infinitesimals, notably
in 1907 by the Austrian mathematician Hans Hahn (1879-1934), who con-
structed a non-Archimedean ordered field containing non-zero elements x
such that, for all n in N, 0 < |x| < 1

n . But there did not, as yet, seem to be a
consistent way of exploiting such objects within real analysis.

This situation remained more or less intact for half a century. In 1958
a partial theory of infinitesimals was published by the German mathemati-
cians Curt Schmieden (1905-1991) andDetlef Laugwitz (1932-2000). Their con-
struction did not arouse much initial interest, as the number system they
produced was not an ordered field. It was soon overshadowed by the pub-
lication in 1961 of an article by the logician Abraham Robinson (1918-1974),
followed in 1966 by his ground-breaking volumeNon-StandardAnalysis, [39].

Robinson employed novel techniques from logic and model theory to
construct an ordered field (necessarily non-Archimedean, of course) ∗R –
nowadays called the hyperreals –which extends the real number systemR to
include both infinite and infinitesimal numbers and is linked to real num-
bers in a way that makes applications to Real Analysis possible. This cor-
respondence is based on a completely new concept, the Transfer Principle,
which states (informally) that exactly the same formal statements (within
symbolic logic, as described earlier) will hold in both R and ∗R. This may
seem contradictory at first sight, since ∗R contains infinitesimal elements,
while R does not—the resolution of this conundrum lies in the precise de-
scription of the formal statements that are to be included in the Principle.
In this sense the Transfer Principle might be regarded as a modern version
of Leibniz’ Continuity Principle. Plus ça change!
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Versions of the hyperreals can be constructed in a variety of ways, not
all equivalent. We will assume as given an ordered field that we denote by
∗R, in which R may be regarded as an embedded subset (much as Q was
taken to be embedded in R in Chapter 7). This extension extends to subsets
of R as well as to real functions (i.e. between real numbers): A ⊂ R has
a counterpart ∗A in ∗R such that A = ∗A ∩ R, and a function f :A 7−→ B
extends to ∗f :∗A 7−→ ∗B, so that f is the restriction of ∗f to A and the graph
of ∗f is the extension of the graph of f.

The algebraic operations (+,×) and order relation (<) similarly extend
to ∗R , as does the absolute value (|.|) of a real number—for ease of notation,
we will use these symbols also in ∗R, without the asterisk.

In ∗R we can distinguish between three types of elements: x ∈∗ R is
(i) infinitesimal if |x| < ε for all ε > 0 belonging to R,
(ii) finite if |x| < r for some r in R,
(iii) infinite (equivalently, not finite) if |x| > r for all r in R.
(Note that infinitesimals are also finite.)
A version of the Transfer Principle that ensures that all first-order prop-

erties of subsets and functions extend to ∗R is proved in Chapter 1 of [1].
In this setting, completeness, the key feature of R, does not extend to ∗R. For
example, the set of all finite elements of ∗R cannot have a least upper bound
in ∗R: any upper bound of this set would be an infinite element, s say, hence
s − 1 would still be an upper bound. This illustrates the need to take care
when using the Transfer Principle.

For hyperreals x, y we write x ≈ y if their difference is infinitesimal,
and say they are infinitely close. Clearly, a sum or product of infinitesimals is
again infinitesimal, as are the inverse of an infinite element and the product
of a finite with an infinitesimal element of ∗R. So if x ≈ y and u ≈ v then
x+ y ≈ u+ v. If x, u are finite, then xv ≈ uv.

Sums and products of finite elements are finite, as is the sum of a finite
and an infinitesimal element. The inverse of a non-infinitesimal finite ele-
ment is also finite. While the sum of two infinite elements of the same sign,
and the product of any two infinite elements, are again infinite, products of
infinite numbers with infinitesimals can belong to any of the three classes.

The following theorem ensures that any finite hyperreal is infinitely
close to a unique real number.

Standard Part Theorem
If x is a finite hyperreal there is a unique real number r ≈ x. So there is a

unique infinitesimal δ such that x = r + δ.

Proof: The set A = {a ∈ R : a ≤ x} is bounded as a subset of R, as x is
finite. So r = supA exists inR. For any real ε > 0, r−ε is not an upper bound
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of A, so we can find a ∈ A with r − ε < a ≤ x, and so r − x < ε. As r is an
upper bound ofA, r+ε is not inA, hence x < r+ε, so that x−r < ε.Wehave
shown that |x− r| < ε for all ε > 0 in R , hence δ = x − r is infinitesimal.
The uniqueness claim is obvious, as 0 is the only infinitesimal in R.

We write r = st(x) and call it the standard part of x. For finite elements,
the standard part of their sum (product) is the sum (product) of their stan-
dard parts. If x ≤ y in ∗R then st(x) ≤ st(y) in R (but not conversely). For
finite x in ∗R\R we see that δ = x − st(x) 6= 0 is infinitesimal, and δ−1 is
infinite. For infinite x, x−1 is a non-zero infinitesimal.

These preparations allow us to characterise convergence of sequences
and continuity of functions very simply:

(a) for a real sequence (sn) and a ∈ R, limn→∞ sn = a is equivalent to:
∗sK ≈ a for all infiniteK in ∗N;

(b) if f is defined on I = (a, b) in R, then f is continuous at c ∈ I
if and only if ∗f(x) ≈∗ f(c) for all x ≈ c.
Both claims are proved by an appeal to the Transfer Principle, i.e. con-

structing a sentence in first-order logic that can be transferred. We only con-
sider the second case (which is very close to Bolzano’s definition of continu-
ity):

Suppose limx→c f(x) = f(c), fix any hyperreal z ≈ c and ε > 0.Weneed
to show that |∗f(z)−∗ f(c)| < ε.

Weknow that there is δ > 0 such that the following (first-order) sentence
holds in R:

for all x, |x− c| < δ implies |f(x)− f(c)| < ε.

By Transfer, the corresponding sentence holds in ∗R:
for all X, |X − c| < δ implies |∗f(X)−∗ f(c)| < ε.

Taking X = z we see that ∗f(z) ≈∗ f(c) whenever z ≈ c.
For the converse implication, assume that |∗f(z)−∗ f(c)| ≈ 0

whenever z ≈ c, and suppose that ε > 0 is given.
Taking any infinitesimal Y > 0 in ∗R, we have:
there exists Y ∈ ∗R such that for all X ∈∗ R , |X − c| < Y

implies |∗f(X)−∗ f(c)| < ε.

By Transfer, the corresponding sentence holds in R :

there exists y ∈ R such that for all x ∈ R , |x− c| < y

implies |f(x)− f(c)| < ε.

We can take any such y as the required δ > 0, hence limx→c f(x) = f(c).
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This elementary illustration should suffice to show that basic facts of
Real Analysis can be recovered in an intuitively attractive manner—see, e.g.
[1] for an account of this and a variety of advanced applications. InMM we
outline the construction of a version of ∗R reminiscent of Cantor’s model for
the reals.





Epilogue

I will leave matters there. Other extensions of the real number sys-
tem have been proposed—see [28] for a striking example. By starting with
counting and linking this to notions of the ‘number line’, we have seen how
mathematicians have extended the number concept progressively over the
centuries. Infinitesimals, it seems, are not as easily banished into the outer
darkness as Weierstrass and others had supposed—but they had to change
their clothes significantly in order to appear more respectable!

That said, what David Hume, who so clearly abhorred ‘horn angles’
(see the end of Chapter 5), might have thought about the infinitely many
different orders of infinitesimals now made possible, must remain an open
question. And it is easy to imagine howKronecker (and, no doubt, Brouwer)
might have reacted to the hyperreals. Wemight counter their concerns with
Hadamard’s confident assertion (quoted in Section 1) that ‘essential progress
in mathematics’ results from including notions which, for earlier generations,
‘were “outside mathematics" because it was impossible to define them’. And, after
all, not even Plato’s Olympian edicts stopped Archimedes from employing
neusis constructions – nor, indeed, infinitesimal slices!

The present mathematical community has largely taken hyperreals in
its stride, while seldom showing great interest in the details. One reason is
the existence of a meta-theorem that maintains (roughly speaking) that any
result which can be proved by nonstandard methods also has a ‘standard’
proof–which may well be rather longer, however! In this sense, the prac-
titioners of nonstandard analysis appear to be closer to the current ‘main-
stream’ than is the group at the opposite end of the spectrum, the construc-
tivists, who not only reject infinitesimals, but also restrict the real numbers
they accept to the numbers (essentially) definable in finitely many words.

Neither of these opposite poles has attractedmore than a fairly smallmi-
nority of practitioners to date. In both cases the ‘entry fee’ to participation,
having to learn radically new techniques and adopt unfamiliar perspectives,
may seemquite high tomany researchers, trained as they usually are in tech-
niques and subject matter still dominated by the groundwork laid in the late
nineteenth century. Whether and how this may change only time will tell.

Let us therefore leave the last word to the venerable Sir Francis Bacon.

c© Ekkehard Kopp CC BY 4.0 https://doi.org/10.11647/OBP.0236.11
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Etiam capillus unus habet umbram suam. (The smallest hair casts a shadow.)
Sir Francis Bacon, Ornamenta Rationalia, or, Elegant Sentences, 1625.
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rule of signs, 98
Rules for the Direction of the

Mind, 79
differentiation, 117
Diophantus
Arithmetica, 41
indeterminate problems, 42

Eddington’s number, 10
equation
cubic, 59
linear, 18
quadratic, 18
quartic, 62
quintic, 63

Euclid
Elements, 21, 57, 67, 96, 137

Book V, 34
Book X, 39, 170
Books VIII-IX, 23
common notions, 195
postulates, 196

Lemma, 161
Sectio Canonis, 22

Eudoxus
method of exhaustion, 111

expansion
decimal, 180
eventually periodic, 181
truncation of decimal, 183

Fibonacci
Liber Abaci, 51, 56
sequence, 53

Frege
Basic Law V, 230
Foundations of Arithmetic, 230
predicate calculus, 230
rules of inference, 230

function, 125
derived, 134
differentiable at a point, 147

Fundamental Theorem
of Algebra, 105
of Arithmetic, 36
of the Calculus, 119, 149

Gaussian plane, 100
geometric progression, 81
geometry
hyperbolic, 197

googol, 4

Hilbert problems, 191
Hilbert programme, 241
consistency of arithmetic, 242
finitary methods, 245
formalism, 242
proof theory, 242

Holy Roman Empire, 50
horn angle, 130
House of Wisdom, 47

induction, 201
inequality
triangle, 141

infinite
actual, 108, 217
divisibility, 110
potential, 108

infinitesimal, 117
Cauchy’s formulation, 138, 139
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method, 135
numbers, 251

infinity
proper and improper (Cantor),
220

integral
Cauchy’s definition, 148

integration, 117
intuitionism, 243

Kant
a priori knowledge, 198
Critique of Pure Reason, 198

Lagrange
Mecanique Analytique, 133
Theorie des Fonctions
analytiques, 133

Lebesgue
measure
countable additivity, 240

Leibniz
characteristica universalis, 232
on imaginary quantities, 99

Library of Alexandria, 41
limit, 132
of a sequence, 140
of a variable (Cauchy), 139

Liouville
constant, 190

locus of points, 90
logarithm
Briggsian, 82
Napierian, 81

logicism, 230
long scale, 2

maestri d’abbaco, 56
magnitudes, 23, 110
apotome, 40
binomial, 40
commensurable, 39
in square only, 40

expressible, 40
in proportion, 23, 33

inexpressible, 40
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medial, 40

means
geometric, 22

multiples, 23, 110
muqabala, 49
myriad, 7

neutral element, 103
Newton
De Analysi, 122
fluent, 121
fluxion, 121
Prime Ratio, 124
Principia Mathematica, 124
Ultimate Ratio, 124
Universal Arithmetick, 96

number
algebraic, 215
cardinal, 219
complex, 64, 154

imaginary unit, 65
composite, 158
constructible, 186
dekad, 29
factors of a, 158
Fibonacci, 54
integer, 153
irrational, 11, 153, 184
multiple, 26
negative, 11
Newton’s definition, 97
oblong, 27
octillion, 2
prime, 157
rational, 11, 153
real, 154
square, 26
tetrad, 29
triangular, 26
unit, 26

number line, 93
number system
decimal, 2, 77
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diophantine analysis, 43
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’numeri ficti’, 64
algebraic, 185
commensurable, 32
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of two, 160
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real, 94, 95
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scientific method, 86
scientific notation, 3
sequence
finite, 212
fundamental, 177
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representation of a function,
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